Solving for X and Beyond: Can Large Language Models Solve Complex Math Problems with More-Than-Two Unknowns?

Anonymous ACL submission

Abstract

 Large Language Models have demonstrates re- markable performance in solving math prob- lems, a hallmark of human intelligence. De- spite high success rates on current benchmarks, however, these often feature simple problems with only one or two unknowns, which do not sufficiently challenge their reasoning capaci- ties. This paper introduces a novel benchmark, **BeyondX**, designed to address these limitations 010 by incorporating problems with multiple un- knowns. Recognizing the challenges in propos- ing multi-unknown problems from scratch, we developed BeyondX using an innovative au- tomated pipeline that progressively increases complexity by expanding the number of un- knowns in simpler problems. Empirical study on BeyondX reveals that the performance of existing LLMs, even those fine-tuned specif- ically on math tasks, significantly decreases as the number of unknowns increases - with a performance drop of up to 70% observed in GPT-4. To tackle these challenges, we propose the Formulate-and-Solve strategy, a general-**ized prompting approach that effectively han-**025 dles problems with an arbitrary number of un- knowns. Our findings reveal that this strategy not only enhances LLM performance on the BeyondX benchmark but also provides deeper insights into the computational limits of LLMs when faced with more complex mathematical challenges.

⁰³² 1 Introduction

 Mathematical problem-solving is a fundamental aspect of human intelligence, necessitating both language comprehension and reasoning skills. Re- cently, LLMs pretrained on extensive web-scale datasets, have exhibited exceptional abilities in ad- dressing a variety of complex tasks. Consequently, mathematical challenges are frequently employed to benchmark the reasoning abilities of LLMs. Studies have shown that these models demonstrate human-level efficacy in solving math problems,

aided by diverse prompting techniques include in- **043** context learning [\(Wei et al.,](#page-10-0) [2022;](#page-10-0) [Kojima et al.,](#page-8-0) **044** [2022;](#page-8-0) [Wang et al.,](#page-10-1) [2022\)](#page-10-1) and the integration of ex- **045** [t](#page-8-2)ernal computational tools [\(Gao et al.,](#page-8-1) [2022;](#page-8-1) [Chen](#page-8-2) **046** [et al.,](#page-8-2) [2022;](#page-8-2) [Liu et al.,](#page-9-0) [2023;](#page-9-0) [He-Yueya et al.,](#page-8-3) [2023\)](#page-8-3). **047**

Existing math datasets (see Table [6\)](#page-12-0) used to **048** evaluate LLMs often consist of algebraic prob- **049** lems involving only one or two unknown variables. **050** While current results on these datasets are promis- **051** ing, their simplicity masks the true capabilities and **052** limitations of these models. For instance, GPT- **053** 4 [\(Achiam et al.,](#page-8-4) [2023\)](#page-8-4) achieves a 98% success **054** rate on the GMS8K [\(Cobbe et al.,](#page-8-5) [2021\)](#page-8-5) dataset, **055** suggesting that performance on these benchmarks **056** is nearing saturation. This highlights the need for **057** the development of more complex problem sets de- **058** signed to rigorously stress test LLMs and provide **059** a more accurate measure of their performance. **060**

While quantifying the complexity of these math **061** problems is multi-dimensional, one common mea- **062** sure is the number of unknowns required to solve **063** the problem. Problems with more unknowns in- **064** volve larger systems of equations, reflecting more **065** complex relationships between the quantities, and **066** thus demanding more sophisticated solving meth- **067** ods. However, creating datasets that include prob- **068** lems with multiple unknowns presents significant **069** challenges, as it is difficult for humans to manu- **070** ally develop a sufficient number of these complex **071** problems from scratch As a results, existing math **072** datasets are dominated by problems with at **073** [m](#page-8-6)ost two unknowns [\(Cobbe et al.,](#page-8-5) [2021;](#page-8-5) [Koncel-](#page-8-6) **074** [Kedziorski et al.,](#page-8-6) [2016,](#page-8-6) [2015;](#page-8-7) [Roy and Roth,](#page-9-1) [2018\)](#page-9-1). **075**

This paper tackles the aforementioned challenge **076** systematically, by presenting three key contribu- **077** tions: (1) the development of a multi-unknown **078** math benchmark, (2) an empirical study assess- **079** ing the performance of current LLMs on this new **080** benchmark, and (3) the introduction of a special- **081** ized prompting strategy designed to enhance the **082** ability of LLMs to solve multi-unknown problems. **083**

 C1: BeyondX - The first multi-unknown alge-**braic benchmark.** To efficiently generate a large corpus of multi-unknown problems, we developed a novel pipeline that automatically expands existing problems to N unknowns. This pipeline operates on three key ideas: (1). *Scenario Expansion*: New problems are derived by extending the scenarios (such as financial calculations or grocery shopping) of existing simpler problems, ensuring contextual relevance. (2). *Progressive Extrapolation*: We 094 add unknowns incrementally — one at a time — progressing from problems with two unknowns to three, four, and so on. This step-by-step approach makes the problem generation process significantly more manageable. (3). *Decomposed Problem Gen- eration*: Instead of creating an entire problem at once, we decompose the process. The LLM is carefully instructed to first introduce new unknown variables into the base scenarios, generate the corre- sponding equations, translate these equations into semantic statements, and finally integrate them into the comprehensive problem statement.

 C2: Existing LLMs struggles with increasing unknowns. Utilizing our BeyondX benchmark, we conduct a comprehensive evaluation of current LLMs, which includes both general-purpose mod- els like GPT-3.5 [\(Brown et al.,](#page-8-8) [2020\)](#page-8-8), GPT-4, and Gemini-Pro [\(Team et al.,](#page-9-2) [2023\)](#page-9-2), as well as models specifically fine-tuned on mathematical problems [\(](#page-9-3)Mistral-7B [\(Jiang et al.,](#page-8-9) [2023\)](#page-8-9), WizardMath [\(Luo](#page-9-3) [et al.,](#page-9-3) [2023\)](#page-9-3), OpenMath [\(Toshniwal et al.,](#page-9-4) [2024\)](#page-9-4), and MetaMath [\(Yu et al.,](#page-10-2) [2023\)](#page-10-2)). Our findings re- veal a significant drop in performance as the num- ber of unknowns in problems increases - a stagger-ing ∼ 70% degradation on GPT-4 for instance.

- **119** This marked decline indicates that current **120** benchmarks may overstate the algebraic capa-**121** bilities of these models.
- **122** Additionally, despite efforts to fine-tune **123** LLMs on previous math corpus, they still **124** struggle with multi-unknown problems.
- **125** Even sophisticated prompting strategies, **126** which utilize detailed natural language expla-**127** nations, fail to substantially aid LLMs in over-**128** coming these more complex challenges.

 C3: Formulate-and-Solve A prompting method to tackle multi-unknown problems. Traditional prompting methods for LLMs typically do not ac- count for the complexity inherent in systems of equations, potentially limiting the math-solving ca-pabilities of these models. Addressing whether the observed performance drop in LLMs is primar- **135** ily due to inadequate prompting strategies forms a **136** critical part of future investigation. As the initial **137** step, we propose Formulate-and-Solve, an auto- **138** mated prompting method that generalizes to an ar- **139** bitrary number of unknowns. This strategy refines **140** current approaches by integrating general math- **141** solving principles to automatically craft relevant **142** multi-unknown in-context examples for LLMs. **143**

Our empirical evaluations demonstrate that **144** Formulate-and-Solve outperforms traditional **145** prompting methods on both standard algebra **146** problem datasets and our more challenging **147** BeyondX dataset. Importantly, our findings **148** suggest that while the inherent limitations of LLMs **149** contribute to their underperformance on complex **150** problems, inadequate prompting strategies are **151** a substantial bottleneck. By enhancing these **152** strategies, Formulate-and-Solve not only improves **153** LLM performance but also provides clearer **154** insights into the actual computational limitations **155** of current models when faced with advanced **156** mathematical challenges. **157**

2 Related Work **¹⁵⁸**

2.1 Math Word Problem Generation **159**

Early research on math word problem (MWP) **160** generation relied heavily on pre-defined struc- **161** tures, including domain knowledge, equations, and **162** text templates [\(Nandhini and Balasundaram,](#page-9-5) [2011;](#page-9-5) **163** [Williams,](#page-10-3) [2011;](#page-10-3) [Polozov et al.,](#page-9-6) [2015\)](#page-9-6). More re- **164** cently, researchers began using pre-trained models **165** [fi](#page-10-4)ne-tuned on equation-to-MWP examples [\(Wang](#page-10-4) **166** [et al.,](#page-10-4) [2021\)](#page-10-4). Studies on using LLMs for MWP **167** generation are scarce. Existing work includes eval- **168** uating GPT-3's ability to mimic specific problem **169** types [\(Zong and Krishnamachari,](#page-10-5) [2023\)](#page-10-5) and us- **170** ing GPT-4 to improve readability in existing prob- **171** lems [\(Norberg et al.,](#page-9-7) [2023\)](#page-9-7). However, these ap- **172** proaches are limited to replicating existing prob- **173** lem structures, such as the number of unknowns or **174** equation templates. Our work focuses on how to **175** expand existing single or two unknown problems **176** into more complex multiple unknowns. **177**

2.2 Math Word Problem Solver **178**

Mathematical reasoning skills are crucial for in- **179** telligent systems, leading to a surge in research. **180** In the past, studies focused on how statistical and **181** deep learning NLP models could solve arithmetic **182** and algebraic problems [\(Hosseini et al.,](#page-8-10) [2014;](#page-8-10) **183**

 [Koncel-Kedziorski et al.,](#page-8-7) [2015;](#page-8-7) [Roy and Roth,](#page-9-8) [2016;](#page-9-8) [Liang et al.,](#page-9-9) [2016;](#page-9-9) [Ling et al.,](#page-9-10) [2017\)](#page-9-10). Re- cently, researchers have introduced increasingly challenging math datasets [\(Saxton et al.,](#page-9-11) [2019;](#page-9-11) [Amini et al.,](#page-8-11) [2019;](#page-8-11) [Miao et al.,](#page-9-12) [2020;](#page-9-12) [Patel et al.,](#page-9-13) [2021;](#page-9-13) [Hendrycks et al.,](#page-8-12) [2021\)](#page-8-12) to improve difficulty, diversity, and robustness. However, these methods struggle to adapt to problems outside their training data. This limitation has driven the rise of LLMs in mathematical reasoning.

