
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND PAIRWISE MODELING: TOWARDS EFFICIENT
AND ROBUST TRAJECTORY SIMILARITY COMPUTA-
TION VIA REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate trajectory similarity computation is crucial in ride-sharing applications,
where trajectories of varying lengths need to be aligned into a uniform represen-
tation. Existing methods suffer from reliance on multi-metric supervision and the
role-specific encoding required for triplet loss computation, resulting in inefficient
computation. To overcome these issues, we move beyond pairwise modeling and
propose a novel representation learning framework to achieve efficient and ro-
bust trajectory similarity computation, named Hyper2Edge. Hyper2Edge consists
of three main components: (i) Hypergraph-based modeling to represent trajec-
tories as hyperedges, instead of single nodes, preserving sequential and struc-
tural details; (ii) Hierarchical trajectory representation learning to capture intra-
and inter-trajectory patterns; and (iii) A weighted top-k InfoNCE loss to focus
on nearest-neighbor relations, addressing the inefficiencies of triplet loss. Eval-
uated on two public benchmarks, Hyper2Edge achieves an average absolute gain
of 7.42% across all evaluation metrics and an average improvement of 45.9%
in accuracy compared to state-of-the-art methods, while maintaining competitive
training time per epoch on par with the best-performing methods. The code is
available at: https://anonymous.4open.science/r/Hyper2Edge-3D2B.

1 INTRODUCTION

In ride-sharing applications, trajectory similarity is commonly computed using representative points
rather than the full GPS sequence. However, GPS trajectories are inherently heterogeneous in terms
of length and sampling frequency, and extracting representative points may further amplify these
variations. Recently, Trajectory Representation Learning (TRL) Jiang et al. (2023); Ma et al. (2024);
Zhou et al. (2025b;c) has emerged as a versatile and powerful preprocessing technique. TRL repre-
sents trajectories of varying lengths as vectors in a unified dimension, achieving trajectory alignment.

Trajectory similarity computation emerges as a key downstream task of TRL that faces two practical
challenges, as illustrated in Figure 1. First, many existing methods Yao et al. (2022); Chang et al.
(2023); Chuang et al. (2024); Li et al. (2025) depend on supervised training using specific distance
metrics such as DTW Rakthanmanon et al. (2012) or ERP Chen & Ng (2004). In practice, how-
ever, trajectory similarity is typically computed uniformly in Euclidean space, where all distance
labels are also derived. Using multiple distance metrics as training labels, rather than directly using
Euclidean distance, introduces unnecessary computational redundancy. Second, even with a suit-
able metric, the encoding process itself remains inefficient. Although some approaches Yao et al.
(2019); Zhang et al. (2020); Yang et al. (2022) achieve linear time complexity, they must encode
each trajectory alongside both positive and negative samples to compute triplet loss. When these
samples act as anchor trajectories, they require additional encoding, resulting in repetitive encoding.
As a consequence, theoretically efficient methods are often unable to achieve their full potential in
practical scenarios.

To address these issues, we propose Hyper2Edge, an efficient and robust framework for trajec-
tory similarity computation via representation learning. Our framework eliminates the reliance on
multi-metric supervision by learning directly from Euclidean-based similarity labels; it also avoids
repetitive encoding through a hierarchical trajectory representation learning framework and a novel

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 Ttrajectory 3 Roles
M+1+N encoding

Triplet Loss 1

Triplet Loss 2

Triplet Loss 3

Triplet Loss 4

Triplet Loss ···

Positive Trajectory * M

Anchor Trajectory * 1

Negtive Trajectory * N

Metric n: other distance metric as supervised label

Trajectory Multi-metric Trajectory Representation Based on Triple Loss

1. Multi-metric
Supervision

2. Different Roles
of a Trajectory

Repetitive Encoding

The Reasons of Inefficiency

1 Ttrajectory 3 Roles
M+1+N encoding

Triplet Loss 1

Triplet Loss 2

Triplet Loss 3

Triplet Loss 4

Triplet Loss ···

Positive Trajectory * M

Anchor Trajectory * 1

Negtive Trajectory * N

Metric 2: EDR as supervised label

1 Ttrajectory 3 Roles
M+1+N encoding

Triplet Loss 1

Triplet Loss 2

Triplet Loss 3

Triplet Loss 4

Triplet Loss ···

Positive Trajectory * M

Anchor Trajectory * 1

Negtive Trajectory * N

Metric 1: DTW as supervised label

Figure 1: Two reasons lead to repetitive encoding: (i) Multi-distance metrics lead to fully-cycle
training repetitively; (ii) The same trajectories as different roles need to be repetitive encoding due
to the properties of triplet loss.

weighted top-k InfoNCE loss. Specifically, Hyper2Edge first models trajectories as hyperedges
within a hypergraph, offering distinct advantages over conventional graph-based methods. This ap-
proach provides two key benefits: (i) it preserves complete structural and sequential information
without reducing trajectories to single nodes; (ii) it avoids the computationally expensive pairwise
similarity calculations required for edge construction in traditional graphs. This is followed by a hi-
erarchical trajectory representation learning architecture that captures both intra-trajectory patterns
and inter-trajectory similarities. Finally, a weighted top-k InfoNCE loss is introduced to overcome
the limitations of triplet loss by emphasizing discrimination among the top-k most similar trajec-
tories. This design eliminates repetitive encoding of positive and negative samples, significantly
improving training efficiency and representation robustness. The main contributions of this paper
are summarized as follows:

• We propose a novel framework, Hyper2Edge, that learns trajectory representations for efficient
and robust similarity computation by directly adopting Euclidean-based supervision and a non-
repetitive encoding scheme.

• We devise a hierarchical trajectory representation learning architecture that models trajectories as
hyperedges and employs node-hyperedge bidirectional message passing to jointly capture intra-
and inter-trajectory patterns, enhanced by a weighted top-k InfoNCE loss for local trajectory sim-
ilarity learning and local structural consistency without repetitive encoding of samples.

• We conduct the experiments on two benchmark datasets. The results verify that the proposed
method significantly outperforms the state-of-the-art baselines on the task of trajectory similarity
computation.

2 PRELIMINARIES

Definition 1 (Trajectory) Each trajectory TRi = {p1, p2, · · · , pi, · · · } is a sequence of GPS points.
A trajectory point pi = (lati, longi) consists of latitude lati and longitude longi of the vehicle’s
location.

Definition 2 (Spatial Token) In ride-sharing scenario, a set of spatial tokens STs =
{ST1, ST2, · · · , STn} is generated by applying the K-Means clustering algorithm to all trajectory
points {p1, p2, · · · , pz} within the region. The K-Means algorithm partitions the z points into n
clusters by minimizing the within-cluster sum of squared distances, formalized as:

argmin
STs

n∑
j=1

∑
pi∈Cj

|pi − STj |2. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Each resulting spatial token STj is represented by the centroid (mean geographic location) of its
cluster Cj , calculated as:

STj =

 1

|Cj|
∑
pi∈Cj

lati,
1

|Cj|
∑
pi∈Cj

longi

 , (2)

where |Cj | denotes the number of trajectory points in cluster Cj .

Definition 3 (Tokenized Trajectory) A trajectory TRi is transformed into a tokenized trajectory TTi,
defined as:

TTi = {STj | TRi traverses STj sequentially}, (3)

where each STj denotes a spatial token (with a unique global identifier j) that the trajectory TRi

visits in chronological order.

Problem Statement (Trajectory Representation Learning) Given a collection of tokenized trajectory
TT and Euclidean distance Dtrue(TTi, TTj), the trajectory representation problem is to learn a
function F which maps TT into a d-dimensional vector. The goal of this problem is to reduce
the discrepancy between the Euclidean distance provided by Dtrue(TTi, TTj) and the similarity
scores ||F (TTi) − F (TTj)||2, as quantified by the absolute difference |||F (TTi) − F (TTj)||2 −
Dtrue(TTi, TTj)|.

3 METHODOLOGY

This paper proposes Hyper2Edge, an efficient and robust trajectory representation learning frame-
work for trajectory similarity computation, shown in Figure 2. The framework consists of three
main components: (i) Hypergraph-Based Trajectory Modeling, which represents each tokenized
trajectory as a hyperedge connecting multiple spatial tokens to avoid critical information loss; (ii)
Hierarchical Trajectory Representation Learning, which comprises an initial embedding generation
layer that capture sequential information of tokenized trajectories, a bidirectional trajectory encoding
layer that employs multi-step node-hyperedge interaction to capture the inter-relationships between
tokenized trajectories, and a trajectory representation decoding layer that produces final trajectory
embeddings; (iii) Weighted Top-k InfoNCE Loss, which optimizes the model without repetitively
encoding positive and negative samples.

