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ABSTRACT

Training strategies for modern deep neural networks (NNs) tend to induce a heavy-
tailed (HT) empirical spectral density (ESD) in the layer weights. While previous
efforts have shown that the HT phenomenon correlates with good generalization
in large NNs, a theoretical explanation of its occurrence is still lacking. Especially,
understanding the conditions which lead to this phenomenon can shed light on the
interplay between generalization and weight spectra. Our work aims to bridge this
gap by presenting a simple, rich setting to model the emergence of HT ESD. In
particular, we present a theory-informed analysis for ‘crafting’ heavy tails in the
ESD of two-layer NNs without any gradient noise. This is the first work to ana-
lyze a noise-free setting and incorporate optimizer (GD/Adam) dependent (large)
learning rates into the HT ESD analysis. Our results highlight the role of learning
rates on the Bulk+Spike and HT shape of the ESDs in the early phase of training,
which can facilitate generalization in the two-layer NN. These observations shed
light on the behavior of large-scale NNs, albeit in a much simpler setting. Last
but not least, we present a novel perspective on the ESD evolution dynamics by
analyzing the singular vectors of weight matrices and optimizer updates.

1 INTRODUCTION

By employing techniques from random matrix theory, Martin & Mahoney (2021a) observed an im-
plicit self-regularization of the training process, due to which deep NN weights exhibit HT ESDs.
Especially, they observed a correlation between the heaviness of tails in the ESDs and the strong
generalization performance of deep NNs on CV/NLP tasks. On the other hand, owing to the HT
nature of stochastic gradient noise (Simsekli et al., 2019; Panigrahi et al., 2019; Zhang et al., 2020),
further studies have shown that limiting HT distributions of weight values lead to good generaliza-
tion (Simsekli et al., 2020a; Gurbuzbalaban et al., 2021; Hodgkinson et al., 2022; Simsekli et al.,
2019). Since such a distribution of values can, in turn, result in weight matrices with HT ESDs
(Arous & Guionnet, 2008; Belinschi et al., 2009), the study of this broader HT phenomenon in deep
learning has gained importance in recent years. In particular, the shape of HT ESDs has been suc-
cessfully leveraged to assess the quality of pre-trained NNs (Martin & Mahoney, 2020; Martin et al.,
2021; Martin & Mahoney, 2021b) (including Large Language Models (Yang et al., 2023)), and de-
sign layer-wise learning rate schedulers (Zhou et al., 2023). Similarly, the shape of HT stochastic
noise has been shown to impact generalization (Simsekli et al., 2019; 2020b;a; Hodgkinson et al.,
2022; Gurbuzbalaban et al., 2021), the compressibility of NNs (Barsbey et al., 2021), and the design
of federated-learning algorithms (Yang et al., 2022; Li et al., 2024). The theoretical efforts (Simsekli
et al., 2019; 2020a;b; Gurbuzbalaban et al., 2021; Hodgkinson & Mahoney, 2021; Hodgkinson et al.,
2022) that aim to understand the underlying mechanisms of the HT phenomenon have focused on
the limiting distributions of the weight values and have not explicitly studied the ESDs.

In this paper, we present an alternative setup that is amenable to discrete-step analysis and is rich
enough to study the evolution of ESDs in two-layer NNs without any gradient noise. Our setup does
not rely on continuous time approximations to SGD or limiting distribution analysis but instead
employs a Teacher-Student setting (Arous et al., 2021; Bietti et al., 2022; Ba et al., 2022; Dandi
et al., 2023; Ba et al., 2023; Mousavi-Hosseini et al., 2023b) to study the effects of finite optimizer
steps on the weight matrix ESD (Figure 1). By training a two-layer feed-forward NN (Student)
to learn a single-index model (Teacher) using vanilla Gradient Descent (GD) and Full-batch Adam
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(a) GD η = 2000 (b) GD η = 2000 (c) FB-Adam η = 0.5 (d) FB-Adam η = 0.5

Figure 1: Emergence of HT spectra after 10 GD/FB-Adam steps. Both linear and log scales are
shown. For the purpose of illustrating clear HT shapes, we did not choose a highly HT spectrum.
Highly HT spectra can also be generated without gradient noise and are discussed in Appendix A.

(FB-Adam) optimizers, we show that: “The ESD of the hidden layer weight matrix exhibits heavy
tails after multiple steps of GD/FB-Adam with (sufficiently) large learning rates”.
Intuition. Before diving into the details, we present the reader with a mental model of the ESD
evolution in this setup. At initialization, the hidden layer weight matrix ESD of the student NN
can be characterized by the Marchencko-Pastur distribution (i.e. random-like). The first step with a
large η has been shown to result in an outlier singular value (i.e. a ‘spike’) in the ESD and results in
a ‘Bulk+Spike’ shape. The singular vector corresponding to this spike tends to align with the target
direction of the teacher model and results in improved generalization (Ba et al., 2022; Dandi et al.,
2023). By continuing to train the student NN with such large η, our work shows that the interactions
between the spike and the bulk gradually lead to a ‘Bulk-Decay’ and finally lead to HT ESD.

Our theory is primarily aimed at identifying the large η for FB-Adam, which can result in a spike
after the one-step update. Especially, we formulate the scale of η (depending on hidden layer width
and data dimension) which can lead to a Bulk+Spike ESD after the one-step update. We also show
their intriguing relationship with feature-learning (Ba et al., 2022; Dandi et al., 2023) in two-layer
NNs, which can lead to improved generalization. Our results for FB-Adam in the feature learning
context can be of independent interest to the community since prior works are limited to GD.

Toward understanding the shape transitions of ESD from the Bulk+Spike to an HT, we vary η from
small to large values and observe that the distance between the spike and the bulk (i.e spectral gap)
determines the HT emergence during the early phases of training. For instance, η = 1 leads to HT
ESDs just after t = 10 steps, whereas η = 0.1 requires very long training up to t = 10000 steps (see
also Table 3, Table 4). Thus highlighting the necessity to study critical learning rates for one-step
optimizer updates. We also analyze the correlations between the heaviness of tails (as measured
by power-law fits) in the ESD and the generalization of the student NN after multiple steps. We
showcase empirical results on the existence of a range of η (depending on the optimizer) that can
result in an HT ESD as well as improve the generalization of the student NN. In particular, η in such
a suitable range results in HT ESDs whose power-law fit (as measured by the hill-climbing approach
(Yang et al., 2023)) lie in the range of (2, 2.5) and lead to strong generalization. This result supports
the observations of Martin & Mahoney (2021a); Martin et al. (2021) for well-trained deep NNs
where the truncated power-law fit of the ESDs lies within a range of (2, 4). Finally, we present a
novel perspective on HT ESD emergence using tools from the ‘signal recovery’ literature (Landau
et al., 2023; Benaych-Georges & Nadakuditi, 2012). In particular, we show that the alignments of
singular vectors of the hidden layer weight matrix and its corresponding optimizer update matrix
significantly influence the shape of ESD during training.

To summarize, our main contributions are as follows:

• We present a gradient-noise-free setting to study the emergence of HT ESD in the hidden
layer weight matrix of two-layer NNs during the initial phases of training. To the best of
our knowledge, this is the first work to study the early evolution phases of the ESD across
discrete training steps with large learning rates. In this setup, we present a novel insight
that feature learning after the first step (via the spike in the weight matrix ESD) facilitates
HT emergence after finite steps.

• We theoretically establish the scale of the learning rate at which one step of FB-Adam
results in a spike in the hidden layer weight matrix ESD. This result can be of independent
interest to the community since prior results have been established only for GD.
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• We empirically analyze the evolution of the hidden layer weight matrix ESD into an HT
distribution during training. Interestingly, we show that for a certain range of optimizer-
dependent learning rates, the two-layer NN can exhibit HT ESDs and generalize well.

• We present a novel perspective on the interactions between the bulk and spike of the ESD
which result in a HT distribution. By analyzing the overlap(alignment) of singular vectors
of the weight matrix and its corresponding optimizer updates during training, our quali-
tative observations show that the alignments tend to exhibit an HT-like decay across the
singular vector indices and correlate with the emergence of HT ESDs during training.

Overall, our paper makes multiple novel theoretical and empirical contributions centered around the
emergence of HT ESDs and their connection to good generalization of NNs.

2 RELATED WORK

The heavy-tailed phenomenon. Heavy tails in machine learning have been observed and studied
in various forms. The most prominent empirical results are from a series of works by Martin &
Mahoney (2020; 2021a;b); Martin et al. (2021), which propose a heavy-tailed self regularization
(HT-SR) theory of deep NNs. In particular, Martin & Mahoney (2021a) proposed a ‘5 + 1’ phase
model corresponding to the ESD evolution, and aims to model the HT-SR effect during training.
Their observations from extensive empirical analysis showcased a correlation between the power
law fits of weight matrix ESDs and generalization. Although it is still unclear if HT ESDs are
necessary for generalization, Martin et al. (2021); Yang et al. (2023) have shown that the shape met-
rics of the ESD can be effectively leveraged to identify well-trained NNs (and can be extended to
large-scale models such as LLMs). From a theoretical perspective, previous efforts have primarily
focused on stochastic optimization settings and proposed generalization bounds based on the tail
indices of the stochastic noise (Simsekli et al., 2019; 2020b;a; Gurbuzbalaban et al., 2021; Hodgkin-
son & Mahoney, 2021; Hodgkinson et al., 2022; Raj et al., 2023; Nguyen et al., 2019; Barsbey
et al., 2021). In particular, the earlier work by Simsekli et al. (2020a) employed continuous-time
approximation of SGD via feller-processes and studied the role of the Hausdorff Dimension on gen-
eralization. More recently, Hodgkinson et al. (2022) extended this analysis to discrete-time settings.
In concurrent works, Gurbuzbalaban et al. (2021) studied the heavy-tailed stationary distributions
of discrete Markov processes as an approximation to SGD iterates in the infinite data regime, while
Hodgkinson & Mahoney (2021) analyzed the role of multiplicative noise in such settings. While
these efforts have emphasized the role of the learning rate/batch size ratio in determining the tail
index of the iterates, a formal study on the role of these hyper-parameters is still lacking. More
importantly, none of these efforts have focused on the evolution of the ESD itself. Although the
limiting HT distribution of the weight values can lead to HT ESDs (Arous & Guionnet, 2008), the
insights cannot be directly used for a fine-grained analysis of the ‘5 + 1’ phase model. Our work
aims to bridge these gaps and analyzes the fine-grained ESD evolution from a Marchenko-Pastur
(MP) fit (i.e. random initialization) → “Bulk+Spike” → “Bulk-Decay” → HT distributions and the
correlations with generalization.

