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Abstract001

By pretraining on trillions of tokens, an LLM002
gains the capability of text generation. How-003
ever, to enhance its utility and reduce potential004
harm, SFT and alignment are applied sequen-005
tially to the pretrained model. Due to the differ-006
ing nature and objective functions of SFT and007
alignment, catastrophic forgetting has become008
a significant issue. To address this, we intro-009
duce Unified Fine-Tuning (UFT), which inte-010
grates SFT and alignment into a single training011
stage using the same objective and loss func-012
tions through an implicit reward function.013

Our experimental results demonstrate that UFT014
outperforms SFT on instruction-tuning data015
alone. Moreover, when combining instruction-016
tuning data with alignment data, UFT effec-017
tively prevents catastrophic forgetting across018
these two stages and shows a clear advan-019
tage over sequentially applying SFT and align-020
ment. This is evident in the significant improve-021
ments observed in the ifeval task for instruction-022
following and the truthful-qa task for factu-023
ality. The proposed general fine-tuning frame-024
work UFT establishes an effective and efficient025
pretraining-UFT paradigm for LLM training.026

1 Introduction027

To enable large language models (LLMs) to under-028

stand and generate natural language, they are con-029

structed with billions of parameters and pretrained030

on datasets containing trillions of tokens (OpenAI031

et al., 2024). However, several challenges arise032

after the pretraining stage of LLMs (Wang et al.,033

2024b). One major issue is that pretrained LLMs034

can only continue generation based on the previous035

context and often struggle to accurately answer user036

questions. To address this, supervised fine-tuning037

(SFT) is introduced, using pairs of questions and038

answers. For example, in models like Mistral, pre-039

set instructions such as ’[INST]’ and ’[/INST]’ are040

used to frame a question as a prompt (Jiang et al.,041

Figure 1: UFT integrates SFT and alignment through
a generalized implicit reward function. It likens pre-
training and fine-tuning of LLMs to Chinese proveb
"Read ten thousand books, travel ten thousand miles".
In pre-training, the LLM processes vast amounts of data
without feedback, gaining broad language understand-
ing. In fine-tuning, it generates responses to prompts
and receives feedback, refining its abilities and improv-
ing performance on specific tasks.

2023). The corresponding answer is then used as 042

the target output. The model’s probability of gen- 043

erating the correct answer is maximized through 044

next-token prediction, employing the cross-entropy 045

loss function to classify tokens across the entire 046

token space. 047

The next challenge for LLMs lies in ethical con- 048

cerns, where LLMs may inadvertently teach hu- 049

mans to engage in unethical activities, such as rob- 050

bing banks (Ouyang et al., 2022). To address this 051

issue, various alignment methodologies have been 052

proposed, including Reinforcement Learning from 053

Human Feedback (RLHF) (Ouyang et al., 2022; 054

Bai et al., 2022a) with Proximal Policy Optimiza- 055

tion (PPO) (Schulman et al., 2017), Direct Prefer- 056

ence Optimization (DPO) (Rafailov et al., 2023), 057

Kahneman & Tversky Optimization (KTO) (Etha- 058

yarajh et al., 2024), and UNified Alignment (UNA) 059

(Wang et al., 2024a). The core idea of alignment 060

is to equip LLMs with the ability to reject harmful 061

requests by learning from human feedback. 062

For RLHF/PPO, a dataset is created consisting of 063

triplets: a prompt, a desired response, and an unde- 064
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sired response. This preference dataset is then used065