Trajectories

Tokenized Trajectories (TT)

Hypergraph

Trajectory Modeling Hierarchical Trajectory Represetation

Initial Embedding Generation Layer

Bidirectional Trajectory Encoding Layer

Trajectory Representation Decoding Layer

Node Feature
Transformation
Based on MLP

Hyperedge
Initialization Based

on Transformer
+

Updated Node
Embeddings

Final Trajectory
Representation

Avg.

Node-to-Hyperedge Aggregation
+

Hyperedge-to-Node Propagation

Weighted Top- InfoNCE Loss

Figure 2: The framework of Hyper2Edge.

3.1 HYPERGRAPH-BASED TRAJECTORY MODELING

Unlike other methods Cheng et al. (2024) that construct traditional graphs, we construct hyper-
graphs. Formally, hypergraph Ding et al. (2020); Wang et al. (2024) can be defined as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 4 (Hypergraph) A hypergraph is a generalized graph where each hyperedge can connect
any number of nodes. Formally, it is defined as G = (V, E), where V is the set of nodes and E is the
set of hyperedges, with each e ∈ E satisfying e ⊆ V .

Definition 5 (Incidence Matrix) The incidence matrix of a hypergraph G = (V, E) is a binary matrix
H ∈ {0, 1}|V|×|E|, where each entry H(v, e) = 1 if node v ∈ V belongs to hyperedge e ∈ E , and 0
otherwise.

In this scenario, the vertex set V is defined as all spatial tokens, while the hyperedge set E com-
prises all tokenized trajectories. The features of vertex X = [x1, x2, · · · , xn]T ∈ Rn×2, where n
is the number of spatial tokens, are derived from Equation 2. Each hyperedge symbolizes a trajec-
tory, linking the multiple spatial tokens visited by that trajectory in chronological sequence. The
incidence relationship between vertices and hyperedges can be succinctly captured by an incidence
matrix H ∈ {0, 1}n×t, where each entry Hij indicates whether vertex vi is part of hyperedge ej ,
and t is the number of tokenized trajectories. As a result, a hypergraph G = (H,X) is established.
Therefore, the problem of tokenized trajectory representation becomes equivalent to the problem of
hyperedge representation.

3.2 HIERARCHICAL TRAJECTORY REPRESENTATION LEARNING

After converting tokenized trajectories into hyperedges, it is necessary to encode the resulting hyper-
graph to obtain the final hyperedge representations, which correspond to the trajectory embeddings.
To this end, we design a hierarchical trajectory representation learning architecture.

3.2.1 INITIAL EMBEDDING GENERATION LAYER

To adaptively learn task-optimized representations of tokenized trajectories, we initialize the nodes
and hyperedges, enabling the model to identify and enhance the most critical features of both.

Node Feature Transformation. The initial representation ui for the i-th node is obtained by pro-
jecting its raw feature vector xi into a d-dimensional latent space using a linear layer followed by
ReLU activation:

ui = ReLU (xiW1 + b) ∈ Rd, (4)

where W1 ∈ R2×d and b ∈ Rd are learnable parameters.

Order-aware Hyperedge Initialization. A simple way to represent hyperedges is through the
averaging of their node features. However, this approach ignores essential sequence information. To
address this, we employ a Transformer encoder that directly operates on the original node features
while explicitly incorporating chronological order.

For a hyperedge ei containing a set of nodes, each node’s representation is formed by concatenating
its original feature vector xk and learnable positional encoding pk. These enhanced node repre-
sentations are then processed by a Transformer encoder to capture both local and global contextual
relationships:

Zi = TransformerEncoder ([(x1 ∥ p1), (x2 ∥ p2), . . . , (xm ∥ pm)]) ∈ Rm×d, (5)

where m denotes the number of nodes in the hyperedge, and ∥ represents concatenation. We use the
output representation at the final sequence position as the initial representation of hyperedge ei:

fi = Zi[−1, :] ∈ Rd. (6)

This representation aggregates information across the entire sequence through the Transformer’s
self-attention mechanism, effectively capturing trajectory sequential information.

3.2.2 BIDIRECTIONAL TRAJECTORY ENCODING LAYER

Tokenized trajectories exhibit complex structural properties: each connects multiple spatial tokens,
while a single spatial token may belong to multiple tokenized trajectories. To effectively capture
structural information, we propose a Bidirectional Trajectory Encoding Layer (BTELayer). This
layer enables each tokenized trajectory to attend to both its own spatial tokens and other trajectories
that share its tokens.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Bottom-Up: Node-to-Hyperedge Aggregation. In the bottom-up phase, each hyperedge aggre-
gates information from its constituent nodes. Formally, for hyperedge ei containing a set of nodes
Vi, we compute its updated representation as:

f agg
i =

1

|Vi|
∑

vk∈Vi

uiW2 ∈ Rd, (7)

where W2 ∈ Rd×d is a learnable projection matrix that aligns node features with the hyperedge
representation space.

We employ a residual gating mechanism to avoid losing the original features of tokenized trajectories
and to allow the network to adaptively control information flow:

gedge
i = σ

(
W edge

gate [fi ∥ f
agg
i] + bedge

gate

)
∈ Rd, f ′

i = LayerNorm
(
fi + gedge

i ⊙ f agg
i

)
∈ Rd, (8)

where W edge
gate ∈ Rd×2d and bedge

gate ∈ Rd are learnable parameters, σ denotes the sigmoid activation
function, ∥ represents concatenation, and ⊙ denotes element-wise multiplication.

Top-Down: Hyperedge-to-Node Propagation. Different tokenized trajectories may pass through
the same spatial tokens, suggesting that these trajectories can share latent spatial or behavioral simi-
larities. To effectively capture such inter-trajectory relationships, we introduce Hyperedge-to-Node
propagation that propagates representations of hyperedge back to their corresponding nodes.

In this phase, each node aggregates information from hyperedges it participates in. Let vi denote
the i-th node, and Ei be the set of hyperedges it belongs to. Each hyperedge ek ∈ Ei is initially
represented as f ′

k, and is transformed via a learnable linear projection:

uagg
i =

1

|Ei|
∑
ek∈Ei

f ′
kW3 ∈ Rd, (9)

where W3 ∈ Rd×d is a learnable projection matrix.

Similar to the bottom-up phase, the node representation is then updated via a residual gating mech-
anism:

gnode
i = σ

(
W node

gate [ui ∥ uagg
i] + bnode

gate

)
∈ Rd, u′

i = LayerNorm
(
ui + gnode

i ⊙ uagg
i

)
∈ Rd, (10)

where W node
gate ∈ Rd×2d and bnode

gate ∈ Rd are learnable parameters, σ denotes the sigmoid activation
function, ∥ represents concatenation, and ⊙ denotes element-wise multiplication.

This top-down propagation enables each node to integrate structural and sequential patterns from
the hyperedges, effectively enriching its representation to capture latent inter-trajectory similarities.

Iterative Multi-Scale Representation Refinement. The above bidirectional process is repeated for
L layers, allowing information to propagate through multiple hops in the hypergraph:

U (l), F (l) = BTELayer
(
U (l−1), F (l−1), H

)
, (11)

where U (l) ∈ R|V|×d and F (l) ∈ R|E|×d denote the node and hyperedge representations at layer l.
This iterative refinement captures multi-scale structural patterns and enhances the expressiveness of
both node and hyperedge representations.

3.2.3 TRAJECTORY REPRESENTATION DECODING LAYER

In the final stage, we generate the semantically enriched representation for each hyperedge by ag-
gregating the updated node embeddings. Specifically, for a hyperedge ei containing a set of nodes
Vi, its final representation f̂i is computed as follow:

f̂i =
1

|Vi|
∑

vk∈Vi

u′
k ∈ Rd. (12)

By aggregating the refined node embeddings, this decoding layer generates the final trajectory (hy-
peredge) representations, which retain original features while integrating complex patterns learned
by the network. This process yields highly expressive embeddings that are optimized for trajectory
similarity computation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 WEIGHTED TOP-k INFONCE LOSS

Based on insights from prior work Yao et al. (2019); Yang et al. (2021; 2022), we identify a key
limitation in prevailing triplet loss-based methods: their myopic focus on a handful of positive and
negative samples restricts each trajectory from perceiving its position within the global similarity
structure. To overcome this, we design a novel loss that enables each tokenized trajectory to strate-
gically enhance the discrimination among its top-k most similar neighbors for robust local structure
preservation. We first construct an initial similarity weighted matrix derived from the ground-truth
Euclidean distance matrix Dtrue:

wi,j =
e−Dtrue[i,j]/τ∑
k ̸=i e

−Dtrue[i,k]/τ
, (13)

where τ is a temperature coefficient that controls the smoothness of the similarity distribution.

