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ABSTRACT

Large language models (LLMs) have demonstrated impressive capabilities in a
wide range of downstream natural language processing tasks. Nevertheless, their
considerable sizes and memory demands hinder practical deployment, underscor-
ing the importance of developing efficient compression strategies. Singular value
decomposition (SVD) decomposes a matrix into orthogonal components, enabling
efficient low-rank approximation. This is particularly suitable for LLM compres-
sion, where weight matrices often exhibit significant redundancy. However, current
SVD-based methods neglect the residual matrix from truncation, resulting in sig-
nificant truncation loss. Additionally, compressing all layers of the model results in
severe error propagation. To overcome these limitations, we propose ERC-SVD, a
new post-training SVD-based LLM compression method from an error-controlled
perspective. Specifically, we leverage the residual matrix generated during the
truncation process to reduce truncation loss. Moreover, under a fixed overall com-
pression ratio, we selectively compress the last few layers of the model, which
mitigates error propagation and improves compressed model performance. Com-
prehensive evaluations on diverse LLM families and multiple benchmark datasets
indicate that ERC-SVD consistently achieves superior performance over existing
counterpart methods, demonstrating its practical effectiveness.

1 INTRODUCTION

Large language models (LLMs) have emerged as powerful tools, delivering state-of-the-art perfor-
mance across a wide range of tasks such as text generation, translation, and reasoning. The scaling
law (Kaplan et al., 2020) has driven a trend toward increasingly large models, exemplified by models
such as GPT (Brown et al., 2020), PaLM (Chowdhery et al., 2023), LLaMA (Touvron et al., 2023a),
Deepseek (Liu et al., 2024a), and Qwen (Yang et al., 2025), which often contain tens to hundreds of
billions of parameters. Despite their powerful capabilities, the enormous scale of LLMs poses serious
challenges for efficient deployment due to high computational demands (Sheng et al., 2023; Zhou
et al., 2024; Wang et al., 2024). This resource burden not only limits deployment on edge devices
and consumer-level hardware but also increases the cost and carbon footprint of serving LLMs in
production (Strubell et al., 2020; Patterson et al., 2022).

As the scale of LLMs continues to grow, compression techniques, including weight quantization (Fran-
taretal., 2022; Lin et al., 2024; Huang et al., 2024; Li et al., 2025b), network pruning (Ma et al., 2023;
Frantar & Alistarh, 2023; Sun et al., 2024; Gao et al., 2024), knowledge distillation (Gu et al., 2024;
Yang et al., 2024; Xu et al., 2024; Zhang et al., 2024), and low-rank decomposition (Hsu et al., 2022;
Kaushal et al., 2023; Yuan et al., 2023; Wang et al., 2025; Li et al., 2025a), have become increasingly
important for the practical deployment of LLMs in resource-constrained environments. The syntactic
and semantic correlations acquired during training often induce redundancy in LLM weight matrices,
giving rise to a low-rank structure (Saha et al., 2024). As a result, singular value decomposition
(SVD) provides a principled and effective approach for compressing these matrices with minimal loss.
In particular, post-training approaches are gaining traction, as they can significantly reduce memory
and compute requirements without the need for expensive retraining, making them especially suitable
for scaling up foundation models. Recent studies on post-training SVD-based LLM compression,
including ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2025), and AdaSVD (Li et al., 2025a),
have made significant progress in reducing model size while preserving performance, demonstrating
the effectiveness of low-rank approximation techniques in compressing LLMs. More precisely,
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while both ASVD and SVD-LLM apply weight matrix scaling before SVD truncation, SVD-LLM
outperforms ASVD by leveraging a data whitening technique that enables a direct mapping between
singular values and truncation loss. As a further advancement, AdaSVD compensates for truncation
loss by iteratively updating singular matrices. However, existing methods suffer from two major
limitations. First, existing methods ignore the importance of the residual matrix generated during
SVD truncation, leading to significant truncation loss. Second, compressing all model layers often
results in high layer-wise error and severe error propagation, as confirmed by our results in Figure 4.

In this work, we propose ERC-SVD, a new post-training SVD-based compression method for LLMs.
Building upon the two key observations outlined above, ERC-SVD introduces two core technical
innovations. @ Residual compensation for SVD truncation: The residual matrix produced during
SVD truncation can be effectively utilized to reduce the truncation loss. Specifically, we perform SVD
truncation in two stages: we first truncate the original weight matrix W to obtain its intermediate
low-rank approximation W,.,. After that, we compute the residual matrix R between W and W,...
Second, we apply SVD truncation to R, yielding R, . Finally, we construct the compressed weight

matrix W, = W, + R, , where the total rank satisfies ; + 7. = r. Detailed description is
provided in Section 3.1. @ Partial-layer compression for SVD: LLMs consist of a sequence of
consecutive layers, where the output of each layer serves as the input to the next. As a result, any
error introduced in earlier layers can propagate and accumulate through subsequent layers, leading to
severe degradation in performance. To mitigate this, we propose compressing only the last few layers
under a fixed overall compression ratio while keeping the earlier layers intact. This strategy ensures
that the earlier layers remain error-free, thereby reducing the impact of error propagation.

Our key contributions can be summarized as follows:

* We introduce residual compensation for SVD truncation, a theoretically grounded com-
pensation strategy. By leveraging the residual matrix generated during the SVD truncation,
our strategy significantly reduces the overall truncation loss.

* We propose partial-layer compression for SVD, which compresses only the last few layers
of the model under a fixed overall compression ratio. This strategy effectively reduces
layer-wise error and mitigates error propagation.

 Extensive experiments on multiple LLMs (LLaMA, OPT, Mistral, Vicuna, and Qwen) and
benchmark datasets (both language modeling and zero-shot reasoning) demonstrate that
ERC-SVD outperforms existing methods across a wide range of compression ratios.

2 RELATED WORK

2.1 TECHNIQUES FOR LARGE LANGUAGE MODEL COMPRESSION

The growing size of large language models (LLMs) has raised increasing concerns over their com-
putational and memory demands. To address these challenges, a variety of model compression
techniques have been proposed. Conventional approaches often require computationally expensive
retraining, which is generally impractical due to the substantial computational cost associated with
the massive size of LLMs. Consequently, recent efforts have shifted toward more resource-friendly
post-training compression techniques (Frantar et al., 2022; Frantar & Alistarh, 2023; Zhu et al., 2024).
Typically employed approaches include network pruning and weight quantization. And pruning
techniques can be classified into unstructured and structured methods. Unstructured pruning removes
individual weights based on importance scores. For example, SparseGPT (Frantar & Alistarh, 2023)
performs one-shot pruning using second-order approximations without retraining. However, since
unstructured pruning retains the original matrix shape, it offers limited inference acceleration and
requires specialized hardware. In contrast, structured pruning eliminates entire blocks or channels,
enabling compatibility with conventional hardware platforms. LLM-Pruner (Ma et al., 2023) groups
dependent linear projections into coupled structures, assigns each group a loss-aware importance
score, prunes the least important groups, and applies LoRA fine-tuning to restore performance. Addi-
tionally, ZipLM (Kurtic et al., 2023) prioritizes pruning components that yield the worst trade-off
between latency and loss, but this often causes notable performance degradation. Quantization
provides another mainstream solution. GPTQ (Frantar et al., 2022) gradually quantizes and updates
each weight using the Hessian matrix to minimize the quantization error. AWQ (Lin et al., 2024)
preserves important weight channels by selecting reparameterization coefficients via grid search.
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Figure 1: Framework of ERC-SVD. The last k layers are selected through partial-layer compression
and compressed using residual compensation with calibration data. The first (N — k) layers remain
intact, while the last k layers are replaced by low-rank approximations.