194 2.3 Math Reasoning with LLMs

 Many prompting techniques have emerged to un- lock the reasoning abilities of LLMs [\(Qiao et al.,](#page-9-14) [2022\)](#page-9-14). Chain-of-Thought (CoT) Prompting [\(Wei](#page-10-0) [et al.,](#page-10-0) [2022;](#page-10-0) [Kojima et al.,](#page-8-0) [2022;](#page-8-0) [Wang et al.,](#page-10-1) [2022\)](#page-10-1) was proposed to generate the reasoning steps be- fore submitting the answer. Later, several other [w](#page-8-13)orks [\(Nye et al.,](#page-9-15) [2021;](#page-9-15) [Zhou et al.,](#page-10-6) [2022;](#page-10-6) [Droz-](#page-8-13) [dov et al.,](#page-8-13) [2022;](#page-8-13) [Wang et al.,](#page-10-7) [2023\)](#page-10-7) also proposed different approaches to utilize LLMs to solve rea- soning tasks by allowing intermediate steps or plan- ning first before solving. All of these methods allow LLMs to process all steps without using any external tools or refinements. For incorporat- ing external tools, Programming-of-Thought (PoT) prompting [\(Chen et al.,](#page-8-2) [2022;](#page-8-2) [Gao et al.,](#page-8-1) [2022\)](#page-8-1) utilizes LLMs with code pretraining to write a pro- gram as a rationale that explains the reasoning pro- cess. Equation-of-Thought (EoT) [\(Liu et al.,](#page-9-0) [2023;](#page-9-0) [He-Yueya et al.,](#page-8-3) [2023\)](#page-8-3) prompting tackles MWPs by converting them into linear equation systems, which are then solved by a symbolic solver. Al- though PoT and EoT tried to use external tools to solve MWPs, they did not consider the scenario of multiple unknown variables.

 Recent LLMs advancements for math reason- ing involve various training approaches. One method focuses on pretraining data specifically [d](#page-9-16)esigned for math, such as Minerva [\(Lewkowycz](#page-9-16) [et al.,](#page-9-16) [2022\)](#page-9-16), Llemma [\(Azerbayev et al.,](#page-8-14) [2023\)](#page-8-14), and DeepSeekMath [\(Shao et al.,](#page-9-17) [2024\)](#page-9-17). Another ap- proach involves generating synthetic questions and answers that mimic existing benchmarks. For ex- ample, the WizardMath series [\(Luo et al.,](#page-9-3) [2023\)](#page-9-3) that improves mathematical reasoning in Mistral [7](#page-9-18)B [\(Jiang et al.,](#page-8-9) [2023\)](#page-8-9) and Llama-2 70B [\(Touvron](#page-9-18) [et al.,](#page-9-18) [2023\)](#page-9-18) with problems sourced primarily from GSM8K and MATH [\(Hendrycks et al.,](#page-8-12) [2021\)](#page-8-12) via [o](#page-10-2)utput from closed-source LLMs. MetaMath [\(Yu](#page-10-2) [et al.,](#page-10-2) [2023\)](#page-10-2) and MMIQC [\(Liu and Yao,](#page-9-19) [2024\)](#page-9-19) fo-cus on expanding existing questions in GSM8K

and MATH. MetaMath rewrites questions in vari- **235** ous ways, while MMIQC combines existing math **236** [p](#page-9-20)retraining data such as OpenWebMath [\(Paster](#page-9-20) **237** [et al.,](#page-9-20) [2023\)](#page-9-20) with question-answer variations from **238** MetaMath. The Mammoth series (including Mam- **239** moth2) [\(Yue et al.,](#page-10-8) [2023,](#page-10-8) [2024\)](#page-10-9) uses curated in- **240** struction tuning datasets (MathInstruct, WebInstr- **241** cut) with reasoning rationales for training. The **242** OpenMathInstruct [\(Toshniwal et al.,](#page-9-4) [2024\)](#page-9-4) series **243** utilizes synthetic instruction data from open-source **244** LLMs with strong math reasoning abilities. **245**

3 Automatic Generation of **²⁴⁶** Multi-Unknown Algebra Problems via **²⁴⁷ Progressive Expansion** 248

3.1 Challenges for Constructing **249** Multi-Unknown Datasets **250**

Generating new problems with LLMs Creat- **251** ing correct, diverse, and solvable math problems **252** manually is an exceptionally laborious task. The **253** complexity of this task increases with the addi- **254** tion of each unknown, as more unknowns require **255** consideration of additional relationships within the **256** problem scenario. To automatize this process, we **257** employ LLMs to generate the problems, with hu- **258** man verifiers subsequently ensuring the quality and **259** solvability of these problems. **260**

Limitations of naive generation Directly **261** prompting LLMs to generate multi-unknown **262** algebra problems has often resulted in poor quality **263** outputs. Firstly, generating problem scenarios from **264** scratch tends to produce a narrow range of problem **265** types, as evidenced by the lack of diversity reported **266** in Table [15.](#page-16-0) Secondly, attempting to generate all **267** relevant relationships and corresponding equations **268** in a single step frequently leads to violations of **269** problem constraints, rendering many problems **270** unsolvable as detailed in Table [16.](#page-17-0) **271**

3.2 Generating New Problems via Progress **272** Expansion **273**

Pipeline overview To address the aforemen- **274** tioned challenges, we introduce a novel approach **275** called Progressive Expansion, which applies a **276** divide-and-conquer strategy: (1). *Scenario Diver-* **277** *sification:* We begin by expanding existing simpler **278** problems to increase scenario diversity. This lever- **279** ages the rich variety of simpler problem scenarios **280** as a foundation for more complex questions. (2). **281** *Incremental Expansion:* Instead of expanding prob- **282** lems from 1-2 unknowns to N unknowns in a single **283**

Figure 1: An example question of multi-unknown algebra problem generation and its corresponding reasoning steps. The prompts used for each step can be found Appendix [13.](#page-14-0)

 leap, we incrementally introduce one new variable at a time. This step-by-step approach simplifies the 286 transformation from $N - 1$ unknowns to N, mak- ing it more manageable and controllable for LLMs. (3). *Enhanced Solvability:* The problem expansion is broken into several simpler stages, making the entire generation more tractable for LLMs.

 Multi-step problem expansion The process of expanding problems is systematically divided into five steps, as illustrated in Figure [1.](#page-3-0) *Step 1: Under- standing the source problem.* First, we instruct the LLM to analyze the original problem (including solutions) and explicitly explain the role of each unknown variable. This "perception step" lays the groundwork for subsequent expansions. *Step 2: Introducing a new unknown.* The LLM then intro- duces an additional unknown variable related to the existing problem framework and assigns an appro- priate initial value (oracle value) to this variable. *Step 3: Expanding equation sets.* Next, the LLM generates a new equation that delineates the quanti- tative relationships between the new and existing variables. To ensure these equations are solvable, we integrate a Program Verifier module to assess and adjust their correctness as needed. *Step 4: Add equations to the problem statement* We translate the newly formed equations into text and incorpo- rate them into the original problem statement to maintain consistency and flow. *Step 5: Final refine- ment.* Finally, we engage the LLM in a thorough polishing phase to refine the problem statement,

ensuring it is fluent and coherent. **315**

3.3 Constructing the Benchmark **316**

[S](#page-8-15)eed problems We select ALG514 [\(Kushman](#page-8-15) 317 [et al.,](#page-8-15) [2014\)](#page-8-15) and DRAW-1K [\(Upadhyay and Chang,](#page-10-10) **318** [2017\)](#page-10-10) as the foundational seed problems to expand. **319** These datasets are particularly suitable as they in- **320** clude full solutions with oracle equation sets. **321**

Statistics With this generation process, we se- **322** lected a total of 240 problems. Specifically, there **323** are 100 problems with three unknowns, 80 prob- **324** lems with four unknowns, and 60 problems with **325** five unknowns. In addition, since our generated **326** dataset is expanded from the existing dataset, it con- **327** tains various topics or subjects including moving **328** objects, liquids, interest, distance, and geometry. **329**

4 Benchmarking existing LLMs and **³³⁰ Prompting Methods** 331

4.1 LLMs for solving multi-unknown algebra **332** problems **333**

To evaluate the performance of various LLMs on **334** BeyondX, we consider the Zero-shot-CoT prompt- **335** ing method (details in Section [6.1\)](#page-5-0) and test the per- **336** formance of both General-Purpose LLMs (GPT-3.5, **337** GPT-4, Gemini-Pro, Mistral-7B) and Mathemati- **338** cally fine-tuned LLMs (WizardMath, OpenMath, **339** MetaMath). **340**

In Figure [2a](#page-4-0) and Figure [2b,](#page-4-0) the results show **341** a significant performance drop with multiple un- **342**

Figure 2: Preliminary study of different LLMs and prompting methods on multi-unknown algebra datasets.

 knowns on both closed-source and open-source LLMs. For example, GPT-4 achieves near 90% accuracy when solving problems with 1 or 2 un- knowns, but the performance drops to 20% when solving problems with 5 unknowns. This highlights that current LLMs with Zero-shot-CoT are not able to solve multi-unknown problems, and this limi- tation was not recognized in the literature due to lack of datasets. In addition, mathematically fine- tuned LLMs exhibit a significant performance drop when encountering problems with more than two unknowns. This reveals a limitation of current fine- tuning methods, highlighting the need for improved algorithms or training sets.

