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Abstract

Denoiser models have become powerful tools for inverse problems, enabling
the use of pretrained networks to approximate the score of a smoothed prior
distribution. These models are often used in heuristic iterative schemes aimed at
solving Maximum a Posteriori (MAP) optimisation problems, where the proximal
operator of the negative log-prior plays a central role. In practice, this operator is
intractable, and practitioners plug in a pretrained denoiser as a surrogate—despite
the lack of general theoretical justification for this substitution. In this work, we
show that a simple algorithm, closely related to several used in practice, provably
converges to the proximal operator under a log-concavity assumption on the prior p.
We show that this algorithm can be interpreted as a gradient descent on smoothed
proximal objectives. Our analysis thus provides a theoretical foundation for a class
of empirically successful but previously heuristic methods.

1 Introduction

Inverse problems are ubiquitous in scientific and engineering fields involving image acquisition. In
many such problems, the object of interest is not directly observed but instead undergoes a degradation
process—such as blurring, downsampling, or noise corruption. The goal is to reverse this degradation
and recover the original image.

A classical approach formulates this task as an optimisation problem balancing two terms: a data
fidelity term, modelling the observation process, and a regularisation term, encoding prior knowledge
about the solution. Historically, regularisers such as total variation or wavelet sparsity were hand-
crafted [Mallat, 1999]. While effective to some extent, recent approaches often rely on data-driven
priors, using pretrained denoisers and generative models. In particular diffusion and flow-based
models offer powerful ways to learn the true image distribution p from large datasets.

This opens the door to principled formulations like Maximum a Posteriori (MAP) estimation:

arg min
x∈Rd

λf(x)− ln p(x), (MAP)

which corresponds to the posterior mode under the likelihood p(y | x) ∝ exp(−λf(x)) and prior
p(x). In practice, however, this optimisation problem is extremely challenging to solve: evaluating
the score −∇ ln p(x) is often intractable, the term − ln p(x) can be severely ill-conditioned, and
the data fidelity term f(x) is frequently not strongly convex. A wide range of methods have been
proposed to address these problems, and many of them perform remarkably well empirically. Yet,
these methods do not come with the guarantee of actually minimising the MAP objective, making
their success difficult to interpret.

A natural class of algorithms for addressing the MAP optimisation problem are proximal splitting
methods [see, e.g., Beck and Teboulle, 2009, Figueiredo et al., 2007, Combettes and Pesquet, 2011],
which are particularly effective when dealing with objectives that combine smooth and non-smooth

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



components. These methods alternate between two steps: one that follows the gradient of the data
fidelity term, and another that incorporates prior knowledge through what is known as a “proximal
update” — a correction step informed by the prior distribution.

However, for prior models relying on an unknown data distribution, this proximal update is extremely
difficult to compute exactly. To circumvent this, a popular line of work introduced by Venkatakrishnan
et al. [2013] known as Plug-and-Play (PnP) replaces the intractable proximal step with a pretrained
denoising neural network. PnP methods have shown excellent empirical performance in a wide range
of inverse problems. But despite their success, they come with a significant caveat: the denoiser is
not designed to match the proximal operator it replaces. As a result, the overall algorithm no longer
corresponds to solving the original MAP estimation problem, which limits its interpretability and
makes it hard to analyse theoretically unless strong constraints are imposed on the denoiser [Hurault
et al., 2022, Sun et al., 2021, Hertrich et al., 2021, Cohen et al., 2021].

More recently, a new wave of approaches has emerged which view inverse problems as a sampling
task, see [Delbracio and Milanfar, 2023, Chung et al., 2023, Boys et al., 2024] among others, moving
further away from traditional optimisation frameworks. One example is the Cold Diffusion [Bansal
et al., 2023] algorithm, which combines denoising steps with corruption steps towards the observed
data, with decreasing intensity. While this method often produces high-quality results in practice,
especially with a small number of steps, it also lacks strong convergence guarantees and may diverge
during extended runs with default parameters [Delbracio and Milanfar, 2023].

In this work, we revisit denoising-based iterative schemes from a theoretical perspective, focusing on
the case where the negative log-density p is log-concave and potentially ill-conditioned. Specifically,
we show that a simple algorithm originally proposed by Bansal et al. [2023] with appropriate step-
sizes converges to the proximal operator of the negative log-density, and we establish corresponding
convergence rates. Having a reliable approximation of the proximal operator enables its integration
into broader MAP estimation frameworks, akin to Plug-and-Play methods, but now supported by a
rigorous theoretical foundation.