Furthermore, BiLLM (Huang et al., 2024) and ARB-LLM (Li et al., 2025b) push quantization to
the 1-bit level, while still delivering impressive accuracy across downstream tasks. However, these
techniques still cause significant performance degradation, especially at low bit-widths, due to the
lack of weight and activation adaptation.

2.2 SVD-BASED TECHNIQUES FOR COMPRESSING LLMSs

Singular value decomposition (SVD) is a commonly employed technique for reducing matrix dimen-
sionality by representing the original matrix as the product of two low-rank factor matrices. Recent
research has demonstrated the potential of SVD-based LLM compression methods, yet comprehen-
sive exploration remains limited. Hsu et al. (Hsu et al., 2022) propose FWSVD, incorporating Fisher
information to weight the importance of parameters. However, it relies on computationally intensive
training and was originally applied only to small language models (e.g., BERT (Devlin et al., 2019),
ALBERT (Lan et al., 2020)). LoRD (Kaushal et al., 2023) first applies SVD to LLMs by grouping
layers to improve efficiency. However, LoRD overlooks the importance of input activations. To
address this limitation, Yuan et al. (Yuan et al., 2023) introduce ASVD, which mitigates the impact of
activation outliers by reshaping the weight matrix based on activation distribution, thereby enhancing
the precision of the low-rank decomposition. CALDERA (Saha et al., 2024) exploits the inherent
low-rank structure of weight matrices by approximating them through a low-rank, low-precision
decomposition. Additionally, SVD-LLM (Wang et al., 2025) establishes a direct mapping between
singular values and truncation loss, which means that truncating the smallest singular values leads to
minimal truncation loss. Dobi-SVD (Qinsi et al., 2025) provides theoretical and empirical evidence
that truncating activations is more effective than truncating weights. More recently, AdaSVD (Li et al.,
2025a) proposes an adaptive compensation method, iteratively updating matrices during truncation.

Despite these advances, all existing methods ignore the residual matrix produced during SVD
truncation, which can significantly compensate for the SVD truncation loss. Moreover, compressing
only the last few layers of the model under a fixed target compression ratio can provide better
performance for compressed models. However, existing methods compress all layers, either apply a
uniform compression ratio across all layers or assign variable ratios based on layer-wise importance,
which often results in sub-optimal performance.

3 ERC-SVD

The framework of ERC-SVD is illustrated in Figure 1. We first perform SVD to compress the last
few layers of the model, while ensuring that the overall compression ratio is satisfied, and compute
the corresponding residual matrix. A second SVD is then applied to the residual matrix to obtain
its low-rank approximation. The two truncated matrices are subsequently combined to construct
the final compressed weight matrices. In Section 3.1, we first provide a detailed description of how
residual compensation effectively works. Subsequently, in Section 3.2, we explain the benefits
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Algorithm 1 Pseudocode of ERC-SVD

Input: Original LLM: M, weight matrix: W € R"*", number of model layers: N, residual
compensation rank r,., step: s

Output: Compressed LLM M’ by ERC-SVD

1: C'D < Randomly collect calibration samples from the dataset

2: Setw < M, Setyys < 0 > Initialize the sets of weight matrices

3: k, R; < PARTIAL-LAYER COMPRESSION(M, N, R,, s)

4: for Layer 7 in original LLM M do

5. ifi € [1, N — k) then

6.

7

8

Setw (i) < Setw (4) > Current weight matrices stay the same
else
: W, « Setw (¢) > Initialize weight matrices to compress
9: Setw (i) < RESIDUAL COMPENSATION(M, W, R;, r,)
10:  end if
11:  Setw < Setw~ (i) U Setyy - > Append weight matrices after operation
12: end for

13: M’ < UPDATE(M, CD, Setw)
14: return M’

of partial-layer compression in mitigating error propagation. The pseudocode of ERC-SVD is
shown in Algorithm 1, with the pseudocode for residual compensation and partial-layer compression
provided in Algorithm 2 and Algorithm 3, respectively.

3.1 RESIDUAL COMPENSATION FOR SVD TRUNCATION

Preliminaries for SVD. Typical SVD-based LLM compression methods apply SVD to the original
weight matrix W € R and discard the smallest singular values to obtain a compressed low-rank
approximation W.:

W=UxVT =~ U, 2, V' =W, ,r < min(m,n), (D)

where U,. € R™*" and V,T € R"*™ are composed of the top-r left and right singular vectors, respec-
tively, and 3, € R"*" is a diagonal matrix containing the corresponding singular values. Following
prior post-training SVD-based works (Yuan et al., 2023; Wang et al., 2025), the optimization objective
for SVD truncation in LLMs can be formulated as:

w, :argr{}l‘ngWXfWrXHF , 2)
L= WX -W. X[, =[|(W-W)X|, 3)

where X denotes the activation of W given an input, and £ is the truncation loss measured by
the Frobenius norm. Although previous works (Hsu et al., 2022; Yuan et al., 2023; Wang et al.,
2025) have made significant progress in minimizing £, they consistently overlook the residual matrix
generated, despite its potential to compensate for the loss introduced by low-rank approximation.

Based on Equation 3, minimizing the truncation loss reduces to minimizing the discrepancy between
the original weight matrix W and its low-rank approximation W.,.. Accordingly, we reformulate the
optimization objective as:

W, = argmin [W — W, | 4)

Explanation for Residual Compensation. Given the original weight matrix W € R”*" and the
layer compression ratio R;, the compression ratio in this work denotes the fraction of parameters
removed. We define the effective scale of the matrix as:

a = (m-n)/(m+mn), ®)

where m and n represent the input and output dimensions of the matrix, hence, the target rank for
each layer is r = (1 — R;) - . We introduce a residual compensation factor (3, a hyperparameter
fixed at 0.05 in all experiments. The target rank r is decomposed into two components: a residual
compensation rank r,., defined as v, = « - 3, and an intermediate rank r;, defined as r; = r — r..
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The entire compression process comprises two SVD truncation steps. First, we apply SVD to W and
retain the top-r; singular values to obtain an intermediate low-rank approximation:

The residual matrix is computed as the difference between the original matrix W and W,.:
R=W-W,. @)

We then perform a second SVD on R and retain its top-r, singular values: R, = U, 3, V,.:f.
Finally, we construct the compressed weight matrix by combining the two approximations:

W, =W, + R, =UX, VI =U,YV,. (8)

3.2 PARTIAL-LAYER COMPRESSION FOR SVD

Previous works (Hsu et al., 2022; Yuan et al., 2023; Wang et al., 2025; Li et al., 2025a) compress all
model layers even if they assign layer-specific ratios based on their relative importance, which often
leads to a high layer-wise error, resulting in noticeable degradation in the performance of compressed
models. We compare the layer-wise error of LLMs across four families with different layer selection
strategies; the results are shown in Figure 3. There is a significant error propagation across multiple
LLM families, where the error progressively accumulates layer by layer during the forward pass. This
phenomenon is particularly pronounced when compressing the first 8 layers. To satisfy the overall
compression ratio, a higher layer compression ratio (80% in this case) must be applied to these layers.
Compressing the model at such an early stage introduces substantial approximation errors, which are
then propagated through the remaining layers. Although the later layers are left uncompressed, the
forward pass carries the accumulated error through the network. Consequently, in all evaluated LLM
families, these early compressed layers exhibit the highest layer-wise error across model layers. In
contrast, when only compressing the last few layers, the earlier layers remain untouched with zero
error. Although the compression ratio for selected layers is relatively high, leading to slightly faster
error accumulation, the overall error remains significantly lower than that of compressing all layers.