357 4.2 Prompting Methods

 Figure [2a](#page-4-0) demonstrates that state-of-the-art LLMs cannot solve multi-unknown problems with Zero- shot-CoT prompting. To investigate whether this issue can be mitigated with better prompting meth- ods, we evaluated nine existing prompting methods using GPT-3.5, categorized into three types:

 Zero-shot. Zero-shot-CoT [\(Kojima et al.,](#page-8-0) [2022\)](#page-8-0) and Plan-and-Solve [\(Wang et al.,](#page-10-7) [2023\)](#page-10-7) prompting. *[F](#page-10-0)ew-shot with manual demonstrations.* CoT [\(Wei](#page-10-0) [et al.,](#page-10-0) [2022\)](#page-10-0), PoT [\(Gao et al.,](#page-8-1) [2022\)](#page-8-1), EoT [\(Liu](#page-9-0) [et al.,](#page-9-0) [2023\)](#page-9-0), and Declarative [\(He-Yueya et al.,](#page-8-3) [2023\)](#page-8-3) prompting.

370 *Few-shot with automatic demonstrations.* Analog-**371** ical [\(Yasunaga et al.,](#page-10-11) [2023\)](#page-10-11), Auto-Zero-shot-CoT.

 In Figure [2c,](#page-4-0) we observe zero-shot and few-shot CoT prompting methods seem inadequate when solving multi-unknown problems. We find that while CoT correctly sets up the equations, it fails to accurately solve the system of equations. Ad- ditionally, even though some prompting methods like PoT, EoT, and Declarative use external tools as a calculator and equation solver, they manu- ally design their demonstration for simpler prob-lems and fail to generalize to more complex multiple unknown scenarios. Although some meth- **382** ods construct demonstrations automatically from **383** the problem context (Analogical, Auto-CoT), they **384** still suffer from poor performance. Since LLMs **385** themselves do not have enough capability to solve **386** multi-unknown problems, the generated demonstra- **387** tions are often of low quality. This raises concerns **388** about prompt engineering requiring "human-in-the- **389** loop" solutions with domain knowledge integrated **390** through instructions. **391**

Therefore, in the next section, we will go through **392** a detailed formulation of Formulate-and-Solve **393** prompting. Our method can significantly bridge **394** the gap as shown in Figure [2c.](#page-4-0) **395**

5 Automatic Solver of Algebra Problems **³⁹⁶**

To investigate whether the observed performance **397** drop is primarily due to inadequate prompting **398** strategies or the limitation of LLMs. we develop 399 Formulate-and-Solve, an automated prompting **400** method designed for LLMs to solve math prob- **401** lems with an arbitrary number of unknowns. We 402 also show that Formulate-and-Solve performs com- **403** petitively to state-of-the-art algorithms even for **404** non-algebra problems in Appendix [A.1.](#page-11-0) **405**

A major challenge in applying the prompting **406** method to multi-unknown problems is the scarcity **407** of hand-crafted demonstrations. Traditional exam- **408** ples with a single unknown do not scale well to **409** more complex, multi-unknown scenarios, necessi- **410** tating automated demo generation. Furthermore, **411** while language models can be guided by prompts 412 to solve these systems of equations, they often re- **413** quire external tools due to their limited ability to **414** independently solve and explicitly formulate these **415** problems into a system of equations. **416**

To overcome these limitations, we propose **417** Formulate-and-Solve, a framework that incorpo- **418** rates a set of principles to instruct LLMs in gen- **419** erating demonstrations automatically. This frame- **420**

 work empowers LLMs to translate problems into equations and subsequently utilize external tools to solve them. The overall pipeline is illustrated in Figure [3](#page-5-1) and we include the actual prompts used in each step in Appendix [14.](#page-14-1)

Figure 3: The overview of Automatic Solver of Algebra Problems.

 Automatic Generated Demonstrations. Con- ventional prompting methods require creating and evaluating human-written examples to guide LLMs in solving algebra problems, which is time- consuming. Our approach leverages intuitive human-solving steps as instructions. Based on these instructions, the LLM iteratively generates its solution demonstrations (approximately five). To find the most effective demonstrations, we generate ten sets of demonstrations and assess their accu- racy on twenty problems. The set with the highest accuracy is chosen as the best.

Solving Strategy. Our proposed method lever- ages the strengths of both LLMs and symbolic solvers. We cooperate with the human-solving steps in the instruction to convert algebra prob- lems into the corresponding systems of equations. Recognizing the limitations of LLMs for complex systems, an external symbolic solver (e.g., SymPy) is employed to solve the system of equations. In the cases of unsolvability or errors that occur in solving the system of equations, the finalization module relies solely on the original prompt and re- sponse. This strategy ensures adaptability in some scenarios where the response is not formatted. Fur- thermore, by incorporating the historical prompt and response within the finalization module, the approach facilitates the continuation or refinement

of the solution response. **454**

6 Experimental Results **⁴⁵⁵**

6.1 Experimental Setting **456**

Dataset. Our experiments are conducted on five 457 algebra problem sets, including existing widely- **458** used ones (ALG514, DRAW-1K, AsDiv, HMWP) **459** and the proposed BeyondX benchmark. AsDiv **460** consists of a wide range of math problems and **461** we only take the algebra problem subset. Also, **462** since HWMP is a Chinese dataset, we use GPT-4 **463** to translate the problem into English. We find that **464** while most translation results effectively convey 465 the intended meaning. The five datasets differ in **466** size and complexity, as shown in Table [1.](#page-5-2) We also **467** report the average number of unknowns in each **468** dataset. Note that we split the proposed dataset **469** into three subsets, correspond to problems with 3 **470** $(Beyond X_3)$, $4 (Beyond X_4)$, and $5 (Beyond X_5)$ 471 unknowns, while the problems in all other datasets **472** have ≤ 2 unknowns. 473

Table 1: Statistics of existing algebra dataset.

Models. For experiments in this section, we uti- **474** lize GPT-3.5, GPT-4, and Gemini-Pro as represen- **475** tatives of general-purpose LLMs. We also opt to ex- **476** clude open-sourced LLMs, as they typically strug- **477** gle with multi-unknown problems due to their lim- **478** ited capacity to process and follow long prompts. **479**

Baselines. We compare Formulate-and-Solve **480** with three types of prompting baselines: (1) *Zero-* 481 *shot.* We include Zero-shot-CoT [\(Kojima et al.,](#page-8-0) **482** [2022\)](#page-8-0) and Plan-and-Solve (PS) [\(Wang et al.,](#page-10-7) [2023\)](#page-10-7) **483** prompting. The former appends "Let's think step **484** by step" to the prompt without any demo. The **485** latter appends "Let's first understand the problem **486** and devise a plan to solve the problem. Then, let's 487 carry out the plan and solve the problem step by **488** step" to the prompt without any demo. (2) *Few-* **489** *shot with manual demonstrations.* CoT [\(Wei et al.,](#page-10-0) **490** [2022\)](#page-10-0) creates eight hand-crafted natural language **491** examples as demonstrations. PoT [\(Gao et al.,](#page-8-1) [2022\)](#page-8-1) **492** creates eight hand-crafted Python code examples **493** as demonstrations and uses programming tools to **494**

Setting	Zero-shot		Few-shot (Manual)				Few-shot (Automatic)		
Method	CoT	PS	CoT	PoT^{\dagger}	$E0T\dagger$	DR^{\dagger}	AG	AZ.	$Ours^{\intercal}$
MU ₁	79.3%	77.2%	82.8%	80.0%	25.5%	51.7%	33.8%	90.3%	89.7%
MU ₂	46.2%	40.8%	52.7%	77.3%	26.7%	67.0%	33.9%	87.9%	93.7%
$BeyondX_3$	11.0%	9.5%	12.0%	50.5%	3.5%	53.5%	10.0%	0.5%	91.0%
$BeyondX_4$	6.3%	8.8%	3.1%	31.9%	0.0%	21.3%	10.0%	2.5%	83.8%
$BeyondX_5$	5.8%	5.0%	2.5%	34.2%	0.0%	5.0%	9.2%	1.7%	66.7%
Average	29.7%	28.3%	30.6%	54.8%	11.1%	39.7%	19.4%	36.6%	85.0%

Table 2: Experiment results across various unknowns using GPT-3.5. † means whether the method uses external tools or not.

Table 3: Experiment results across various algebra problem datasets which include single and double unknown using GPT-3.5. $[†]$ means whether the method uses external tools or not.</sup>

 get the final answer. EoT [\(Liu et al.,](#page-9-0) [2023\)](#page-9-0) creates eight hand-crafted equation examples as demonstra- tions and uses symbolic solvers to obtain the final answer. Declarative (DR) [\(He-Yueya et al.,](#page-8-3) [2023\)](#page-8-3) creates three hand-crafted examples with princi- ples as demonstrations and uses symbolic solvers to obtain the final answer. (3) *Few-shot with au- tomatic demonstrations.* [\(Yasunaga et al.,](#page-10-11) [2023\)](#page-10-11) proposed Analogical prompting (AG), designed to automatically guide LLMs to self-generate relevant examples as demonstrations before proceeding to solve the problem. We come up with another naive method: selecting examples from the dataset and employing Zero-shot-CoT [\(Kojima et al.,](#page-8-0) [2022\)](#page-8-0) to generate examples as demonstrations. We refer to this method as Auto-Zero-shot-CoT (AZ).