to train a pointwise reward model that evaluates066

a pair of prompt and response using the Bradley-067

Terry (BT) model (Bradley and Terry, 1952). Dur-068

ing the RL stage of RLHF, a multi-objective opti-069

mization is performed to balance maximizing the070

reward score from the pretrained reward model for071

a prompt-response pair and minimizing the diver-072

gence between the fine-tuned model and the origi-073

nal pretrained model using KL divergence. How-074

ever, RLHF is known for being unstable and com-075

putationally expensive. To address these issues,076

DPO proposes a method to optimize the reward077

model and the policy model together, transforming078

the original two-stage task in RLHF into a single-079

stage classification process. Although DPO sim-080

plifies the training task of RLHF, it only utilizes081

responses as either desired or undesired, lacking the082

more nuanced reward scores provided by reward083

models. KTO extends DPO slightly by replacing084

preference feedback with binary feedback. Recog-085

nizing the limitations that DPO can only handle086

pairwise feedback and KTO can only handle binary087

feedback, and they are both significantly different088

from RLHF/PPO, UNA proposes a unified frame-089

work that combines these alignment methods and090

various types of feedback through a generalized091

implicit reward function, transforming the unstable092

RLHF into a stable supervised learning problem.093

For pretrained LLMs, SFT and alignment are094

typically applied in sequential order. This sequen-095

tial approach often leads to catastrophic forgetting,096

where the model loses capabilities acquired in ear-097

lier stages. To address this, ORPO introduced a098

new objective, but it is constrained by its reliance099

on pairwise feedback and its limitation on effective-100

ness (Hong et al., 2024). On the other hand, PAFT101

proposed applying SFT and alignment in parallel,102

followed by merging these adaptors with the pre-103

trained model (Pentyala et al., 2024). However, the104

PAFT method is cumbersome as it involves three105

stages: SFT, alignment, and model merging and106

it requires sparsity of SFT and alignment to avoid107

interference during merging. This paper aims to108

tackle the catastrophic forgetting problem by in-109

troducing a mathematically proven and efficient110

methodology, i.e., UFT.111

We are inspired by UNA’s ability to process112

score-based feedback effectively. Consequently,113

we aim to extend UNA to achieve the objectives114

of SFT. Specifically, SFT involves maximizing115

the probability of a response given an instruc-116

tion. Therefore, instruction-tuning data can be 117

considered alignment data with the highest feed- 118

back score, such as the desired response for pair- 119

wise feedback, a thumbs-up for binary feedback, 120

and a score of 1 for score-based feedback. In 121

the paper, we have demonstrated that UFT and 122

SFT both aim to maximize the likelihood of the 123

responses in instruction-tuning data. By combin- 124

ing the instruction-tuning dataset with the align- 125

ment data, we can fine-tune a pretrained LLM with 126

the same objective and loss function while effec- 127

tively preventing catastrophic forgetting. Our ex- 128

periments demonstrate that UNA, when applied to 129

instruction-tuning data, can outperform traditional 130

SFT on the same data in downstream tasks. Fur- 131

thermore, this new perspective allows us to mix 132

the instruction-tuning dataset with the alignment 133

dataset, enabling us to fine-tune LLMs in a sin- 134

gle step. Our experiments indicate that this ap- 135

proach prevents the issue of catastrophic forgetting 136

by surpassesing the performance of the previous 137

sequential training pipeline. This is evident in the 138

significant improvements observed in the ifeval 139

task for instruction-following (Zhou et al., 2023) 140

and the truthful-qa task for factuality (Lin et al., 141

2022). 142

Lastly, we have conducted a direct comparison 143

between UFT and the pretraining stage. Draw- 144

ing from an old Chinese proverb, "Read ten thou- 145

sand books, travel ten thousand miles", we can 146

liken the training of a LLM to a successful hu- 147

man life as shown in Figure. 1. The pretraining 148

stage corresponds to "Read ten thousand books," 149

where the model is trained on billions of tokens to 150

predict the next token without receiving any feed- 151

back. In contrast, the fine-tuning stage is akin to 152

"Travel ten thousand miles," where the LLM is 153

posed with various questions, generates responses, 154

and receives feedback from different labelers and 155

utilize these feedback for improvement. The exist- 156

ing fine-tuning paradigm involves 2-stage training: 157

SFT followed by alignment. Our new UFT unifies 158

the two stages, leading to a post-training framework 159

parallel to pretraining. 160

The contributions of this paper are listed as fol- 161

low: 162

1. Prove that both UNA and SFT maximize 163

the likelihood of the response in instruction- 164

tuning data, and UNA outperforms SFT 165

on downstream tasks when fine-tuning on 166

instruction-tuning data. 167
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2. UFT that unifies SFT and Alignment solves168

the catastrophic forgetting problem elegantly169

and surpasses the performance of the original170

sequential application order in downstream171

tasks.172

3. UFT builds a unified post-training framework173

that is parallel to pretraining where the goal174

lies in generating responses for given prompts,175

receiving score-based feedback from different176

labelers and improve its capability on down-177

stream tasks.178

2 Methodology179

In this section, we will explore the methodolo-180

gies of SFT, RLHF, DPO, UNA, and the integrated181

framework UFT.182

2.1 SFT183

The pretrained LLM is limited to either continuing184

the text or repeating the question, which restricts185

its usefulness. To address these limitations and en-186

hance the LLM’s question-answering capabilities,187

SFT is applied. The instruction-tuning dataset con-188

sists of numerous pairs of prompts (denoted as x)189

and responses (denoted as y). Given a prompt x,190

the probability of the pretrained LLM generating191

the response y is represented as πθ(y|x). The ob-192

jective of SFT is to maximize the probability of193

all response tokens by using cross-entropy loss as194

shown in Eq. 1 and part (A) of Figure. 2.195

LSFT(πθ) = − log (πθ(y|x)) (1)196

Suppose y is composed of N tokens, i.e.,197

y1, y2, . . . , yN . Based on Bayes’ theorem,198

πθ(y|x) =
∏n

i=1 πθ(yi|x, y1, . . . , yi−1). Apply-199

ing log to Eq. 1, the SFT loss can be derived200

based on each token using cross entropy loss func-201

tion on all candidate tokens for classification, i.e.,202

LSFT(πθ) = −
∑n

i=1 log (πθ(yi|x, y1, . . . , yi−1)).203

2.2 RLHF, DPO and UNA204

Even after the pretraining and SFT stages, LLMs205

can still produce undesired responses that may lead206

to bias or ethical issues. To address this, methods207

such as RLHF, DPO, and KTO have been proposed.208

A plot on the difference among RLHF, DPO and209

UNA can be found in part (B) of Figure. 2. RLHF210

tackles these problems in two stages: reward model211

training and reinforcement learning. During the re-212

ward model training process, an explicit reward213

model is derived from pairwise data using the BT 214

model, as illustrated in Eq. 2, where rϕ represents 215

the explicit reward model. The dataset for train- 216

ing the reward model is composed of triplet of 1. 217

prompt x, 2. desired response yw and 3. undesired 218

response yl. The second stage of RLHF involves 219

online reinforcement learning with the pretrained 220

explicit reward model to generate reward signals. 221

These signals are then combined with KL diver- 222

gence to balance the reward and model capability 223

obtained during the pretraining stage, as shown in 224

Eq. 3. The RL process is optimized using PPO. 225

LRM(πθ) = −E(x,yw,yl)∼D

[
log

(
σ(rϕ(x, yw)