Interestingly, we observe that although the final-layer error converges to a narrow range regardless
of how many of the last layers are compressed, the differences within this range still exhibit a
strong influence on model performance. As illustrated in the top figure of Figure 4, there is a strong
correlation between the final-layer error and the average zero-shot accuracy. Motivated by this
observation, we select the number of last layers to compress by minimizing the final-layer error, and
the layer compression ratio R; satisfies:

Ri=(N-R)/kke{l,2,.... N—1| R <1}, )

where N is the number of model layers, R, represents the overall compression ratio. As shown in
the bottom figure of Figure 4, compared to SVD-LLM (Wang et al., 2025), our strategy significantly
reduces layer-wise error across all model layers and mitigates error propagation.

4 EXPERIMENTS

4.1 SETUPS

Baselines. We compare our method against four baselines without re-training: conventional SVD,
ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2025), and AdaSVD (Li et al., 20252).

Models and Datasets. We evaluate ERC-SVD on ten models spanning five LLM families: LLaMA-
7B (Touvron et al., 2023a), LLaMA-13B (Touvron et al., 2023a), LLaMA-30B (Touvron et al.,
2023a), LLaMA-2-7B (Touvron et al., 2023b), LLaMA-2-13B (Touvron et al., 2023b), LLaMA-
3-8B (Grattafiori et al., 2024), OPT-6.7B (Zhang et al., 2022), OPT-13B (Zhang et al., 2022),
OPT-30B (Zhang et al., 2022), Mistral-7B (Jiang et al., 2023), Vicuna-7B (Chiang et al., 2023),
Qwen-3-8B Yang et al. (2025). For language modeling, we use three benchmark datasets: WikiText-
2 (Merity etal., 2017), PTB (Marcus et al., 1993), and C4 (Raffel et al., 2020). For zero-shot reasoning
and understanding, we evaluate on seven tasks within the LM-Evaluation-Harness framework:

"https://github.com/EleutherAI/lm-evaluation-harness
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Figure 3: Layer-wise error comparison between original model  Figure 4: (Top) Kendall correla-
and multiple LLM structures compressed by ERC-SVD with  tion. (Bottom) Layer-wise error
different layer selection strategies on WikiText-2. The overall comparison between ERC-SVD
compression ratio is 20%, and different layer selection strategies and SVD-LLM under 20% com-
strictly adhere to the overall compression ratio constraint. pression ratio.

OpenbookQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers
etal., 2019), PIQA (Bisk et al., 2020), MathQA (Amini et al., 2019), ARC_e and ARC_c (Clark et al.,
2023). Moreover, to demonstrate the generality and effectiveness of ERC-SVD, we further extend
our evaluation to vision-language models (VLMs), LLaVA (Liu et al., 2024b).

Implementation Details. To facilitate a fair comparison, we follow the protocols of ASVD, SVD-
LLM, and AdaSVD, randomly selecting 256 calibration samples with a sequence length of 2048
from WikiText-2. We then apply data whitening prior to performing SVD truncation. All results
are reproduced by re-running their respective open-source codebases, except for AdaSVD, whose
results are directly taken from the original paper due to the lack of released code. All methods are all
implemented with PyTorch” and Transformers® on NVIDIA A100 GPUs.

4.2 RESULTS

We evaluate the overall performance of ERC-SVD across four dimensions: @ Effectiveness under
different compression ratios (ranging from 20% to 60%), @ Generalizability across diverse
LLM families, ® Scalability to larger-scale models, and @ Performance on VLMs. In addition,
qualitative results, such as generated contents and case studies of VLMs, are provided in Table 15
and Appendix A.7, respectively, providing a more intuitive comparison.

Performance under different compression ratios. We evaluate the performance of LLaMA-
7B (Touvron et al., 2023a) and LLaMA-2-7B (Touvron et al., 2023b) compressed by ERC-SVD,
conventional SVD, and existing post-training baselines under compression ratios ranging from 20%
to 60% across ten benchmark datasets. The results for LLaMA-2-7B are presented in Table 1, while
those for LLaMA-7B are provided in Table 9. Across three language modeling datasets, WikiText-
2 (Merity et al., 2017), PTB (Marcus et al., 1993), and C4 (Raffel et al., 2020), ERC-SVD consistently
outperforms all baselines across most evaluated compression ratios, with only slight suboptimalities
observed in specific cases. In particular, on PTB and C4, the improvements are more pronounced,
suggesting that ERC-SVD exhibits stronger generalization capability. More importantly, we can
find significant improvements on PTB compared to the existing best-performing baseline SVD-
LLM (Wang et al., 2025), with the largest improvement being 75% and the smallest improvement
being 52%. In addition, on seven common sense reasoning datasets, ERC-SVD surpasses the existing

https://github.com/pytorch/pytorchandHuggingFace
Shttps://github.com/huggingface/transformers
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Table 1: Overall performance of LLaMA-2-7B (Touvron et al., 2023b) compressed by ERC-SVD and
baselines under 20% to 60% compression ratios (“RATIO”), including performance on three language
modeling datasets (measured by perplexity (J.)) and zero-shot performance on seven common sense
reasoning datasets (measured by individual and average accuracy (1)). The best results are marked in
bold. Blue and green arrows within parentheses highlight the relative improvement over the existing
second-best baseline. NaN denotes evaluation failure due to numerical instability. * refers to results
derived from the original paper. - means that results are not available.