511 6.2 Main Results

 To investigate which reasoning methods and mod- els better solve multi-unknown problems, we sum- marize the performance of different prompting methods using GPT-3.5 in Table [2](#page-6-0) and Tables [3.](#page-6-1) We also evaluate and compare various prompting meth-ods with GPT-4 and Gemini-Pro in Appendix [A.3.](#page-11-1)

 Comparison with various prompting baselines. Table [2](#page-6-0) and Figure [2c](#page-4-0) present the accuracy com- parison of our method with existing approaches on datasets containing 1 to 5 unknowns. We combine ALG514 and DRAW-1K into MU_1 and MU_2

for problems with 1 and 2 unknowns, respectively, **523** and use BeyondX for problems with 3, 4, or 5 un- **524** knowns. Figure [2c](#page-4-0) illustrates that only our method **525** maintains reasonable accuracy when the number of **526** unknowns exceeds two, while other methods expe- **527** rience a significant performance decline. For prob- **528** lems with five unknowns, our method achieves a **529** 66.7% accuracy, while the best alternative achieves **530** only 34.2%. **531**

This improvement is attributed to our instruc- **532** tional approach and automatic demonstrations, **533** which effectively address general algebra problems. **534** Furthermore, datasets with multiple unknowns typ- **535** ically involve longer questions and necessitate the **536** construction of more equations for a solution. We **537** find that using lengthy natural language reasoning **538** steps can easily introduce operational and calcula- **539** tion errors. In contrast, our method guides LLMs to **540** generate a system of equations as an intermediate **541** reasoning step, making it less prone to mistakes dur- **542** ing equation formulation. As a result, our method **543** maintains high accuracy when using a symbolic **544** solver to solve the equations. We also observe that 545 leveraging external tools, such as programming **546** or symbolic solvers, to tackle algebra problems **547** generally yields better performance than directly **548** obtaining the final answer from the model in the **549** presence of multiple unknowns. **550**

Next, we verify whether Formulate-and-Solve **551**

Instruction	Demos	Solver	Equation		U2	U3	U4	U5
				77.8%	74.0%	60.0%	33.8%	18.3%
				79.6%	77.4%	79.0%	56.3%	48.3%
				64.1%	81.2%	82.0%	68.3%	60.0%
				59.3%	73.3%	43.0%	16.8%	15.0%
				85.2%	87.6%	90.0%	81.3%	66.7%

Table 4: Ablation experiment results across various number of unknowns using GPT-3.5. Our method achieves the highest accuracy among all.

 maintains its effectiveness for problems with one or two unknowns. For this, we compare it with baselines on commonly used algebra datasets con- taining one or two unknowns, with the results pre- sented in Table [3.](#page-6-1) The results demonstrate that Formulate-and-Solve again achieves the best per- formance. Compared with other automatic few- shot methods such as AZ, the performance gap is considerably smaller (5.2% on average) for one or two unknowns than for multiple unknowns (48.4% on average). This is likely because it is easier to generate a high-quality demo for problems with one or two unknowns. Also, we cannot see a big dif- ference between the zero-shot and few-shot CoT in this experiment since the manual few-shot demon- strations that are commonly used in previous work are beneficial for solving arithmetic problems, not algebra problems.

⁵⁷⁰ 7 Discussion and Analysis

Table 5: Statistics of Error Analysis under GPT-3.5.

 Ablation Study. We analyze the significance of each component within in Fomulate-and-Solve through an ablation study. We assess five varia- tions: (1) Use a system of equations as a rationale for reasoning. (2) Remove the instruction before demonstrations. (3) Remove demonstrations after the instruction. (4) Use an LLM instead of a sym- bolic solver to solve a system of equations. (5) Our method. For each variation, we randomly select 60 problems from each unknown dataset of ALG514 and DRAW-1K, and evaluate their performance. The results are provided in Table [4.](#page-7-0)

 We observe that performance decreases signif- icantly when instruction or demonstration is re- moved, highlighting its role in guiding the LLM. Interestingly, instruction has a greater impact than demonstration. Replacing the symbolic solver with an LLM also leads to a decrease in accuracy. These

findings confirm that all elements in Formulate- **589** and-Solve contribute significantly to solving multi- **590** unknown problems. **591**

Error Analysis. We delve deeper into the pri- **592** mary challenges that LLMs encounter when solv- **593** ing multiple unknown algebra problems. This ex- **594** ploration may offer insights into designing more **595** effective prompting methods in the future. To gain **596** a quantitative understanding of model failures, we **597** conduct an error analysis on the Formulate-and- **598** Solve method implemented with GPT-3.5 on Be- **599** yondX. We collect all instances where predictions **600** were incorrect and annotate the main reasons for **601** these mispredictions. The error types include: (E1) **602** generating too few or too many equations, (E2) **603** producing the correct number of equations but with **604** incorrect content, (E3) generating responses in the **605** wrong format, preventing the extraction of the equa- **606** tion system, and (E4) other cases. **607**

As illustrated in Table [5,](#page-7-1) the most common error **608** is E2 (incorrect equation). This indicates that cur- **609** rent LLMs equipped with prompting methods still **610** struggle to accurately formulate multi-unknown **611** equations in some cases. Besides, 31% of the er- **612** rors occur due to the wrong format of the response, **613** and 14.3% of the errors arise when LLMs fail to **614** align relevant information correctly with the equa- **615** tions, resulting in either too few or too many equa- **616** tions. The detailed qualitative analysis of the error **617** examples is in Appendix [D.2.](#page-12-1) **618**

8 Conclusion 619

We introduce BeyondX, the first benchmark for 620 evaluating LLMs on multi-unknown problems. Our **621** analysis reveals a significant performance drop in **622** LLMs and existing prompting methods when faced **623** with such problems. To address this, we propose 624 Formulate-and-Solve, a novel prompting method **625** that leverages instruction, automatic demonstra- **626** tions and a system of equations. Experiments **627** demonstrate the effectiveness of Formulate-and- **628** Solve in tackling multi-unknown problems. **629**

⁶³⁰ Limitations

631 Scope of Benchmark.

 Although our automatic generation method can de- crease the labor-intensive data collection process, our method still needs to be expanded from high- quality problems with low unknowns. Besides, we figure that some types or topics of the problems cannot be extended to multiple unknown problems. And, our benchmark is limited to English questions and data. We look forward to future benchmarks on a broader domain or modality and other languages.

641 Models and Reasoning Methods.

 Although we experiment with many representative models and reasoning methods in this paper, we acknowledge that this does not cover all models and frameworks. Besides, we acknowledge that our approach falls short on more straightforward arith- metic datasets since our method is more suitable for algebra datasets. Further research is required to explore new problem-solving methods for general math reasoning tasks, including different modali-**651** ties.

⁶⁵² References

- **653** Josh Achiam, Steven Adler, Sandhini Agarwal, Lama **654** Ahmad, Ilge Akkaya, Florencia Leoni Aleman, **655** Diogo Almeida, Janko Altenschmidt, Sam Altman, **656** Shyamal Anadkat, et al. 2023. Gpt-4 technical report. **657** *arXiv preprint arXiv:2303.08774*.
- **658** Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-**659** Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. **660** 2019. Mathqa: Towards interpretable math word **661** problem solving with operation-based formalisms. **662** *arXiv preprint arXiv:1905.13319*.
- **663** Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, **664** Marco Dos Santos, Stephen McAleer, Albert Q Jiang, **665** Jia Deng, Stella Biderman, and Sean Welleck. 2023. **666** Llemma: An open language model for mathematics. **667** *arXiv preprint arXiv:2310.10631*.
- **668** Tom Brown, Benjamin Mann, Nick Ryder, Melanie **669** Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind **670** Neelakantan, Pranav Shyam, Girish Sastry, Amanda **671** Askell, et al. 2020. Language models are few-shot **672** learners. *Advances in neural information processing* **673** *systems*, 33:1877–1901.
- **674** Wenhu Chen, Xueguang Ma, Xinyi Wang, and **675** William W Cohen. 2022. Program of thoughts **676** prompting: Disentangling computation from reason-**677** ing for numerical reasoning tasks. *arXiv preprint* **678** *arXiv:2211.12588*.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, **679** Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias **680** Plappert, Jerry Tworek, Jacob Hilton, Reiichiro **681** Nakano, et al. 2021. Training verifiers to solve math **682** word problems. *arXiv preprint arXiv:2110.14168*. **683**
- Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, **684** Nathan Scales, Xinying Song, Xinyun Chen, Olivier **685** Bousquet, and Denny Zhou. 2022. Compositional **686** semantic parsing with large language models. In 687 *The Eleventh International Conference on Learning* **688** *Representations*. **689**
- Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, **690** Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- **691** ham Neubig. 2022. Pal: Program-aided language **692** models. *arXiv preprint arXiv:2211.10435*. **693**
- Joy He-Yueya, Gabriel Poesia, Rose E Wang, and **694** Noah D Goodman. 2023. Solving math word prob- **695** lems by combining language models with symbolic **696** solvers. *arXiv preprint arXiv:2304.09102*. **697**
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul **698** Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- **699** cob Steinhardt. 2021. Measuring mathematical prob- **700** lem solving with the math dataset. *arXiv preprint* **701** *arXiv:2103.03874*. **702**
- Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren **703** Etzioni, and Nate Kushman. 2014. Learning to solve **704** arithmetic word problems with verb categorization. **705** In *Proceedings of the 2014 Conference on Empirical* **706** *Methods in Natural Language Processing (EMNLP)*, **707** pages 523–533. **708**
- Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- **709** sch, Chris Bamford, Devendra Singh Chaplot, Diego **710** de las Casas, Florian Bressand, Gianna Lengyel, Guil- **711** laume Lample, Lucile Saulnier, et al. 2023. Mistral **712** 7b. *arXiv preprint arXiv:2310.06825*. **713**
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- **714** taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- **715** guage models are zero-shot reasoners. *Advances in* **716** *neural information processing systems*, 35:22199– **717** 22213. **718**
- Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish **719** Sabharwal, Oren Etzioni, and Siena Dumas Ang. **720** 2015. Parsing algebraic word problems into equa- **721** tions. *Transactions of the Association for Computa-* **722** *tional Linguistics*, 3:585–597. **723**
- Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate **724** Kushman, and Hannaneh Hajishirzi. 2016. [MAWPS:](https://doi.org/10.18653/v1/N16-1136) **725** [A math word problem repository.](https://doi.org/10.18653/v1/N16-1136) In *Proceedings of* **726** *the 2016 Conference of the North American Chapter* **727** *of the Association for Computational Linguistics: Hu-* **728** *man Language Technologies*, pages 1152–1157, San **729** Diego, California. Association for Computational **730** Linguistics. 731
- Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and **732** Regina Barzilay. 2014. [Learning to automatically](https://doi.org/10.3115/v1/P14-1026) **733** [solve algebra word problems.](https://doi.org/10.3115/v1/P14-1026) In *Proceedings of the* **734**