Feature learning and large learning rates. Learning single-index models using two-layer NNs
under the Teacher-Student setup has provided rich insights into the sample complexity (Damian
et al., 2023; Mousavi-Hosseini et al., 2023a; Zweig et al., 2023; Damian et al., 2024; 2022; Abbe
et al., 2023) and training dynamics (Bietti et al., 2022; Wang et al., 2023; Cui et al., 2024; Moniri
et al., 2023) of NNs. In particular, the study of feature learning in such two-layer NNs focuses on the
factors (such as optimizers (Abbe et al., 2023), loss landscapes (Damian et al., 2023), representations
(Nichani et al., 2023) and learning rates (Dandi et al., 2023)) that facilitate sample efficient learning
beyond the kernel regime (Louart et al., 2018; Gerace et al., 2020; Mei & Montanari, 2022; Hu &
Lu, 2022; Goldt et al., 2022; Liu et al., 2021). Recently, Ba et al. (2022) analyzed the first step of
GD update in the high dimensional setting and formalized the scale of η required to go beyond the
random feature regime. In particular, such a large η is necessary for a two-layer NN to learn the
hidden direction of a single-index model after one step of GD (see also (Dandi et al., 2023)). This first
large update was shown to result in an outlier singular value (i.e. a ‘spike’) in the ESD of the hidden
layer weight matrix. Our work presents the first result for such large η in the case of FB-Adam
and can be of wider interest in the feature learning context. Beyond the one-step analysis, Dandi
et al. (2024) analyzed the role of two-pass GD in learning single-index models with large information
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exponents (Arous et al., 2021). However, the effects of multiple passes over the data on the ESD
and generalization are yet to be fully understood. Our multi-step analysis empirically highlights
the importance of such feature learning after the first step for the emergence of HT ESD. Thus,
showcasing the unexplored connections between these two areas of research.

3 PRELIMINARIES AND SETUP

Notation. For n ∈ N, we denote [n] = {1, · · · , n}. We use O(·) to denote the standard big-
O notation and the subscript Od(·) to denote the asymptotic limit of d → ∞. Formally, for two
sequences of real numbers xd and yd, xd = Od(yd) represents limd→∞ |xd| ≤ C1|yd| for some
constant C1. Similarly, xd = Od,P(yd) denotes that the asymptotic inequality almost surely holds
under a probability measure P. The definitions can be extended to the standard Ω(·),Θ(·) or ≍
notations analogously (Graham & Knuth, 1989). For two sequences of real numbers xd and yd,
xd ≍ yd represents |yd|C2 ≤ |xd| ≤ C1|yd|, for constants C1, C2 > 0 (Wang et al., 2021; Moniri
et al., 2023). For a real matrix B = (Bij)n×m ∈ Rn×m, B◦p represents an element-wise p-power
transformation such that B◦p = (Bp

ij)n×m. ⊙ is the matrix Hadamard product, sign(.) denotes the
element-wise sign function. ∥·∥2 denotes the ℓ2 norm for vectors and the operator norm for matrices.
∥·∥F denotes the Frobenius norm. 0h×d,1h×d ∈ Rh×d represent the all-zero and all-ones matrices.

Dataset. We sample n data points {x1, · · · ,xn} from the isotropic Gaussian xi ∼
N (0d, Id),∀i ∈ [n] as our input data. For a given xi ∈ Rd, we use a single-index teacher model
F ∗ : Rd → R to generate the corresponding scalar label yi ∈ R as follows:

yi = F ∗(xi) + ξi = σ∗(β
∗⊤xi) + ξi. (1)

Here β∗ ∈ Sd−1 (the d − 1-dimensional sphere in Rd) is the target direction, σ∗ : R → R is
the target non-linear link function, and ξi ∼ N (0, ρ2e) is the independent additive label noise. We
represent X ∈ Rn×d,y ∈ Rn as the input matrix and the label vector, respectively.

Learning. We consider a two-layer fully-connected NN with activation σ : R → R as our student
model f(·) : Rd → R. For an input xi ∈ Rd, its prediction is formulated as:

f(xi) =
1√
h
a⊤σ

(
1√
d
Wxi

)
. (2)

Here W ∈ Rh×d,a ∈ Rh are the first and second layer weights, respectively, with entries sampled
i.i.d as follows [W0]i,j ∼ N (0, 1), [a]i ∼ N (0, 1),∀i ∈ [h], j ∈ [d].

3.1 TRAINING PROCEDURE

We employ the following Two-stage training procedure (Ba et al., 2022; Moniri et al., 2023; Cui
et al., 2024; Dandi et al., 2023; Wang et al., 2023) on the student network. In the first stage, we fix
the last layer weights a ∈ Rh and apply optimizer update(s) (GD/FB-Adam) only for the first layer
W . In the second stage, we perform ridge regression on the last layer using a hold-out dataset of
the same size to calculate the ideal value of a (Ba et al., 2022).

Optimizer updates for the first layer. In this phase, we fix the last layer weights a to its value
at initialization and perform GD/FB-Adam update(s) on W to minimize the mean-squared error
R(f,X,y) = 1

2n

∑n
i=1(yi − f(xi))

2. The update to W using GD is given by:

Wt+1 = Wt − ηGt, (3)

where Wt denotes the weights W at step t and Gt = ∇WtR(f,X,y) represents the full-batch
gradient. Next, to formulate the updates using FB-Adam, let:

M̃t+1 = β1M̃t + (1− β1)Gt, Ṽt+1 = β2Ṽt + (1− β2)G
◦2
t . (4)

Here M̃t, Ṽt ∈ Rh×d represent the first and second order moving averages of the gradient respec-
tively, with base values M̃0 = 0h×d, Ṽ0 = 0h×d (Kingma & Ba, 2014). (β1, β2) ∈ R are the decay
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factors. Considering G̃t = (Ṽ
◦1/2
t+1 + ϵ1h×d)

◦−1 ⊙ M̃t+1, we formulate the FB-Adam update1:

Wt+1 = Wt − ηG̃t. (5)

For the remainder of this paper, we use the overloaded term ‘optimizer update’ to represent either
FB-Adam or GD update. Specific choices of the optimizer will be mentioned explicitly.

Ridge-regression on final layer. Similar to the setup of Ba et al. (2022); Moniri et al. (2023);
Wang et al. (2023); Ba et al. (2023), we consider a hold-out training dataset X ∈ Rn×d,y ∈ Rn

sampled in the same fashion as X,y to learn the last layer weights. Formally, after t opti-
mizer updates to the first layer to obtain Wt, we calculate the post-activation features Zt =
1√
h
σ
(

1√
d
WtX

⊤)
and solve the following ridge-regression problem:

â = arg min
a∈Rh

1

n

∥∥∥y −Z
⊤
t a
∥∥∥2
2
+

λ

h
∥a∥22 . (6)

Here λ > 0 is the regularization constant. The solution â is now used as the last-layer weight
vector for our student network f(·) and we consider the resulting regression loss as our training
loss. Formally, this setup allows us to measure the impact of updates to W after t steps on the
hold-out dataset’s regression loss. Finally, for a test sample x ∈ Rd, the student network prediction
is given as: ŷ = 1√

h
âσ
(

1√
d
Wtx

)
. These predictions on the test data are used for computing the

test loss using the mean squared error.

3.2 ALIGNMENT AND HT METRICS

Alignment between W ,β∗. To quantify the “extent” of feature learning in our student network
during training, we measure the alignment between the first principal component of W (denoted as
u1) and the target direction β∗ (Ba et al., 2022; Wang et al., 2023) as: sim(W ,β∗) = |u⊤

1 β
∗|.

Kernel Target Alignment (KTA). In addition to analyzing W , we also consider the alignment
between the Conjugate Kernel (CK) (Wang et al., 2023; Lee et al., 2018; Matthews et al., 2018;
Fan & Wang, 2020) based on hidden layer activations and the target outputs. Formally, consider
the hidden layer activations of the holdout data as Z = 1√

h
σ
(

1√
d
WX

⊤)
and define CK as:

K = Z
⊤
Z ∈ Rn×n. The KTA (Cristianini et al., 2001) between K and yy⊤ ∈ Rn×n is given as:

KTA =
⟨K,yy⊤⟩

∥K∥F ∥yy⊤∥F
, ⟨K,yy⊤⟩ =

n∑
i,j

Ki,j(yy
⊤)i,j . (7)

Power-law fits (PL Alpha Hill, PL Alpha KS) To quantify the heaviness of the tails in the
ESD, we measure PL Alpha Hill (Zhou et al., 2023), and PL Alpha KS, which refer to the
power-law exponents that are fit to the ESD of W⊤

t Wt using the Hill estimator (Hill, 1975) and
based on the Kolmogorov–Smirnoff statistic respectively (Martin et al., 2021; Clauset et al., 2009).

4 BULK+SPIKE PHENOMENON AFTER ONE OPTIMIZER STEP

In this section, we present empirical and theoretical results for the scale of η for FB-Adam that
results in the “Bulk+Spike” ESD and facilitates feature learning in the student network after the first
update. The discussion on the first optimizer update and η is essential, as we show in Section 5 that
the Bulk+Spike ESD after the first update facilitates the emergence of HT ESDs.

4.1 THE BULK+SPIKE ESD BY SCALING η

Setup. We consider the two-layer NN f(·) of width h = 1500, σ = tanh and train it on a dataset
of size n = 2000, with input dimension d = 1000. We choose σ∗ = softplus as the target link
function and set the label noise to ρe = 0.3, with λ = 0.01. The test data consists of 200 samples.

