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Abstract

By pretraining on trillions of tokens, an LLM
gains the capability of text generation. How-
ever, to enhance its utility and reduce potential
harm, SFT and alignment are applied sequen-
tially to the pretrained model. Due to the differ-
ing nature and objective functions of SFT and
alignment, catastrophic forgetting has become
a significant issue. To address this, we intro-
duce Unified Fine-Tuning (UFT), which inte-
grates SFT and alignment into a single training
stage using the same objective and loss func-
tions through an implicit reward function.

Our experimental results demonstrate that UFT
outperforms SFT on instruction-tuning data
alone. Moreover, when combining instruction-
tuning data with alignment data, UFT effec-
tively prevents catastrophic forgetting across
these two stages and shows a clear advan-
tage over sequentially applying SFT and align-
ment. This is evident in the significant improve-
ments observed in the ifeval task for instruction-
following and the truthful-qa task for factu-
ality. The proposed general fine-tuning frame-
work UFT establishes an effective and efficient
pretraining-UFT paradigm for LLM training.

1 Introduction

To enable large language models (LLMs) to under-
stand and generate natural language, they are con-
structed with billions of parameters and pretrained
on datasets containing trillions of tokens (OpenAl
et al., 2024). However, several challenges arise
after the pretraining stage of LLMs (Wang et al.,
2024b). One major issue is that pretrained LLMs
can only continue generation based on the previous
context and often struggle to accurately answer user
questions. To address this, supervised fine-tuning
(SFT) is introduced, using pairs of questions and
answers. For example, in models like Mistral, pre-
set instructions such as *[INST]” and ’[/INST] are
used to frame a question as a prompt (Jiang et al.,
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(a). Pretraining of LLM: Read
ten thousand books

(b). Fine-tuning of LLM: Travel
ten thousand miles

Figure 1: UFT integrates SFT and alignment through
a generalized implicit reward function. It likens pre-
training and fine-tuning of LLMs to Chinese proveb
"Read ten thousand books, travel ten thousand miles".
In pre-training, the LLM processes vast amounts of data
without feedback, gaining broad language understand-
ing. In fine-tuning, it generates responses to prompts
and receives feedback, refining its abilities and improv-
ing performance on specific tasks.

2023). The corresponding answer is then used as
the target output. The model’s probability of gen-
erating the correct answer is maximized through
next-token prediction, employing the cross-entropy
loss function to classify tokens across the entire
token space.

The next challenge for LLMs lies in ethical con-
cerns, where LLMs may inadvertently teach hu-
mans to engage in unethical activities, such as rob-
bing banks (Ouyang et al., 2022). To address this
issue, various alignment methodologies have been
proposed, including Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022;
Bai et al., 2022a) with Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023),
Kahneman & Tversky Optimization (KTO) (Etha-
yarajh et al., 2024), and UNified Alignment (UNA)
(Wang et al., 2024a). The core idea of alignment
is to equip LLMs with the ability to reject harmful
requests by learning from human feedback.

For RLHF/PPO, a dataset is created consisting of
triplets: a prompt, a desired response, and an unde-



sired response. This preference dataset is then used
to train a pointwise reward model that evaluates
a pair of prompt and response using the Bradley-
Terry (BT) model (Bradley and Terry, 1952). Dur-
ing the RL stage of RLHF, a multi-objective opti-
mization is performed to balance maximizing the
reward score from the pretrained reward model for
a prompt-response pair and minimizing the diver-
gence between the fine-tuned model and the origi-
nal pretrained model using KL divergence. How-
ever, RLHF is known for being unstable and com-
putationally expensive. To address these issues,
DPO proposes a method to optimize the reward
model and the policy model together, transforming
the original two-stage task in RLHF into a single-
stage classification process. Although DPO sim-
plifies the training task of RLHE, it only utilizes
responses as either desired or undesired, lacking the
more nuanced reward scores provided by reward
models. KTO extends DPO slightly by replacing
preference feedback with binary feedback. Recog-
nizing the limitations that DPO can only handle
pairwise feedback and KTO can only handle binary
feedback, and they are both significantly different
from RLHF/PPO, UNA proposes a unified frame-
work that combines these alignment methods and
various types of feedback through a generalized
implicit reward function, transforming the unstable
RLHF into a stable supervised learning problem.

For pretrained LLMs, SFT and alignment are
typically applied in sequential order. This sequen-
tial approach often leads to catastrophic forgetting,
where the model loses capabilities acquired in ear-
lier stages. To address this, ORPO introduced a
new objective, but it is constrained by its reliance
on pairwise feedback and its limitation on effective-
ness (Hong et al., 2024). On the other hand, PAFT
proposed applying SFT and alignment in parallel,
followed by merging these adaptors with the pre-
trained model (Pentyala et al., 2024). However, the
PAFT method is cumbersome as it involves three
stages: SFT, alignment, and model merging and
it requires sparsity of SFT and alignment to avoid
interference during merging. This paper aims to
tackle the catastrophic forgetting problem by in-
troducing a mathematically proven and efficient
methodology, i.e., UFT.