Although this design captures the overall similarity structure among tokenized trajectories, it may
not sufficiently emphasize strong local correlations that are critical for downstream tasks such as
trajectory similarity computation. To address this, we introduce a weighted top-k enhancement
mechanism that explicitly reinforces the influence of local neighbors. Specifically, for each tok-
enized trajectory TT i, we select its top-k nearest neighbor set Ni based on Dtrue and redefine the
weighted matrix:

w′
i,j =

{
e−Dtrue(i,j)/τ + ϵ, j ∈ Ni

ϵ, j /∈ Ni
, (14)

where ϵ is a very small positive number to ensure numerical stability.

Subsequently, each row is normalized to ensure that the weighted distribution of each sample satis-
fies the probability constraints:

w′
i,j ←

w′
i,j∑N

n=1 w
′
i,n

. (15)

Building upon this, and inspired by InfoNCE Oord et al. (2018), we propose a weighted top-k
InfoNCE loss, defined as follows:

L = −
N∑
i=1

∑
j ̸=i

w′
i,j · log

e−Dpred[i,j]/τ∑
k ̸=i e

−Dpred[i,k]/τ
, (16)

where Dpred[i, j] denotes the predicted distance between tokenized trajectories TTi and TTj , com-
puted as the Euclidean distance between their corresponding representation vectors f̂i and f̂j , i.e:

Dpred[i, j] = ||f̂i − f̂j ||2. (17)

By minimizing this loss, the model is able to fit the true similarity distribution between tokenized
trajectories in the feature space: making similar tokenized trajectories close together and dissimilar
tokenized trajectories far away in the representation space, thus providing a more discriminative
feature representation for trajectory similarity computation. By avoiding repetitive encoding of
tokenized trajectories for triplet loss computation, this method significantly improves efficiency.

3.4 COMPLEXITY ANALYSIS

Based on the proposed framework, we analyze the computational complexity of Hyper2Edge. The
overall time complexity is dominated by the Transformer-based hyperedge initialization and the
iterative bidirectional encoding process. For a hypergraph with |V| nodes (spatial tokens) and |E|
hyperedges (tokenized trajectories), the Transformer encoder processes each hyperedge in O(m2 ·d)
time where m is the number of nodes in a hyperedge after spatial clustering. The bidirectional
trajectory encoding layer performs message passing in O(L · (|V| + |E|) · d2) time over L layers.
Thus, the overall time complexity of the proposed Hyper2Edge framework is O(|E| ·m2 · d + L ·
(|V|+ |E|) · d2), which scales linearly with the number of spatial tokens and tokenized trajectories.
A detailed comparative analysis of complexity is provided in the appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENT

We systematically evaluate Hyper2Edge through five experiments on two real-world public datasets,
aiming to address the following research questions: (1) Does Hyper2Edge correctly represent both
the tokenized trajectories themselves and the relationships between them? (2) How robust is Hy-
per2Edge across different distance metrics? (3) Does Hyper2Edge truly enhance computational
efficiency? (4) How does each component that we design contribute to the model performance? (5)
How sensitive is Hyper2Edge to its parameters? (6) Does Hyper2Edge produce human-interpretable
results? (7) Can Hyper2Edge generalize to spatio-temporal contexts? (8) How does Hyper2Edge
perform on large datasets?

4.1 EXPERIMENTAL SETTINGS

We briefly introduce the experimental settings below. The detailed experimental settings can be
found in the Appendix D.1. Datasets. We experiment on two real-world trajectory datasets: GeoLife
Zheng et al. (2010) and Porto O’Connell et al. (2015). Experimental Baselines. We evaluate the
proposed Hyper2Edge against several prominent TRL methods from recent years: (i) Unsupervised
methods: t2vec Li et al. (2018), CL-Tsim Deng et al. (2022) and HHL-Traj Cao et al. (2024);
(ii) Supervised methods: NeuTraj Yao et al. (2019), TrajGAT Yao et al. (2022), TrajCL Chang
et al. (2023), and SIMformer Chuang et al. (2024). Evaluation Metrics. In the top-k trajectory
similarity search task, we evaluate performance using Hit Rate (HR) and Recall (R), reported as
HR@1, HR@5, HR@10, R1@5, R5@10. Higher values for these metrics indicate greater accuracy.

4.2 OVERALL PERFORMANCE (RQ1)
We compare performance of Hyper2Edge against baseline methods on the Geolife and Porto
datasets. The results in Table 1 clearly show that Hyper2Edge achieves state-of-the-art performance
across both datasets and all evaluation metrics on Euclidean distance. Similar trends are observed
on the DTW and ERP distance, detailed in Appendix D.2. On GeoLife, Hyper2Edge outperforms
the strongest baseline SIMformer by margins of +2.5% in HR@1 and +4.0% in HR@10, while on
Porto it surpasses CL-Tsim by +5.0% in HR@1 and +8.4% in HR@10. It is worth noting that al-
though HHL-Traj also employs hypergraph encoding, its task involves finding the second half of
its own trajectory based on the first half rather than learning the relationship between trajectories.
Consequently, its metrics for this task are nearly zero. These consistent improvements validate that
Hyper2Edge not only learns expressive trajectory representations but also captures the relational
order and structure among trajectories through its hypergraph-based modeling and hierarchical rep-
resentation learning. Furthermore, the strong gains in recall metrics (R1@5 and R5@10) highlight
the effectiveness of the proposed weighted top-k InfoNCE loss in aligning the learned embedding
space with Euclidean-based similarity, enabling more accurate neighborhood retrieval. Together,
these results confirm that Hyper2Edge simultaneously preserves both intra-trajectory patterns and
inter-trajectory relationships.

Table 1: Performance of top-k trajectory similarity search on Euclidean distance.

Dataset Method Ref. HR@1 HR@5 HR@10 R1@5 R5@10

GeoLife

t2vec ICDE’18 11.77% 15.40% 18.98% 23.96% 23.25%
CL-Tsim CIKM’22 12.08% 18.44% 23.41% 27.71% 28.29%
HHL-Traj CIKM’24 0.00% 0.06% 0.18% 0.00% 0.13%

NeuTraj ICDE’19 6.15% 12.21% 15.92% 16.77% 19.13%
TrajGAT KDD’22 15.21% 26.04% 31.82% 37.50% 39.42%
TrajCL ICDE’23 4.38% 12.08% 19.73% 24.45% 27.71%

SIMformer VLDB’24 21.04% 26.56% 30.19% 42.08% 38.54%

Hyper2Edge Ours 23.54% 29.67% 35.53% 42.92% 44.25%

Porto

t2vec ICDE’18 4.52% 5.01% 5.28% 8.94% 6.91%
CL-Tsim CIKM‘22 15.10% 19.71% 21.40% 31.05% 27.94%
HHL-Traj CIKM’24 0.00% 0.05% 0.11% 0.00% 0.12%

NeuTraj ICDE’19 2.55% 5.00% 6.26% 7.52% 7.40%
TrajGAT KDD’22 11.14% 17.92% 21.75% 26.30% 27.10%
TrajCL ICDE’23 0.20% 17.42% 22.95% 24.63% 37.22%

SIMformer VLDB’24 9.73% 14.47% 15.74% 21.95% 20.48%

Hyper2Edge Ours 20.14% 27.18% 29.78% 41.46% 37.45%
7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 IN-DEPTH ANALYSIS

Cross-Distance Metric Robustness Study (RQ2). In this analysis, we define two training strate-
gies: (i) Self-distance, where the model is trained and evaluated on the same benchmark metric (e.g.,
DTW), and (ii) Cross-distance, where the model is trained using Euclidean distance supervision and
evaluated on various benchmark metrics. It is worth noting that Discrete Fréchet, DTW and ERP are
classic trajectory similarity measures specifically designed to handle variations in sampling rates,
temporal scaling, and noise. Figure 3 evaluates the robustness of Hyper2Edge under different dis-
tance metrics from the GeoLife dataset; similar trends were observed on the Porto dataset and are
detailed in Appendix D.3. Our results indicate that the cross-distance strategy performs comparably
to or even better than the self-distance strategy when assessed on the same metric. Therefore, the
robustness of Hyper2Edge is evidenced by its consistent performance across various metrics (Dis-
crete Fréchet, DTW, ERP), showing that its effectiveness is not tightly bound to a particular metric
supervision. Notably, training only once with Euclidean distance is sufficient to capture essential
trajectory similarity patterns across different metrics, thereby eliminating the need for redundant
training with multiple metric supervision and achieving the ”train once, use everywhere” paradigm.