RATIO | METHOD | WikiText-2} PTB| Cc4l | Openbt ARCef WinoG.t HellaSt ARCct PIQAT MathQAT  Averagef
| Original | 547 26.84 7.28 | 031 0.69 0.67 0.56 0.40 0.78 0.27 0.53
SVD 18208.79 59320.78 27131.56 0.14 0.26 0.49 0.25 0.22 0.52 0.20 0.30
20% ASVD 9.56 120.74 12.85 025 059 061 0.46 0.32 072 024 045
’ | SVD-LLM 8.37 139.68 20.18 0.23 0.50 0.59 0.39 0.26 0.65 0.23 0.41
| ERC-SVD | 7.63(19%) 4537 (162%) 1473() | 028 0.61 0.65 0.50 0.35 0.73 0.26 0.48 (17%)
SVD 30373.39 48930.94 36905.54 0.12 0.25 0.49 0.25 0.22 0.51 0.21 0.29
30% ASVD 984.03 NaN NaN 0.15 0.27 0.51 0.26 0.22 0.53 0.20 0.31
V7% | SVD-LLM 10.66 292.90 34.96 021 042 0.55 034 022 0.60 023 037
| ERC-SVD | 1032(J3%) 73.04(175%) 2328 (133%) | 023 0.51 0.62 0.42 0.29 0.68 0.24 0.43 (116%)
SVD 39524.00 68829.98 56518.95 0.13 0.26 0.50 0.25 0.21 0.52 0.18 0.29
ASVD NaN NaN NaN 0.15 0.25 0.50 0.26 0.22 0.52 0.18 0.30
40% | SVD-LLM 16.11 717.34 61.96 0.16 0.35 0.55 0.30 0.20 0.57 0.23 0.34
AdaSVD* 14.76 304.62 56.98 0.19 041 0.58 032 0.23 0.58 - R
| ERC-SVD | 14.17 (|4%) 13632 (155%) 43.19(124%) | 0.20 0.43 0.57 0.35 0.24 0.63 0.23 0.38 (112%)
SVD 53405.48 39023.05 58547.82 0.15 0.25 0.48 0.25 0.22 0.53 0.18 0.29
ASVD NaN NaN NaN 0.13 0.26 0.50 0.25 0.23 0.50 0.20 0.30
50% | SVD-LLM 27.19 1775.52 129.71 0.14 0.30 0.50 0.28 0.20 0.54 0.23 0.31
AdaSVD* 25.58 593.14 113.84 0.15 034 0.54 0.29 0.20 0.56 - R
| ERC-SVD | 24.26 (15%) 286.24 (152%) 100.34 (}12%) | 0.14 0.35 0.55 0.31 0.22 0.59 022 0.34 (110%)
SVD 65240.23 79002.21 70659.74 0.14 0.25 0.50 0.25 0.23 0.52 0.19 0.30
ASVD NaN 19581.17 NaN 0.15 0.25 0.50 0.25 0.23 0.52 0.12 0.29
60% | SVD-LLM 54.19 344274 263.02 0.14 0.26 0.50 027 0.20 0.53 021 030
AdaSVD* 60.08 2137.28 294.26 0.12 027 0.50 027 0.20 053 R R
| ERC-SVD | 58.88(-) 991.48 (154%) 25570 (|3%) | 0.13 0.29 0.52 0.28 0.21 0.55 0.22 0.31 (13%)

Performance on Multiple LLM fami-  Table 2: Perplexity (]) of different LLM structures un-

lies. To evaluate the generalization abil- der 30% compression ratio.
ity of ERC'SVD’ we apply 1t to fqur MODEL | METHOD | WikiText-2) PTB/ c4l
LLM:s from different families, including SVD 11606728 36760.50 163165.89
OPT-6.7B, LLaMA-2-7B, Mistral-7B, OPT-6.7B ASVD 2667 71.36 4451
d Vicuna-7B. As shown in Table 2, un- SvbIM 20 3149 =
an SO . ’ | ERCSVD | 17.10 (136%)  27.24(127%) 3840 (15%)
der 30% compression ratlo’ ERC_SVD SVD 30373.39 48930.94 36905.54
consistently outperforms all baselines LLaMA2.78 | _ASVD 984.03 NaN NaN
. SVD-LLM 10.66 292.90 34.96
on three language modeling benchmarks RN TR T T
across these diverse architectures. The - o . 2= -
S . SVD 59569.54 57830.63 78168.24
most significant relative improvement Mistral-7B ASVD 221.66 927.15 266.04
reaches 75% on LLaMA-2-7B. More- SVD-LLM 48.94 193.22 3633
over, the best overall improvement is | ERC-SVD | 14.09(171%) 10537 (145%)  30.72 (J46%)
. . . . D 24835.33 24510. 2 .
achieved on Mistral-7B, with perplexity S G OO o0 o383
reductions of 71% on WikiText-2, 45% reuna SVD-LLM 1242 104.27 3955

on PTB, and 46% on C4. We reproduce ERC-SVD | 1157(17%)  69.28(134%)  27.24(131%)

ASVD and SVD-LLM using their public .
codebases. While ASVD fails in certain Table 3: Perplexity (|) of larger-scale LLMs under 20%
compression ratio on PTB (Marcus et al., 1993).

cases due to numerical instability (de-

nOted as NaN in the table) ERC_SVD METHOD ‘ LLaMA-13B  LLaMA-30B ‘ LLaMA-2-13B ‘ OPT-13B  OPT-30B
: : : : SVD 1878.04 555.55 5464.57 1552.55 250.49

consistently maintains stable and reliable ASVD 1242 a6 ‘ 8100 ‘ % 3095

performance. More zero-shot accuracy SVD-LIM | 1217 2.10 88.13 1486 1294

results are provided in Table 13. ERC-SVD | 9.70 8.41 | 66.47 | 1322 12.89

best baseline on the majority of datasets, with an average accuracy gain of up to 16%, further
highlighting its robustness and overall effectiveness.

Performance on larger-scale LLMs. To examine the scalability of ERC-SVD, we evaluate its
performance on larger-scale LLMs from two representative families: LLaMA and OPT (13B and
30B). As presented in Table 3, ERC-SVD consistently achieves superior performance over existing
baselines under 20% compression ratio, demonstrating robust effectiveness across varying model
scales. More zero-shot accuracy results on these larger-scale LLMs are provided in Table 11.
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Table 4: Performance (measured by accuracy (1)) of original LLaVA-1.5-7B, and its 20% compressed
versions by SVD-LLM and ERC-SVD on VLM benchmarks. The best results are marked in bold.

COMPRESSION RATIO  METHOD ‘POPE—randomT POPE-popular?  POPE-adversial T TextVQAT ScienceQAT

Original | 88.2 87.3 85.1 58.17 70.15
0% SVD-LLM 82.5 83.2 77.8 30.68 49.54
° ERC-SVD | 90.2 (19%) 87.7 (15%) 83.1 (17%) 50.86 (166%)  69.54 (140%)

Table 5: Ablation results of REC and PLC on LLaMA-2-7B under 30% and 40% compression ratios.

RATIO | METHOD | REC PLC | C4| | Openbt ARCef WinoG.t HellaS.t ARCct PIQAT MathQAT  Average!

ASVD - | NaN | 015 0.27 0.51 0.26 022 053 0.20 031
SVD-LLM 3496 | 021 0.42 0.55 0.34 022 060 0.23 037

30% X 3068 | 022 042 0.58 0.35 023 06l 0.24 0.38
ERCSVD | X v |2477| 022 0.48 0.60 0.38 025 065 0.22 0.40

v | 2328 023 0.51 0.62 0.42 029 068 0.24 0.43

ASVD NaN | 015 0.25 0.50 0.26 022 052 0.18 0.30
SVD-LLM 6196 | 016 035 0.55 0.30 020 057 0.23 0.34

40% X | 5419 017 0.37 0.54 0.32 021 057 0.23 0.34
ERCSSVD | X v |4513| 018 0.40 0.55 033 024 06l 021 0.36

v | 4319 020 0.43 0.57 035 024 063 0.23 0.38

Performance on VLM. We compare the performance of LLaVA-1.5-7B (Liu et al., 2024b) com-
pressed using SVD-LLM (Wang et al., 2025) and ERC-SVD under 20% compression ratio. We
report results on several benchmarks: POPE (Li et al., 2023), TextVQA (Singh et al., 2019), and
ScienceQA (Lu et al., 2022). The results, shown in Table 4, indicate that ERC-SVD consistently
outperforms SVD-LLM across all benchmarks. Notably, it achieves substantial relative improvements,
66% on TextVQA and 40% on ScienceQA. Moreover, on the POPE-random and POPE-popular
subsets, the model compressed by ERC-SVD even surpasses the original LLaVA-1.5-7B.