 52nd Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 271–281, Baltimore, Maryland. Association for Com-putational Linguistics.

- **739** Aitor Lewkowycz, Anders Andreassen, David Dohan, **740** Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, **741** Ambrose Slone, Cem Anil, Imanol Schlag, Theo **742** Gutman-Solo, et al. 2022. Solving quantitative rea-**743** soning problems with language models. *Advances* **744** *in Neural Information Processing Systems*, 35:3843– **745** 3857.
- **746** Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung Huang, **747** Chung-Min Li, Shen-Yu Miao, and Keh-Yih Su. 2016. **748** A tag-based english math word problem solver with **749** understanding, reasoning and explanation. In *Pro-***750** *ceedings of the 2016 conference of the North Amer-***751** *ican chapter of the association for computational* **752** *linguistics: Demonstrations*, pages 67–71.
- **753** Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-**754** som. 2017. Program induction by rationale genera-**755** tion: Learning to solve and explain algebraic word **756** problems. *arXiv preprint arXiv:1705.04146*.
- **757** Haoxiong Liu and Andrew Chi-Chih Yao. 2024. Aug-**758** menting math word problems via iterative question **759** composing. *arXiv preprint arXiv:2401.09003*.
- **760** Tengxiao Liu, Qipeng Guo, Yuqing Yang, Xiangkun **761** Hu, Yue Zhang, Xipeng Qiu, and Zheng Zhang. **762** 2023. Plan, verify and switch: Integrated rea-**763** soning with diverse x-of-thoughts. *arXiv preprint* **764** *arXiv:2310.14628*.
- **765** Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-**766** guang Lou, Chongyang Tao, Xiubo Geng, Qingwei **767** Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-**768** ardmath: Empowering mathematical reasoning for **769** large language models via reinforced evol-instruct. **770** *arXiv preprint arXiv:2308.09583*.
- **771** Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. **772** 2020. [A diverse corpus for evaluating and developing](https://doi.org/10.18653/v1/2020.acl-main.92) **773** [English math word problem solvers.](https://doi.org/10.18653/v1/2020.acl-main.92) In *Proceedings* **774** *of the 58th Annual Meeting of the Association for* **775** *Computational Linguistics*, pages 975–984, Online. **776** Association for Computational Linguistics.
- **777** Kumaresh Nandhini and Sadhu Ramakrishnan Bala-**778** sundaram. 2011. Math word question generation **779** for training the students with learning difficulties. **780** In *Proceedings of the International Conference &* **781** *Workshop on Emerging Trends in Technology*, pages **782** 206–211.
- **783** Kole Norberg, Husni Almoubayyed, Stephen E Fancsali, **784** Logan De Ley, Kyle Weldon, April Murphy, and **785** Steven Ritter. 2023. Rewriting math word problems **786** with large language models. In *AIEd23: artificial* **787** *intelligence in education, empowering education with* **788** *LLMs workshop*.
- **789** Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, **790** Henryk Michalewski, Jacob Austin, David Bieber,

David Dohan, Aitor Lewkowycz, Maarten Bosma, **791** David Luan, et al. 2021. Show your work: Scratch- **792** pads for intermediate computation with language **793** models. *arXiv preprint arXiv:2112.00114*. **794**

- Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, **795** and Jimmy Ba. 2023. Openwebmath: An open **796** dataset of high-quality mathematical web text. *arXiv* **797** *preprint arXiv:2310.06786*. **798**
- Arkil Patel, Satwik Bhattamishra, and Navin Goyal. **799** 2021. Are nlp models really able to solve 800 simple math word problems? *arXiv preprint* 801 *arXiv:2103.07191*. **802**
- Oleksandr Polozov, Eleanor O'Rourke, Adam M **803** Smith, Luke Zettlemoyer, Sumit Gulwani, and Zo- **804** ran Popovic. 2015. Personalized mathematical word ´ **805** problem generation. In *Twenty-Fourth International* **806** *Joint Conference on Artificial Intelligence*. **807**
- Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, **808** Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, **809** and Huajun Chen. 2022. Reasoning with lan- **810** guage model prompting: A survey. *arXiv preprint* **811** *arXiv:2212.09597*. **812**
- Subhro Roy and Dan Roth. 2016. Solving gen- **813** eral arithmetic word problems. *arXiv preprint* **814** *arXiv:1608.01413*. **815**
- Subhro Roy and Dan Roth. 2018. Mapping to declara- **816** tive knowledge for word problem solving. *Transac-* **817** *tions of the Association for Computational Linguis-* **818** *tics*, 6:159–172. **819**
- David Saxton, Edward Grefenstette, Felix Hill, and **820** Pushmeet Kohli. 2019. Analysing mathematical rea- **821** soning abilities of neural models. *arXiv preprint* **822** *arXiv:1904.01557*. **823**
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, **824** Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and **825** Daya Guo. 2024. Deepseekmath: Pushing the limits **826** of mathematical reasoning in open language models. **827** *arXiv preprint arXiv:2402.03300*. **828**
- Gemini Team, Rohan Anil, Sebastian Borgeaud, **829** Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, **830** Radu Soricut, Johan Schalkwyk, Andrew M Dai, **831** Anja Hauth, et al. 2023. Gemini: a family of **832** highly capable multimodal models. *arXiv preprint* **833** *arXiv:2312.11805*. **834**
- Shubham Toshniwal, Ivan Moshkov, Sean Narenthi- **835** ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024. **836** Openmathinstruct-1: A 1.8 million math instruction **837** tuning dataset. *arXiv preprint arXiv:2402.10176*. **838**
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- **839** bert, Amjad Almahairi, Yasmine Babaei, Nikolay **840** Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti **841** Bhosale, et al. 2023. Llama 2: Open founda- **842** tion and fine-tuned chat models. *arXiv preprint* **843** *arXiv:2307.09288*. **844**
-
-
-
-
-
-
-

-
-
-

- [S](https://aclanthology.org/E17-1047)hyam Upadhyay and Ming-Wei Chang. 2017. [An-](https://aclanthology.org/E17-1047) [notating derivations: A new evaluation strategy and](https://aclanthology.org/E17-1047) [dataset for algebra word problems.](https://aclanthology.org/E17-1047) In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Vol- ume 1, Long Papers*, pages 494–504, Valencia, Spain. Association for Computational Linguistics.
- Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. [Plan-](https://doi.org/10.18653/v1/2023.acl-long.147) [and-solve prompting: Improving zero-shot chain-of-](https://doi.org/10.18653/v1/2023.acl-long.147) [thought reasoning by large language models.](https://doi.org/10.18653/v1/2023.acl-long.147) In *Pro- ceedings of the 61st Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers)*, pages 2609–2634, Toronto, Canada. Associ-ation for Computational Linguistics.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint arXiv:2203.11171*.
- Zichao Wang, Andrew Lan, and Richard Baraniuk. 2021. [Math word problem generation with mathematical](https://doi.org/10.18653/v1/2021.emnlp-main.484) [consistency and problem context constraints.](https://doi.org/10.18653/v1/2021.emnlp-main.484) In *Pro- ceedings of the 2021 Conference on Empirical Meth- ods in Natural Language Processing*, pages 5986– 5999, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits rea- soning in large language models. *Advances in neural information processing systems*, 35:24824–24837.
- Sandra Williams. 2011. Generating mathematical word problems. In *2011 AAAI Fall symposium series*.
- Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed H Chi, and Denny Zhou. 2023. Large language models as ana-logical reasoners. *arXiv preprint arXiv:2310.01714*.
- Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen- guo Li, Adrian Weller, and Weiyang Liu. 2023. Metamath: Bootstrap your own mathematical ques- tions for large language models. *arXiv preprint arXiv:2309.12284*.
- Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen- hao Huang, Huan Sun, Yu Su, and Wenhu Chen. 2023. Mammoth: Building math generalist models through hybrid instruction tuning. *arXiv preprint arXiv:2309.05653*.
- Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. 2024. Mammoth2: Scaling instructions from the web. *arXiv preprint arXiv:2405.03548*.
- Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.