0 . 0 7 5

0 . 1 0 0

0 . 1 2 5

0 . 1 5 0

0 . 1 2 0 0 . 1 3 5 0 . 1 5 0

0 . 1 5 2
0 . 1 7 1

0 . 1 9 0

0 . 2 3 1
0 . 2 4 2

0 . 2 5 3

0 . 1 6 50 . 1 9 80 . 2 3 1

 S e l f - D i s t a n c e
 C r o s s - D i s t a n c e

R 5 @ 1 0

R 1 @ 5 H R @ 1 0

H R @ 5

H R @ 1

(a) Discret Fréchet.

0 . 1 7 3

0 . 1 8 0

0 . 1 8 8

0 . 1 9 5

0 . 2 3 0 0 . 2 3 5 0 . 2 4 0 0 . 2 4 5

0 . 2 8 5
0 . 2 9 0

0 . 2 9 5
0 . 3 0 0

0 . 3 6 6
0 . 3 7 2

0 . 3 7 8
0 . 3 8 4

0 . 3 5 30 . 3 6 00 . 3 6 8

 S e l f - D i s t a n c e
 C r o s s - D i s t a n c e

R 5 @ 1 0

R 1 @ 5 H R @ 1 0

H R @ 5

H R @ 1

(b) DTW.

0 . 1 3 0

0 . 1 3 5

0 . 1 4 0

0 . 1 4 5

0 . 1 9 2 0 . 1 9 8 0 . 2 0 5

0 . 2 2 5
0 . 2 2 8

0 . 2 3 1

0 . 1 8 3
0 . 2 4 4

0 . 3 0 5

0 . 1 8 30 . 2 4 40 . 3 0 5

 S e l f - D i s t a n c e
 C r o s s - D i s t a n c e

R 5 @ 1 0

R 1 @ 5 H R @ 1 0

H R @ 5

H R @ 1

(c) ERP.

Figure 3: Cross-distance metic robustness on GeoLife dataset.

Efficiency Evaluation (RQ3). We design three experiments to analyze efficiency of Hyper2Edge.
First, we compare each epoch time of Hyper2Edge with all baseline methods on GeoLife and Porto
dataset, as shown in Table 2. Although SIMformer shows the fastest per-epoch time, Hyper2Edge
maintains a compelling balance of competitive efficiency and superior performance, as established in
our overall performance analysis (RQ1, Section 4.2). Second, we conduct a fine-grained efficiency
analysis, and the detailed breakdown per training epoch is provided in Table 3. Third, we analyze
loss efficiency that replaces the weighted top-k InfoNCE loss with a standard triplet loss, as shown
in Table 4. The results show that the training-time reduction is a direct result of our methodological
contributions: (i) Zero Sampling Overhead: The design of our framework inherently avoids the ex-
plicit sampling of positive/negative pairs; (ii) Single Encoding Pass: The key innovation is that each
trajectory requires only a single encoding pass, eliminating repetitive and costly graph operations
for the same trajectory; (iii) Efficient Loss Design: Our proposed loss function strengthens trajec-
tory proximity relations while eliminating the need for explicit positive/negative pair sampling and
encoding, significantly reducing overall runtime; (iv) Fair Comparison: The gains are thus derived
from a fundamental architectural efficiency, not from an unbalanced experimental setup.

Table 2: Each epoch time (s) comparison on GeoLife and Porto datasets.

Method GeoLife Porto

t2vec 35 36
NeuTraj 38 123
TrajGAT 283 515
CL-Tsim 4 17.6
TrajCL 120 524

HHL-Traj 5 11
SIMformer 3 5

Hyper2Edge 4 9

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Fine-grained efficiency study. Note, Encoding Passes = (Sampling Overhead + Graph Ops
+ Weighted Top-k InfoNCE Loss + Gradient Update).

Each Epoch Time (s) GeoLife Porto

Sampling Overhead 0 0
Graph Ops 0.63 1.11

Weighted Top-k InfoNCE Loss 0.02 0.05
Gradient update 0.98 1.7

Encoding Passes 1.65 2.86
Evaluation 1.93 3.8
Validation 1.05 2.35

Total Time 4 9

Table 4: Efficiency study with triplet loss replacing weighted top-k InfoNCE loss.

Each Epoch Time (s) GeoLife Porto

Weighted Top-k InfoNCE Loss 4 9
Triplet Loss 6 12

Ablation Study (RQ4). To further verify the effectiveness of each component in Hyper2Edge, we
compare Hyper2Edge with the following variants: (i) w/o Order: the initial hyperedge representation
is directly obtained by MLP. (ii) w/o Node-to-Edge: the hyperedge representation is derived only
from the raw features of spatial tokens, without leveraging the initial node features. (iii) w/o Edge-
to-Node: the hyperedge-to-node propagation module is removed, which prevents the model from
capturing similarity features among hyperedges that share common nodes. (iv) w/o Weighted Top-k
InfoNCE Loss: this loss is replaced by Mean Square Error (MSE) loss.

We report results on the GeoLife and Porto datasets in Figure 4, showing HR@1 and HR@5 for
brevity, as the remaining three metrics exhibit similar trends and are provided in the Appendix D.4.
We can observe the following: (i) by comparing w/o order with Hyper2Edge, we find that the order-
aware hyperedge inititalization can capture the trajectory’s own motion patterns and sequential prop-
erties; (ii) by comparing w/o Node-to-Edge with Hyper2Edge, we find that incorporating initial node
features is essential for learning more informative tokenized trajectory representation; (iii) by com-
paring w/o Edge-to-Node with Hyper2Edge, we find that Hyperedge-to-Node prpogation can capture
the similarity characteristics among tokenized trajectories; (iv) by comparing w/o Weighted Top-k
InfoNCE Loss with Hyper2Edge, we find that weighted Top-k InfoNCE loss can bring the trajectory
distribution closer to the true distribution; (v) Hyper2Edge outperforms all variants with ablation,
which proves the effectiveness of the proposed method.

w/o Order w/o Node-to-Edge w/o Edge-to-Node w/o Loss Hyper2Edge

0 . 1 4 7 9

0 . 2 1 8 8

0 . 1 6 3 5

0 . 2 2 5
0 . 2 3 6 5

0 . 1 3 2

0 . 1 7 6

0 . 2 2 0

0 . 2 6 4

(a) HR@1 on GeoLife.

0 . 2 3 3 7

0 . 2 7 6 5

0 . 2 2 9 8

0 . 2 9 3 7 0 . 2 9 4 6

0 . 2 1 7

0 . 2 4 8

0 . 2 7 9

0 . 3 1 0

(b) HR@5 on GeoLife.

0 . 0 7 1 3

0 . 1 8 2 7

0 . 0 6 1 1

0 . 1 8 1
0 . 2 0 1 4

0 . 0 7 0

0 . 1 4 0

0 . 2 1 0

(c) HR@1 on Porto.

0 . 1 1 1 5

0 . 2 5 6 2

0 . 1 1 0 7

0 . 2 3 7 9
0 . 2 7 1 8

0 . 0 9 5

0 . 1 9 0

0 . 2 8 5

(d) HR@5 on Porto.
Figure 4: Ablation results by removing components on HR@1 and HR@5.

Additionally, we perform ablation study by replacing the weighted top-k InfoNCE loss with a stan-
dard triplet loss. The results in Table 5 consistently show that weighted top-k InfoNCE loss achieves
superior performance across all evaluation metrics on both GeoLife and Porto datasets. This con-
firms the effectiveness of our proposed loss design over a standard triplet loss baseline.

Parameter Sensitivity Study (RQ5). To assess the sensitivity of Hyper2Edge, we analyze four
key hyperparameters: the number of spatial tokens n, the hidden dimension d, the temperature
coefficient τ , and the top-k quantity. The spatial tokens are formed using K-Means, and n denotes
their number. The hypergraph sparsity and tokenization choices (e.g., clustering granularity) are
both controlled by the number of cluster n. The hidden layer dimension d represents the output

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Ablation results with triplet loss replacing weighted top-k InfoNCE loss.

Dataset Ablation Loss HR@1 HR@5 HR@10 R1@5 R5@10

GeoLife Weighted Top-k InfoNCE Loss 23.54% 29.67% 35.53% 42.92% 44.25%
Triplet Loss 17.92% 29.13% 35.25% 40.63% 43.87%

Porto Weighted Top-k InfoNCE Loss 20.14% 27.18% 29.78% 41.46% 37.45%
Triplet Loss 15.55% 20.85% 23.07% 32.07% 29.02%

dimension of the representation vector. The temperature coefficient τ represents the softness of
the model’s output probability distribution. The number of top-k represents the number of nearest
neighbors that are mainly fitted when the loss is fitted to a distribution. Figure 5 presents the analysis
results on the GeoLife dataset, while Appendix D.5 reports similar trends on the Porto dataset. As
shown, HR@1 and HR@5 remain stable across a wide range of parameters, indicating robustness
of Hyper2Edge to hyperparameter selection.