−rϕ(x, yl))
)]

(2) 226

π∗
θ(y|x) = max

πθ

Ex∼D

[
Ey∼πθ(y|x) [rϕ(x, y)]

−βDKL (πθ(y|x) ∥πref(y|x))
] (3) 227

The training of RLHF is memory-intensive be- 228

cause it requires maintaining both the explicit re- 229

ward model and the policy model. Additionally, 230

reinforcement learning is notorious for its insta- 231

bility. To address this issue, DPO proposes cre- 232

ating a mapping between the optimal policy and 233

the reward model, i.e., an implicit reward model, 234

as illustrated in Eq. 4, and optimizing them to- 235

gether. However, Z(x) is intractable and can only 236

be canceled out by subtracting the implicit reward 237

of the desired response yw, i.e., rθ(x, yw) from the 238

implicit reward of the undesired response yl, i.e., 239

rθ(x, yl). This limitation confines DPO to pairwise 240

datasets only. Furthermore, DPO cannot utilize the 241

precise evaluation from the explicit reward model 242

in RLHF. KTO extends DPO to binary feedback 243

by estimating Z(x) from multiple responses to the 244

same prompt. 245

rθ(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
+ β logZ(x) (4) 246

To address this issue, UNA offers an alterna- 247

tive proof and demonstrates a novel mapping be- 248

tween the optimal policy and the reward model, 249

i.e., the generalized implicit reward model. The 250

form of the mapping between the generalized 251

implicit reward model and policy is rθ(x, y) = 252
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β log
(

πθ(y|x)
πref(y|x)

)
+ f(x) + c where f(x) measures253

the quality of the prompts and c adjusts the offset254

between implicit and explicit rewards. With sim-255

plification, i.e., f(x) = c = 0, the relationship256

between the generalized implicit reward model and257

policy can be shown in Eq. 5. Unlike DPO, which258

is constrained by Z(x) to pairwise feedback, UNA259

is versatile enough to handle various types of data,260

including pairwise feedback, binary feedback, and261

score-based feedback. These data types are opti-262

mized by minimizing the difference between the263

implicit reward in Eq. 5 and the explicit reward264

rϕ(x, y), which is provided by human labelers,265

other LLMs, or the explicit reward model, as shown266

in Eq. 6. When LLMs and explicit reward models267

are used to evaluate responses in real-time, it is re-268

ferred to as online UNA. Conversely, if feedback is269

labeled beforehand, it is termed offline UNA. Con-270

sequently, UNA can function in both online and271

offline modes, effectively bridging the gap between272

online RLHF and offline DPO and KTO.273

rθ(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
(5)274

LUNA(πθ) = Ex∼D,y∼πθ(·|x)[g(rϕ(x, y), rθ(x, y))]

(6)275

2.3 UFT Unifying SFT and Alignment276

To enhance the capabilities of LLMs in question277

answering and addressing ethical issues, SFT and278

alignment are typically applied in a sequential man-279

ner due to the distinct nature of these tasks. How-280

ever, this sequential approach often leads to the281

well-known issue of catastrophic forgetting. In this282

study, we introduce UFT which integrates SFT and283

alignment into a single stage, thereby mitigating284

this problem.285

To be more specific, the instruction-tuning data286

consist of a prompt x and a corresponding response287

y, where the response y is considered of high qual-288

ity, typically labeled by experts in the field. In com-289

parison, the alignment data include a prompt x, re-290

sponse y, and feedback r. This feedback can be cat-291

egorized as desired or undesired for pairwise feed-292

back, positive or negative for binary feedback, or a293

scalar in the interval [0, 1] for general score-based294

feedback. Due to the high quality of instruction-295

tuning data, they can be regarded as data with a296

LLM Policy:
πθ(y|x)

Response: y

Explicit Reward
Model: rΦ(x, y)

Prompt Data: x

Preference 
Feedback: yw>yl

LLM Policy: 
πθ(y|x)

Implicit Reward
Model: rθ(x, y)Prompt Data: x

Preference
Feedback: yw>yl

(a). RLHF

(b). DPO

Generalized
Implicit Reward 
Model: rθ(x, y)

Prompt Data: x

Response: y

LLM Policy: 
πθ(y|x)

Feedback: r

(c). UNA

(B). Alignment

Prompt Data: x

Response: y

LLM Policy: 
πθ(y|x)

(A). SFT

(C). UFT

Prompt Data: x

Response: y

Generalized 
Implicit Reward 
Model: rθ(x, y)