We are inspired by UNA’s ability to process
score-based feedback effectively. Consequently,
we aim to extend UNA to achieve the objectives
of SFT. Specifically, SFT involves maximizing
the probability of a response given an instruc-

tion. Therefore, instruction-tuning data can be
considered alignment data with the highest feed-
back score, such as the desired response for pair-
wise feedback, a thumbs-up for binary feedback,
and a score of 1 for score-based feedback. In
the paper, we have demonstrated that UFT and
SFT both aim to maximize the likelihood of the
responses in instruction-tuning data. By combin-
ing the instruction-tuning dataset with the align-
ment data, we can fine-tune a pretrained LLM with
the same objective and loss function while effec-
tively preventing catastrophic forgetting. Our ex-
periments demonstrate that UNA, when applied to
instruction-tuning data, can outperform traditional
SFT on the same data in downstream tasks. Fur-
thermore, this new perspective allows us to mix
the instruction-tuning dataset with the alignment
dataset, enabling us to fine-tune LLMs in a sin-
gle step. Our experiments indicate that this ap-
proach prevents the issue of catastrophic forgetting
by surpassesing the performance of the previous
sequential training pipeline. This is evident in the
significant improvements observed in the ifeval
task for instruction-following (Zhou et al., 2023)
and the truthful-qa task for factuality (Lin et al.,
2022).

Lastly, we have conducted a direct comparison
between UFT and the pretraining stage. Draw-
ing from an old Chinese proverb, "Read ten thou-
sand books, travel ten thousand miles", we can
liken the training of a LLM to a successful hu-
man life as shown in Figure. 1. The pretraining
stage corresponds to "Read ten thousand books,"
where the model is trained on billions of tokens to
predict the next token without receiving any feed-
back. In contrast, the fine-tuning stage is akin to
"Travel ten thousand miles," where the LLM is
posed with various questions, generates responses,
and receives feedback from different labelers and
utilize these feedback for improvement. The exist-
ing fine-tuning paradigm involves 2-stage training:
SFT followed by alignment. Our new UFT unifies
the two stages, leading to a post-training framework
parallel to pretraining.

The contributions of this paper are listed as fol-
low:

1. Prove that both UNA and SFT maximize
the likelihood of the response in instruction-
tuning data, and UNA outperforms SFT
on downstream tasks when fine-tuning on
instruction-tuning data.



2. UFT that unifies SFT and Alignment solves
the catastrophic forgetting problem elegantly
and surpasses the performance of the original
sequential application order in downstream
tasks.

3. UFT builds a unified post-training framework
that is parallel to pretraining where the goal
lies in generating responses for given prompts,
receiving score-based feedback from different
labelers and improve its capability on down-
stream tasks.

2 Methodology

In this section, we will explore the methodolo-
gies of SFT, RLHF, DPO, UNA, and the integrated
framework UFT.

2.1 SFT

The pretrained LLM is limited to either continuing
the text or repeating the question, which restricts
its usefulness. To address these limitations and en-
hance the LLM’s question-answering capabilities,
SFT is applied. The instruction-tuning dataset con-
sists of numerous pairs of prompts (denoted as x)
and responses (denoted as y). Given a prompt x,
the probability of the pretrained LLM generating
the response y is represented as 7y (y|z). The ob-
jective of SFT is to maximize the probability of
all response tokens by using cross-entropy loss as
shown in Eq. 1 and part (A) of Figure. 2.

Lsrr(mg) = —log (mg(y|z)) (1)

Suppose y is composed of N tokens, i.e.,
YL, Y2y« - s YN- Based on Bayes’ theorem,
mo(ylz) = [1isy mo(vil@, 1, ..., 9i—1). Apply-
ing log to Eq. 1, the SFT loss can be derived
based on each token using cross entropy loss func-
tion on all candidate tokens for classification, i.e.,

Lspr(mo) = — > iy log (mo(wilz, y1, - -, yi-1))-

2.2 RLHF, DPO and UNA

Even after the pretraining and SFT stages, LLMs
can still produce undesired responses that may lead
to bias or ethical issues. To address this, methods
such as RLHF, DPO, and KTO have been proposed.
A plot on the difference among RLHF, DPO and
UNA can be found in part (B) of Figure. 2. RLHF
tackles these problems in two stages: reward model
training and reinforcement learning. During the re-
ward model training process, an explicit reward

model is derived from pairwise data using the BT
model, as illustrated in Eq. 2, where 74 represents
the explicit reward model. The dataset for train-
ing the reward model is composed of triplet of 1.
prompt x, 2. desired response y,, and 3. undesired
response ¥;. The second stage of RLHF involves
online reinforcement learning with the pretrained
explicit reward model to generate reward signals.
These signals are then combined with KL diver-
gence to balance the reward and model capability
obtained during the pretraining stage, as shown in
Eq. 3. The RL process is optimized using PPO.