1 0 0 0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0

0 . 1 0 0

0 . 2 0 0

0 . 3 0 0

0 . 1 8 0

0 . 2 7 0

0 . 3 6 0 H R @ 1
 H R @ 5

(a) n.
8 1 6 3 2 6 4 1 2 8

0 . 1 3 0

0 . 1 9 5

0 . 2 6 0

0 . 1 7 0

0 . 2 5 5

0 . 3 4 0 H R @ 1
 H R @ 5

(b) d.
0 . 0 6 0 . 0 8 0 . 1 0 . 1 2 0 . 1 4

0 . 2 3 0

0 . 2 3 4

0 . 2 3 8

0 . 2 8 5

0 . 2 9 4

0 . 3 0 3
 H R @ 1
 H R @ 5

(c) τ .
5 1 0 5 0 1 0 0 1 5 0

0 . 2 2 4

0 . 2 3 2

0 . 2 4 0

0 . 2 8 8

0 . 2 9 6

0 . 3 0 4 H R @ 1
 H R @ 5

(d) Top-k.

Figure 5: Effect of different n, d, τ and top-k on GeoLife. The y-axis represents hit rate and the
x-axis is the different hyper-parameter values.

Case Study (RQ6). To analyze the interpretability of Hyper2Edge, we compare the top-2 nearest
neighbors of a query trajectory from the ground-truth Euclidean distance against those from Hy-
per2Edge. The results show that the matching outcomes generated by Hyper2Edge align almost
perfectly with the ground truth in terms of start points, end points, and paths. This validates that
Hyper2Edge learns human-perceivable semantic patterns.

+

−

Leaflet (https://leafletjs.com) | © OpenStreetMap (https://www.openstreetmap.org/copyright) contributors

Tr189

(a) Query.

+

−

Leaflet (https://leafletjs.com) | © OpenStreetMap (https://www.openstreetmap.org/copyright) contributors

Tr1165

(b) GT Top-1.

+

−

Leaflet (https://leafletjs.com) | © OpenStreetMap (https://www.openstreetmap.org/copyright) contributors

Tr7216

(c) GT Top-2.

+

−

Leaflet (https://leafletjs.com) | © OpenStreetMap (https://www.openstreetmap.org/copyright) contributors

Tr1165

(d) Pred Top-1.

+

−

Leaflet (https://leafletjs.com) | © OpenStreetMap (https://www.openstreetmap.org/copyright) contributors

Tr7216

(e) Pred Top-2.

Figure 6: Spatial comparison with query of top-1 and top-2 similar trajectories between the ground
truth (GT) and Hyper2Edge (Pred).

Generalization Study in Spatio-temporal Contexts (RQ7). We evaluate Hyper2Edge learned
spatio-temporal representations against a spatio-temporal ground truth distance. As shown in Ap-
pendix D.6, Hyper2Edge performs nearly identically under both spatial and spatio-temporal evalu-
ation, proving its inherent capability to learn effective representations even when temporal factors
are considered. This suggests that Hyper2Edge enable to learn robust patterns that generalize to
spatio-temporal contexts.

Scalability Study (RQ8). We perform top-k trajectory similarity search task on the larger-scale
Porto dataset. The results (shown in Appendix D.7) show that performance of Hyper2Edge remains
stable and consistent with our initial findings in our overall performance analysis (RQ1, Section 4.2).

5 CONCLUSION

We propose Hyper2Edge, a novel representation learning framework that improves efficiency and
robustness of trajectory similarity computation. Hyper2Edge employs hypergraph-based trajectory
modeling to represent trajectories as hyperedges to preserve essential information. Its hierarchical
trajectory encoding architecture includes order-aware embedding initialization, bidirectional node-
hyperedge message passing to capture inter-trajectory relationships, and a decoding layer that out-
puts discriminative embeddings. A weighted top-k InfoNCE loss further enhances local similarity
learning without sample re-encoding. Evaluations on two public benchmarks show that Hyper2Edge
outperforms state-of-the-art methods. A promising future direction is developing learnable metric
functions that can autonomously adapt to different trajectory patterns. Such an approach could po-
tentially achieve more accurate similarity computation especially under challenging conditions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research aims to improve the efficiency and robustness of trajectory similarity computation via
representation learning. This work is technical and practical in nature, with potential applications
in intelligent transportation and location-based services. We have carefully considered possible so-
cietal implications and identify no immediate ethical risks or harmful consequences resulting from
our methodology. We support the ethical use of our research and advocate for its responsible imple-
mentation in real-world systems.

REPRODUCIBILITY STATEMENT

All the results in this work are reproducible. We provide all the necessary code to replicate our results
in an anonymous GitHub repository (https://anonymous.4open.science/r/Hyper2Edge-3D2B). The
repository includes code of data preprocessing and model, environment configurations, run scripts,
and other relevant materials. We discuss the detailed experimental settings in Section D.1.

LLM USAGE

In this study, large language models (LLMs) are employed to enhance the linguistic quality and
stylistic refinement of the text. Their application is strictly limited to polishing language expression
and does not involve content generation or substantive analysis.

REFERENCES

Helmut Alt. The computational geometry of comparing shapes. Efficient Algorithms: Essays Dedi-
cated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pp. 235–248, 2009.

Helmut Alt and Michael Godau. Computing the fréchet distance between two polygonal curves.
International Journal of Computational Geometry & Applications, 5(01n02):75–91, 1995.

Yuan Cao, Lei Li, Xiangru Chen, Xue Xu, Zuojin Huang, and Yanwei Yu. Hypergraph hash learning
for efficient trajectory similarity computation. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management, pp. 175–186, 2024.

Yanchuan Chang, Jianzhong Qi, Yuxuan Liang, and Egemen Tanin. Contrastive trajectory similar-
ity learning with dual-feature attention. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE), pp. 2933–2945, 2023.

Lei Chen and Raymond Ng. On the marriage of lp-norms and edit distance. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases-Volume 30, pp. 792–803, 2004.

Zhen Chen, Dalin Zhang, Shanshan Feng, Kaixuan Chen, Lisi Chen, Peng Han, and Shuo Shang.
KGTS: contrastive trajectory similarity learning over prompt knowledge graph embedding. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 8311–8319, 2024.

Ming Cheng, Ziyi Zhou, Bowen Zhang, Ziyu Wang, Jiaqi Gan, Ziang Ren, Weiqi Feng, Yi Lyu,
Hefan Zhang, and Xingjian Diao. Efflex: Efficient and flexible pipeline for spatio-temporal tra-
jectory graph modeling and representation learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2546–2555, 2024.

Yang Chuang, Jiang Renhe, Xu Xiaohang, Xiao Chuan, and Sezaki Kaoru. SIMformer: Single-
layer vanilla transformer can learn free-space trajectory similarity. Proc. VLDB Endow., 18(2):
390–398, 2024.

Liwei Deng, Yan Zhao, Zidan Fu, Hao Sun, Shuncheng Liu, and Kai Zheng. Efficient trajectory
similarity computation with contrastive learning. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pp. 365–374, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li, and Huan Liu. Be more with less: Hyper-
graph attention networks for inductive text classification. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing(EMNLP), pp. 4927–4936, 2020.

Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. E2DTC: An end
to end deep trajectory clustering framework via self-training. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 696–707, 2021.

Ziquan Fang, Yuntao Du, Xinjun Zhu, Danlei Hu, Lu Chen, Yunjun Gao, and Christian S Jensen.
Spatio-temporal trajectory similarity learning in road networks. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 347–356, 2022.

Chunhui Feng, Zhicheng Pan, Junhua Fang, Jiajie Xu, Pengpeng Zhao, and Lei Zhao. Aries: Accu-
rate metric-based representation learning for fast top-k trajectory similarity query. In Proceedings
of the 31st ACM International Conference on Information & Knowledge Management, pp. 499–
508, 2022.

Peng Han, Jin Wang, Di Yao, Shuo Shang, and Xiangliang Zhang. A graph-based approach for
trajectory similarity computation in spatial networks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 556–564, 2021.

Jiawei Jiang, Dayan Pan, Houxing Ren, Xiaohan Jiang, Chao Li, and Jingyuan Wang. Self-
supervised trajectory representation learning with temporal regularities and travel semantics. In
2023 IEEE 39th International Conference on Data Engineering (ICDE), pp. 843–855, 2023.