LLM Policy: 
πθ(y|x)

Feedback: r

Figure 2: Subfigure (A) refers to SFT, Subfigure (B)
refers to Alignment including RLHF, DPO and UNA
and Subfigure (C) refers to UFT. Traditionally, the fine-
tuning process begins with SFT followed by alignment.
However, the proposed UFT method integrates both
SFT and alignment into a single, cohesive process.

score of 1, i.e., positive feedback. With this con- 297

sideration, the instruction-tuning dataset can be 298

transformed into alignment data in the format of 299

prompt x, response y and feedback r = 1, which 300

is the highest reward in consideration. Eventually, 301

the transformed instruction-tuning dataset and the 302

alignment dataset can be merged for fine-tuning 303

LLM using the loss function in UNA as shown in 304

Eq. 6. Our experiments demonstrate that when fine- 305

tuning using only instruction-tuning dataset, UFT 306

can outperform SFT on downstream tasks, which 307

we attribute to the KL divergence term that focuses 308

on minimization with the pretrained model, a fac- 309

tor ignored in the SFT processes. Additionally, the 310

results indicate that mixing the instruction-tuning 311

data with alignment for UFT can prevent the catas- 312

trophic forgetting problem and outperform previ- 313

ous sequential methods. Lastly, we discover that 314

the distribution of mixed data, i.e., the proportion 315

of instruction-tuning data and alignment data will 316

impact the performances of LLMs. More details 317

can be found in the experiment section. 318

A heuristic proof why UFT can replace SFT is 319

provided by arguing that they achieve the same 320

goal of maximizing the probability of πθ(y|x) for 321

prompt x and response y in the instruction-tuning 322

dataset. For SFT, the probability of πθ(y|x) is di- 323
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rectly maximized by cross entropy-loss. In UFT,324

suppose we apply the Sigmoid function on the im-325

plicit reward in Eq. 5 and using mean square error326

(MSE) to measure the difference of implicit re-327

ward and explicit reward, the objective will become328

Eq. 7. This loss function will drive rθ(x, y) =329

β log
(

πθ(y|x)
πref(y|x)

)
to positive infinity. Since both β330

and πref(y|x) are fixed, this objective will maxi-331

mize πθ(y|x). As a result, UFT can replace SFT332

to maximize the probability of generating the re-333

sponse, and it outperforms SFT by minimizing the334

difference to the pretrained model.335

LUFT-SFT(πθ) = E(x,y)∼D

[
[σ(rθ(x, y))− 1]2

]
= E(x,y)∼D

{[
σ

(
β log

(
πθ(y|x)
πref(y|x)

))
− 1

]2}
(7)