1We choose the subscript t in G̃t for notational consistency between FB-Adam and GD updates.
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(a) GD η = 0.1 (b) GD η = 2000 (c) FB-Adam η = 1 (d) FB-Adam η = 10

Figure 2: ESD of W⊤
1 W1 for GD/FB-Adam with varying η, and n = 2000, d = 1000, h =

1500,σ∗ = softplus, σ = tanh, ρe = 0.3, λ = 0.01.

(a) GD loss (b) FB-Adam loss (c) KTA (d) sim(W ,β∗)

Figure 3: Losses, KTA, sim(W ,β∗) for f(·) trained with one-step of GD, FB-Adam. Here n =
2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3, λ = 0.01.

FB-Adam needs a much smaller η than GD to exhibit a Bulk+Spike ESD. By varying η, we
train the student network f(·) for one step using GD and FB-Adam. We can observe from Figure
2a that after one GD update with η = 0.1, the ESD of W⊤

1 W1 remains largely unchanged from
that of W⊤

0 W0 (i.e ESD at random initialization). On the other hand, Figure 2b illustrates that for
η = 2000, the ESD of W⊤

1 W1 exhibits a spike. However, FB-Adam exhibits a spike in the ESD
of W⊤

1 W1 after the first step even with η = 1 (see Figure 2c). Finally, for η = 10, the ESD tends
towards a seemingly bimodal distribution (see Figure 2d).

Impact on losses, KTA, and sim(W ,β∗). As the choice of optimizer affects the scale of η leading
to a Bulk+Spike ESD of W⊤

1 W1, we vary η across {0.001, 0.01, 0.1, 1, 10, 100, 1000, 2000, 3000}
and plot the means and standard deviations of losses, KTA and sim(W ,β∗) across 5 runs in Figure
3. In the case of GD, observe that η = 2000 is the threshold for the: reduction of train and test
losses (Figure 3a), an increase in KTA (Figure 3c), and an increase in sim(W ,β∗) (Figure 3d).
Thus, implying that the occurrence of a spike leads to better generalization after one step (as also
verified by Ba et al. (2022)). In the case of FB-Adam, η < 0.01 does not improve generalization
and we do not see an increase in KTA/sim(W ,β∗). For 0.01 ≤ η ≤ 1, generalization improves,
and KTA/sim(W ,β∗) values increase. For η > 1, generalization degrades and there is a slight
reversal in the trend for KTA. Note that due to the two-phase training strategy, the large magnitude
of the first step update with η > 1 can lead to lower training loss (since the last layer is computed
based on a closed-form solution), but lead to higher test loss. These observations hint at a sweet spot
for η beyond which FB-Adam leads to poor test performance (see also Appendix E.1). Towards
understanding these observations, we focus on the following pressing question: why does η = 0.1
suffice for one-step of FB-Adam to exhibit a spike in the ESD, whereas one-step GD requires η =
2000? Specifically, how large should η be for FB-Adam to exhibit a spike in the ESD?

4.2 THEORETICAL RESULTS FOR SCALING η WITH FB-ADAM

To theoretically answer the above questions, we start by formulating the first step gradient G0 as:

G0 =
1

n
√
d

[
1√
h

(
ay⊤ − 1√

h
aa⊤σ

(
1√
d
W0X

⊤
))

⊙ σ′
(

1√
d
XW⊤

0

)]
X. (8)

Here σ′(·) : R → R is the derivative of the activation function σ acting element-wise on XW⊤
0 /

√
d.

Based on equation equation 4, let P̃1 = Ṽ
◦1/2
1 + ϵ1h×d. Considering the FB-Adam epsilon hyper-

parameter ϵ ≈ 0 (Kunstner et al., 2022), the update can be given as:

G̃0 = P̃ ◦−1
1 ⊙ M̃1 =

1− β1√
1− β2

sign(G0). (9)
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Theorem 4.1 Given the two-stage training procedure with large n, d, such that n ≍ d, and large
(fixed) h, assume the teacher F ∗ is λσ-Lipschitz with ∥F ∗∥L2 = Θd(1), and a normalized ‘student’
activation σ, which has λσ-bounded first three derivatives almost surely and satisfies E[σ(z)] =
0,E[zσ(z)] ̸= 0, for z ∼ N (0, 1); then the matrix norm bounds for the one-step FB-Adam update
can be given as: ∥∥∥G̃0

∥∥∥
2
= Θd,P(

√
hd),

∥∥∥G̃0

∥∥∥
F
= Θd,P(

√
hd). (10)

Appendix B presents the proof. The sketch of the proof is as follows: First, we show that
G0 does not contain values that are exactly equal to 0 almost surely. This allows us to obtain∥∥∥G̃0

∥∥∥
F

= Θd,P(
√
hd). Next, we leverage a rank 1 approximation A of G0 (in the operator

norm (Ba et al., 2022)) to show that sign(A) = sign(G0). Finally, we obtain the lower-bound
of
∥∥∥G̃0

∥∥∥
2
= Ωd,P(

√
hd) to prove the theorem 2.

Corollary 4.2 Under the assumptions of Theorem 4.1, we have the following learning rate scales
η = Θ(1) =⇒ ∥W1 −W0∥F ≍ ∥W0∥F

η = Θ
(
1/
√
h
)

=⇒ ∥W1 −W0∥2 ≍ ∥W0∥2 ,
(11)

where ∥W0∥2 = Θd,P(
√
d), ∥W0∥F = Θd,P(

√
hd).

Theorem 4.1 shows that the spectral and Frobenius norms of G̃0 scale similarly and that the top
singular value contributes the most to the Frobenius norm as d, h increase. As a consequence,
Corollary 4.2 indicates that η = Θ(1) (which is independent of h, d) is sufficient for ηG̃0 to result
in a ‘spike’ in the ESD of W⊤

1 W1. This explains our empirical observations above where even
η = 1 was sufficient for the ESD to transition into a Bulk+Spike shape.

Remark. We note that a similar result for η in the case of GD was previously established by Ba
et al. (2022). However, they employ a mean-field initialization of the two-layer NN f(·) and differs
from our NTK-based initialization (Wang et al., 2023). Nonetheless, we show that our results can
be extended to such a setup as well and the adjusted η can indeed explain the Bulk+Spike ESD after
one step update (Appendix C presents a comprehensive discussion).

5 HT PHENOMENON AFTER MULTIPLE OPTIMIZER STEPS

In this section, we empirically analyze the ESD evolution from the “Bulk+Spike” shape into an HT
distribution. This is followed by a correlation analysis with generalization of the two-layer NN and
finally presents a singular vector perspective on the HT ESD emergence.

5.1 TRANSITIONING FROM BULK+SPIKE TO HT ESD

Spike after one step facilitates the emergence of HT ESD. We begin by employing the same
setup as Section 4 and show in Table 1 that the spike in the ESD after one step facilitates the
emergence of HT ESD. We observe that after just 10 FB-Adam steps with η = 1, the HT ESD
emerges. However, η = 0.1 requires t = 10000. This indicates that the relative position of the spike
from the bulk (which is captured by the spectral gap in this setup) plays a key role in determining
the step complexity of the HT ESD emergence 3.Finally, for η = 0.01, which does not exhibit an HT
ESD even after t = 10000, we observed that a significantly long amount of training for t = 106 steps
can lead to HT. Note that η = 0.01 tends to fall within the (Θ(1/

√
h),Θ(1)) range, considering the

scaling constants for Θ. This leads to a scenario where a spike does not emerge after one step but
the magnitude of gradient updates over t = 106 steps can lead to HT ESD (see Table 5). Given
this observation, extremely small η might not be able to exhibit such changes to the ESD even after
t > 106 steps (see Corollary 5.3 in Wang et al. (2023) for a related formal result). We extend the
analysis to a wider range of η in Appendix D (see Table 4).

2The normalized activation is not a practical limitation and is solely required for the proof (Ba et al., 2022).
3Theoretical analysis of the spectral gap and its role on the step complexity for HT ESD emergence is out

of scope of this paper and can be a valuable direction for future research.
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t = 1 t = 100 t = 10000

η = 0.01

η = 0.1

η = 1

Table 1: Evolution of ESD over steps t ∈ {1, 100, 10000} with η ∈ {0.01, 0.1, 1} for FB-Adam.

(a) Bulk+Spike (b) Bulk-Decay (onset) (c) Bulk-Decay (progress) (d) Heavy Tails (onset)

Figure 4: Evolution of ESD (linear-linear scale) from a Marchenko-Pastur fit (at initialization t = 0:
red bulk) to (a) Bulk+Spike (t = 1), (b) the onset of Bulk-Decay (t = 5), (c) Continued decay of the
bulk (t = 10), (d) onset of heavy tails (t = 50), with FB-Adam optimizer and η = 0.2.

Bulk-Decay as an intermediate stage. The ‘5+1’ model of the ESD evolution in deep NNs (Mar-
tin & Mahoney, 2021a) is characterized by the following phases: (1) Random-like (2) Bleeding-out
(3) Bulk+Spikes (4) Bulk-Decay (5) Heavy-Tailed (HT) and the final (6) Rank-Collapse4. By con-
sidering FB-Adam with η = 0.2 and the same setup as Section 4, we illustrate in Figure 4 that
the spike emerges after one-step (Figure 4a) and gradually decays the Bulk (Figure 4b, Figure 4c)
toward a HT distribution (Figure 4d). Since practical settings employ deep NNs and train with
stochastic gradient noise on complex datasets, the ESD evolution is much more nuanced. Espe-
cially the Bleeding-out phase and the presence of multiple spikes before the onset of Bulk-Decay.
Nonetheless, we extended our results from the student-teacher setup to more practical settings, such
as VGG models on MNIST, and validated our HT ESD findings in those settings as well (Appendix
E.6). Overall, we emphasize that our setup with two-layer NNs and single-index models opens up
the possibility to approximate such dynamics while being subject to theoretical treatment.

5.2 IMPACT ON GENERALIZATION

Setup. We consider the two-layer student NN f(·) of width h = 1500, σ = tanh and train it
on a dataset of size n = 8000 for 10 steps using GD/FB-Adam. We choose a sample dimension
d = 1000, σ∗ = softplus and ρe = 0.3. The test dataset has 200 samples.