Jiajia Li, Mingshen Wang, Lei Li, Kexuan Xin, Wen Hua, and Xiaofang Zhou. Trajectory repre-
sentation learning based on road network partition for similarity computation. In International
Conference on Database Systems for Advanced Applications, pp. 396–413, 2023.

Mengqiu Li, Xinzheng Niu, Jiahui Zhu, Philippe Fournier-Viger, and Youxi Wu. STR: Spatio-
temporal trajectory representation learning with dual-focus encoder for whole trajectory similarity
computation. Information Fusion, pp. 103231, 2025.

Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. Deep representation learn-
ing for trajectory similarity computation. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pp. 617–628, 2018.

Kang Luo, Yuanshao Zhu, Wei Chen, Kun Wang, Zhengyang Zhou, Sijie Ruan, and Yuxuan Liang.
Towards robust trajectory representations: Isolating environmental confounders with causal learn-
ing. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence
(IJCAI), pp. 2243–2251, 2024.

Zhipeng Ma, Zheyan Tu, Xinhai Chen, Yan Zhang, Deguo Xia, Guyue Zhou, Yilun Chen, Yu Zheng,
and Jiangtao Gong. More Than Routing: Joint GPS and route modeling for refine trajectory
representation learning. In Proceedings of the ACM on Web Conference 2024, pp. 3064–3075,
2024.

Zhenyu Mao, Ziyue Li, Dedong Li, Lei Bai, and Rui Zhao. Jointly contrastive representation learn-
ing on road network and trajectory. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 1501–1510, 2022.

Meghan O’Connell, moreiraMatias, and Wendy Kan. Ecml/pkdd 15: Taxi trajectory prediction (i),
2015. Kaggle.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover,
Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Searching and mining trillions of time series sub-
sequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 262–270, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liang Wang, Shu Wu, Qiang Liu, Yanqiao Zhu, Xiang Tao, Mengdi Zhang, and Liang Wang. Bi-
level graph structure learning for next POI recommendation. IEEE Transactions on Knowledge
and Data Engineering, 36(11):5695–5708, 2024.

Peilun Yang, Hanchen Wang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. T3S: Effective
representation learning for trajectory similarity computation. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 2183–2188, 2021.

Peilun Yang, Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, and Wenjie Zhang. TMN: Trajectory
matching networks for predicting similarity. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE), pp. 1700–1713, 2022.

Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. Computing Trajectory Similarity in Linear Time:
A generic seed-guided neural metric learning approach. In 2019 IEEE 35th International Confer-
ence on Data Engineering (ICDE), pp. 1358–1369, 2019.

Di Yao, Haonan Hu, Lun Du, Gao Cong, Shi Han, and Jingping Bi. TrajGAT: A graph-based long-
term dependency modeling approach for trajectory similarity computation. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2275–2285,
2022.

Hanyuan Zhang, Xingyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun, Weiwei Sun, and
Changhu Wang. Trajectory similarity learning with auxiliary supervision and optimal match-
ing. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
Yokohama, Japan, pp. 11–17, 2020.

Yu Zheng, Xing Xie, Wei-Ying Ma, et al. Geolife: A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010.

Silin Zhou, Jing Li, Hao Wang, Shuo Shang, and Peng Han. GRLSTM: Trajectory similarity com-
putation with graph-based residual lstm. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 4972–4980, 2023.

Silin Zhou, Chengrui Huang, Yuntao Wen, and Lisi Chen. Feature enhanced spatial–temporal tra-
jectory similarity computation. Data Science and Engineering, 10(1):1–11, 2025a.

Silin Zhou, Shuo Shang, Lisi Chen, Peng Han, and Christian S Jensen. Grid and road expressions are
complementary for trajectory representation learning. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V. 1, pp. 2135–2146, 2025b.

Silin Zhou, Shuo Shang, Lisi Chen, Christian S Jensen, and Panos Kalnis. Red: Effective trajectory
representation learning with comprehensive information. In 51st International Conference on
Very Large Data Bases, VLDB 2025, 2025c.

Jiahui Zhu, Xinzheng Niu, Fan Li, Yixuan Wang, Philippe Fournier-Viger, and Kun She.
STTraj2Vec: A spatio-temporal trajectory representation learning approach. Knowledge-Based
Systems, 300:112207, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

Non-learning-based Methods. Non-learning-based approaches, such as Discrete Fréchet Alt &
Godau (1995), DTW Rakthanmanon et al. (2012), and ERP Chen & Ng (2004), typically rely on
pairwise trajectory comparisons using Euclidean distance and predefined rules to identify optimal
matches. These methods often struggle to generalize across diverse scenarios due to their inflexible
design, which is tightly coupled with specific distance metrics. Additionally, they suffer from a time
complexity of O(z2), where z is the number of trajectory points, making them inefficient.

Learning-based Methods with Road Network. To overcome these limitations, learning-based
methods incorporate road network data to enhance trajectory similarity measurement. One line
of work, including ST2Vec Fang et al. (2022), PT2Vec Li et al. (2023), and START Jiang et al.
(2023), aligns trajectories to road segments but may lose original spatial information when matches
are incomplete. Another category combines trajectory and road network features: GTS Han et al.
(2021) and GRLSTM Zhou et al. (2023) model their interactions via graph structures, FEST Zhou
et al. (2025a) uses road networks as auxiliary features, and JCLRNT Mao et al. (2022) employs
contrastive learning to maximize mutual information between the two. JGRM Ma et al. (2024)
processes trajectories and road networks separately before fusion. Recently, Luo et al. (2024) also
uses causal intervention to reduce environmental bias in trajectory representations.

Learning-based Methods without Road Network. Alternatively, some methods avoid road net-
works to better capture intrinsic motion patterns. Methods such as t2vec Li et al. (2018), CL-Tsim
Deng et al. (2022), and E2DTC Fang et al. (2021) use sequence-to-sequence models with spatial-
aware loss functions. KGTS Chen et al. (2024) incorporates knowledge graphs and prompt learn-
ing. Other approaches integrate inter-trajectory relations using distance metrics like DTW Rak-
thanmanon et al. (2012) or Hausdorff Alt (2009) as supervision—e.g., NeuTraj Yao et al. (2019)
and Aries Feng et al. (2022) learn spatial embeddings via attention mechanisms, while Traj2SimVec
Zhang et al. (2020) and TMN Yang et al. (2022) improve matching efficiency and robustness. TrajCL
Chang et al. (2023) incorporates structural features, and TrajGAT Yao et al. (2022) and STTraj2Vec
Zhu et al. (2024) use hierarchical or graph-based representations, though often at increased compu-
tational cost. Efflex Cheng et al. (2024) views trajectories as nodes, inter-trajectory similarities as
connecting edges of nodes, and uses a graph model for node representation, which discards internal
structure and creates a circular dependency on precomputed similarities.

B DIFFERENCES FROM KGTS

There are superficial similarities between Hyper2Edge and KGTS Chen et al. (2024) in ’using con-
trastive learning’, but Hyper2Edge proposes an entirely novel solution driven by fundamentally
different motivations: (i) Paradigm: KGTS employs a two-stage pipeline of ’grid → trajectory’,
whereas Hyper2Edge performs end-to-end hypergraph learning where ’trajectories serve as hyper-
edges’—a foundational architectural innovation; (ii) Core problem focus: We concentrate on re-
solving the ’repetitive encoding’ efficiency bottleneck unaddressed by KGTS, rather than its em-
phasis on ’unsupervised label generation’; (iii) Technical approach: We introduce a bidirectional
node-hyperedge message passing mechanism absent in KGTS to explicitly model inter-trajectory
relationships, and design a weighted top-k mechanism to optimize supervised learning based on Eu-
clidean distance. Therefore, Hyper2Edge delivers substantive innovations distinct from KGTS in
problem definition, core architecture, and technical details.

C COMPLEXITY ANALYSIS

We provide a direct comparison with baseline methods in Table 6. Although most baselines ex-
hibit complexities that are linear or quadratic in trajectory length l (e.g., O(|E| · l2) for TrajCL and
SIMformer), the complexity of Hyper2Edge is independent of the raw trajectory length. This is
because our method operates on the tokenized trajectory representation, where the key parameter
m (the maximum number of tokens per trajectory) is typically much smaller and more stable than
l (the original number of points per trajectory), especially after spatial clustering. This analysis
theoretically confirms that Hyper2Edge avoids the computational bottlenecks associated with long,
raw trajectories and achieves superior scalability. Meanwhile, although the theoretical time com-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

plexity of baseline methods is the time required to encode |E| trajectories, they actually encode the
same trajectory multiple times as positive and negative samples for other trajectories to utilize triplet
loss. Consequently, the encoding time of these methods exceeds the theoretical estimate, whereas
Hyper2Edge strictly adheres to the theoretically analyzed time of encoding.