4.3 ABLATION STUDY

We present several ablation studies to assess the robustness of ERC-SVD. @ Effectiveness of residual
compensation (REC) and partial-layer compression (PLC): We assess the individual contributions
of REC and PLC. @ Impact of residual compensation factor: We conduct experiments to examine
how the choice of 3 influences the performance. @ Impact of calibration data: We analyze the
effects of calibration dataset selection on compressed model performance.

Effectiveness of residual compensation and partial-layer compression. We present results on
C4 (Raffel et al., 2020) and seven zero-shot reasoning and understanding tasks, as shown in Table 5.
It can be observed that either applying REC or PLC alone has already improved performance.
Combining them leads to further improvements, making the performance gap even more significant.
Results of other compression ratios are presented in Table 12.

Impact of residual compensation factor. The residual compensation factor 3 is a hyperparameter
in this work. To examine its impact on model performance, we compress LLaMA-2-7B under 30%
compression ratio while varying the value of 3. The results in Table 6 show that the compressed
models achieve comparable performance across different 8 values, demonstrating the robustness of
our method with respect to this hyperparameter.

Table 6: Perplexity (|) and zero-shot individual and average accuracy (1) of LLaMA-2-7B 30%
compressed by ERC-SVD with different residual compensation factors ().

B ‘WikiText—ZJ, ‘ Openb.t ARC_ef WinoG.T HellaS.t ARC.ct PIQAT MathQAT Average!

0.025 10.38 0.23 0.51 0.62 0.41 0.28 0.67 0.23 0.42
0.050 10.32 0.23 0.51 0.62 0.42 0.29 0.68 0.24 0.43
0.075 10.11 0.22 0.49 0.61 0.39 0.28 0.66 0.23 0.41
0.010 10.46 0.23 0.47 0.60 0.38 0.26 0.66 0.23 0.40

Impact of calibration data. We assess the selection of calibration data from two perspectives:
both the number of calibration samples and the choice of calibration datasets. Figure 6 shows the
perplexity on WikiText-2 (Merity et al., 2017) and average zero-shot accuracy under 30% compression
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Table 7: Perplexity (|.) and zero-shot av- Table 8: Perplexity () of LLaMA-2-7B compressed by
erage accuracy (1) of LLaMA-2-7B 20% ERC-SVD and SVD-LLM, followed by quantization
compressed by ERC-SVD with different with GPTQ-8bit (Frantar et al., 2022). Blue arrows

calibration datasets. within parentheses highlight the relative improvement.
CALL DATA | WikiText-2) PTB C4) | Avg.?
WikiText-2 7.63 45.37 14.73 0.48 RATIO  METHOD  QUANTIZATION \ ‘WikiText-2 PTB| C4)
PTB 9.71 2943 1329 | 046 - Original GPTQ-8bit | 5.47 26.79 7.28
C4 9.44 37.67 1149 | 047 j0% SYD-LLM  GPTQ-8bit 10.67 336.30 34.93
Mix 10.13 36.53  13.13 | 045 “  ERC-SVD GPTQ-8bit 10.34 (13%)  79.05 (176%)  25.02 (128%)

s
.
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Figure 6: Impact of the number of calibration data samples Figure 7: Throughput of LLaMA-7B
on LLaMA-2-7B under 30% compression ratio. (Left) Per- and its 40% compressed versions. The
plexity ({). (Right) Average accuracy (7). sequence length is 32.

ratio. While performance slightly improves with more calibration samples, the gains are modest,
indicating that ERC-SVD remains robust even with limited calibration data. Moreover, the best results
are achieved when the calibration and evaluation datasets align, as shown in Table 7, suggesting
that domain consistency enhances compression quality. We further evaluate using a mixed dataset,
constructed by equally combining the three datasets, to examine its impact on model performance.

4.4 COMPATIBILITY WITH QUANTIZATION

SVD-based LLM compression methods and quantization are two orthogonal techniques. To demon-
strate that our method can be integrated with quantization, we adopt GPTQ (Frantar et al., 2022) to
quantize LLaMA-2-7B compressed by our method and SVD-LLM. As shown in Table 8, our method
integrates seamlessly with quantization, achieving superior performance compared to SVD-LLM.

4.5 EFFICIENCY RESULTS

ERC-SVD not only preserves competitive model performance but also achieves substantial inference
speedup on hardware. We evaluate the throughput of compressed models on an NVIDIA A100 GPU
and present the results in Figure 7. Models compressed by ERC-SVD consistently deliver faster
inference than the original model. Moreover, the speedup grows more pronounced as the batch size
grows, indicating that ERC-SVD scales more efficiently under larger workloads. These findings
highlight the practical effectiveness of ERC-SVD in enabling faster inference while maintaining
accuracy, making it well-suited for deployment in resource-constrained environments. Additionally,
Appendix A.6 provides further analysis on how ERC-SVD reduces computational complexity.

5 CONCLUSION

In this work, we propose ERC-SVD, a novel post-training SVD-based compression method for LLMs,
formulated from an error-controlled perspective. ERC-SVD effectively leverages the residual matrix
resulting from SVD truncation to reduce the truncation loss and enhance layer-wise reconstruction
accuracy. Furthermore, it selectively compresses only the last few layers of the model under a
fixed overall compression ratio, thereby significantly mitigating error propagation across the model.
Extensive experiments across various LLM families and benchmark datasets demonstrate that ERC-
SVD consistently outperforms existing SVD-based baselines under various settings. Results on VLM
further demonstrate its effectiveness. Moreover, ERC-SVD integrates seamlessly with quantization,
enabling further compression. These results highlight the effectiveness and generalizability of
ERC-SVD in enabling efficient LLM deployment.
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A APPENDIX

Here, we provide further details that are not discussed in the main paper and include extra experimental
results. The appendix is structured as follows:

A.l Pseudocode . . . . . . . . . e 14
A.2 Overall Performance of LLaMA-7B . . . . . ... ... .. ... ... . ... 14
A3 Additional Results . . . . . . . . . .. L 15
A.3.1 ResultsonLarger-scale LLMs . . . . .. ... ... ... ......... 15
A.3.2 Results on Multiple LLM Families . . . . . ... .. ... ......... 15
A.3.3 Additional AblationResults . . . . . .. ... o oo 16
A4 Comparison withPruning . . . . . . . ... ... . oL 16
A.5 Demonstration of Generated Contents . . . . . . . .. ... .. ... ... .. 16
A.6 Computation Complexity . . . . . . . . o o vt e e e e 17
A.7 ERC-SVD on Vision-Language Model . . . . . ... ... ... ... ...... 18
A.7.1 Performance of Image captioning . . . . . . ... ... ... ....... 18
A.7.2 Performance of Visual Question Answering . . . . . . ... ... ..... 18
A8 Statementof LLM Usage . . . . . . . . . . ... oot e 19

A.1 PSEUDOCODE

Algorithm 2 and Algorithm 3 present the pseudocode for residual compensation and partial-layer
compression, respectively. Algorithm 3 identifies the optimal number of last layers k to compress,
along with their corresponding layer compression ratio R;. Specifically, for a model with [V layers,
we iterate over candidate values of k" using a step size s and compute the associated R for each. For
each candidate configuration, we invoke Algorithm 2 to perform the compression, after which we
compute the final-layer error relative to the original model. The configuration yielding the lowest
final-layer error is selected as the optimal compression setting.