4The rank-collapse is an extreme case scenario which is not considered in our analysis.
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(a) loss (b) KTA (c) PL Alpha Hill (d) PL Alpha KS

Figure 5: Losses, KTA, PL Alpha Hill, PL Alpha KS after 10 steps of GD, FB-Adam, with
n = 8000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3, λ = 0.01.

Correlations between ESD and losses. We plot the means and standard deviations across 5 runs
for the train/test losses, KTA, PL Alpha Hill and PL Alpha KS (see Section 3.2) of W⊤

10W10

after 10 GD/FB-Adam updates by varying η across {0.001, 0.01, 0.1, 1, 10, 100, 1000, 2000, 3000}
in Figure 5. A lower value of PL Alpha Hill / PL Alpha KS indicates a heavier-tailed spec-
trum5. Observe that for baseline GD experiments with η ≥ 1000, the reduction in train and test losses
are correlated with an increase in KTA and a decrease in PL Alpha Hill and PL Alpha KS. Ad-
ditional experiments are presented in Appendix E.2.

In the case of FB-Adam, a much clearer correlation between the training loss, KTA,
PL Alpha Hill and PL Alpha KS can be observed. Especially, there seems to be a region of
benign learning rates (0.01 ≤ η ≤ 1) for which, the PL Alpha Hill estimates lie in the range of
(2, 2.5) and a decrease in the estimate (resulting in a ‘heavier’ tailed ESD) improves generalization.
For 1 ≤ η ≤ 100, although we observe similar values of PL Alpha Hill, the ESDs of W⊤

10W10

differ in the scale of the singular values, and the spike seems to have a large influence on the estima-
tion of PL Alpha Hill (see Figure 23 in Appendix E). However, the PL Alpha KS captures the
monotonically decreasing trend for this range of η. Finally, for extremely large η > 100, we observe
much smaller estimates of PL Alpha Hill (< 1.8) but these extremely heavier tails do not cor-
relate with better generalization. We also note that these benign η ranges vary based on the choice
of the activation functions. In particular, when σ = σ∗ = tanh, we observed that the range can be
reduced by an order of magnitude (Appendix E.5). Overall, these observations support the conclu-
sions of Martin & Mahoney (2021a); Martin et al. (2021) which state that well-trained deep NNs do
not exhibit extreme HT ESDs but rather whose power-law estimates lie within a suitable range (see
also Appendix E.7). For instance, a range of (2, 4) for the truncated power-law fit estimates.

Remark. Since practical training approaches employ techniques such as weight normalization
(WN) and learning rate schedules, we present a preliminary analysis of their role in the ESD evolu-
tion and generalization in Appendix E.4. We employ a WN technique (Huang et al., 2023) after each

update: Wt+1 =
√
hdW ′

t+1

∥W ′
t+1∥F

,W ′
t+1 = Wt + Mt, to ensure that ∥Wt+1∥F is always

√
hd, before

the forward pass. In summary, we observed that employing WN leads to relatively heavier-tailed
spectra (i.e. lower PL Alpha Hill) while exhibiting similar correlations with generalization as
discussed above. On the other hand, by employing schedulers such as torch.optim.StepLR,
we showcase a fine-grained manipulation of the ESD evolution depending on the decay rate γ.

5.3 SINGULAR VECTOR ALIGNMENTS OF WEIGHTS AND OPTIMIZER UPDATES

In this section, we present a singular-vector perspective on the emergence of HT ESD after multiple
update steps. By considering an ‘update’ matrix Mt ∈ Rh×d , we formulate the weight updates as:

Wt+1 = Wt +Mt, (12)

where Mt is the optimizer update matrix based on GD (Mt = −ηGt) or FB-Adam (Mt = −ηG̃t).
By abstracting Wt+1 as the ‘observation’, Wt as the ‘noise’ and Mt as the ‘signal’ rectangular
matrices, we leverage methods from the rich literature on signal recovery in spiked matrix models
(Shabalin & Nobel, 2013; Landau et al., 2023; El Alaoui & Jordan, 2018; Gavish & Donoho, 2017;
Troiani et al., 2022) to analyze the role of singular vectors of Mt in transforming the ESD of W⊤

t Wt

5The effects of the power-law exponent estimation approaches are discussed in Appendix F.
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(a) O(UW1 ,UM0) (b) O(VW1 ,VM0) (c) O(UW10 ,UM9) (d) O(VW10 ,VM9)

Figure 6: Overlaps after one step (a), (b) and 10 steps (c), (d) of FB-Adam(η = 1).

gradually into a HT distribution. Let b = min(h, d), we consider the SVD of Wt+1,Wt,Mt as:

Wt+1 = UWt+1SWt+1V
⊤
Wt+1

, Wt = UWtSWtV
⊤
Wt

, Mt = UMtSMtV
⊤
Mt

, (13)

where UWt+1 ,UWt ,UMt ∈ Rh×b, SWt+1 ,SWt ,SMt ∈ Rb×b and VWt+1 ,VWt ,VMt ∈ Rb×d.

Definition 5.1 (Landau et al., 2023). The ‘overlaps’ between two singular vector matrices J ,Q ∈
Ra×b is defined as: O(J ,Q) = (J⊤Q)◦2 ∈ Rb×b

Overlaps during training. From the finite rank spiked matrix model, we know that the singular
values SW1 are non-linear transformations (also termed as ‘inflations’ (Landau et al., 2023)) of
SM0 , and UW1 ,VW1 are rotated variants of UM0 ,VM0 respectively. Formally, let ŝ1 ≥ ŝ2 · · · ≥ ŝb
denote the singular values of W1, and let s1 ≥ s2 · · · ≥ sb denote the singular values of M0. Let
ûj ∈ Rh, v̂j ∈ Rd represent the left and right singular vectors of W1 corresponding to singular
value ŝj . Similarly, let uk ∈ Rh,vk ∈ Rd represent the left and right singular vectors of M0

corresponding to singular value sk. Owing to the rotational invariant nature of the Gaussian matrix
W0, the alignment values E

[
(û⊤

j uk)
2
]
,E
[
(v̂⊤

j vk)
2
]
,∀j, k ∈ {1, · · · , b} can be computed solely

based on ŝj , sk (see Landau et al. (2023); Mingo & Speicher (2017)). In this one-step context, we
show that the large η (obtained in Section 4) leads to outlier alignment values in the overlap plots.
In particular, observe from Figure 6a, Figure 6b that (û⊤

1 u1)
2, (v̂⊤

1 v1)
2 (i.e. alignments of top

singular vectors of W1,M0) have high values which are close to 1. Similar observations for GD
are presented in Appendix E. By continuing the training for 10 steps, we previously observed that
the ESD transitions to an HT distribution. However, we surprisingly observed that the diagonals of
the overlap matrices qualitatively exhibit an HT-like distribution as well (Figure 6c, Figure 6d). A
rigorous theoretical and quantitative study is left for future work (Appendix G).

6 CONCLUSION

This paper presents a different angle to study the emergence of HT ESDs during NN training. Un-
like existing explanations using stochastic gradient noise, we show that full-batch GD or Adam can
still lead to HT ESDs in the weight matrices after only a few optimizer updates with large η. Our
paper also connects with several ongoing studies in this field. In particular, our study analyzes the
‘5+1’ phase model (Martin & Mahoney, 2021a) of ESD evolution and sheds light on the transitions
from a Marchenko-Pastur (MP) fit (i.e. random initialization) → “Bulk+Spike” → “Bulk-Decay” →
HT distributions. Our paper views the “Bulk-Decay” ESD as an intermediate state generated from
diffusing the spike into the main bulk (see also Appendix E.3). Furthermore, our study tightens the
connection between ESDs and feature learning, explaining why ESD-based training methods (Zhou
et al., 2023) can improve the generalizability of large and deep models. Our paper also presents
several surprising phenomena: (1) the emergence of the HT spectra seems to require only a single
spike aligned with the teacher model; (2) the emergence of the HT spectra can appear early during
training, way before the NN reaches a low training loss; (3) several factors, such as weight nor-
malization and learning rate scheduling, can all contribute to the emergence of HT ESDs. Overall,
by connecting the HT phenomenon with feature learning, we hope to promote further research into
these deeply connected characteristics of NNs.
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A GENERATING Very HEAVY-TAILED SPECTRA WITHOUT GRADIENT NOISE

(a) GD η = 5000 (b) GD η = 5000 (c) GD η = 5000

(d) FB-Adam η = 3 (e) FB-Adam η = 3 (f) FB-Adam η = 3

Figure 7: Emergence of HT spectra after 10 GD/FB-Adam steps with weight normalization. Here
n = 4000, d = 500, h = 3000, σ∗ = softplus, σ = tanh, ρe = 0.3. PL Alpha KS for GD
(first row) is 1.58, and PL Alpha KS for FB-Adam (second row) is 1.59.

In this section, we present two examples of highly HT ESD, shown in Figure 7. If one only observes
the linear-linear plot (first column), the shapes can be invisible due to large eigenvalues. For exam-
ple, see Figure 7a. After truncation, they become clearer (middle column). To quantitatively verify
our observations, we adopted the WeightWatcher (Martin et al., 2021) Python APIs to fit a power-
law (PL) distribution to these ESDs. We find that both ESDs have a PL coefficient PL Alpha KS
smaller than 2. As discussed in Martin & Mahoney (2021a, Table 3), this indicates that these ESDs
have entered the very HT regime. More importantly, these ESDs are generated without gradient
noise after only 10 GD/FB-Adam steps.

B PROOF OF THEOREM 4.1

In this section, we prove Theorem 4.1, and conduct numerical simulations for empirical verification.
We begin by stating and discussing the main assumptions of the theorem.

Assumption B.1 Gaussian Initialization. The entries of the weights are sampled independently as
[W0]ij

i.i.d.∼ N (0, 1) and [a]i
i.i.d.∼ N (0, 1),∀i ∈ [h], j ∈ [d].

Assumption B.2 Normalized Activation. The nonlinear activation σ has λσ-bounded first three
derivatives almost surely. In addition, σ satisfies E[σ(z)] = 0,E[zσ(z)] ̸= 0, for z ∼ N (0, 1).