Table 6: Complexity Analysis. Note, |E| is the number of trajectories, l is the original number of
points per trajectory, m is the number of spatial tokens per trajectory after spatial clustering and |V|
is the total number of spatial tokens.

Method Complexity

t2vec O(|E| · l)
CL-Tsim O(|E| · l)
HHL-Traj O(|E| · l)
NeuTraj O(|E| · l)
TrajGAT O(|E| · l · log(l))
TrajCL O(|E| · l2)

SIMformer O(|E| · l2)
Hyper2Edge O(|E| ·m2 + |E|+ |V|)

D EXPERIMENT

D.1 EXPERIMENTAL SETTINGS

Datasets. We experiment on two real-world trajectory datasets, i.e., GeoLife1 Zheng et al. (2010)
and Porto2 O’Connell et al. (2015), which are widely used by TRL studies Li et al. (2018); Yao et al.
(2019); Zhang et al. (2020); Yang et al. (2021; 2022); Yao et al. (2022); Jiang et al. (2023); Chang
et al. (2023); Chen et al. (2024); Zhou et al. (2025b). The proportions of training and testing data
are set to [0.8, 0.2] for both datasets. Following prior studies, we preprocess the GeoLife and Porto
datasets by retaining trajectories with 50 to 200 points for GeoLife (representing short trajectories)
and 200 to 300 points for Porto (representing long trajectories). The details of the two datasets are
shown in Table 7.

Table 7: Statistical information of the two datasets.

Trajs Number Points Number Min. Length Max. Length Avg. Length

GeoLife 4,769 526,640 50 200 109.81
Porto 8,839 2,114,447 200 300 239.22

Experimental Baselines. We evaluate the proposed Hyper2Edge against several prominent TRL
methods from recent years. For all baseline methods, we use the officially released code and default
parameters.

(i) Unsupervised methods: This classification does not employ distance metrics as supervised labels
for trajectory representation.

• t2vec Li et al. (2018): This method is based on the Seq2Seq model for trajectory simi-
larity, which optimizes the error between the representation vector of a trajectory and the
representation vector obtained when noise perturbation is added to the trajectory.

• CL-Tsim Deng et al. (2022): It leverages contrastive learning with point down-sampling
and distorting augmentations to learn consistent trajectory representations for efficient and
robust trajectory similarity computation.

1https://www.microsoft.com/en-us/download/details.aspx?id=52367
2https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-i

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• HHL-Traj Cao et al. (2024): It is a hypergraph hashing learning framework for encoding
trajectories, with the learning objective being that the first half of a trajectory can locate its
second half.

(ii) Supervised methods: This classification employs multiple distance metrics as supervised labels
for trajectory representation.

• NeuTraj Yao et al. (2019): A RNN-based model that contains spatial attention memory
units to model the correlation between trajectories in spatial proximity based on an attention
network and an external memory tensor.

• TrajGAT Yao et al. (2022): It uses a GAT-based transformer to capture long term dependen-
cies for GPS trajectory modeling using a deep learning approach that explicitly integrates
hierarchical spatial structures and transforms trajectories into graphs for trajectory encod-
ing.

• TrajCL Chang et al. (2023): This framework for trajectory similarity computation leverages
contrastive learning, centered on a dual self-attention encoder that integrates structural and
spatial features. It utilizes self-supervised pre-training followed by fine-tuning with multi-
metric supervision.

• SIMformer Chuang et al. (2024): This method is a single-layer vanilla transformer en-
coder trained with pairwise MSE loss and equipped with tailored representation similarity
functions, to accurately and efficiently approximate free-space trajectory similarities under
DTW, Hausdorff, and Fréchet distances.

Evaluation Metrics. In the top-k trajectory similarity search task, we evaluate performance using
Hit Rate (HR) and Recall (R), following Fang et al. (2022); Yao et al. (2019; 2022). Higher levels
of both metrics indicate more accurate results. Given query tokenized trajectories and their ground-
truth top-k neighbors based on Euclidean distance, HR measures the proportion of queries retrieving
at least one true neighbor within the top-k results (reported as HR@1, HR@5, HR@10), while R
measures the fraction of true top-k neighbors retrieved within the top-k′ results (reported as R1@5
and R5@10). Note, all retrievals are ranked by the Euclidean distances between learned trajectory
representations.

Implementation Details. We train Hyper2Edge using the Adam optimizer. The maximum number
of training epochs is set to 500, and we early stop training if the HR@5 on the training set did
not improve for 10 consecutive epochs. The learning rate was initialized to 0.0001 and reduced by
half every 3 epochs upon performance plateaus. In addition, we set the number of spatial tokens n
to 10000, the dimension of hidden layer d to 64, the number of top-k to 50, and the temperature
coefficients τ to 0.08 and 0.1 for GeoLife and Porto respectively. The experiments are conducted on
a machine with AMD EPYC 7K62 @2.60GHz CPU and one Nvidia A6000 GPU.

D.2 OVERALL PERFORMANCE (RQ1)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Performance of top-k trajectory similarity search on DTW distance.

Dataset Method Ref. HR@1 HR@5 HR@10 R1@5 R5@10

GeoLife

t2vec ICDE’18 13.85% 18.85% 23.34% 27.60% 28.65%
CL-Tsim CIKM’22 13.96% 21.96% 26.36% 32.29% 32.81%
HHL-Traj CIKM’24 0.42% 0.38% 0.60% 0.42% 0.60%

NeuTraj ICDE’19 6.46% 15.08% 18.67% 19.90% 22.00%
TrajGAT KDD’21 10.10% 19.10% 24.83% 28.23% 30.83%
TrajCL ICDE’23 2.34% 12.08% 18.77% 23.90% 28.85%

SIMformer VLDB’24 13.23% 18.04% 22.82% 30.42% 28.54%

Hyper2Edge Ours 18.96% 23.73% 29.02% 37.29% 35.94%

Porto

t2vec ICDE’18 5.66% 6.24% 6.25% 11.43% 8.33%
CL-Tsim CIKM’22 11.02% 15.20% 18.02% 28.31% 25.83%
HHL-Traj CIKM’24 0.00% 0.26% 0.55% 0.11% 0.52%

NeuTraj ICDE’19 4.24% 7.84% 9.66% 11.37% 11.93%
TrajGAT KDD’21 7.64% 11.05% 12.76% 17.14% 16.74%
TrajCL ICDE’23 0.17% 13.07% 17.81% 18.41% 25.54%

SIMformer VLDB’24 11.29% 13.33% 16.53% 21.73% 22.42%

Hyper2Edge Ours 13.86% 18.36% 19.93% 30.60% 26.27%

Table 9: Performance of top-k trajectory similarity search on ERP distance.

Dataset Method Ref. HR@1 HR@5 HR@10 R1@5 R5@10

GeoLife

t2vec ICDE’18 8.75% 9.79% 13.91% 14.90% 16.56%
CL-Tsim CIKM’22 9.90% 12.40% 16.22% 18.96% 19.75%
HHL-Traj CIKM’24 0.21% 0.25% 0.65% 0.31% 0.58%

NeuTraj ICDE’19 1.88% 5.35% 7.33% 7.29% 8.40%
TrajGAT KDD’21 8.65% 15.10% 19.98% 23.13% 24.52%
TrajCL ICDE’23 5.37% 8.96% 14.96% 18.42% 24.48%

SIMformer VLDB’24 8.13% 9.79% 13.06% 15.00% 15.75%

Hyper2Edge Ours 13.75% 19.73% 22.89% 31.77% 29.62%

Porto

t2vec ICDE’18 3.90% 5.15% 5.21% 8.26% 7.06%
CL-Tsim CIKM’22 9.71% 12.61% 15.59% 25.83% 19.56%
HHL-Traj CIKM’24 0.06% 0.33% 0.56% 0.17% 0.60%

NeuTraj ICDE’19 2.55% 4.66% 5.98% 6.56% 7.18%
TrajGAT KDD’21 9.11% 14.24% 17.05% 22.34% 22.22%
TrajCL ICDE’23 1.34% 9.56% 13.59% 14.70% 21.66%

SIMformer VLDB’24 7.46% 13.59% 15.78% 23.70% 19.99%

Hyper2Edge Ours 11.48% 16.61% 17.89% 27.55% 24.04%

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.3 CROSS-DISTANCE METRIC ROBUSTNESS STUDY (RQ2)

0 . 0 3 0

0 . 0 6 0

0 . 0 9 0

0 . 1 2 0

0 . 1 2 0 0 . 1 2 5 0 . 1 3 0 0 . 1 3 5

0 . 1 2 8
0 . 1 3 5

0 . 1 4 3
0 . 1 5 0

0 . 2 0 5
0 . 2 1 0

0 . 2 1 5
0 . 2 2 0

0 . 1 8 00 . 1 8 50 . 1 9 00 . 1 9 5

 S e l f - D i s t a n c e
 C r o s s - D i s t a n c e

R 5 @ 1 0

R 1 @ 5 H R @ 1 0

H R @ 5

H R @ 1

(a) Discret Fréchet.