336

In summary, UFT reformats the data structure337

of instruction-tuning data to ensure compatibility338

with UNA, thereby enabling the UFT framework339

to unify SFT and alignment processes. An offline340

version of UFT is illustrated in part (C) of Figure 2.341

This offline UFT can be transitioned to an online342

version, provided that the pre-collected feedback is343

gathered in real-time using a reward model or other344

LLMs.345

3 Experiments346

In this section, a series of experiments will be347

conducted to demonstrate the advantages of UFT348

across various use cases. Initially, a comparison349

between UFT and SFT on instruction-tuning data350

will be performed to illustrate that UFT surpasses351

SFT. Following this, the second experiment will352

compare the performance of UFT when applied to353

SFT and alignment data simultaneously versus ap-354

plying SFT and alignment sequentially. The third355

experiment will examine the impact of data distri-356

bution between SFT and alignment data, which is357

crucial for the outcomes of fine-tuning.358

3.1 UFT vs. SFT359

To begin with, we compare UFT with SFT on the360

same instruction-tuning dataset. The UltraChat361

dataset is utilized by unfolding one conversation362

into multiple training examples to faciliate the train-363

ing of UFT. From the UltraChat dataset, 20k sam-364

ples are selected and utilized for training. The365

Mistral 7B-v0.1 (Jiang et al., 2023) is utilized as366

the base model, with low rank adaptation (LoRA) 367

of r = 16 (Hu et al., 2021). For SFT, the learning 368

rate of 1e−4 is the best, and for UFT, the learning 369

rate of 3e−5 and β of 0.01 is the best. 370

The fine-tuned models are tested on different 371

tasks including 12 tasks on two HuggingFace Open 372

LLM Leaderboards(Beeching et al., 2023; Fourrier 373

et al., 2024). The new Open LLM Leaderboard 374

includes 6 tasks: bbh (Suzgun et al., 2022), gpqa 375

(Rein et al., 2023), mmlu-pro (Wang et al., 2024), 376

musr (Sprague et al., 2024), ifeval (Zhou et al., 377

2023), and math-hard (Hendrycks et al., 2021). 378

For all these tasks, the average scores are reported. 379

Conversely, the old Open LLM Leaderboard com- 380

prises 6 different tasks: gsm8k (Cobbe et al., 2021), 381

truthful-qa (Lin et al., 2022), winograde (Sak- 382

aguchi et al., 2019), arc (Allen AI), hellaswag 383

(Zellers et al., 2019), and mmlu (Hendrycks et 384

al., 2021). In this work, the average match rate 385

in gsm8k, mc2 in truthful-qa, accuracy in wino- 386

grade, acc-norm in arc, acc-norm in hellaswag, 387

and accuracy in mmlu will be reported. Addition- 388

ally, MT-Bench (Zheng et al., 2023) and Alpaca- 389

eval (Li et al., 2023) will be used to evaluate the 390

model’s ability to generate text responses, rather 391

than selecting from predefined candidate answers. 392

Specifically, the Length-Controlled Win Rate (LC 393

WR) will be documented for Alpaca-eval. Addi- 394

tionally, the average length of the outputs within 395

this evaluation will be provided for comprehensive 396

analysis. 397

As demonstrated in Table 1 and Table 2, Mis- 398

tral+UFT surpasses Mistral+SFT in 8 out of 12 399

tasks. When considering the average performances 400

across these leaderboards, Mistral+UFT consis- 401

tently outperforms Mistral+SFT. This indicates that 402

UFT enhances the capabilities of an LLM by maxi- 403

mizing the reward and minimizing the difference 404

from the pretrained model. Furthermore, in the MT- 405

Bench evaluation, Mistral+UFT outperforms Mis- 406

tral+SFT, whereas in the Alpaca-eval, Mistral+SFT 407

overshadows Mistral+UFT. From a generation ca- 408

pability standpoint, both UFT and SFT exhibit sim- 409

ilar performance. As a result, when evaluating the 410

performance on downstream tasks, UFT demon- 411

strates superiority over SFT. 412

3.2 Catastrophic Forgetting Study 413

Another advantage of UFT lies in combining SFT 414

and alignment into one stage to avoid catastrophic 415

forgetting. In this stage, we utilize the HelpSteer2 416

dataset of 20k examples for alignment (Wang et al., 417
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Model bbh gpqa mmlu-pro musr ifeval math-hard average
Mistral 44.11 29.53 30.11 41.79 23.22 2.92 28.61

Mistral+SFT 46.04 28.72 29.35 42.94 29.5 2.66 29.87
Mistral+UFT 46.55 29.24 30.25 41.73 28.89 3.87 30.09

Mistral+SFT+DPO 44.52 29.98 29.95 40.31 26.64 3.13 29.09
Mistral+SFT+KTO 42.89 31 30.48 40.59 25.17 2.94 28.85
Mistral+SFT+UNA 43.74 30.78 30.09 40.56 26.82 2.96 29.16

Mistral+UFT 45.46 31.15 30.05 41.06 46.03 3.13 32.81

Table 1: Comparison of Mistral+SFT and Mistral+UFT on instruction-tuning data, and comparison of Mis-
tral+SFT+DPO, Mistral+SFT+KTO, Mistral+SFT+UNA, and Mistral+UFT on both instruction-tuning and align-
ment data on the new HuggingFace open LLM Leaderboard

Model gsm8k truthful-qa winograde arc hellaswag mmlu average
Mistral 38.02 42.58 77.58 61.43 83.44 62.51 60.93

Mistral+SFT 39.65 51.06 78.53 63.99 83.78 61.99 63.17
Mistral+UFT 45.57 51.18 78.93 63.82 83.54 62.44 64.25

Mistral+SFT+DPO 42.19 47.83 78.45 62.16 84.03 62.38 62.84
Mistral+SFT+KTO 42.57 49.67 79.4 61.86 83.83 62.06 63.23
Mistral+SFT+UNA 39.99 49.54 79.72 62.46 84.08 62.3 63.02

Mistral+UFT 41.59 54.05 79.79 63.82 84.44 62.33 64.34

Table 2: Comparison of Mistral+SFT and Mistral+UFT on instruction-tuning data, and comparison of Mis-
tral+SFT+DPO, Mistral+SFT+KTO, Mistral+SFT+UNA, and Mistral+UFT on both instruction-tuning and align-
ment data on the old HuggingFace open LLM Leaderboard

Model MT-Bench Alpaca-eval
LC WR Length

Mistral 3.15 0.31 6554
Mistral+SFT 6.33 8.07 908
Mistral+UFT 6.55 7.27 974

Mistral+SFT+DPO 4.81 1.05 5654
Mistral+SFT+KTO 4.76 0.64 6215
Mistral+SFT+UNA 5.24 1.34 4945

Mistral+UFT 6.78 8.28 1317

Table 3: Comparison of Mistral+SFT and Mis-
tral+UFT on instruction-tuning data, and compari-
son of Mistral+SFT+DPO, Mistral+SFT+KTO, Mis-
tral+SFT+UNA, and Mistral+UFT on both instruction-
tuning and alignment data using MT-Bench and Alpaca-
eval