Discussion. Consider σ : R → R to be the tanh function and z ∼ N (0, 1). Since σ(z) =

tanh(z) = ez−e−z

ez+e−z , it is easy to check that σ(z) has 1−bounded first three derivatives and it is an
odd function satisfying σ(z) = −σ(−z), we have:

Ep(z)[σ(z)] =

∫ ∞

−∞
σ(z)p(z)dz =

∫ 0

−∞
σ(z)p(z)dz +

∫ ∞

0

σ(z)p(z)dz = 0, (14)

where p(z) = 1√
2π

e−
z2

2 . Next, observe that

ztanh(z) =
z(ez − e−z)

ez + e−z
≥ 0, (15)
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where the equality ztanh(z) = 0 holds only when z = 0. Let ε > 0 and expand the expectation
Ep(z)[zσ(z)] as follows:

Ep(z)[zσ(z)] =

∫ ∞

−∞
zσ(z)p(z)dz

=

∫ 0−ε

−∞
zσ(z)p(z)dz +

∫ ∞

0+ε

zσ(z)p(z)dz +

∫ 0+ε

0−ε

zσ(z)p(z)dz.

(16)

From equation 15, the first two terms are > 0, i.e:∫ 0−ε

−∞
zσ(z)p(z)dz > 0,

∫ ∞

0+ε

zσ(z)p(z)dz > 0 (17)

whereas for ε → 0, the third term can be bounded as:∫ 0+ε

0−ε

zσ(z)p(z)dz ≥ 0 (18)

By combining the above results, σ satisfies: Ep(z)[zσ(z)] > 0 ⇒ Ep(z)[zσ(z)] ̸= 0.

Assumption B.3 Teacher-Student Setup. The target labels are generated by the single index
teacher model as yi = F ∗ (xi) + ξi, where xi

i.i.d.∼ N (0, I), ξi is i.i.d. Gaussian noise with mean 0
and variance ρ2e, and the teacher F ∗ is λσ-Lipschitz with ∥F ∗∥L2 = Θd(1).

Discussion. Recall that our teacher model is given by F ∗(xi) = σ∗(β
∗⊤xi), where β,xi ∈ Rd, i ∈

[n], and σ∗(z) = log(1+ez) is the softplus function. Note that the derivative σ′
∗(z) =

ez

1+ez < 1

is bounded, and
∥∥β∗⊤xi − β∗⊤xj

∥∥
2
≤ ∥β∗∥2 ∥xi − xj∥2 ,∀xi,xj ∈ Rd. This gives us:∥∥σ∗(β

∗⊤xi)− σ∗(β
∗⊤xj)

∥∥
2
≤
∥∥β∗⊤xi − β∗⊤xj

∥∥
2
≤ ∥β∗∥2 ∥xi − xj∥2 , ∀xi,xj ∈ Rd,

(19)
which implies that F ∗ is a ∥β∗∥2-Lipschitz function. Next, we consider z = β∗⊤x, for x ∼
N (0, Id), which implies z ∼ N (0, ∥β∗∥22), and bound σ∗(z) by 0 < σ∗(z) < gσ∗(z), where
gσ∗(z) is:

gσ∗ (z) =

{
1, z < 0

z + 1, z ≥ 0.
(20)

Based on these results, we calculate ∥F ∗∥L2 as follows.

∥F ∗∥2L2 =

∫
R
σ∗(z)

2dµ <

∫
R
gσ∗(z)

2dµ (21)

where dµ = 1√
2π∥β∗∥2

e
− z2

2∥β∗∥22 dz is the gaussian measure. Further expansion of the upper bound
gives:

∫
R
gσ∗(z)

2dµ =

∫
R
gσ∗(z)

2 1√
2π ∥β∗∥2

e
− z2

2∥β∗∥22 dz

=

∫ 0

−∞

1√
2π ∥β∗∥2

e
− z2

2∥β∗∥22 dz +

∫ +∞

0

(z2 + 2z + 1)
1√

2π ∥β∗∥2
e
− z2

2∥β∗∥22 dz

= 1 +
1

2
∥β∗∥22 +

∫ +∞

−∞
|z| 1√

2π ∥β∗∥2
e
− z2

2∥β∥22 dz

= 1 +
1

2
∥β∗∥22 +

√
2

π
∥β∗∥2 < ∞.

Since β∗ ∈ Sd−1, we get: 0 < ∥F ∗∥2L2 < 1 + 1
2 ∥β

∗∥22 +
√

2
π ∥β∗∥2, and ∥F ∗∥L2 = Θd(1).
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B.1 NORMS OF ONE-STEP UPDATE MATRIX

We begin by formulating the full-batch gradient for the first step (G0) as follows:

G0 =
1

n
√
d

[
1√
h

(
ay⊤ − 1√

h
aa⊤σ

(
1√
d
W0X

⊤
))

⊙ σ′
(

1√
d
XW⊤

0

)]
X

G0 =
1

n
· µ1√

hd
ay⊤X︸ ︷︷ ︸

A

+
1

n
· 1√

hd

(
ay⊤ ⊙ σ′

⊥

(
1√
d
XW⊤

0

))
X

− 1

n
· 1

h
√
d

(
aa⊤σ

(
1√
d
W0X

⊤
)⊤

⊙ σ′
(

1√
d
XW⊤

0

))
X.

(22)

Here we utilized the orthogonal decomposition of the activation function: σ′(z) = µ1 + σ′
⊥(z) to

the second equality. Due to Stein’s lemma (Stein, 1981), we know that E[zσ(z)] = E [σ′(z)] = µ1,
and hence E [σ′

⊥(z)] = 0 for z ∼ N (0, 1).

Lemma B.4 ((Ba et al., 2022)): Given Assumptions B.1,B.2, and B.3, let G0 = 1
η (W0 −W1) and

A := 1
n · µ1√

hd
ay⊤X . Then there exists a constant c, such that for sufficiently large n:

P
(
∥G0 −A∥2 ≤ 2 log2 n√

n
∥G0∥2

)
≥ 1− ne−c log2 n − e−cn. (23)

This lemma implies that G0 can be approximated by a rank one matrix A under the operator norm.
Now, to analyze the FB-Adam update, recall from equation 9 that:

G̃0 =
1− β1√
1− β2

sign(G0). (24)

Observe that the essence of the first step FB-Adam update lies in the sign matrix sign(G0). Based
on the expansion of G0, we leverage the rank-1 approximation matrix A to state the following
lemma.

Lemma B.5 Given G0 = 1
η (W1 −W0) and a rank-1 matrix A := 1

n · µ1√
hd

ay⊤X , then for
sufficiently large n:

∥ sign(A)− sign(G0)∥2 = 0, sign(A) = sign(G0) almost surely (25)

Proof of Lemma B.5. Let amin = mini>0,j>0 |[A]ij |. Since our analysis is based on large (fixed)
h, from Lemma B.4, we almost surely have:

∀δ > 0,∃k > 0,∀n > k, ∥G0 −A∥2 < δ

=⇒ ∀δ > 0,∃k > 0,∀n > k, ∥G0 −A∥F ≤ min {
√
h,

√
d} ∥G0 −A∥2 ≤ min {

√
h,

√
d}δ

(26)

Considering δ =
√
amin√

2·min {
√
h,

√
d} gives us:

|[G0]ij − [A]ij |2 < ∥G0 −A∥2F ≤ amin

2
, (27)

which implies ∃k > 0, such that ∀n > k:

sign([G0]ij) = sign([A]ij) (28)

Thus, ∥ sign(A)− sign(G0)∥2 = 0, sign(A) = sign(G0).

Next, we show that every entry of the matrix A is not exactly 0 almost surely.

Proposition B.6 Let A := 1
n · µ1√

hd
ay⊤X ∈ Rh×d, then Ai,j ̸= 0,∀i ∈ [h], j ∈ [d] almost surely.
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Definition B.7 Given two measurable spaces (Ω,M, µ), (Ω,M, ν), we say ν is absolutely contin-
uous with respect to µ if and only if

µ(B) = 0 ⇒ ν(B) = 0, ∀B ∈ M.

We denote it as ν ≪ µ.

Lemma B.8 (Moran, 1984) Given two measurable space (Rn,B(Rn),mn), (Rn,B(Rn),Ln),
where mn is the gaussian measure, Ln is the lebesgue measure, we have mn ≪ Ln.

By Radon-Nikodym Theorem (Moran, 1984), we can define the Gaussian measure using the
Lebesgue integral:

Ln(E) =

∫
E

dLn; mn(E) =

∫
E

dmn =

∫
E

ΦdLn, ∀E ∈ B(Rn), (29)

where Φ is probability density function of mn respect to Ln. In the problem we consider,
there are two groups of Gaussian measures: ai and (X11, X12, ..., Xnd, ξ1, ..., ξn), which induce
(R,B(R),m) and (Rnd+n,B(Rnd+n),mnd+n) respectively. Here ai is the ith element of a; Xij is
the element of X; ξi is the gaussian noise random variable.

Proof of Proposition B.6. Consider A := 1
n ·

µ1√
hd

ay⊤X ∈ Rh×d , if we can prove the following:

∀i ∈ [h], j ∈ [d],P(Ai,j = 0) = 0,

we can further have P(∃i, j, s.t Ai,j = 0) ≤
∑h

i=1

∑d
j=1 P(Ai,j = 0) = 0, which means Ai,j ̸=

0,∀i ∈ [h], j ∈ [d] almost surely. So our goal is to prove ∀i ∈ [h], j ∈ [d],P(Ai,j = 0) = 0. Given
a ∈ Rh×1,y⊤X ∈ R1×d, notice that

{Ai,j = 0} ⇔ {ai = 0}
⋃

{(y⊤X)j = 0}.

Since a and y⊤X are independent, we aim to prove ∀i ∈ [h], j ∈ [d], mnd+n((y⊤X)j = 0) = 0
and m(ai = 0) = 0.