0 . 1 3 7

0 . 1 3 8

0 . 1 3 9

0 . 1 4 0

0 . 1 2 6 0 . 1 6 8 0 . 2 1 0

0 . 1 5 2
0 . 1 9 0

0 . 2 2 8

0 . 2 4 0
0 . 2 8 0

0 . 3 2 0
0 . 3 6 0

0 . 2 0 70 . 2 7 60 . 3 4 5

 S e l f - D i s t a n c e
 C r o s s - D i s t a n c e

R 5 @ 1 0

R 1 @ 5 H R @ 1 0

H R @ 5

H R @ 1

(b) DTW.

0 . 0 3 5

0 . 0 7 0

0 . 1 0 5

0 . 1 4 0

0 . 0 5 5 0 . 1 1 0 0 . 1 6 5 0 . 2 2 0

0 . 1 2 8
0 . 1 6 0

0 . 1 9 2

0 . 1 7 7
0 . 2 3 6

0 . 2 9 5

0 . 1 4 70 . 1 9 60 . 2 4 5

 S e l f - D i s t a n c e
 C r o s s - D i s t a n c e

R 5 @ 1 0

R 1 @ 5 H R @ 1 0

H R @ 5

H R @ 1

(c) ERP.

Figure 7: Cross-distance metic robustness on Porto dataset.

D.4 ABLATION STUDY (RQ4)

w/o Order w/o Node-to-Edge w/o Edge-to-Node w/o Loss Hyper2Edge

0 . 2 9 0 5

0 . 3 2 7 2

0 . 2 9 0 7

0 . 3 4 8 4 0 . 3 4 9 2

0 . 2 8 0

0 . 3 2 0

0 . 3 6 0

(a) HR@10 on GeoLife.

0 . 3 2 9 2

0 . 4 1 3 5

0 . 3 3 0 2

0 . 4 2 1 3 0 . 4 2 7 1

0 . 3 1 6

0 . 3 9 5

0 . 4 7 4

(b) R1@5 on GeoLife.

0 . 3 6 0 2

0 . 4 0 8 3

0 . 3 5 5 4

0 . 4 3 2 1 0 . 4 3 4

0 . 3 6 0

0 . 4 0 0

0 . 4 4 0

(c) R5@10 on GeoLife.

0 . 1 3 7 6

0 . 2 7 8 3

0 . 1 3 4 7

0 . 2 5 7 9

0 . 2 9 7 8

0 . 1 5 0

0 . 2 2 5

0 . 3 0 0

(d) HR@10 on Porto.

0 . 1 7 7

0 . 3 9 9 3

0 . 1 5 6 1

0 . 3 7 4 4
0 . 4 1 4 6

0 . 2 0 0

0 . 3 0 0

0 . 4 0 0

(e) R1@5 on Porto.

0 . 1 7 1 8

0 . 3 5 5 2

0 . 1 6 9 9

0 . 3 2 9 1

0 . 3 7 4 5

0 . 1 8 0

0 . 2 7 0

0 . 3 6 0

(f) R5@10 on Porto.

Figure 8: Ablation results by removing components on HR@10, R1@5 and R5@10.

D.5 PARAMETER SENSITIVITY STUDY (RQ5)

1 0 0 0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0

0 . 1 5

0 . 3 0

0 . 4 5

0 . 1 6

0 . 3 2

0 . 4 8
 H R @ 1
 H R @ 5

(a) n.
8 1 6 3 2 6 4 1 2 8

0 . 0 8

0 . 1 6

0 . 2 4

0 . 1 1

0 . 2 2

0 . 3 3
 H R @ 1
 H R @ 5

(b) d.
0 . 1 0 . 1 2 0 . 1 4 0 . 1 6 0 . 1 8

0 . 1 5 5

0 . 1 8 6

0 . 2 1 7

0 . 2 4 0

0 . 2 6 0

0 . 2 8 0 H R @ 1
 H R @ 5

(c) τ .
5 1 0 5 0 1 0 0 1 5 0

0 . 1 8 2

0 . 1 9 4

0 . 2 0 6

0 . 2 1 8

0 . 2 4 0

0 . 2 5 6

0 . 2 7 2

0 . 2 8 8 H R @ 1
 H R @ 5

(d) Top-k.

Figure 9: Effect of different n, d, τ and Top-k on Porto. The y-axis represents hit rate and the x-axis
is the different hyper-parameter values.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.6 GENERALIZATION STUDY IN SPATIO-TEMPORAL CONTEXTS (RQ7)

Table 10: Generalization study in spatio-temporal contexts.

Dataset Spatial Distance Hyper2Edge HR@1 HR@5 HR@10 R1@5 R5@10

GeoLife

Euclidean
Only Spatial 23.54% 29.67% 35.53% 42.92% 44.25%

Spatio-temporal 18.54% 28.48% 34.52% 40.42% 42.23%
Difference 5.00% 1.19% 1.01% 2.50% 2.02%

DTW
Only Spatial 18.96% 23.73% 29.02% 37.29% 35.94%

Spatio-temporal 13.33% 23.04% 28.39% 34.58% 34.90%
Difference 5.63% 0.69% 0.64% 2.71% 1.04%

ERP
Only Spatial 13.75% 19.73% 22.89% 31.77% 29.62%

Spatio-temporal 8.96% 19.06% 22.61% 27.50% 29.25%
Difference 4.79% 0.67% 0.27% 4.27% 0.38%

Porto

Euclidean
Only Spatial 20.14% 27.18% 29.78% 41.46% 37.45%

Spatio-temporal 18.67% 26.20% 29.12% 39.14% 36.57%
Difference 1.47% 0.98% 0.66% 2.32% 0.88%

DTW
Only Spatial 13.86% 18.36% 19.93% 30.60% 26.27%

Spatio-temporal 12.50% 18.46% 20.12% 30.49% 26.74%
Difference 1.36% -0.10% -0.19% 0.11% -0.48%

ERP
Only Spatial 11.48% 16.61% 17.89% 27.55% 24.04%

Spatio-temporal 11.20% 16.17% 17.70% 27.26% 23.63%
Difference 0.28% 0.44% 0.19% 0.28% 0.41%

D.7 SCALABILITY STUDY (RQ8)

Table 11: Scalability study on Porto dataset.

Trajs Number HR@1 HR@5 HR@10 R1@5 R5@10

8839 20.14% 27.18% 29.78% 41.46% 37.45%
20k 19.35% 26.74% 28.71% 41.45% 37.18%

Table 12: Performance of top-k trajectory similarity search on large Porto dataset.

Method Ref. HR@1 HR@5 HR@10 R1@5 R5@10

t2vec ICDE’18 5.30% 5.58% 5.38% 10.88% 7.40%
CL-Tsim CIKM‘22 13.60% 17.87% 19.75% 30.45% 26.50%
HHL-Traj CIKM’24 0.00% 0.02% 0.10% 0.03% 0.07%

NeuTraj ICDE’19 3.25% 6.00% 7.60% 8.68% 9.10%
TrajGAT KDD’22 14.20% 19.47% 21.97% 31.40% 29.39%
TrajCL ICDE’23 OOM OOM OOM OOM OOM

SIMformer VLDB’24 10.03% 12.53% 13.81% 21.63% 17.62%

Hyper2Edge Ours 19.35% 26.74% 28.71% 41.45% 37.18%

19

	Introduction
	Preliminaries
	Methodology
	Hypergraph-Based Trajectory Modeling
	Hierarchical Trajectory Representation Learning
	Initial Embedding Generation Layer
	Bidirectional Trajectory Encoding Layer
	Trajectory Representation Decoding Layer

	Weighted Top-k InfoNCE Loss
	Complexity Analysis

	Experiment
	Experimental Settings
	Overall Performance (RQ1)
	In-depth Analysis

	Conclusion
	Related Work
	Differences from KGTS
	Complexity Analysis
	Experiment
	Experimental Settings
	Overall Performance (RQ1)
	Cross-Distance Metric Robustness Study (RQ2)
	Ablation Study (RQ4)
	Parameter Sensitivity Study (RQ5)
	Generalization Study in Spatio-temporal Contexts (RQ7)
	Scalability Study (RQ8)