Least-to-most prompting enables complex reason- **900** ing in large language models. *arXiv preprint* **901** *arXiv:2205.10625*. **902**

Mingyu Zong and Bhaskar Krishnamachari. 2023. Solv- **903** ing math word problems concerning systems of equa- **904** tions with gpt-3. In *Proceedings of the AAAI Con-* **905** *ference on Artificial Intelligence*, volume 37, pages **906** 15972–15979. **907**

Algorithm 1 Formulate-and-Solve Reasoning Algorithm

Require: question Q , instruction I , reasoning module R, symbolic solver S, finalize module F

```
1: function AUTO DEMO(I, Question, K)
 2: while K \neq 0 do
 3: D \leftarrow R(I + D + Question)4: K \leftarrow K - 15: end while
 6: return D \triangleright D is a demo
 7: end function
 8: D \leftarrow AutoDemo()9: p \leftarrow I + D + Q \triangleright p is a input prompt
10: eq \leftarrow R(p)11: if S(eq) then \triangleright Equation System is solvable
12: ans \leftarrow F(Q + eq + S(eq))13: else
14: ans \leftarrow F(Q + eq)15: end if
16: return ans \triangleright Return the Answer
```
908 A Further Experiment

909 A.1 Generalization to common arithmetic **910 datasets**

 We analyze the generalizability of Formulate- and-Solve framework to other common arithmetic datasets, such as GSM8K, SVAMP, AddSub, Sin- gleEq, and MultiArith where some problems can be seen as single unknown problems. From Table [7,](#page-12-2) we can see that our method can still perform a comparable performance to other existing custom prompting methods for arithmetic tasks since these datasets are much easier than multiple unknown datasets and only allow minimal room for improve-**921** ment.

922 A.2 Experiments different mathematical **923** models on BeyondX

 We further evaluate different existing mathematical models fine-tuned on Mistral-7B on BeyondX un- der Zero-shot-CoT setting. As shown in Figure [4,](#page-11-2) the results indicate that these open-source LLMs are still struggling with more complex mathemati- cal reasoning tasks in multiple unknown problems. There is still a significant amount of effort dur- ing pretraining or supervised fine-tuning to instill enough multiple unknown knowledge and the way of solving multiple unknown system of equations into the models' parameters to close the gap.

Figure 4: The performance of different existing opensource models.

A.3 Experiments different models on **935** Formulate-and-Solve **936**

We further assess the performance of Formulate- **937** and-Solve across various base models, such as GPT- **938** 4 and Gemini. The results of Gemini-Pro and GPT- **939** 4 are shown in Table [11](#page-14-2) and Table [12,](#page-14-3) and we **940** illustrate the performance curve in Figure [5a](#page-13-0) and **941** Figure [5b.](#page-13-0) The findings remain as GPT-3.5 and **942** our method outperforms a large gap among other **943** methods. Additionally, we observe that The per- **944** formance of the Gemini-Pro model generally falls **945** between that of GPT-3.5 and GPT-4 across various **946** settings and prompting methods. **947**

A.4 Experiments different shots of **948** demonstrations on Formulate-and-Solve **949**

In Figure 5, we analyze the effect of varying the **950** number of automatic generated exemplars (K) in 951 our approach on GPT-3.5. Here, we show three **952** variations with $K = 3, 5,$ and 8. In Table [9,](#page-13-1) we **953** observe that LLM demonstrates consistent perfor- **954** mance under single or double unknown in different **955** datasets. When K is bigger, on average, perfor- **956** mance improves. 957

B Full Instruction **958**

In this section, we show the full instructions in **959** Section [3](#page-2-0) and Section [5.](#page-4-1)

B.1 Automatic Generation of Multiple 961 Unknown Algebra Problems **962**

We can see the full instructions in Table [13.](#page-14-0) 963

B.2 Automatic Solver of Algebra Problems **964**

We can see the full instructions in Table [14.](#page-14-1) 965

Dataset	Rationale	Size	# of Variables	Source	Domain	
SingleEQ	Equation	508		Internet	Arithmetic	
MAWPS	Equation	3320		Internet	Arithmetic	
AllArith	Equation	831		Internet	Arithmetic	
Dolphin18K	Equation	18460		Internet	Arithmetic/Alegbra	
Math ₂₃ K	Equation	23162		Internet	Arithmetic/Alegbra	
SVAMP	Equation	1000		Internet	Arithmetic/Alegbra	
GSM8K	Natural Language	8792		Annotated	Arithmetic/Alegbra	
AQuA	Natural Language	100000	1	GMAT/GRE	Arithmetic/Alegbra	
MATHQA	Natural Language	37297		GMAT/GRE	Arithmetic/Alegbra	
ASDiv	Equation	2305	$1 - 2$	Internet	Arithmetic/Alegbra	
ALG514	Equation	514	$1-2$	Internet	Alegbra	
DRAW-1K	Equation	1000	$1-2$	Internet	Alegbra	
HMWP	Equation	5470	$1-2$	Internet	Alegbra	
BevondX	Equation	480	$1-5$	LLMs Generated	Alegbra	

Table 6: List of existing math dataset.

Table 7: We compare the results across various arithmetic problem datasets using GPT-3.5. \dagger means whether the method uses external tools or not.

966 C Detail Studies of Automatic Generation **⁹⁶⁷** of Multi-Unknown Algebra Problems

968 C.1 Construction Steps

 Starting from the 2 unknown problems in our seed dataset, we use Zero-shot prompting with GPT-4 to generate an initial demonstration using the in- struction in Table [13,](#page-14-0) which is then manually re- fined. The LLM then iteratively creates additional demonstrations (approximately five) based on the problem, the system of equations, and the existing demonstrations. Combining this information, the LLM generates a new problem with N+1 unknowns and its corresponding system of equations. Finally, we use GPT-4 to solve these newly generated prob- lems, discarding low-quality ones (where GPT-4 provides incorrect answers) for the next round.

982 C.2 Quality Validation

 We recruit 12 raters to validate whether the gener- ated problems are reasonable and whether they are consistent with the generated system of equations. We show the ratio of problems that are marked as "unreasonable" by raters in in Table [10.](#page-13-2) To under- stand why LLMs struggle with our instruction, we analyzed unreasonable problems in Table [17.](#page-18-0) Our findings reveal several limitations. First, LLMs

cannot directly derive complex constant meanings **991** requiring decomposition (Case 1). Second, unclear **992** instructions lead to repetitive equations (Case 2). **993** Third, introducing new variables might not be effec- **994** tive for all problems (e.g., river rate and distance, **995** Case 3). Finally, LLMs may generate inconsistent **996** numerical values within problems (Case 4). 997

C.3 Full Examples **998**

In Figure [6,](#page-15-0) we show the full examples of our pro- **999** posed generation method under each unknown. **1000**

D Detail Studies of Automatic Solver of **¹⁰⁰¹** Algebra Problems **¹⁰⁰²**

D.1 Overall Pipeline 1003

We describe the overall pipeline of Forumulate-and- **1004** Solve in Algorithm [1.](#page-11-3)

D.2 Qualitative Analysis of Error Cases **1006**

We show every type of error case that GPT-3.5 can-not answer correctly in Table [18.](#page-19-0) From E1, the **1008** system of equations is missing an equation about 1009 the relation "Total number of cars: 20". From E2, 1010 the first equation is wrong since the relation is "To- **1011** tal sum of the average miles per gallon obtained **1012** by the three cars is 75", which means " $a + b + c$ **1013**

Table 8: Experiment results of open-source math models that are fine-tune on Mistral-7B base model across various algebra problem datasets under Zero-shot-CoT setting.

(a) Different prompting methods performance of Gemini (b) Different prompting methods performance of GPT-4

Figure 5: The performance on multiple unknown datasets.

K-Shot	3-shot	5-shot	8-shot				
Single							
AL $G514$	92.3%	92.3%	95.6%				
DRAW-1K	82.6%	85.2%	90.7%				
AsDiv	79.7%	81.7%	85.5%				
HMWP	34.5%	37.7%	38.0%				
Average	72.3%	74.2%	77.5%				
Double							
ALG514	96.0%	96.5%	97.1%				
$DRAW-1K$	84.9%	85.6%	85.6%				
AsDiv	82.7%	80.7%	81.7%				
HMWP	57.9%	58.5%	60.9%				
Average	80.4%	80.3%	81.3%				

Table 9: Performance comparison of our method across different shots using GPT-3.5.

 $= 75$ ". From E3, since the first equation equals the third equation twice, the solution of this sys- tem of equations is infinite. From E4, since the response format is different from the demonstra- tion, we cannot extract the system of equations from the response.

1020 D.3 Full Examples

1021 In Table [19](#page-20-0) and Table [20,](#page-21-0) we show the input and **1022** output examples of each unknown using Formulate-**1023** and-Solve in GPT-3.5.

Table 10: Statistics of Proposed dataset. Unreasonable Problem Rate means #Unreasonable Problem/ #Total Human Seen Problem

Table 11: Experiment results across various algebra problem datasets which include single and double unknown using Gemini-Pro and GPT-4. Our method achieves the highest accuracy among all these datasets. † means whether the method uses external tools or not.

Table 12: Experiment results across various unknowns using Gemini-Pro and GPT-4. Our method achieves the highest accuracy among all these datasets. [†] means whether the method uses external tools or not.