2024c). For UFT, the 20k examples from UltraChat418

and 20k examples from HelpSteer2 are merged419

and utilized for training. For comparison, the best420

performing SFT model of learning rate 1e−4 in421

the previous experiment is utilized for further fine-422

tuning using DPO, KTO and UNA.423

The same tasks are utilized for evaluation. In the424

two HuggingFace open LLM leaderboards, Mis-425

tral+UFT outperforms all of Mistral+SFT+DPO,426

Mistral+SFT+KTO, and Mistral+SFT+UNA in427

9 out of 12 tasks. In terms of average scores,428

Mistral+UFT surpasses all three sequential meth-429

ods. Several aspects need further discussion. 430

Firstly, the catastrophic forgetting problem is ev- 431

ident as the performances of Mistral+SFT+DPO, 432

Mistral+SFT+KTO, and Mistral+SFT+UNA are 433

worse than Mistral+SFT, a phenomenon also 434

known as alignment tax. Additionally, we ob- 435

serve that Mistral+UFT shows significant improve- 436

ments on ifeval, which tests the model’s capa- 437

bility of instruction-following, and truthful-qa, 438

which assesses the model’s alignment capabilities. 439

These results indicate that UFT greatly enhances 440

instruction-following and alignment capabilities, 441

demonstrating its effectiveness. In terms of genera- 442

tion capability, Mistral+UFT outperforms the other 443

three sequential methods and it does not seem to 444

suffer from catastrophic forgetting, as it performs 445

better than both Mistral+SFT and Mistral+UFT 446

on instruction-tuning data alone. Moreover, Mis- 447

tral+UFT does not bias towards long generation 448

like the other three sequential methods, which is 449

another advantage of UFT. 450

3.3 Data Distribution in Training UFT 451

During the pretraining phase, ensuring a balanced 452

data distribution is crucial for optimizing the ca- 453

pabilities of a LLM. In line with this principle, 454
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we have incorporated varying percentages of the455