We first show ∀j ∈ [d],P((y⊤X)j = 0) = 0. Consider y = σ∗(Xβ∗) + ξ, where σ∗ is a
Softplus function and β∗ = (b1, ..., bd)

⊤ to get:

(y⊤X)j =

n∑
i=1

Xij

[
ln

(
exp

(
d∑

k=1

bkXik

)
+ 1

)
+ ξi

]
(30)

It is easy to observe that (y⊤X)j can be written as a function:

(y⊤X)j = fj(X11, · · · , X1d, · · · , Xnd, ξ1, · · · , ξn). (31)

We can easily verify fj : Rnd+n → R is continuously differentiable of the first order, and we denote
it as fj ∈ C1(Rnd+n). Considering the set

M1 =
{
(X11, · · · , X1d, · · · , Xnd, ξ1, · · · , ξn) ∈ Rnd+n

|fj(X11, · · · , X1d, · · · , Xnd, ξ1, · · · , ξn) = 0} ,
(32)

due to fj ∈ C1(Rnd+n) and rank(Dfj) = rank( ∂fj
∂X11

, · · · , ∂fj
∂X1d

, · · · , ∂fj
∂Xnd

,
∂fj
∂ξ1

, · · · , ∂fj
∂ξn

) = 1,
by Implicit Function Theorem (Zorich & Paniagua, 2016), we have M1 is a C1 (nd + n − 1)-dim
sub-manifold. Therefore Lnd+n(M1) =

∫
M1dLnd+n = 0.

• By Lemma B.8, we have mnd+n ≪ Lnd+n. Then mnd+n(M1) = 0, we can get ∀j ∈
[d],mnd+n((y⊤X)j = 0) = 0.

• Observe that since any single point set is a zero-measure set for Lebesgue measure L1 and m ≪
L1, we get ∀i ∈ [h],m(ai = 0) = 0.

Since we have proved ∀i ∈ [h], j ∈ [d], mnd+n((y⊤X)j = 0) = 0 and m(ai = 0) = 0, we get
∀i ∈ [h], j ∈ [d],P(Ai,j = 0) = 0. Thus proving the proposition.
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Lemma B.9 (Forster et al., 2001) Let M ∈ {−1,+1}h×d and M ′ ∈ Rh×d such that
sign (Mi,j) = sign

(
M ′

i,j

)
for all i ∈ [h], j ∈ [d]. Then the following holds:

rank (M ′) ≥
√
hd

∥M∥2
. (33)

From Lemma B.5 and Proposition B.6 it is clear that sign(G0) almost surely only contains {−1, 1}.
Now, by combining Lemma B.9 and Lemma B.4 for sufficiently large n, almost surely leads to:

rank(A) = 1 ≥
√
hd

∥ sign(A)∥2
=⇒ 1 ≥

√
hd

∥ sign(G0)∥2
(34)

Therefore, we have: ∥∥∥G̃0

∥∥∥
2
= Ωd,P(

√
hd) (35)

Additionally: ∥∥∥G̃0

∥∥∥
2
≤
∥∥∥G̃0

∥∥∥
F
=

∥∥∥∥ 1− β1√
1− β2

sign(G0)

∥∥∥∥
F

=
1− β1√
1− β2

√
hd

=⇒
∥∥∥G̃0

∥∥∥
2
= O(

√
hd).

(36)

Finally, by combined equations 36 and 35, we get:∥∥∥G̃0

∥∥∥
2
= Θd,P(

√
hd),

∥∥∥G̃0

∥∥∥
F
= Θd,P(

√
hd). (37)

Thus proving the theorem.

B.2 NUMERICAL SIMULATIONS

We consider multiple sets of n, h, d (see Table 2) for one-step FB-Adam and plot the Frobenius
norm and spectral norm of G̃0. Figure 8 shows a linear relationship of the norms with

√
hd, which

validates the results in our theorem:
∥∥∥G̃0

∥∥∥
2
= Θd,P(

√
hd),

∥∥∥G̃0

∥∥∥
F
= Θd,P(

√
hd).
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Figure 8: Plots of
∥∥∥G̃0

∥∥∥
F
,
∥∥∥G̃0

∥∥∥
2

with varying n, d, h and β1 = 0.9, β2 = 0.999.

C DISCUSSIONS ON MEAN-FIELD INITIALIZATION

Our setup employs the widely studied NTK initialization (Wang et al., 2023) for the two-layer NNs.
Alternatively, previous studies have also focused on mean-field-based initialization (Ba et al., 2022;
Moniri et al., 2023) to analyze the role of one-step optimizer updates. The mean-field initialization
for a two-layer NN can be formulated as:

f(xi) =
1√
h
a⊤σ (Wxi) . (38)
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Index n h d Optimizer

0 1000 750 500 FB-Adam
1 2000 1500 1000 FB-Adam
2 3000 2250 1500 FB-Adam
3 4000 3000 2000 FB-Adam
4 5000 3750 2500 FB-Adam
5 6000 4500 3000 FB-Adam
6 7000 5250 3500 FB-Adam
7 8000 6000 4000 FB-Adam

Table 2: Parameters for Figure 8

Here W ∈ Rh×d,a ∈ Rh are the first and second layer weights respectively, with entries sampled as
[W0]ij

i.i.d.∼ N (0, 1
d ), [a]i

i.i.d.∼ N (0, 1
h ),∀i ∈ [h], j ∈ [d]. Notice the change in scale of the entries

and the 1√
h

scaling factor in equation 38. In this setup: ∥W0∥2 = Θd,P(1), ∥W0∥F = Θd,P(
√
h).

This section provides additional results and discussions for the mean-field initialization. We claim
that it is straightforward to extend the conclusions regarding the scale of η for one-step FB-Adam to
this setting. In particular, with large η and multiple optimizer steps, we observe the emergence of HT
ESDs. Additionally, the alignments of singular vectors of the weight and corresponding optimizer
update matrices also remain a potential contributor to the emergence of HT ESDs, consistent with
the discussion in the main paper.

C.1 SCALING η AND ALIGNMENT OF SINGULAR VECTORS FOR FB-ADAM

A note on notation from Ba et al. (2022): In our setup, we denote G0 = 1
η (W1 −W0), whereas

Ba et al. (2022) consider G0 = 1
η
√
h
(W1 −W0). Thus, in the mean-field setting, the learning rates

we obtain are simply the scaled versions of theirs by a factor of
√
h.

To this end, Ba et al. (2022) showed that η = Θ(h) (scaling adjusted to our notation) is (sufficiently)
large for the GD update G0 (see Figure 9). One can also verify that the results of Theorem 4.1 for
FB-Adam can be scaled and extended to this setting.

Corollary C.1 Under the assumptions of Theorem 4.1, we obtain the following scaling for η in the
mean-field initialization setting:

η = Θ(1/
√
d) =⇒ ∥W1 −W0∥F ≍ ∥W0∥F

η = Θ
(
1/
√
hd
)

=⇒ ∥W1 −W0∥2 ≍ ∥W0∥2 ,
(39)

where ∥W0∥2 = Θd,P(
√
1), ∥W0∥F = Θd,P(

√
h).

(a) η = 0.1 (b) η = 1 (c) η = 100 (d) η = 2000

Figure 9: Evolution of ESD of W⊤W after one step GD optimizer update in mean-field setting.
Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

Singular Vector Overlaps after one-step FB-Adam update. Following the main paper, we com-
pute the following overlap metrics: O(UW0

,UM0
),O(VW0

,VM0
),O(UW1

,UM0
),O(VW1

,VM0
).

For FB-Adam with η = 0.04 (which is a large η in this setting), Figure 11 shows the outliers
for O(UW1 ,UM0),O(VW1 ,VM0) corresponding to the spike in Figure 10c. Thus aligning with the
results in Section 5.3.
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(a) η = 0.00005 (b) η = 0.005 (c) η = 0.04 (d) η = 0.5

Figure 10: Evolution of ESD of W⊤W after one step FB-Adam update in mean-field setting. Here
n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) O(UW0 ,UM0) (b) O(VW0 ,VM0) (c) O(UW1 ,UM0) (d) O(VW1 ,VM0)

Figure 11: Overlaps after one FB-Adam update with η = 0.04 in mean-field setting.

(a) η = 0.00005 (b) η = 0.005 (c) η = 0.04 (d) η = 0.5

Figure 12: Evolution of ESD of W⊤W after 10 FB-Adam updates in mean-field setting. Here
n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) η = 0.00005
O(UW10 ,UM9)

(b) η = 0.00005
O(VW10 ,VM9)

(c) η = 0.04
O(UW10 ,UM9)

(d) η = 0.04
O(VW10 ,VM9)

Figure 13: Overlaps between singular vectors after 10 FB-Adam updates with η = 0.00005 (plots
(a), (b)) and η = 0.04 (plots (c), (d)) in the mean-field setting.

Heavy-Tailed Phenomenon after Multiple Steps With Mean-Field Initialization. Similar to the
experiments in Section 5, we employ the mean-field initialization and apply 10 FB-Adam updates
with various η to compute O(UW10

,UM9
),O(VW10

,VM9
). Notice that for small η = 0.00005,

the ESD is expected to remain largely unchanged and the overlap plots illustrate random alignment
values. However, for η = 0.04, the outliers emerge in the overlap matrices in Figure 13 and correlate
with the HT ESD in Figure 12.
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D ESD EVOLUTION OVER LONG TRAINING PERIODS

In the main text, we claimed and validated that the ESD of the hidden layer weight matrix exhibits
heavy tails after multiple steps of GD/ FB-Adam with sufficiently large η. In the following ESD
plots, we further justify our claim and illustrate that very long training t = 10000 with small η does
not result in HT ESDs.

D.1 ESD EVOLUTION WITH GD

t = 1 t = 10 t = 100 t = 10000

η = 0.1

η = 1

η = 10

η = 100

η = 2000

Table 3: Evolution of ESD over different step times t ∈ {1, 10, 100, 10000} with different
η ∈ {0.1, 1, 10, 100, 2000} for GD optimizer. Through this grid, we highlight the critical η for
the occurrence of a spike at t = 1 and the effects of longer training on the emergence of HT ESD.
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D.2 ESD EVOLUTION WITH FB-ADAM

t = 1 t = 10 t = 100 t = 10000

η = 0.01

η = 0.1

η = 1

η = 10

η = 100

Table 4: Evolution of ESD over different step times t ∈ {1, 10, 100, 10000} with different η ∈
{0.01, 0.1, 1, 10, 100} for FB-Adam optimizer. Through this grid, we highlight the critical η for the
occurrence of a spike at t = 1 and the effects of longer training on the HT emergence.

t = 1 t = 106

η = 0.01

Table 5: ESD after t = {1, 106} steps of FB-Adam with η = 0.01. The plot showcases a scenario
where a spike does not appear after the first step but results in HT ESD after extremely long training.
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E ADDITIONAL EXPERIMENTS

Hyperparameters: In most of our experiments, we follow a consistent setup with n = 2000,
n test = 200, d = 1000, h = 1500, λ = 0.01, ρe = 0.3, σ∗ = softplus, σ = tanh.
Additionally, we explicitly mention the parameter changes wherever applicable in our experiments.