Instruction for Automatic Generation of Multiple Unknown Algebra Problems

1. Write down each variable meaning in a system of equations by understanding the relation between a system of equations and a math word problem.

2. Introduce a new variable based on the existing variable meaning. Then, assign a value to the new variable based on the solution of the existing system of equations.

3. Add new terms and new equations to the existing system of equations to generate a solvable three-unknown system of equations.

4. Introduce new statements that are related to the existing math word problem or modify the existing statement to rewrite the problem into a three-unknown math word problem based on the new system of equations and the same original scenario. 5. Formulate and rephrase the statements and scenario into a coherent and reasonable math word problem.

Table 13: Actual instruction of algebra problem generation.

Instruction for Automatic Solver of Algebra Problems

- 1. Determine what the question is asking.
- 2. Write down the relevant information in simple statements.
- 3. Assign symbols (must be an alphabetic character e.g., x, y, z etc.) to unknown values that must be found.
- 4. Determine how the statements relate to each other mathematically.
- 5. Give the equations only here, with each equation on a new line.

Table 14: Actual instruction of algebra problem solver.

(c) Four-unknown (d) Five-unknown

MWP: Suppose you invested 12,000 dollars in three different ways

Figure 6: Example problems with different numbers of unknown generated from the same source problem.

Prompt:

Generate a three-unknown math word problem and its corresponding system of equations.

Example 1:

Word Problem:

Three friends, Alice, Bob, and Carol, decide to pool their money to buy a gift for a friend. Alice contributes twice as much as Bob, while Carol contributes \$10 more than Bob. The total amount they collect is \$110. How much did each person contribute?

System of Equations:

Let A represent the amount Alice contributes, B represent the amount Bob contributes, and C represent the amount Carol contributes. Based on the information given:

1. A = 2B (Alice contributes twice as much as Bob)

2. $C = B + 10$ (Carol contributes \$10 more than Bob)

3. $A + B + C = 110$ (The total amount collected is \$110)

Example 2:

Word Problem:

During a school fundraiser, three students, Emily, Daniel, and Fiona, sold raffle tickets. Emily sold 5 more tickets than Daniel. Fiona sold twice as many tickets as Emily. Together, they sold a total of 155 tickets. How many tickets did each student sell?

System of Equations:

Let E represent the number of tickets Emily sold, D represent the number of tickets Daniel sold, and F represent the number of tickets Fiona sold. Based on the information given:

1. $E = D + 5$ (Emily sold 5 more tickets than Daniel)

2. $F = 2E$ (Fiona sold twice as many tickets as Emily)

3. $E + D + F = 155$ (Together, they sold a total of 155 tickets)

Example 3:

Word Problem:

In a small bakery, three types of pastries are made daily: croissants, muffins, and scones. The number of croissants made is twice the number of muffins. The bakery made 30 more scones than muffins. At the end of the day, they counted a total of 210 pastries. How many of each type of pastry were made?

System of Equations:

Let C represent the number of croissants, M represent the number of muffins, and S represent the number of scones. Based on the information given:

1. $C = 2M$ (The number of croissants is twice the number of muffins)

2. $S = M + 30$ (There are 30 more scones than muffins)

3. $C + M + S = 210$ (The total number of pastries is 210)

Table 15: Examples of multiple unknown algebra problem and corresponding system of equations using simple prompt on GPT-4.

Prompt 1:

Let's generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown system of equations to three-unknown. Then, transfer the system of equations into according math word problem. System of Equations:

 $0.01 * 35.0 * x + 0.01 * 15.0 * y = 0.01 * 27.0 * (200.0)$ $y = (200.0 - x)$

Response 1:

Expanded System of Equations:

 $0.01 * 35.0 * x + 0.01 * 15.0 * y + 0.01 * 25.0 * z = 0.01 * 27.0 * 200.0$

 $y + z = 200.0 - x$

 $x - y = z - 50.0$

Math Word Problem:

A company is investing in three different projects. The first project is expected to yield a 35% return, the second a 15% return, and the third a 25% return. The total investment is \$200 and the total expected return is 27% of the total investment. If the company invests \$50 more in the first project than in the third, and the total investment in the second and third projects equals the remaining amount after investing in the first project, how much is invested in each project?

Source Problem:

An alloy containing 15 % brass is to be combined with an alloy containing 35 % brass to form an alloy containing 27 % brass. How much of each alloy should be combined to make 200 pounds of the 27 % brass alloy?

Prompt 2:

Let's generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown system of equations to three-unknown. Then, transfer the system of equations into according math word problem.

System of Equations: $6.0 * 0.01 * x + 9.0 * 0.01 * y = 684.0$

 $x + y = 10000.0$

Response 2:

Expanded System of Equations:

 $6.0 * 0.01 * x + 9.0 * 0.01 * y + 5.0 * 0.01 * z = 684.0$

 $x + y + z = 10000.0$

 $x - y = 2000.0$

Math Word Problem:

A company is investing in three different projects. The first project is expected to yield a 6% return, the second a 9% return, and the third a 5% return. The total investment is \$10,000 and the total expected return is \$684. If the company invests \$2000 more in the first project than in the second, how much is invested in each project?

Source Problem:

Suppose you invested 10,000 dollars, part at 6 % annual interest and the rest at 9 % annual interest. If you received 684 dollars in interest after one year, how much did you invest at 6 % annual interest and at 9 % annual interest?

Prompt 3:

Let's generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown system of equations to three-unknown. Then, transfer the system of equations into according math word problem. System of Equations:

 $7.0 * x + 5.0 * y = 146.0$

$x + y = 24.0$ Response 3:

Expanded System of Equations:

 $7.0 * x + 5.0 * y + 3.0 * z = 146.0$

 $x + y + z = 24.0$

 $x - y = 2.0$

Math Word Problem:

A store sells three types of fruits: apples, bananas, and cherries. Apples cost \$7 per pound, bananas cost \$5 per pound, and cherries cost \$3 per pound. The store sold a total of 24 pounds of these fruits and made \$146. If the store sold 2 more pounds of apples than bananas, how many pounds of each type of fruit were sold?

Source Problem:

Samuel has found that his new car gets 7 miles per gallon on the highway and 5 miles per gallon in the city. He recently drove 146 miles on 24 gallons of gasoline. How many miles did he drive on the highway? How many miles did he drive in the city? Prompt 4:

Let's generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown system of equations to three-unknown. Then, transfer the system of equations into according math word problem. System of Equations:

$5.0 + y = x$ $4.0 * x + 3.0 * y = 97.0$

Response 4:

Expanded System of Equations:

 $5.0 + y + z = x$

 $4.0 * x + 3.0 * y - z = 97.0$

 $x - y = z + 2.0$

Math Word Problem:

Three friends, Alice, Bob, and Charlie, are playing a game. The score of Alice is 5 more than Bob's score. When Alice's score is multiplied by 4 and added to 3 times Bob's score, it equals 97 minus Charlie's score. If Alice's score minus Bob's score equals Charlie's score plus 2, what are the individual scores of Alice, Bob, and Charlie? Source Problem:

One number is 5 more than another number. Four times the larger number plus 3 times the smaller is 97. Find the numbers.

Table 16: Examples of multiple unknown algebra problem generation, corresponding system of equations and source problem using equation-aware prompt on GPT-4.

Case 1: How much 1 % boric acid solution, 5 % boric acid solution, and 2% boric acid solution are needed to make 40 mL of a solution that is 1.1% boric acid? The sum of the amounts of the 5% solution and the 2% solution equals the difference between 40 mL and the amount of the 1% solution. Also, the sum of the amounts of the 1% solution and the 5% solution equals twice the amount of the 2% solution plus 10 mL.

System of Equations:

 $(0.01 * 1.0) * x + (0.01 * 5.0) * y + (0.01 * 2.0) * z = 1.10 (40 * 0.0275)$ $y + z = 40.0 - x$

 $x + y = 2.0 * z + 10.0$

Correct Question: How much 1 % boric acid solution, 5 % boric acid solution, and 2% boric acid solution are needed to make 40 mL of a solution that is 2.75% boric acid? The sum of the amounts of the 5% solution and the 2% solution equals the difference between 40 mL and the amount of the 1% solution. Also, the sum of the amounts of the 1% solution and the 5% solution equals twice the amount of the 2% solution plus 10 mL.

Case 2: If the price of copper is 65 cents per pound, the price of zinc is 30 cents per pound, and the price of nickel is 50 cents per pound, how many pounds of copper, zinc, and nickel should be mixed to make 80 pounds of an alloy selling for 45.625 cents per pound? The sum of the pounds of zinc and nickel equals 80 minus the pounds of copper. System of Equations:

 $65.0 * x + 30.0 * y + 50.0 * z = 3650.0$

 $y + z = 80.0 - x$

 $x + y + z = 80.0$

Correct Question: If the price of copper is 65 cents per pound, the price of zinc is 30 cents per pound, and the price of nickel is 50 cents per pound, how many pounds of copper, zinc, and nickel should be mixed to make 80 pounds of an alloy selling for 45.625 cents per pound? The sum of the pounds of zinc and nickel equals 7 times the pounds of copper. (create new math relation)

Case 3: Three cars are travelling in opposite directions. After two hours, they are 372 km apart. The first car is the slowest, the second car travels 6 kph faster than the first car, and the third car travels 4 kph slower than the first car. Find the average speed of each car.

System of Equations: $2.0 * (x + y + z) = 372.0$

 $y = x + 6.0$

 $z = x - 81.0$

Correct Question: Cannot Expand

Case 4: Sam, Masc, and Alex are friends. Masc is 7 years older than Sam and Alex is 5 years older than Masc. The sum of their ages is 49. What are their ages?