instruction-tuning data into the alignment dataset to456

create a final training dataset. Specifically, we have457

kept the alignment dataset constant, i.e., 20k while458

integrating 260k, 130k, 65k, 32k, and 16k sam-459

ples from the UltraChat dataset. These combined460

datasets are then used for fine-tuning, allowing us461

to observe the impact of different data distributions462

on the model’s performance.463

Several intriguing points will be discussed. As464

shown in Table 4 and Table 5, among the 12 tasks,465

one task, namely musr, shows a minor statistical466

decrease in performance. In contrast, four tasks-467

gpqa, gsm8k, winograde, and arc—exhibit sta-468

tistically small improvements. Notably, two tasks,469

ifeval and truthful-qa, demonstrate statistically470

significant improvements. Specifically, ifeval im-471

proves from 23.22 to around 44, and truthful-qa472

improves from 42.58 to around 53. Significant ad-473

vancements are observed in MT-Bench and Alpaca-474

eval, indicating a substantial enhancement in the475

generation capability of the LLM as shown in Table476

6. This aligns with our expectations, as instruction-477

tuning data primarily aim to enhance the model’s478

instruction-following capabilities, which positively479

impacts ifeval, MT-Bench, and Alpaca-eval. Mean-480

while, alignment data contribute to improvements481

in tasks like truthful-qa. Other tasks remain482

largely unaffected due to the absence of relevant483

data, suggesting that incorporating more pertinent484

data could enhance their performance. When in-485

creasing the proportion of instruction-tuningg data,486

we observe a decrease in truthful-qa performance487

from 56 to 50, indicating that a larger proportion488

of alignment data benefits the bias and ethical per-489

formance of the LLM. On the other hand, simply490

adding more instruction-tuning data does not im-491

prove the performance of ifeval, MT-Bench, and492

Alpaca-eval. Therefore, further investigation into493

the optimal ratio between instruction-tuning data494

and alignment data is warranted.495

4 Related Work496

The field of LLMs has undergone significant ad-497

vancements, with billions of parameters and tril-498

lions of tokens processed in parallel during the499

pretraining stage (OpenAI et al., 2024; Anthropic,500

2024; Team et al., 2023). Following pretraining,501

SFT is applied to enhance the model’s performance502

on downstream tasks.503

However, neither pretraining nor SFT can fully504

address the issues of bias and ethics in LLMs (Ope- 505

nAI et al., 2024; Wang et al., 2024b). To tackle 506

these challenges, RLHF with PPO has been pro- 507

posed and is widely accepted for aligning LLMs, in- 508

cluding GPT and Claude (Ouyang et al., 2022; Bai 509

et al., 2022a). Despite its popularity, RLHF/PPO 510

faces several issues, such as high memory require- 511

ments, instability in reinforcement learning, and the 512

need for multiple training stages, including reward 513

model (RM) training and RL fine-tuning (Rafailov 514

et al., 2023). To reduce the cost of human labeling, 515

AI feedback can be used to replace human feed- 516

back, a method known as reinforcement learning 517

from AI feedback (RLAIF) (Bai et al., 2022b; Lee 518

et al., 2023). RLOO argues that PPO is excessive 519

for LLM alignment since the model has already 520

been pretrained, suggesting that RLOO should suf- 521

fice (Ahmadian et al., 2024). 522

To simplify RLHF, DPO has been proposed to 523

map the optimal policy and reward model into a sin- 524

gle step, transforming the initial unstable RL into 525

a binary cross-entropy problem (Rafailov et al., 526

2023). Several downstream studies have been con- 527

ducted on DPO to expand and generalize its capa- 528

bilities, such as different loss functions (Pal et al., 529

2024; Azar et al., 2023), iterative approaches (Yuan 530

et al., 2024; Xu et al., 2024), token DPO (Rafailov 531

et al., 2024; Zeng et al., 2024) and stepwise DPO 532

(Kim et al., 2024). 533

Previous work focused on pairwise datasets, 534

which are more challenging to gather. In contrast, 535

binary feedback like "thumbs up" and "thumbs 536

down" is easier to collect. KTO leverages the 537

concept of human aversion to undesired data and 538

successfully handles binary feedback (Ethayarajh 539

et al., 2024). DRO focuses on binary data by es- 540

timating the policy and value functions and opti- 541

mizing each sequentially while keeping the other 542

fixed (Richemond et al., 2024). However, these 543

methods cannot accommodate different types of 544

data. To address this, UNA was proposed to handle 545

pairwise, binary, and score-based feedback through 546

an implicit reward model, supporting both online 547

and offline alignment (Wang et al., 2024a). 548

There have also been efforts to merge SFT with 549

alignment. ORPO proposed a new loss function to 550

increase the ratio of desired responses over unde- 551

sired responses, achieving both SFT and alignment 552

(Hong et al., 2024). PAFT suggested conducting 553

SFT and alignment in parallel and merging them af- 554

terward (Pentyala et al., 2024). However, ORPO’s 555

reliance on pairwise datasets and its deteriorating 556
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Model bbh gpqa mmlu-pro musr ifeval math-hard average
Mistral 44.11 29.53 30.11 41.79 23.22 2.92 28.61

UNA(16k+20k) 45.17 30.64 29.95 39.19 44.21 2.38 31.92
UNA(20k+20k) 45.46 31.15 30.05 41.06 46.03 3.13 32.81
UNA(32k+20k) 44.75 31.28 29.76 39.06 46.76 3.51 32.52
UNA(65k+20k) 44.4 31.38 29.66 36.8 41.91 3.51 31.28
UNA(130k+20k) 44.35 29.75 30.02 38.66 44.2 2.99 31.66
UNA(260k+20k) 44.31 31 30.1 39.85 45.8 3.26 32.39

Table 4: Impact of different distributions of instruction-tuning and alignment data on the new HuggingFace Open
LLM Leaderboard

Model gsm8k truthful-qa winograde arc hellaswag mmlu average
Mistral 38.02 42.58 77.58 61.43 83.44 62.51 60.93

UNA(16k+20k) 40.83 56.69 79.4 64.85 84.66 62.22 64.78
UNA(20k+20k) 41.59 54.05 79.79 63.82 84.44 62.33 64.34
UNA(32k+20k) 40.83 54.38 79.72 64.42 84.46 62.88 64.45
UNA(65k+20k) 41.43 52.35 79.79 65.27 84.19 61.89 64.15
UNA(130k+20k) 41.13 50.17 79.48 64.59 84.07 62.26 63.62
UNA(260k+20k) 41.21 50.17 80.43 64.85 83.89 62.35 63.82

Table 5: Impact of different distributions of instruction-tuning and alignment data on the old HuggingFace Open
LLM Leaderboard

Model MT-Bench Alpaca-eval
LC WR Length

Mistral 3.15 0.31 6554
UNA(16k+20k) 6.25 7.9 1378
UNA(20k+20k) 6.78 8.28 1317
UNA(32k+20k) 6.54 8.23 1324
UNA(65k+20k) 6.3 9.92 1338

UNA(130k+20k) 6.83 7.43 1361
UNA(260k+20k) 6.45 6.85 1378

Table 6: Impact of different distributions of instruction-
tuning and alignment data on MT-Bench and Alpaca-
eval

performance compared to other SFT and alignment557

methods pose challenges. In contrast, PAFT re-558

quires training separate adaptors for SFT and align-559

ment and merging them through sparsity, which is560

inefficient. Inspired by UNA’s achievements, we561

aim to unify SFT with alignment based on UNA’s562

principles to avoid catastrophic forgetting.563

5 Limitation564

This paper has a couple of limitations that war-565

rant attention in future research. First, the study is566

restricted to English, and the multilingual capabili-567

ties of the approach should be thoroughly evaluated.568

Additionally, the current research primarily utilizes569

datasets such as Ultrachat and Helpsteer, which are570

academic in nature. To enhance the applicability of571

the findings, further testing on industrial datasets is 572

recommended. 573

6 Conclusion 574

Despite the extensive pretraining of LLMs using 575

trillions of tokens and billions of parameters, they 576

still fall short of being fully useful. SFT enhances 577

LLMs with the capability to answer prompts ef- 578

fectively. Alignment techniques, including RLHF, 579

DPO, KTO and UNA, can prevent the occurrence 580

of undesired responses. Nevertheless, these se- 581

quential SFT+alignment methods can lead to catas- 582

trophic forgetting, where the model loses capabili- 583

ties gained in previous stages. To address this issue, 584

a Unified Fine-Tuning (UFT) approach has been 585

proposed. UFT unifies SFT and alignment by utiliz- 586

ing a generalized implicit reward function, follow- 587

ing the UNA work. Trained solely on instruction- 588

tuning data, UFT outperforms SFT, which is at- 589

tributed to the minimization of divergence from 590

the pretrained model through KL divergence. By 591

mixing instruction-tuning data with alignment data, 592

UFT surpasses all three sequential SFT+alignment 593

methods, mitigating catastrophic forgetting. Ulti- 594

mately, we establish a unified fine-tuning frame- 595

work that runs in parallel to pretraining. 596
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The impact of different learning rates on the per-867

formances of SFT can be found in Table. 7 and868
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LLM Leaderboards.870