LRM(T(G) = _E(x,yw,yl)wD |:10g (U(r¢<x7 yw)

—ro(z. )|
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The training of RLHF is memory-intensive be-
cause it requires maintaining both the explicit re-
ward model and the policy model. Additionally,
reinforcement learning is notorious for its insta-
bility. To address this issue, DPO proposes cre-
ating a mapping between the optimal policy and
the reward model, i.e., an implicit reward model,
as illustrated in Eq. 4, and optimizing them to-
gether. However, Z(x) is intractable and can only
be canceled out by subtracting the implicit reward
of the desired response vy, i.e., rg(x, y,,) from the
implicit reward of the undesired response y;, i.e.,
ro(x,y;). This limitation confines DPO to pairwise
datasets only. Furthermore, DPO cannot utilize the
precise evaluation from the explicit reward model
in RLHE. KTO extends DPO to binary feedback
by estimating Z () from multiple responses to the
same prompt.

ro(z,y) = [log (%) + plog Z(x) (4)

To address this issue, UNA offers an alterna-
tive proof and demonstrates a novel mapping be-
tween the optimal policy and the reward model,
i.e., the generalized implicit reward model. The
form of the mapping between the generalized
implicit reward model and policy is rg(z,y) =



Tref (Y] )
the quality of the prompts and c adjusts the offset

between implicit and explicit rewards. With sim-
plification, i.e., f(x) = ¢ = 0, the relationship
between the generalized implicit reward model and
policy can be shown in Eq. 5. Unlike DPO, which
is constrained by Z(z) to pairwise feedback, UNA
is versatile enough to handle various types of data,
including pairwise feedback, binary feedback, and
score-based feedback. These data types are opti-
mized by minimizing the difference between the
implicit reward in Eq. 5 and the explicit reward
r4(x,y), which is provided by human labelers,
other LLMs, or the explicit reward model, as shown
in Eq. 6. When LLMs and explicit reward models
are used to evaluate responses in real-time, it is re-
ferred to as online UNA. Conversely, if feedback is
labeled beforehand, it is termed offline UNA. Con-
sequently, UNA can function in both online and
offline modes, effectively bridging the gap between
online RLHF and offline DPO and KTO.

Blog < o (yl2) ) + f(x) 4+ ¢ where f(x) measures

ro(z,y) = Blog (%) 5)

Luna (71'9) = Eaj~D,y~7’l’g(-|fE) [g(T¢>(.%', y)7 7"9($, y))]
(6)

2.3 UFT Unifying SFT and Alignment

To enhance the capabilities of LLMs in question
answering and addressing ethical issues, SFT and
alignment are typically applied in a sequential man-
ner due to the distinct nature of these tasks. How-
ever, this sequential approach often leads to the
well-known issue of catastrophic forgetting. In this
study, we introduce UFT which integrates SFT and
alignment into a single stage, thereby mitigating
this problem.

To be more specific, the instruction-tuning data
consist of a prompt x and a corresponding response
y, where the response y is considered of high qual-
ity, typically labeled by experts in the field. In com-
parison, the alignment data include a prompt z, re-
sponse y, and feedback r. This feedback can be cat-
egorized as desired or undesired for pairwise feed-
back, positive or negative for binary feedback, or a
scalar in the interval [0, 1] for general score-based
feedback. Due to the high quality of instruction-
tuning data, they can be regarded as data with a
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Figure 2: Subfigure (A) refers to SFT, Subfigure (B)
refers to Alignment including RLHF, DPO and UNA
and Subfigure (C) refers to UFT. Traditionally, the fine-
tuning process begins with SFT followed by alignment.
However, the proposed UFT method integrates both
SFT and alignment into a single, cohesive process.

score of 1, i.e., positive feedback. With this con-
sideration, the instruction-tuning dataset can be
transformed into alignment data in the format of
prompt x, response y and feedback » = 1, which
is the highest reward in consideration. Eventually,
the transformed instruction-tuning dataset and the
alignment dataset can be merged for fine-tuning
LLM using the loss function in UNA as shown in
Eq. 6. Our experiments demonstrate that when fine-
tuning using only instruction-tuning dataset, UFT
can outperform SFT on downstream tasks, which
we attribute to the KL divergence term that focuses
on minimization with the pretrained model, a fac-
tor ignored in the SFT processes. Additionally, the
results indicate that mixing the instruction-tuning
data with alignment for UFT can prevent the catas-
trophic forgetting problem and outperform previ-
ous sequential methods. Lastly, we discover that
the distribution of mixed data, i.e., the proportion
of instruction-tuning data and alignment data will
impact the performances of LLMs. More details
can be found in the experiment section.