E.1 ONE-STEP OPTIMIZER UPDATES

In this section, we present additional experiments for one-step optimizer updates. Figure 14 lever-
ages the same experimental setup as Section 4 and illustrates the ESD of W⊤W after the first step
of GD and FB-Adam. Based on the results obtained in the main text, η = 2000 is an extremely large
learning rate for FB-Adam, which results in a clear bimodal distribution. Note that the tendency
towards such a distribution was already observed with η = 10 in Figure 2 (Section 4). Based on
the same setup as Section 5.3, Figures 15, 16, 17 represent the overlaps of singular vectors after
one-step update and showcase the presence of outliers for sufficiently large η. Finally, we illustrate
the role of sample sizes on the losses, KTA and sim(W ,β∗) in Figure 18 (for n = 4000) and in
Figure 19 (for n = 8000).

(a) GD η = 1 (b) GD η = 10 (c) FB-Adam η = 1 (d) FB-Adam η = 2000

Figure 14: Evolution of ESD of W⊤W after one step optimizer update with varying learning rates.
Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) O(UW0 ,UM0) (b) O(VW0 ,VM0) (c) O(UW1 ,UM0) (d) O(VW1 ,VM0)

Figure 15: Overlaps between singular vectors after one step GD update with η = 0.1. Here n =
2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) O(UW0 ,UM0) (b) O(VW0 ,VM0) (c) O(UW1 ,UM0) (d) O(VW1 ,VM0)

Figure 16: Overlaps between singular vectors after one step FB-Adam update with η = 0.1. Here
n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.
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(a) O(UW0 ,UM0) (b) O(VW0 ,VM0) (c) O(UW1 ,UM0) (d) O(VW1 ,VM0)

Figure 17: Overlaps between singular vectors after one step GD update with η = 2000. Here
n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) sim(W ,β∗)

Figure 18: Train/test losses, KTA, sim(W ,β∗) for f(·) trained with one-step of GD, FB-Adam.
Here n = 4000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) sim(W ,β∗)

Figure 19: Train/test losses, KTA, sim(W ,β∗) for f(·) trained with one-step of GD, FB-Adam.
Here n = 8000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.
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E.2 10 STEP OPTIMIZER UPDATES

In this section, we present additional experiments for 10 optimizer updates. Figure 20 presents the
losses, ESD of W⊤W and the overlaps of singular vectors after 10 steps with GD(η = 2000). Notice
that the prominent outlier values in Figures 17c, 17d after the one-step update have now reduced
significantly. Thus illustrating the varying spread of values even for the left and right singular vector
overlaps. The role of η on the losses, KTA and the ESD metric PL Alpha Hill are illustrated in
Figures 21, 22. We illustrate the ESD of W⊤W after 10 steps with n = 8000 and learning rates η
chosen from {1, 10, 100, 1000} in Figure 23. Observe that as η increases, the spike tends to move
far away from the bulk and significantly distorts the shape of the bulk only for η = 1000. Finally, in
Figures 24, 25 we illustrate the role of label noise increasing from ρe = 0.3 (Figure 24) to ρe = 0.7
(Figure 25). Although the ESDs look the same in both cases, note that the outlier (max) values of
the overlap matrices for ρe = 0.7 have relatively larger values compared to the ρe = 0.3 case.

(a) losses (b) ESD of W⊤W (c) O(UW10 ,UM9) (d) O(VW10 ,VM9)

Figure 20: Losses, ESD, and Overlaps between singular vectors after 10 steps of GD(η = 2000).
Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) PL Alpha Hill (d) PL Alpha KS

Figure 21: Train/test losses, KTA, PL Alpha Hill, PL Alpha KS for f(·) trained with 10 steps
of GD, FB-Adam. Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) PL Alpha Hill (d) PL Alpha KS

Figure 22: Train/test losses, KTA, PL Alpha Hill, PL Alpha KS for f(·) trained with 10 steps
of GD, FB-Adam. Here n = 4000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.
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(a) η = 1 (b) η = 10 (c) η = 100 (d) η = 1000

(e) η = 1 (f) η = 10 (g) η = 100 (h) η = 1000

Figure 23: Evolution of ESD of W⊤W after 10 steps of FB-Adam updates with n = 8000, d =
1000, h = 1500, λ = 0.01, ρe = 0.3. The first row compares the initial and final ESDs. The second
row illustrates solely the final ESD of W⊤W (i.e. W⊤

10W10) for better visualizations of the shape.

(a) losses (b) ESD of W⊤W (c) O(UW10 ,UM9) (d) O(VW10 ,VM9)

Figure 24: Losses, ESD, and Overlaps between singular vectors after 10 FB-Adam(η = 1) steps for
n = 8000, d = 1000, h = 1500, λ = 0.01, ρe = 0.3.

(a) losses (b) ESD of W⊤W (c) O(UW10 ,UM9) (d) O(VW10 ,VM9)

Figure 25: Losses, ESD, and Overlaps between singular vectors after 10 FB-Adam(η = 1) steps for
n = 8000, d = 1000, h = 1500, λ = 0.01, ρe = 0.7.
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E.3 SPIKE MOVEMENT WITH GD

During our experiments with GD(η = 2000), we observed a surprising transition in the position of
the spike relative to the bulk of the ESD. Particularly between steps 5 and 6, the spike in the ESD
of W⊤W which represents the largest singular value, reduces in value by an order of magnitude.
Additionally, this reduction seems to be correlated with the reduction in maximum overlap values
from max(O(UW5

,UM5
)) to max(O(UW6

,UM5
)) (see Figure 26). To understand this behavior,

we emphasize the spike in the ESD of W⊤
5 W5 in Figure 26a and the large overlap value (black dot)

in Figure 26b. Let ûW5
, ûM5

, ûW6
∈ Rh represent the left singular vectors corresponding to the

largest singular values in W5,M5,W6 respectively. The large overlap value (black dot) in Figure
26b intuitively represents a high degree of overlap/alignment between ûW5

, ûM5
. As a result of

obtaining W6 by W6 = W5 +M5, the singular vector ûW6
seems to be rotated from ûW5

in such
a way that its alignment with ûM5

is reduced (see Figure 26d). One can intuitively think of this
process as the ‘diffusion’/‘spread’ of the overlap between ûM5 and all left singular vectors of W6.

(a) ESD W⊤
5 W5 (b) O(UW5 ,UM5) (c) ESD W⊤

6 W6 (d) O(UW6 ,UM5)

Figure 26: Phase transition in ESD of W⊤W between steps 5, 6 when updated using GD (η =
2000). Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

E.4 ON GENERALIZATION, LEARNING RATE SCHEDULES AND WEIGHT NORMALIZATION

Role of sample size (n). By fixing d = 1000, h = 1500 and η = 1, we vary the size of the
training dataset n as per the set {500, 2000, 4000, 8000}. In this setting, observe from Figure 27a
that the train loss and test loss improve significantly for n = 8000, while the network overfits for
smaller n. Furthermore, for n = 2000, we observed that W⊤

10W10 exhibits a heavy-tailed ESD with
PL Alpha Hill= 1.8 (Figure 21c), which is less than the n = 8000 case of ≈ 1.9 (see Figure
5c). The key difference in the latter case is that the spike in the ESD is consumed by the bulk, unlike
the former where the outlier singular value is almost an order of magnitude away from the bulk.

Role of regularization constant (λ). By considering a sample size of n = 8000, and fixing
d = 1000, h = 1500, η = 1 as before, we can observe from Figure 27b that a lower training and test
loss is achieved by λ = 10−3 and λ = 10−4, but with a large generalization gap (i.e. the difference
between train and test loss). Additionally, observe that λ = 10−2 reasonably balances the test loss
and generalization gap. Since the regression procedure does not modify the first layer weights, the
choice of λ can affect the interpretation of heavy tails leading to good/bad generalization.

Role of label noise (ρe). Figure 27c illustrates a consistent increase in losses for an increase in the
additive Gaussian label noise ρe from {0.1, 0.3, 0.5, 0.7}. However, the ESD of W⊤

10W10 alone does
not provide the complete picture to reflect this difficulty in learning. Instead, we observe noticeable
differences in the distribution of values (especially outliers) along the diagonal of overlap matrices
O(UW10 ,UM9), O(VW10 ,VM9) for ρe = 0.3 (Figure 24c, 24d) and ρe = 0.7 (Figure 25c, 25d).
Especially, the outliers in the former case had smaller values (almost 0.5×) than the latter.

Role of learning rate scheduling. As a natural extension of selecting a large learning rate at
initialization, we analyze the role of employing learning rate schedules (Ge et al., 2019) on the losses
and ESD of W⊤W . We consider the simple torch.optim.StepLR scheduler with varying
decay factors (γ) per step. A smaller γ indicates a faster decay in the learning rate η per step. We
observe from Figure 27d that such fast decays (with γ = 0.2 and γ = 0.4) quickly turns a large
learning rate to a smaller one and lead to stable loss curves. However, the trends are relatively
unstable for γ = 0.6 and γ = 0.8 in the early steps.
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(a) vary n (b) vary λ (c) vary ρe (d) vary StepLR (γ)

Figure 27: FB-Adam train/test loss across 10 steps with varying n, λ, ρe and StepLR(γ). (a)
Varying dataset size n (b) Varying regularization parameter λ for obtaining the second-layer weights,
(c) Varying the std.dev (ρe) of the additive Gaussian label noise, (d) Varying the γ parameter which
controls the decay of η. The bold lines indicate train loss and the dashed lines indicate test loss.