Algorithm 2 Pseudocode of Residual Compensation

Input: Original LLM: M, weight matrix: W, € R™*"™, layer compression ratio: R;, residual
compensation rank: 7,
Output: Compressed weight matrix set Setyy(4) of layer i

1: CD < Randomly collect calibration samples from the dataset
2: Setg + WHITENING(M, CD), Setw (i) + 0 > Initialize sets of weight matrices
Br=(0-=R)(m-n)/(m+n),ri=r—r > Calculate the intermediate rank
4: S; < Setg(i) > Extract whitening matrices of current weight matrices
5 Ujp,, Zirys VzTn — W, ., + SVD_TRUNC(W;S)) > SVD truncation on weight matrices
6: R; <+~ CAL_.RES(W;, W, ,.) > Calculate residual matrices
T Ui, By, VT «— R;, < SVD_TRUNC(R;) > SVD truncation on residual matrices
8: UZ,,T — MUL(Uz s A i )s VL & MUL(\/ 2 1, Vi’TTT) > Absorb singular values
9: U, + MUL(Uy,p,, Vir), Vi, MUL(\/Zir» VT
10: Ul e COMB(Uz s Ui U r.)s W o COMB(VZ s W i) > Combine weight matrices
Setw (i) < (UM, Vz,r) U Setyy (4) > Append decomposed weight matrices

11: return Setyy(¢)

A.2 OVERALL PERFORMANCE OF LLAMA-7B

The evaluation results of LLaMA-7B (Touvron et al. 2()734) are reported in Table 9. On the
three language modeling datasets, WikiText-2 (Muny et al., 2017), PTB (Marcus et al., 1993),
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Algorithm 3 Pseudocode of Partial-layer Compression

Input: Original LLM: M, number of model layers: IV, overall compression ratio: R,, step: s
Output: Number of layers to compress: k, layer compression ratio: R;
1: CD < Randomly collect calibration samples from the dataset
2: Setw +— M > Extract the set of weight matrices in M
3: Setyy <~ {K | k' =5,25,...,N — s} > Obtain candidate compressed layer numbers
4: Lowest_Err < 400
5: for each k' in Sety do

6: R« (N-R,)/K > Calculate corresponding layer compression ratio
7. if R} > 0 then
8: Mrpp <+ DEEP_.COPY(M)
9: fori € [N —k'+1,N] do
10: W, « Setw (4) > Initialize weight matrices to compress
11: Setw (i) < RESIDUAL COMPENSATION(M, W, R}, ;)
12: Replace weights of layer i in Mry,p with Setyy/(7)
13: end for
14: Err + CAL_ERROR(M, Mrprp, CD, Layer(N)) > Calculate the last layer output error
15: if Err < Lowest_Err then
16: Lowest_Err < Err > Search for the lowest layer-wise error
17: k+ K
18: R, + Ry
19: end if
20:  endif
21: end for

22: return k, R;

and C4 (Raffel et al., 2020), ERC-SVD consistently outperforms all baselines across evaluated
compression ratios. In particular, on PTB and C4, the improvements are more pronounced, suggesting
that ERC-SVD exhibits stronger generalization capability. More importantly, under a relatively high
compression ratio (e.g., 50%), ERC-SVD still achieves substantial perplexity reductions compared
to the existing best-performing baseline SVD-LLM (Wang et al., 2025): 7% on WikiText-2, 14%
on PTB, and 41% on C4. This demonstrates that ERC-SVD maintains an obvious performance
advantage even under aggressive compression. In addition, on seven common sense reasoning
datasets, ERC-SVD surpasses the existing best baseline on the majority of datasets, with an average
accuracy gain of up to 9%, and a minimum improvement of 3%.

A.3 ADDITIONAL RESULTS

In this section, we present additional results from three perspectives: Section A.3.1 reports zero-shot
accuracy on larger-scale LLMs, Section A.3.2 reports zero-shot accuracy across multiple LLM
families, and Section A.3.3 presents ablation results under compression ratios 50% and 60%.

A.3.1 RESULTS ON LARGER-SCALE LLMSs

In Table 11, we present zero-shot accuracy results for LLaMA-13B (Touvron et al., 2023a), LLaMA-
30B (Touvron et al., 2023a), LLaMA-2-13B (Touvron et al., 2023b), OPT-13B (Zhang et al., 2022),
and OPT-30B (Zhang et al., 2022). Across these evaluation datasets, ERC-SVD consistently outper-
forms SVD-LLM, with only one minor exception.

A.3.2 RESULTS ON MULTIPLE LLM FAMILIES

We also evaluate the zero-shot accuracy of OPT-6.7B (Zhang et al., 2022), Mistral-7B (Jiang et al.,
2023), and Vicuna-7B (Chiang et al., 2023). Results are shown in Table 13, and our method
consistently outperforms SVD-LLM across these diverse LLM architectures. In addition, we conduct
experiments on two recent LLMs: LLaMA-3-8B (Grattafiori et al., 2024) and Qwen-3-8B (Yang
et al., 2025), with perplexity and zero-shot accuracy results reported in Table 10. ERC-SVD also
demonstrates consistent improvements over SVD-LLM across these evaluation tasks.
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Table 9: Overall performance of LLaMA-7B compressed by ERC-SVD and baselines under 20%
to 60% compression ratios (“RATI10”), including performance on three language modeling datasets
(measured by perplexity (J)) and zero-shot performance on seven common sense reasoning datasets
(measured by individual and average accuracy (1)). The best results are marked in bold. Blue arrows
within parentheses highlight the relative improvement over the second-best method.

RATIO | METHOD | WikiText-2] PTB| cal | Openb.t ARCef WinoG.! HellaS1 ARC.cf PIQAT MathQAT  Average]
‘ Original ‘ 5.67 8.80 7.63 ‘ 0.28 0.67 0.67 0.56 0.38 0.78 0.27 0.52
SVD 20082.86 20338.96 1878420 0.14 027 051 026 021 053 021 030
20% ASVD 927 15.09 13.68 025 0.53 0.60 041 027 068 025 043
© | sVvD-LLM 7.89 16.54 15.92 023 0.56 0.62 042 029 069 023 043
| ERC-SVD | 747(15%) 1227(119%) 1222(111%) | 025 0.59 0.67 047 034 o071 025 047 (19%)
SVD 13155.97 17354.46 21012.91 0.13 026 051 025 021 054 021 030
0% ASVD 22298 586.79 148.79 0.15 032 053 030 021 059 021 033
“ | sVD-LLM 9.52 28.97 26.38 0.20 0.49 0.59 0.37 0.27 0.65 0.22 0.40
[ ERC-SVD | 952()  2031(130%) 1829(31%) | 023 054 0.63 0.41 030 067 023 043 (18%)
SVD 52326.99 50859.41 47643.04 0.15 025 051 025 021 052 020 030
0% ASVD 5262.11 8806.33 6522.61 0.14 026 0.49 026 022 053 0.20 030
° | svD-LLM 13.83 57.07 48.47 019 041 058 032 022 059 022 036
| ERC-SVD | 1292 (17%) 4693 (118%)  30.51(137%) | 0.19 0.44 0.60 0.35 027 0.62 024 039 (18%)
SVD 130388.72 86721.38 79853.46 0.16 026 049 025 022 052 0.18 030
So% ASVD 62726.86 117959.06 77773.84 0.13 025 048 025 022 053 021 0.30
© | SVD-LLM |  24.05 150.58 141.87 016 034 055 029 021 056 022 033
| ERC-SVD | 22.41(7%) 12880 (|14%) 8380 (141%) | 0.16 036 0.58 032 023 059 022 0.35(16%)
SVD 5232699 50859.41 47643.04 0.15 025 051 025 021 052 020 030
0% ASVD 16221.43 20119.36 1656139 0.13 026 0.50 025 023 053 0.18 030
| sVvD-LLM | 5320 378.19 31017 0.12 0.29 052 028 020 055 0.22 031
| ERC-SVD | 48.67 (19%) 32374 (|14%) 260.06 (|16%) | 0.14 030 0.53 0.28 021 055 021 032(13%)
Table 10: Performance of LLaMA-3-8B and Qwen-3-8B under 20% compression ratio.
MODEL | METHOD | WikiText-2| PTB] C4] | Openb.t ARCef WinoG.t HellaS.t ARCct PIQAT MathQAT  Averagef
| Original | 613 991 946 | 035 0.80 0.72 0.60 0.50 0.79 0.40 0.59
LLaMA-3-8B \ “gyp1im | 47.17 5104 8196 | 0.16 0.49 0.53 032 022 064 024 037
ERC-SVD 33.02 4518 5201 | 0.20 0.55 0.65 0.40 0.30 0.67 0.28 0.44
| Original | 9.71 1543 1552 | 031 0.83 0.68 0.57 0.56 0.77 0.49 0.60
Qwen-3-8B
SVD-LLM 37.52 4073 4725 | 020 0.50 0.55 035 0.24 0.64 0.22 039
ERC-SVD 3511 4277 4310 | 019 0.54 0.58 035 0.25 0.66 0.24 0.40