A heuristic proof why UFT can replace SFT is
provided by arguing that they achieve the same
goal of maximizing the probability of 7y (y|x) for
prompt = and response y in the instruction-tuning
dataset. For SFT, the probability of my(y|z) is di-



rectly maximized by cross entropy-loss. In UFT,
suppose we apply the Sigmoid function on the im-
plicit reward in Eq. 5 and using mean square error
(MSE) to measure the difference of implicit re-
ward and explicit reward, the objective will become
Eq. 7. This loss function will drive rg(z,y) =

Blog ( %) to positive infinity. Since both g
and Tf(y|z) are fixed, this objective will maxi-
mize 7y (y|z). As a result, UFT can replace SFT
to maximize the probability of generating the re-
sponse, and it outperforms SFT by minimizing the

difference to the pretrained model.

Lurrsrr(me) = Eqz )b [[J(Tg(l‘,y)) - 1}2]

— Eay)on { [0 (5 log <%)> - 1} 2}
(7)

In summary, UFT reformats the data structure
of instruction-tuning data to ensure compatibility
with UNA, thereby enabling the UFT framework
to unify SFT and alignment processes. An offline
version of UFT is illustrated in part (C) of Figure 2.
This offline UFT can be transitioned to an online
version, provided that the pre-collected feedback is
gathered in real-time using a reward model or other
LLMs.

3 Experiments

In this section, a series of experiments will be
conducted to demonstrate the advantages of UFT
across various use cases. Initially, a comparison
between UFT and SFT on instruction-tuning data
will be performed to illustrate that UFT surpasses
SFT. Following this, the second experiment will
compare the performance of UFT when applied to
SFT and alignment data simultaneously versus ap-
plying SFT and alignment sequentially. The third
experiment will examine the impact of data distri-
bution between SFT and alignment data, which is
crucial for the outcomes of fine-tuning.

3.1 UFT vs. SFT

To begin with, we compare UFT with SFT on the
same instruction-tuning dataset. The UltraChat
dataset is utilized by unfolding one conversation
into multiple training examples to faciliate the train-
ing of UFT. From the UltraChat dataset, 20k sam-
ples are selected and utilized for training. The
Mistral 7B-v0.1 (Jiang et al., 2023) is utilized as

the base model, with low rank adaptation (LoRA)
of r = 16 (Hu et al., 2021). For SFT, the learning
rate of 1e—* is the best, and for UFT, the learning
rate of 3e~ and 3 of 0.01 is the best.

The fine-tuned models are tested on different
tasks including 12 tasks on two HuggingFace Open
LLM Leaderboards(Beeching et al., 2023; Fourrier
et al., 2024). The new Open LLM Leaderboard
includes 6 tasks: bbh (Suzgun et al., 2022), gpqa
(Rein et al., 2023), mmlu-pro (Wang et al., 2024),
musr (Sprague et al., 2024), ifeval (Zhou et al.,
2023), and math-hard (Hendrycks et al., 2021).
For all these tasks, the average scores are reported.
Conversely, the old Open LLM Leaderboard com-
prises 6 different tasks: gsm8k (Cobbe et al., 2021),
truthful-qa (Lin et al., 2022), winograde (Sak-
aguchi et al., 2019), arc (Allen AI), hellaswag
(Zellers et al., 2019), and mmlu (Hendrycks et
al., 2021). In this work, the average match rate
in gsm8k, mc2 in truthful-qa, accuracy in wino-
grade, acc-norm in arc, acc-norm in hellaswag,
and accuracy in mmlu will be reported. Addition-
ally, MT-Bench (Zheng et al., 2023) and Alpaca-
eval (Li et al., 2023) will be used to evaluate the
model’s ability to generate text responses, rather
than selecting from predefined candidate answers.
Specifically, the Length-Controlled Win Rate (LC
WR) will be documented for Alpaca-eval. Addi-
tionally, the average length of the outputs within
this evaluation will be provided for comprehensive
analysis.