System of Equations: $y + x + z = 37.0$

 $y = x + 7.0$

 $z = v - 7.0$

Correct Question: Sam, Masc, and Alex are friends. Masc is 7 years older than Sam and Alex is 7 years younger than Masc. The sum of their ages is 37. What are their ages?

Table 17: Error cases of multiple unknown algebra problem generation, corresponding system of equations, and correct question.

E1: Fewer or More Equation in the Set

Input:

{Instruction}

{Demos}

Question: The Rocket Coaster has expanded and now has 20 cars: some hold 4 people, some hold 6 people, and some hold 2 people. Altogether, there is room for 82 people. It is also known that the number of 4-passenger cars plus the number of 6-passenger cars equals three times the number of 2-passenger cars. How many of each type of car are there?

Output:

The system of equations for the given word problem is as follows:

- 1- The question is asking for the number of each type of car.
- 2- Relevant information:
	- Total number of cars: 20
	- Total capacity: 82 people
- Relationship between the number of cars: 4-passenger $+ 6$ -passenger = $3 * 2$ -passenger
- 3- Assign symbols:
	- Let $a =$ number of 4-passenger cars
	- Let $b =$ number of 6-passenger cars
	- Let c = number of 2-passenger cars
- 4- Mathematical relationships:
- $-4a + 6b + 2c = 82$ (total capacity)
- $-a + b = 3c$ (relationship between the number of cars)
- 5- System of equations:
	- $4a + 6b + 2c = 82$

$$
a + b = 3c
$$

E2: Wrong equation (meaning the coefficients or constant terms are wrong)

Input:

{Instruction}

{Demos}

Question: In a family, there are 3 cars. In a particular week, the sum of the average miles per gallon obtained by the three cars is 75. The first car has consumed 40 gallons, the second car has consumed 20 gallons, and the third car has consumed 10 gallons. This resulted in a total of 1700 miles driven by the three cars combined. Additionally, the sum of the average gas mileage of the first car and the third car is 15 more than twice the average gas mileage of the second car. What was the average gas mileage obtained by each of the 3 cars that week?

Output:

1- The question is asking for the average gas mileage obtained by each of the 3 cars in a particular week.

- 2- Relevant information:
- Total sum of the average miles per gallon obtained by the three cars: 75
- Gallons consumed by the first car: 40
- Gallons consumed by the second car: 20
- Gallons consumed by the third car: 10
- Total miles driven by the three cars: 1700
- Relationship between the average gas mileage of the cars
- 3- Assign symbols:
	- Let a = average gas mileage of the first car
	- Let $b = average$ gas mileage of the second car
	- Let c = average gas mileage of the third car
- 4- Mathematical relationships:
	- $(40/a) + (20/b) + (10/c) = 75$
	- $-40a + 20b + 10c = 1700$
- $-(a + c) = 15 + 2b$
- 5- System of equations:
	-
	- $(40/a) + (20/b) + (10/c) = 75$
- $40a + 20b + 10c = 1700$
- $(a + c) = 15 + 2b$

E3: Wrong Extraction Form of System of Equations

Input:

{Instruction}

{Demos}

Question: The Drama Club sold 1,700 tickets for the end-of-year-performance. Admission prices were 12 dollars for adults, 6 dollars for students, and 10 dollars for seniors. The total amount collected at the box office was 18,200 dollars. It is known that twice the number of student tickets plus the number of adult tickets equals three times the number of senior tickets plus 1200. How many students, adults, and seniors attended the play?

Output:

The system of equations for the given word problem is as follows:

- 1. Let a be the number of adult tickets sold, s be the number of student tickets sold, and r be the number of senior tickets sold.
- 2. Mathematical relationship:
	- $a + s + r = 1700$ (total tickets sold)
	- $-12a + 6s + 10r = 18200$ (total revenue collected)
- $-2s + a = 3r + 1200$ (number of tickets relationship)
- The system of equations is:
	- $a + s + r = 1700$
	- $12a + 6s + 10r = 18200$ $2s + a = 3r + 1200$

Table 18: Different type of error example of Formulate-and-Solve on GPT-3.5.

Three-Unknown

Input:

{Instruction}

{Demos}

Question: A chemist has three solutions: one that is 18 % alcohol, one that is 50 % alcohol, and one that is 10 % alcohol. He wants to make 100 liters of a solution that is 26 % alcohol. Also, the amount of the 18 % alcohol solution plus the amount of the 50 % alcohol solution he uses equals four times the amount of the 10 % alcohol solution. How many liters of each solution should he add?

Output:

The system of equations for the given word problem is as follows:

1- The question is asking for the number of liters of each solution the chemist should add.

2- Relevant information:

- Total liters of solution: 100

- Desired alcohol concentration: 26%

- Relationship between the amount of solutions: amount of 18% solution + amount of 50% solution = 4 * amount of 10% solution

3- Assign symbols:

Let a = liters of 18% alcohol solution

Let $b =$ liters of 50% alcohol solution

Let $c =$ liters of 10% alcohol solution

4- Mathematical relationships:

 $-a + b + c = 100$ (total liters of solution)

- $-0.18a + 0.50b + 0.10c = 0.26 * 100$ (desired alcohol concentration)
- $-a + b = 4c$ (relationship between the amount of solutions)

5- System of equations:

 $a + b + c = 100$

 $0.18a + 0.50b + 0.10c = 26$ $a + b = 4c$

Four-Unknown

Input:

{Instruction}

{Demos}

Question: In a laboratory, a chemist needs to prepare 300 milliliters of a 20 % HCl solution. She has available a 10 % HCl solution, a 30 % HCl solution, a 20 % HCl solution, and a 40 % HCl solution. She knows that the volume of the 30 % HCl solution plus twice the volume of the 10 % HCl solution equals five times the volume of the 20 % HCl solution plus 100 milliliters. The volume of the 30 % HCl solution plus the volume of the 10 % HCl solution plus the volume of the 20 % HCl solution equals four times the volume of the 40 $\%$ HCl solution plus 50 milliliters. How many milliliters of each solution should she use?

Output:

The system of equations for the given word problem is as follows:

1- The question is asking for the volume of each solution to be used.

2- Relevant information:

- Total volume needed: 300 milliliters
- Mathematical relationships between the volumes of the solutions
- 3- Assign symbols:

Let x be the volume of the 10% HCl solution. Let y be the volume of the 30% HCl solution. Let z be the volume of the 20% HCl solution. Let w be the volume of the 40% HCl solution. 4- Mathematical relationships: $x + y + z + w = 300$ (total volume needed) $0.1x + 0.3y + 0.2z + 0.4w = 0.2 * 300 (20% HCl solution)$ $y + 2x = 5z + 100$ (relationship 1) $y + x + z = 4w + 50$ (relationship 2) 5- System of equations: $x + y + z + w = 300$ $0.1x + 0.3y + 0.2z + 0.4w = 60$

 $y + 2x - 5z = 100$

 $y + x + z - 4w = 50$

Table 19: Full output example of Formulate-and-Solve on GPT-3.5 from three and four-unknown problem.

Five-Unknown Input:

{Instruction}

{Demos}

Question: A chemist has five solutions: one that is 39 % alcohol, one that is 50 % alcohol, one that is 12 % alcohol, one that is 5 % alcohol, and one that is 3 % alcohol. He wants to make 140 liters of a solution that is 27.5 % alcohol. Also, the amount of the 39 % alcohol solution plus the amount of the 50 % alcohol solution he uses equals four times the amount of the 12 % alcohol solution. The amount of the 39 % alcohol solution plus the amount of the 50 % alcohol solution plus the amount of the 12 % alcohol solution equals five times the amount of the 5 % alcohol solution. The amount of the 39 % alcohol solution plus the amount of the 50 % alcohol solution plus the amount of the 12 % alcohol solution plus the amount of the 5 % alcohol solution equals six times the amount of the 3% alcohol solution. How many liters of each solution should he add?

Output:

I can help you with that. Let's start by writing down the relevant information in simple statements:

1- The question is asking for the amount of each solution the chemist should add to make 140 liters of a solution that is 27.5% alcohol.

2- Relevant information:

- The chemist has five solutions: 39% alcohol, 50% alcohol, 12% alcohol, 5% alcohol, and 3% alcohol.

- He wants to make 140 liters of a solution that is 27.5% alcohol.

- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution he uses equals four times the amount of the 12% alcohol solution.

- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution plus the amount of the 12% alcohol solution equals five times the amount of the 5% alcohol solution.

- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution plus the amount of the 12% alcohol solution plus the amount of the 5% alcohol solution equals six times the amount of the 3% alcohol solution.

3- Assign symbols:

Let a = amount of 39% alcohol solution Let $b =$ amount of 50% alcohol solution Let $c =$ amount of 12% alcohol solution Let $d =$ amount of 5% alcohol solution Let $e =$ amount of 3% alcohol solution 4- Mathematical relationships: $a + b + c + d + e = 140$ $0.39a + 0.50b + 0.12c + 0.05d + 0.03e = 0.275 * 140$ $a + b = 4c$ $a + b + c = 5d$ $a + b + c + d = 6e$ 5- System of equations: $a + b + c + d + e = 140$ $0.39a + 0.50b + 0.12c + 0.05d + 0.03e = 38.5$ $a + b - 4c = 0$ $a + b + c - 5d = 0$ $a + b + c + d - 6e = 0$

Table 20: Full output example of Formulate-and-Solve on GPT-3.5 from five-unknown problem.