A.3.3 ADDITIONAL ABLATION RESULTS

The ablation results for LLaMA-2-7B (Touvron et al., 2023b) under 50% and 60% compression ratios
are presented in Table 12. A similar trend can also be observed here: incorporating both REC and
PLC leads to a substantial reduction in perplexity across all settings. Moreover, ERC-SVD continues
to outperform all existing baselines, further validating the effectiveness of these two components
under these compression ratios.

A.4 COMPARISON WITH PRUNING

Table 14 shows the performance of LLaMA-2-7B compressed by LLM-Pruner (Ma et al., 2023) and
ERC-SVD under different compression ratios on the WikiText-2 dataset. It can be observed that
ERC-SVD consistently outperforms the pruning method, achieving a perplexity of 58.88 under 60%
compression ratio, compared to 114.23 for LLM-Pruner.

A.5 DEMONSTRATION OF GENERATED CONTENTS

Table 15 shows the generation contents of models compressed by ERC-SVD compared to the
original model under zero-shot conditions. The results indicate that across various input questions,
compressed models consistently produce fluent, coherent, and highly relevant responses. Even at 40%
compression ratio, the compressed model can also deliver accurate and relevant answers to common
sense questions. These results highlight the effectiveness of ERC-SVD in achieving substantial
compression without compromising performance.
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Table 11: Zero-shot accuracy results across larger-scale LLMs under 20% compression ratio.

MODEL | METHOD | Openb.f ARCef WinoG.f ARCct
LLaMA.13g | SVD-LLM | 027 0.62 0.66 0.33
\ ERC-SVD \ 0.28 0.69 0.69 0.39
LLaMA.30p | SVD-LLM | 029 0.72 0.73 0.38
\ ERC-SVD \ 0.30 0.73 0.73 0.43
[LaMA.13 | SVD-LLM | 027 0.63 0.66 0.31
\ ERC-SVD \ 0.31 0.67 0.68 0.38
opLi3p | SVD-LLM | 024 0.62 0.64 0.30
| ERC-SVD | 0.2 0.63 0.65 0.30
opT308 | SVD-LLM | 029 0.67 0.65 0.33
| ERC-SVD | 028 0.68 0.67 0.34

Table 12: Ablation results of REC and PLC on LLaMA-2-7B (Touvron et al., 2023b) under 50% and
60% compression ratios.

RATIO | METHOD | REC PLC | C4, | Openb.t ARCef WinoG.t HellaS.t ARCct PIQAT MathQAT  Average!

ASVD ; T | NaN | 013 0.26 0.50 0.25 023 050 0.20 0.30
SVD-LLM - 12071 | 014 0.30 0.50 0.28 020 054 0.23 031

30% X | 12661 | 0.14 0.30 0.53 0.29 021 0.55 0.24 0.32
ERCSVD | x v~ | 11779 | 013 0.33 0.54 0.29 022 058 0.22 0.33

v | 10034 014 0.35 0.55 031 022 059 0.22 0.34

ASVD ; | NaN | 015 0.25 0.50 025 023 052 0.12 0.29
SVD-LLM - | 26302 | 014 0.26 0.50 027 020 053 021 0.30

60% X | 25638 | 0.3 0.26 0.49 0.27 020 053 0.23 0.30
ERC-SVD | X v | 26001 | 0.14 0.29 0.50 0.26 018 053 021 0.30

v | 25570 013 0.29 0.52 0.28 021 055 0.22 0.31

A.6 COMPUTATION COMPLEXITY

ERC-SVD decomposes the original weight matrix W € R™*"™ into two low-rank matrices: U, €

R™%" and V,, € R"*". The layer compression ratio R; is computed as R; = 1 — W Under
a fixed overall compression ratio R, the relationship between R; and R, is given by R; = %,

where [V is the total number of layers and k denotes the number of last layers to be compressed.

Given an input activation X € R™*™, the original output is computed as Y = W X. In the
compressed model layer, an intermediate state is first computed as I = V, X, followed byY = U,I.
The computational complexity of the original model is N - O(m?n). For the compressed model, the
first (N — k) layers remain uncompressed and retain a complexity of (N — k) - O(m?n), while the
compressed k layers incur a cost of k - O(m?r + rnm). Thus, the total complexity becomes:

(N — k) - O(m*n) + k- O(m?*r + rnm). (10)
And the rank 7 is given by:
. mn(l — R;) _ mn(k:—NRo). (1n)
m+n kE(m+n)

Substituting the expression for r into Equation 10, we obtain the simplified total complexity:

N(1- R,)-O(m*n)| (12)

Compared to the original computation complexity N - O(m?n). This indicates that the total compu-
tation cost is reduced proportionally to the overall compression ratio. For example, if R, = 40%, the
compressed model requires only 60% of the original computational cost.
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Table 14: Results on Wikitext-2
under different compression ratios
(“RATIO”) of LLaMA-2-7B.

Table 13: Zero-shot accuracy (1) for seven common sense
reasoning datasets on OPT-6.7B, Mistral-7B, and Vicuna-7B
under 30% compression ratio.

RATIO LLM-Pruner ERC-SVD

MODEL | METHOD | Openb.t ARCef WinoG.t HellaSt ARCct PIQAT MathQAT Averagel

opT67p | SYD-LLM | 027 040 049 033 022 0.50 0.20 034 20% 8.09 7.63
| ERC-SVD 022 0.56 0.61 0.40 025 0.69 0.24 0.42 30% 12.59 10.32

Mistral7p |_SYD-LLM | 0.13 044 053 030 020 062 020 034 40% 20.36 14.17
| ERC-SVD 0.4 0.46 058 033 022 0.63 024 0.37 . :

Vicuna7g | SYD-LLM | 022 0.50 0.56 0.35 0.26 0.63 0.21 0.39 50% 40.97 24.26
| ERC-SVD 023 051 0.60 0.39 030 0.67 022 0.42 60% 114.23 58.88

A.7 ERC-SVD ON VISION-LANGUAGE MODEL

In this section, we apply ERC-SVD to the language part of vision-language models (VLMs) such as
LLaVA (Liu et al., 2024b), and evaluate its performance on image captioning (Section A.7.1) and
visual question answering (Section A.7.2) tasks. All images used in these evaluations are selected
from the ImageNet (Deng et al., 2009) dataset.