As demonstrated in Table 1 and Table 2, Mis-
tral+UFT surpasses Mistral+SFT in 8 out of 12
tasks. When considering the average performances
across these leaderboards, Mistral+UFT consis-
tently outperforms Mistral+SFT. This indicates that
UFT enhances the capabilities of an LLM by maxi-
mizing the reward and minimizing the difference
from the pretrained model. Furthermore, in the MT-
Bench evaluation, Mistral+UFT outperforms Mis-
tral+SFT, whereas in the Alpaca-eval, Mistral+SFT
overshadows Mistral+UFT. From a generation ca-
pability standpoint, both UFT and SFT exhibit sim-
ilar performance. As a result, when evaluating the
performance on downstream tasks, UFT demon-
strates superiority over SFT.

3.2 Catastrophic Forgetting Study

Another advantage of UFT lies in combining SFT
and alignment into one stage to avoid catastrophic
forgetting. In this stage, we utilize the HelpSteer2
dataset of 20k examples for alignment (Wang et al.,



Model bbh gpgqa mmlu-pro musr ifeval math-hard average
Mistral 44.11 29.53 30.11 41.79 23.22 2.92 28.61
Mistral+SFT 46.04 28.72 29.35 4294 295 2.66 29.87
Mistral+UFT 46.55 29.24 30.25 41.73 28.89 3.87 30.09
Mistral+SFT+DPO  44.52 29.98 29.95 40.31 26.64 3.13 29.09
Mistral+SFT+KTO 42.89 31 30.48 40.59 25.17 2.94 28.85
Mistral+SFT+UNA  43.74 30.78 30.09 40.56 26.82 2.96 29.16
Mistral+UFT 4546 31.15 30.05 41.06 46.03 3.13 32.81

Table 1: Comparison of Mistral+SFT and Mistral+UFT on instruction-tuning data, and comparison of Mis-
tral+SFT+DPO, Mistral+SFT+KTO, Mistral+SFT+UNA, and Mistral+UFT on both instruction-tuning and align-

ment data on the new HuggingFace open LLM Leaderboard

Model

gsm8k truthful-qa winograde arc hellaswag mmlu average

Mistral 38.02 42.58 77.58 61.43 83.44 62.51 60.93
Mistral+SFT 39.65 51.06 78.53 63.99 83.78 61.99  63.17
Mistral+UFT 45.57 51.18 78.93 63.82 83.54 62.44 64.25
Mistral+SFT+DPO  42.19 47.83 78.45 62.16 84.03 62.38 62.84
Mistral+SFT+KTO  42.57 49.67 79.4 61.86 83.83 62.06  63.23
Mistral+SFT+UNA  39.99 49.54 79.72 62.46 84.08 62.3 63.02
Mistral+UFT 41.59 54.05 79.79 63.82 84.44 62.33  64.34

Table 2: Comparison of Mistral+SFT and Mistral+UFT on instruction-tuning data, and comparison of Mis-
tral+SFT+DPO, Mistral+SFT+KTO, Mistral+SFT+UNA, and Mistral+UFT on both instruction-tuning and align-
ment data on the old HuggingFace open LLM Leaderboard

Model MT-Bench Alpaca-eval

LC WR  Length

Mistral 3.15 0.31 6554

Mistral+SFT 6.33 8.07 908

Mistral+UFT 6.55 7.27 974

Mistral+SFT+DPO 4.81 1.05 5654

Mistral+SFT+KTO 4.76 0.64 6215

Mistral+SFT+UNA 5.24 1.34 4945

Mistral+UFT 6.78 8.28 1317
Table 3: Comparison of Mistral+SFT and Mis-

tral+UFT on instruction-tuning data, and compari-
son of Mistral+SFT+DPO, Mistral+SFT+KTO, Mis-
tral+SFT+UNA, and Mistral+UFT on both instruction-
tuning and alignment data using MT-Bench and Alpaca-
eval

2024c). For UFT, the 20k examples from UltraChat
and 20k examples from HelpSteer2 are merged
and utilized for training. For comparison, the best
performing SFT model of learning rate le~* in
the previous experiment is utilized for further fine-
tuning using DPO, KTO and UNA.

The same tasks are utilized for evaluation. In the
two HuggingFace open LLM leaderboards, Mis-
tral+UFT outperforms all of Mistral+SFT+DPO,
Mistral+SFT+KTO, and Mistral+SFT+UNA in
9 out of 12 tasks. In terms of average scores,
Mistral+UFT surpasses all three sequential meth-

ods. Several aspects need further discussion.
Firstly, the catastrophic forgetting problem is ev-
ident as the performances of Mistral+SFT+DPO,
Mistral+SFT+KTO, and Mistral+SFT+UNA are
worse than Mistral+SFT, a phenomenon also
known as alignment tax. Additionally, we ob-
serve that Mistral+UFT shows significant improve-
ments on ifeval, which tests the model’s capa-
bility of instruction-following, and truthful-qa,
which assesses the model’s alignment capabilities.
These results indicate that UFT greatly enhances
instruction-following and alignment capabilities,
demonstrating its effectiveness. In terms of genera-
tion capability, Mistral+UFT outperforms the other
three sequential methods and it does not seem to
suffer from catastrophic forgetting, as it performs
better than both Mistral+SFT and Mistral+UFT
on instruction-tuning data alone. Moreover, Mis-
tral+UFT does not bias towards long generation
like the other three sequential methods, which is
another advantage of UFT.