(a) GD η = 0.1 (b) GD η = 2000 (c) FB-Adam η = 0.1 (d) FB-Adam η = 1

Figure 28: Evolution of ESD after 64 steps of GD, FB-Adam updates with varying η and weight
normalization. Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

(a) loss (b) KTA (c) PL Alpha Hill (d) PL Alpha KS

Figure 29: Train/test losses, KTA, PL Alpha Hill, PL Alpha KS for f(·) trained with 10
steps of GD, FB-Adam with weight normalization. Here n = 8000, d = 1000, h = 1500,
σ∗ = softplus, σ = tanh, ρe = 0.3.

Role of weight normalization (WN). As mentioned in the main text, we employ a weight nor-
malization technique (Huang et al., 2023) after each optimizer update to W as follows: Wt+1 =√

hdW ′
t+1

∥W ′
t+1∥F

,W ′
t+1 = Wt + Mt to ensure that ∥Wt+1∥F is always

√
hd, before the forward pass.

Observe from Figure 28 that after 64 steps of GD/FB-Adam updates with varying η, the large η
cases lead to HT ESDs which spread over a wider range of singular values than the non-WN cases
(see Table 4). Furthermore, Figure 29 conveys that in the case of FB-Adam for 0.01 ≤ η ≤ 100,
the PL Alpha Hill metric and the mean estimates of PL Alpha KS tend to exhibit HT ESDs
and generalize well. Notice that this range is much broader than the non-WN case in the main text
(Figure 5). Additionally, note that the PL Alpha Hill estimates for 10 ≤ η ≤ 100 are relatively
lower than the non-WN case. Finally, by employing learning rate schedules, we can control the
presence of the spike while nudging the bulk of the ESD toward an HT distribution (Figure 30).

E.5 EFFECT OF USING THE SAME ACTIVATION FUNCTION FOR TEACHER AND STUDENT

In our main paper, we adopt different activation functions for the teacher and student models:
σ∗ = softplus for teacher and σ = tanh for student, Although this distinction introduces
some learning challenges for the two-layer NN — making it harder to minimize both training and
test loss — it does not affect the key theoretical results of this work, such as the scaling of η for a
single-step FB-Adam update, provided that both activation functions meet the fundamental assump-
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(a) StepLR(γ = 0.2) (b) StepLR(γ = 0.4) (c) StepLR(γ = 0.6) (d) StepLR(γ = 0.8)

Figure 30: Evolution of ESD of W⊤W after 10 steps of FB-Adam(η = 1) with weight normaliza-
tion and varying decay rates for StepLR schedule. The decay factor (γ) is applied after every step.
Here n = 2000, d = 1000, h = 1500, σ∗ = softplus, σ = tanh, ρe = 0.3.

tions. In this section, we use tanh activation for both models to examine whether a more consistent
teacher-student setup yields any notable differences. We use the same setup as Section 5.2.

Correlations between ESD and losses. Similar to the observations in the main text (see Fig-
ure 5) for different activation functions, note that for GD with η ≥ 1000, the KTA increases and
PL Alpha Hill, mean estimates of PL Alpha KS reduces. More importantly, note that the test
loss values are relatively smaller (i.e ≈ 0.85 in Figure 5, and ≈ 0.2 in this setup). In the case of
FB-Adam, we observe a surprising shift in the trend of loss values for η ≥ 0.1. In essence, the
range of η for which HT ESDs emerge and lead to good generalization has now shrunk to a much
smaller range. Especially, the PL Alpha Hill value of ≈ 2 which resulted in good generalization
in Figure 5 (relative to losses of the full range of η), correlates with poorer generalization in this
setup. Overall, there seem to be non-trivial dependencies on the choice of activation functions to
determine the correlations between HT ESDs and generalization.

(a) loss (b) KTA (c) PL Alpha Hill (d) PL Alpha KS

Figure 31: Losses, KTA, PL Alpha Hill, PL Alpha KS for f(·) trained with 10 steps of GD,
FB-Adam, with n = 8000, d = 1000, h = 1500, σ∗ = tanh, σ = tanh, ρe = 0.3, λ = 0.01.
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E.6 APPLICABILITY OF OUR RESULTS ON DEEPER NNS

Beyond two-layer NNs trained on synthetic data, we train VGG11 with FB-Adam on MNIST with a
constant η = 0.01 for 10 steps (epochs) to validate our claims. In Figure 32 below, we illustrate that
the layers of VGG11 can exhibit HT ESDs even without stochastic gradient noise during training.

(a) VGG11-Layer2 (b) VGG11-Layer3 (c) VGG11-Layer4

(d) VGG11-Layer5 (e) VGG11-Layer6 (f) VGG11-Layer7

Figure 32: layerwise ESDs of VGG after 10 steps with FB-Adam and η = 0.01 on MNIST.

E.7 A NOTE ON THE SUITABLE RANGE OF TAIL INDEX VALUES

Previous works such as Simsekli et al. (2020a); Hodgkinson et al. (2022) studied the limiting dis-
tribution of the weight matrix values by modeling the stochastic gradient noise using levy/feller
processes. In particular, they showed that smaller tail-index values lead to smaller generalization er-
rors. The underlying idea is that when the weight values tend to an HT distribution, then the resulting
ESD is also an HT (see Arous & Guionnet (2008)). Given this explanation, we note that the theo-
retical results by Simsekli et al. (2020a); Hodgkinson et al. (2022) were shown to hold in practice
by their numerical experiments, where the tail index tends to lie in a suitable range (depending on
the PL alpha fit approaches) and represents heavy-tailed noise for good generalization. Even though
our setting differs significantly from these previous works, the suitability of such a range seems to
hold. In particular, when η exceeds the thresholds given in Corollary 4.2, the model learns the single
index direction and generalizes well by exhibiting HT ESD with a suitable PL Alpha. However, a
significant increase in η can lead to extreme HTs which are not desirable. The large magnitude of
W can also result in large values of MSE on unseen data, especially since the second layer weights
are fixed and not selected as per the two-phase training strategy.

F A NOTE ON ESTIMATORS OF POWER-LAW EXPONENTS

We found that the estimation of power-law (PL) exponents, such as PL Alpha Hill and
PL Alpha KS, can be sensitive to the scale of singular values in the weight matrix. However,
Figure 5c , 5d illustrates a similar trend for both estimates. We believe this does not affect our
qualitative interpretation of the relationship between HT, learning rates, and generalization.

Additionally, we highlight a particularly interesting observation. Considering FB-Adam based up-
dates with η = 1 after t = 10 steps and after t = 100 steps in Table 4, notice that the spike tends to
get closer to the bulk in the latter (i.e as training progresses). We have observed a similar behavior
for GD (see Appendix E.3) where the spike tends to merge with the bulk. Thus, the estimation of
PL exponents should be relatively less affected by such outlier spikes as training progresses.
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On a related note, some recent papers have adopted both fitting methods to explore the relationship
between HT and generalization and leveraged it to improve model training. For example, Martin &
Mahoney (2021a) used PL Alpha KS to study the relationship between HT and generalization to
propose the HT-SR theory, whereas Zhou et al. (2023) proposed a layer-wise η selection technique
based on layer-wise PL Alpha Hill estimates of the ESD’s during training.

G LIMITATIONS AND FUTURE WORK

Currently, our analysis on FB-Adam updates does not theoretically analyze the role of large learning
rates on the training and test losses after one or more steps. such a rigorous characterization requires
new techniques to analyze the regression loss beyond the Gaussian equivalence assumption (Ba
et al., 2022). Furthermore, the techniques used to calculate the PL Alpha of ESDs are subject to
bias (in the case of the hill estimator) and to relatively larger variance in the case of the KS variant.
Similar issues have been discussed in previous works (Yang et al., 2023; Zhou et al., 2023), and
analyzing multiple approaches can provide a complete picture of the heaviness of the tails.

To this end, we discuss the following potential future efforts.

Generalization with FB-Adam. Recent papers employing a similar setup have analyzed the fea-
ture matrix Z to rigorously characterize the training and test errors after a one-step GD update
(Moniri et al., 2023; Cui et al., 2024). In a similar spirit, the results from our work can be utilized
to theoretically explore the spectral properties of Z with FB-Adam. Additionally, since the spectral
properties of Z are tightly linked to the ESD of W⊤

t Wt, the fundamental question on the necessity
of HT ESDs for generalization can be rigorously answered.

Spectral gap and step complexity. In Section 5 we observed that the number of steps required for
HT ESD emergence depends on the spectral gap (i.e the distance between the spike and the bulk in
our setup) after the first step. While our work establishes the necessity of the spike, further analysis
of the relationship between this spectral gap and the step complexity for HT ESD emergence can
lead to novel insights.

HT phenomenon and singular vector overlaps. By presenting qualitative results that indicate
HT-like distributions along the diagonals of overlap matrices, we aim to bring singular vectors into
the picture for future HT phenomenon studies. Particularly, the qualitative differences in the overlap
matrices of left and right singular vectors remain to be explored. Furthermore, metrics to quantify
the ‘spread’ of the on/off-diagonal overlap values can present a holistic picture of the interactions
between the singular spaces of the weights and optimizer updates.

Towards analysis with deeper NNs and the ‘5 + 1’ phase model. Our work showcased how the
‘5+1’ phase model of the ESDs can be studied under simpler two-layer NN settings and reasonably
explain the practical NN ESD dynamics. A valuable direction of research is to extend this analysis
to deeper NNs (Nichani et al., 2023) with multi-index models as teacher networks, and study the
variations in the shapes of ESDs across depth.

Designing novel techniques to improve generalization. Recently, Zhou et al. (2023) employed
the layer-wise PL Alpha Hill metric to design a layer-wise learning rate scheduler based on
SGD. Based on our observations on the varying effects of η for GD/FB-Adam and the dynamics of
ESD evolution, there is immense potential to further improve such schedulers. Furthermore, new
regularization techniques to balance the PL Alpha Hill metrics across layers during training can
lead to NNs that satisfy the ESD shape metric criteria to be considered as ‘well-trained’ by model
selection approaches (Martin et al., 2021; Yang et al., 2023). The intriguing consequences of such a
technique on the convergence rates and sample complexities can lead to new directions of research.
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