A.7.1 PERFORMANCE OF IMAGE CAPTIONING

As shown in Figure 8, LLaVA-1.5-7B compressed with ERC-SVD under 20% compression ratio
is still able to produce image captions that are faithful to the visual content. This indicates that the
model retains its ability to interpret and describe images accurately, despite parameter reduction.

The image features a man pushing a cart filled with
& children, with four children sitting in the cart. He is
walking down a street, with cars nearby. One car
can be seen on the right side, and another car is
further away on the right. Another car is located
further behind the man, near the left edge of the
- image. The man appears to be taking care of his
s children by pushing the cart through the street.

The image features a beautiful beach with sand
and trees surrounding it. A tree stands near the
beach and appears to be growing near the water.
The tree's branches extend out over the beach,
adding to the scene's scenic charm. A pathway
leads to the beach, providing access to the sandy
shore. There are also some trees along the beach,
adding more visual interest to the scene.

The image features a sailboat sailing through a
body of water, possibly a lake. A person is sitting in
the boa ering it with the sail. The boat's sails
are white, indicating it's a sailboat. The boat's
presence in the water suggests that it's enjoying 2
calm day, with no storms or rough waters. In
addition to the boat, there are several small boats
floating in the water.

In this image, there is a wine botile sitting on a
table next to a number of wine glasses. The wine
bottle appears to be red, while the glasses are
white in color. The glasses are arranged around
the bottle, with some positioned closer to the bottle
and others further away. These glasses seem to be

o ready for wine to be poured into them, creating a

scene for wine consumption.

Figure 8: Image captioning results of LLaVA-1.5-7B compressed by ERC-SVD under 20% compres-
sion ratio. Captions that accurately describe the image content are highlighted in orange.

A.7.2 PERFORMANCE OF VISUAL QUESTION ANSWERING

Figure 9 presents the visual question answering results of LLaVA-1.5-7B compressed by ERC-SVD.
The model retains strong performance across these question types, indicating that its multi-modal
reasoning capability remains intact despite the compression.

Q: What should | do if | meet the shark in the ocean?

A: When encountering a shark in the ocean, swimming away
from it and avoiding close contact is crucial. Sharks are known
to be aggressive predators, and their presence can pose a
threat to humans. Swimming away from the shark while
maintaining distance and swimming at a faster speed can help
avoid being targeted. Additionally, ... wearing a safety cage or
wearing a protective suit can be helpful. Finally ...

Q: What is interesting about this image?

each wearing paint brushes. The teddy bears are placed next
| to a paint can, which suggests that they might be part of a

- IBR bears dressed in old clothes and painted to look like men,
: 3
WS

? v painting project. This unusual scene creates a unique
M combination of objects that deviates from the typical depiction

of teddy bears and paint brushes, adding a sense of creativity.

A: The image is interesting because it features two teddy [

Q: What are the things should be cautious while visiting?

A: When visiting the lighthouse located on a rocky beach, one
should be cautious about the rocky terrain and the rough sea
conditions. The rocky beach might be unstable and difficult to
navigate, while the rough sea may pose risks to swimming or
boating. Additionally, the lighthouse's location atop the rocks
may pose potential hazards if the lighthouse's structure is
fragile or weak. To avoid potential accidents ...

Q: What do you think | can do in this area?

A: In this area, you can watch TV, listen to music, and
possibly listen to the radio. The TV is located on a wooden
shelf, which also houses other items such as books, and there
is a potted plant next to it. A small wooden table nearby offers
a place to place other items. Additionally, there is a light in the
area that illuminates the room, making it suitable for sitting
and watching TV or listening to music. The presence ...

Figure 9: Visual question answering outputs generated by LLaVA-1.5-7B compressed using ERC-
SVD under 20% compression ratio. Questions (Q) and model answers (A) are provided, correct
answers are highlighted in orange to emphasize answer quality retention.
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Table 15: Generated contents of LLaMA-7B (Touvron et al., 2023a) compressed by ERC-SVD.

QUESTION

CoMP.
RATIO

‘ ANSWER

- The Al assistant is responsible for understanding the context and
taking appropriate action. The Al assistant is responsible for
understanding the intent, context, environment and taking appro-
priate actions. The Al assistant is responsible for interpreting.

20% The Al assistant should be responsible for providing an answer
to questions. This means that when asked a question, you should
do your best to answer it and not give any information other than

Whatis the responsibility of the Al what is requested. You should also consider the tone and intent.

assistant?

30% The AI Assistant’s job is to provide assistance to those who wish
for assistance in their lives. It has no duty or obligation to assist
those who do not desire assistance, nor does it have any duty to
prevent.

40% The Al assistant does not have a specific role. The Al assistant
will provide instructions to follow a path, and will give directions
as an instruction to follow the path.

- The Universe is everything that exists. It includes all space,
time, matter and energy. It also includes everything which has
happened or will happen. The universe began about 13.7 billion
years ago (the Big Bang) and will.

20% The universe is the whole of space and time. It consists of all
things in space and all things that happen, or have happened.
There are many theories on how it began; there were theories
What is the universe? Explain this that it had no beginning at all.

concept.

30% The universe consists of everything in it, including matter and
objects, space, the cosmos or outer space, and the galaxy system,
as well as other galaxies that make up the Universe. The universe
has its own life cycle.

40% In the universe, life is very diverse and complex. The universe
is made up of many different objects. These objects are divided
into groups. Each group consists of different objects that have
specific properties. This group contains the universe, which is
large.

- Fuel is the lifeblood of a car. Without it, there’s nothing to power
the pistons and no way to drive. A car needs a constant supply
of fuel.

20% The fuel in the tank is burned to produce heat, which produces
steam that drives a turbine, which turns a crankshaft. The
crankshaft turns the wheels of the car, propelling it forward.

Why do cars need fuel to run?
30% The fuel is the fuel in a car and it burns and goes up and up. It’s
important because it burns the gasoline, which makes it go faster.
It’s important because you can get energy out.

40% The fuel gives energy for the cars. The gasoline is used by a
motor, which produces heat and air, heating up the engine. This
allows the engines to travel faster, allowing them to reach higher
speed.

- The answer is because the body burns more calories when you
are exercising. You may not realize that the body uses up energy
to digest food and absorb nutrients from it.

20% Because the body is more efficient at converting food into energy

Why do people feel hungry after when inactive, so when active it needs to convert food into energy
exercise? faster. This is why people often get hungry after exercise.
The reason people feel hungry after an activity is because they

‘ 30%

burn energy and energy is metabolised in the body.

40% The reason the body is hungry after a long athletic activity was
discovered by scientists in 1976.

A.8 STATEMENT OF LLM USAGE

We utilized large language models to assist in refining the writing of this paper, including improve-
ments in grammar and clarity.
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