3.3 Data Distribution in Training UFT

During the pretraining phase, ensuring a balanced
data distribution is crucial for optimizing the ca-
pabilities of a LLM. In line with this principle,



we have incorporated varying percentages of the
instruction-tuning data into the alignment dataset to
create a final training dataset. Specifically, we have
kept the alignment dataset constant, i.e., 20k while
integrating 260k, 130k, 65k, 32k, and 16k sam-
ples from the UltraChat dataset. These combined
datasets are then used for fine-tuning, allowing us
to observe the impact of different data distributions
on the model’s performance.

Several intriguing points will be discussed. As
shown in Table 4 and Table 5, among the 12 tasks,
one task, namely musr, shows a minor statistical
decrease in performance. In contrast, four tasks-
gpqa, gsm8Kk, winograde, and arc—exhibit sta-
tistically small improvements. Notably, two tasks,
ifeval and truthful-qa, demonstrate statistically
significant improvements. Specifically, ifeval im-
proves from 23.22 to around 44, and truthful-qa
improves from 42.58 to around 53. Significant ad-
vancements are observed in MT-Bench and Alpaca-
eval, indicating a substantial enhancement in the
generation capability of the LLM as shown in Table
6. This aligns with our expectations, as instruction-
tuning data primarily aim to enhance the model’s
instruction-following capabilities, which positively
impacts ifeval, MT-Bench, and Alpaca-eval. Mean-
while, alignment data contribute to improvements
in tasks like truthful-qa. Other tasks remain
largely unaffected due to the absence of relevant
data, suggesting that incorporating more pertinent
data could enhance their performance. When in-
creasing the proportion of instruction-tuningg data,
we observe a decrease in truthful-qa performance
from 56 to 50, indicating that a larger proportion
of alignment data benefits the bias and ethical per-
formance of the LLM. On the other hand, simply
adding more instruction-tuning data does not im-
prove the performance of ifeval, MT-Bench, and
Alpaca-eval. Therefore, further investigation into
the optimal ratio between instruction-tuning data
and alignment data is warranted.

4 Related Work

The field of LLMs has undergone significant ad-
vancements, with billions of parameters and tril-
lions of tokens processed in parallel during the
pretraining stage (OpenAl et al., 2024; Anthropic,
2024; Team et al., 2023). Following pretraining,
SFT is applied to enhance the model’s performance
on downstream tasks.

However, neither pretraining nor SFT can fully

address the issues of bias and ethics in LLMs (Ope-
nAl et al., 2024; Wang et al., 2024b). To tackle
these challenges, RLHF with PPO has been pro-
posed and is widely accepted for aligning LLMs, in-
cluding GPT and Claude (Ouyang et al., 2022; Bai
et al., 2022a). Despite its popularity, RLHF/PPO
faces several issues, such as high memory require-
ments, instability in reinforcement learning, and the
need for multiple training stages, including reward
model (RM) training and RL fine-tuning (Rafailov
et al., 2023). To reduce the cost of human labeling,
Al feedback can be used to replace human feed-
back, a method known as reinforcement learning
from Al feedback (RLAIF) (Bai et al., 2022b; Lee
et al., 2023). RLOO argues that PPO is excessive
for LLM alignment since the model has already
been pretrained, suggesting that RLOO should suf-
fice (Ahmadian et al., 2024).

To simplify RLHF, DPO has been proposed to
map the optimal policy and reward model into a sin-
gle step, transforming the initial unstable RL into
a binary cross-entropy problem (Rafailov et al.,
2023). Several downstream studies have been con-
ducted on DPO to expand and generalize its capa-
bilities, such as different loss functions (Pal et al.,
2024; Azar et al., 2023), iterative approaches (Yuan
et al., 2024; Xu et al., 2024), token DPO (Rafailov
et al., 2024; Zeng et al., 2024) and stepwise DPO
(Kim et al., 2024).

Previous work focused on pairwise datasets,
which are more challenging to gather. In contrast,
binary feedback like "thumbs up" and "thumbs
down" is easier to collect. KTO leverages the
concept of human aversion to undesired data and
successfully handles binary feedback (Ethayarajh
et al., 2024). DRO focuses on binary data by es-
timating the policy and value functions and opti-
mizing each sequentially while keeping the other
fixed (Richemond et al., 2024). However, these
methods cannot accommodate different types of
data. To address this, UNA was proposed to handle
pairwise, binary, and score-based feedback through
an implicit reward model, supporting both online
and offline alignment (Wang et al., 2024a).