B UFT on 20k examples with Different871

LR and β872

The impact of different learning rates and β on the873

performances of UFT can be found in Table. 9 and874

Table. 10 for the new and old HuggingFace Open875

LLM Leaderboards.876
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LR bbh gpqa mmlu-pro musr ifeval math-hard average
3e−6 45.87 29.39 30.21 42.41 25.2 3.61 29.45
1e−5 47.14 29.59 30.21 41.74 25.77 3.12 29.6
3e−5 47.71 29.76 30.1 40.95 26.96 3.01 29.75
1e−4 46.04 28.72 29.35 42.94 29.5 2.66 29.87
3e−4 42.79 28.17 25.22 43.61 19.78 2.3 26.98

Table 7: The impact of different learning rates for SFT on the new HuggingFace Open LLM Leaderboard

LR gsm8k truthful-qa winograde arc hellaswag mmlu average
3e−6 42.95 47.9 79.32 61.86 83.34 62.37 62.96
1e−5 43.25 49.58 79.08 62.29 83.33 62.15 63.28
3e−5 44.47 50.5 78.93 62.54 83.25 62.61 63.72
1e−4 39.65 51.06 78.53 63.99 83.78 61.99 63.17
3e−4 13.39 46.43 75.85 58.53 81.16 55.73 55.18

Table 8: The impact of different learning rates for SFT on the old HuggingFace Open LLM Leaderboard

LR/ β bbh gpqa mmlu-pro musr ifeval math-hard average
1e−4/0.01 47.01 27.86 30.3 39.07 32.49 3.57 30.08
1e−4/0.03 46.09 29.5 30.09 40.8 29.27 3.84 29.93
1e−4/0.1 45.57 30.5 30.15 42.42 27.21 2.94 29.8
1e−4/0.3 44.02 30.04 29.65 43.76 26.08 2.64 29.37
3e−5/0.01 46.55 29.24 30.25 41.73 28.89 3.87 30.09
3e−5/0.03 46.56 28.72 30.44 40.67 29.7 3.08 29.86
3e−5/0.1 46.31 29.29 30.7 40.95 26.52 3.5 29.55
3e−5/0.3 44.91 28.6 30.44 43.1 26.54 3.1 29.45
1e−5/0.01 46.44 29.27 30.44 38.15 26.02 3.59 28.99
1e−5/0.03 46.46 29.51 30.54 39.21 25.39 3.02 29.02
1e−5/0.1 45.8 29.99 30.41 42.96 26.67 3.01 29.81
1e−5/0.3 45.03 29.74 30.46 42.97 25 2.57 29.3
3e−6/0.01 45.83 29.86 30.5 41.5 25.42 2.8 29.32
3e−6/0.03 45.81 29.91 30.45 41.24 25.23 2.58 29.2
3e−6/0.1 45.48 30.61 30.53 43.09 23.87 3.27 29.48
3e−6/0.3 44.3 29.48 30.29 42.71 22.56 3.06 28.73

Table 9: The impact of different learning rates for SFT on the new HuggingFace Open LLM Leaderboard
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LR/ β gsm8k truthful-qa winograde arc hellaswag mmlu average
1e−4/0.01 43.64 49.77 78.77 63.91 83.88 62.31 63.71
1e−4/0.03 42.57 50.2 78.61 64.25 83.55 61.87 63.51
1e−4/0.1 40.11 47.95 77.98 63.4 83.37 62.19 62.5
1e−4/0.3 35.94 44.4 78.93 62.2 82.92 62 61.07
3e−5/0.01 45.57 51.18 78.93 63.82 83.54 62.44 64.25
3e−5/0.03 43.33 51.24 78.61 64.08 83.41 62.61 63.88
3e−5/0.1 41.55 49.25 78.69 62.54 83.31 62.44 62.96
3e−5/0.3 38.44 43.94 78.14 61.77 83.5 62.31 61.35
1e−5/0.01 42.46 50.41 78.69 63.14 83.27 62.43 63.4
1e−5/0.03 41.58 50.35 79.01 62.71 83.35 62.59 63.27
1e−5/0.1 41.17 48.63 78.69 62.54 83.38 62.35 62.79
1e−5/0.3 39.24 44.24 78.45 62.2 83.55 62.5 61.7
3e−6/0.01 39.92 48.42 78.53 62.2 83.32 62.35 62.46
3e−6/0.03 40.41 48.08 78.69 62.2 83.34 62.5 62.54
3e−6/0.1 38.63 46.3 78.22 61.95 83.39 62.58 61.85
3e−6/0.3 38.86 43.99 77.9 61.52 83.48 62.59 61.39

Table 10: The impact of different learning rates for SFT on the old HuggingFace Open LLM Leaderboard
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