There have also been efforts to merge SFT with
alignment. ORPO proposed a new loss function to
increase the ratio of desired responses over unde-
sired responses, achieving both SFT and alignment
(Hong et al., 2024). PAFT suggested conducting
SFT and alignment in parallel and merging them af-
terward (Pentyala et al., 2024). However, ORPO’s
reliance on pairwise datasets and its deteriorating



Model bbh gpgqa mmlu-pro musr ifeval math-hard average
Mistral 44.11 29.53 30.11 41.79 23.22 2.92 28.61
UNA(16k+20k) 45.17 30.64 29.95 39.19 44.21 2.38 31.92
UNA(20k+20k) 4546 31.15 30.05 41.06 46.03 3.13 32.81
UNA@32k+20k) 44.75 31.28 29.76 39.06 46.76 3.51 32.52
UNA(65k+20k) 444 31.38 29.66 36.8 41.91 3.51 31.28
UNA(130k+20k) 44.35 29.75 30.02 38.66 44.2 2.99 31.66
UNA(260k+20k) 44.31 31 30.1 39.85 458 3.26 32.39
Table 4: Impact of different distributions of instruction-tuning and alignment data on the new HuggingFace Open
LLM Leaderboard
Model gsm8k truthful-qa winograde arc hellaswag mmlu average
Mistral 38.02 42.58 77.58 61.43 83.44 62.51 60.93
UNA(16k+20k)  40.83 56.69 79.4 64.85 84.66 62.22 64.78
UNA(20k+20k)  41.59 54.05 79.79 63.82 84.44 62.33 64.34
UNA32k+20k)  40.83 54.38 79.72 64.42 84.46 62.88 64.45
UNA(65k+20k)  41.43 52.35 79.79 65.27 84.19 61.89 64.15
UNA(130k+20k) 41.13 50.17 79.48 64.59 84.07 62.26 63.62
UNA(260k+20k) 41.21 50.17 80.43 64.85 83.89 62.35 63.82
Table 5: Impact of different distributions of instruction-tuning and alignment data on the old HuggingFace Open
LLM Leaderboard
Model MT-Bench Alpaca-eval the findings, further testing on industrial datasets is
LC WR Length
Mistral 315 031 6554 recommended.
UNA(16k+20k) 6.25 7.9 1378
UNA(20k+20k) 6.78 8.28 1317
UNA(32k+20k) 6.54 8.23 1324 6 Conclusion
UNA(65k+20k) 6.3 9.92 1338
UNA(130k+20k) 6.83 7.43 1361 . . .. .
UNA(260k+20k) 6.45 6.85 1378 Despite the extensive pretraining of LLLMs using

Table 6: Impact of different distributions of instruction-
tuning and alignment data on MT-Bench and Alpaca-
eval

performance compared to other SFT and alignment
methods pose challenges. In contrast, PAFT re-
quires training separate adaptors for SFT and align-
ment and merging them through sparsity, which is
inefficient. Inspired by UNA’s achievements, we
aim to unify SFT with alignment based on UNA’s
principles to avoid catastrophic forgetting.

5 Limitation

This paper has a couple of limitations that war-
rant attention in future research. First, the study is
restricted to English, and the multilingual capabili-
ties of the approach should be thoroughly evaluated.
Additionally, the current research primarily utilizes
datasets such as Ultrachat and Helpsteer, which are
academic in nature. To enhance the applicability of

trillions of tokens and billions of parameters, they
still fall short of being fully useful. SFT enhances
LLMs with the capability to answer prompts ef-
fectively. Alignment techniques, including RLHF,
DPO, KTO and UNA, can prevent the occurrence
of undesired responses. Nevertheless, these se-
quential SFT+alignment methods can lead to catas-
trophic forgetting, where the model loses capabili-
ties gained in previous stages. To address this issue,
a Unified Fine-Tuning (UFT) approach has been
proposed. UFT unifies SFT and alignment by utiliz-
ing a generalized implicit reward function, follow-
ing the UNA work. Trained solely on instruction-
tuning data, UFT outperforms SFT, which is at-
tributed to the minimization of divergence from
the pretrained model through KL divergence. By
mixing instruction-tuning data with alignment data,
UFT surpasses all three sequential SFT+alignment
methods, mitigating catastrophic forgetting. Ulti-
mately, we establish a unified fine-tuning frame-
work that runs in parallel to pretraining.
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A SFT on 20k examples with Different
LR

The impact of different learning rates on the per-
formances of SFT can be found in Table. 7 and
Table. 8 for the new and old HuggingFace Open
LLM Leaderboards.

B UFT on 20k examples with Different
LR and 8

The impact of different learning rates and 3 on the
performances of UFT can be found in Table. 9 and
Table. 10 for the new and old HuggingFace Open
LLM Leaderboards.
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LR bbh gpgqa mmlu-pro musr ifeval math-hard average

3e7% 4587 29.39 30.21 4241 252 3.61 29.45
le™® 47.14 29.59 30.21 41.74 25.77 3.12 29.6
3e™® 4771 29.76 30.1 4095 26.96 3.01 29.75
le=* 46.04 28.72 29.35 4294  29.5 2.66 29.87
3e™* 4279 28.17 25.22 43.61 19.78 23 26.98

Table 7: The impact of different learning rates for SFT on the new HuggingFace Open LLM Leaderboard

LR gsm8k truthful-qa winograde arc hellaswag mmlu average

3e 0 4295 479 79.32 61.86 83.34 62.37 6296
le™® 43.25 49.58 79.08 62.29 83.33 62.15  63.28
3e70 4447 50.5 78.93 62.54 83.25 62.61  63.72
le=*  39.65 51.06 78.53 63.99 83.78 61.99  63.17
et 13.39 46.43 75.85 58.53 81.16 55.73  55.18

Table 8: The impact of different learning rates for SFT on the old HuggingFace Open LLM Leaderboard

LR/ 3 bbh gpqa mmlu-pro musr ifeval math-hard average

1le=%/0.01 47.01 27.86 30.3 39.07 32.49 3.57 30.08
1e=*/0.03 46.09 295 30.09 40.8 29.27 3.84 29.93
le /0.1 4557 305 30.15 4242  27.21 2.94 29.8
le=/0.3  44.02 30.04 29.65 43.76 26.08 2.64 29.37
3e7°/0.01 46.55 29.24 30.25 41.73 28.89 3.87 30.09
3e79/0.03 46.56 28.72 30.44 40.67  29.7 3.08 29.86
3e7°/0.1 4631 29.29 30.7 40.95 26.52 3.5 29.55
3¢7%/0.3 4491 286 30.44 43.1 26.54 3.1 29.45
1e7°/0.01 46.44 29.27 30.44 38.15  26.02 3.59 28.99
1e75/0.03 46.46 2951 30.54 39.21 25.39 3.02 29.02
1le73/0.1 458 29.99 30.41 4296 26.67 3.01 29.81
1e75/0.3  45.03 29.74 30.46 4297 25 2.57 293
3¢79/0.01 45.83 29.86 30.5 415 2542 2.8 29.32
3¢79/0.03 4581 29.91 30.45 41.24 25.23 2.58 29.2
3e76/0.1 4548 30.61 30.53 43.09 23.87 3.27 29.48
3¢76/0.3 443 29.48 30.29 42771 22.56 3.06 28.73

Table 9: The impact of different learning rates for SFT on the new HuggingFace Open LLM Leaderboard
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LR/ 3 gsm8k truthful-qa winograde arc hellaswag mmlu average

1e=%/0.01 43.64 49.77 78.77 63.91 83.88 62.31 63.71
1e=/0.03 4257 50.2 78.61 64.25 83.55 61.87  63.51
le4/0.1  40.11 47.95 77.98 63.4 83.37 62.19 62.5
le /0.3 3594 44.4 78.93 62.2 82.92 62 61.07
3e7°/0.01 45.57 51.18 78.93 63.82 83.54 62.44  64.25
3e79/0.03  43.33 51.24 78.61 64.08 83.41 62.61  63.88
3e7%/0.1  41.55 49.25 78.69 62.54 83.31 62.44  62.96
3e7°/0.3  38.44 43.94 78.14 61.77 83.5 62.31 61.35
1e75/0.01 42.46 50.41 78.69 63.14 83.27 62.43 63.4
1e75/0.03 41.58 50.35 79.01 62.71 83.35 62.59  63.27
le75/0.1  41.17 48.63 78.69 62.54 83.38 62.35 6279
1e75/0.3  39.24 44.24 78.45 62.2 83.55 62.5 61.7
3¢79/0.01 39.92 48.42 78.53 62.2 83.32 62.35 6246
3¢76/0.03  40.41 48.08 78.69 62.2 83.34 62.5 62.54
3¢76/0.1  38.63 46.3 78.22 61.95 83.39 62.58  61.85
3¢76/0.3 38.86 43.99 77.9 61.52 83.48 62.59  61.39

Table 10: The impact of different learning rates for SFT on the old HuggingFace Open LLM Leaderboard
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