Our contribution: establishing convergence rates for MAP estimation. In this work, for a
suitable choice of sequences of noise levels σk ≥ 0 and weights αk ∈ (0, 1), we consider the
following recursion to compute the proximal operator of − ln p at a point y ∈ Rd:

xk+1 = (1− αk)MMSEσk
(xk) + αky, (MMSE Averaging)

with MMSEσ(z) := E[X | X + σε = z],

where the expectation is taken over X ∼ p and ε ∼ N (0, Id) conditionally on X + σϵ = z. In
practice, the theoretical minimum mean square error denoiser MMSEσ can be approximated by a
neural network which has been trained to match the MMSE denoiser.

Each iterate in the recursion is a weighted average between a denoised version of the current point
and the original input y, echoing the structure of methods like Cold Diffusion [Bansal et al., 2023].
What makes this recursion striking is that, for appropriate choices of weights αk and vanishing noise
levels σk → 0, it can be rewritten (see Proposition 1)—via the Tweedie formula [Efron, 2011]—as:

xk+1 = xk − αk∇Fσk
(xk), with Fσk

(x) :=
1

2
∥y − x∥2 − τ ln pσk

(x),

where pσ denotes the convolution of the prior p with a Gaussian of variance σ2. Under this reinterpre-
tation, the recursion corresponds to gradient descent on a sequence of smoothed objectives (Fσk

)k
converging to the true proximal objective F (x) := 1

2∥y − x∥2 − τ ln p(x) whose minimiser is the
proximal point prox−τ ln p(y). This perspective enables a rigorous convergence analysis: as σk → 0,
each update more closely resembles a step on F , and the iterates can be shown to converge to its
minimiser.

We show that, under a log-concavity assumption on p and a bound on the third derivative of
− ln p, the iterates xk of the MMSE Averaging recursion converge to the true proximal point at
the following rate (see Theorem 1):∥∥xk − prox−τ ln p(y)

∥∥ ≤ Õ(1/k),

where Õ(·) hides logarithmic factors. Importantly, our convergence bound does not rely on the
L-smoothness constant of the negative log-prior − ln p, which could be arbitrarily large.
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This result provides theoretical grounding for algorithms that previously lacked a variational in-
terpretation, establishing a direct connection between heuristic denoising schemes and principled
optimisation algorithms. Crucially, it yields an explicit method to approximate the proximal operator
of the negative log-prior—a central building block in many optimisation frameworks for inverse
problems [Venkatakrishnan et al., 2013, Romano et al., 2017, Hurault et al., 2021]. Once available,
this proximal operator can be readily integrated into broader algorithms, such as proximal gradient
descent and its accelerated variants [Beck and Teboulle, 2009]. In Theorem 2, we demonstrate exactly
this by plugging our approximation into a proximal gradient method to solve the MAP problem.

The proof of convergence with explicit rates of the MMSE Averaging iterates towards the proximal
operator, while conceptually intuitive, requires a careful blend of inexact optimisation analysis
and tools from partial differential equations—most notably the heat equation—to control how the
minimiser of the smoothed objectives Fσ evolves with the noise level.

2 Related Works

Our work shares similar motivations with much of the literature on Plug-and-Play (PnP) methods for
inverse problems [Venkatakrishnan et al., 2013]. The PnP literature is vast, and for a particularly clear
and comprehensive overview, we refer the reader to the PhD thesis of Samuel Hurault [Hurault, 2023].
PnP methods replace the proximal operator prox−τ ln p(y) with a generic denoiser Dσ, typically
parameterised by the noise level σ. A wide variety of denoisers have been used, including classical
approaches [Dabov et al., 2007, Zoran and Weiss, 2011], CNN-based denoisers [Zhang et al., 2021,
Kamilov et al., 2023, Zhang et al., 2017] and, more recently, diffusion models [Graikos et al., 2022,
Zhu et al., 2023]. These methods are often combined with different optimisation schemes (e.g.,
PGD [Terris et al., 2020], ADMM [Romano et al., 2017], HQS [Zhang et al., 2017]) and adapted to
different specific inverse problems. Several works [Sreehari et al., 2016, Gavaskar and Chaudhury,
2020, Nair et al., 2021, Xu et al., 2020] show that a variety of PnP algorithms converge, however
they cannot guarantee that the denoiser is a proximal operator, let alone the proximal operator of the
correct functional. Furthermore the convergence proofs often rely on restrictive assumptions on the
denoising model [Reehorst and Schniter, 2018]. Indeed, the denoiser is usually trained [Zhang et al.,
2021, Meinhardt et al., 2017] to minimize the MSE and hence—under Gaussian noise assumptions—
converges to the MMSE estimator which can be very different from the MAP [Gribonval, 2011].

Gradient step (GS) denoisers [Cohen et al., 2021, Hurault et al., 2021] parameterize Dσ = I −∇gσ ,
where gσ is a neural network. It is then possible to show that Dσ is indeed the proximal operator of
an explicit functional [Hurault et al., 2022], but this function is unfortunately not the negative log
prior as desired. Similarly, Hauptmann et al. [2024] link linear denoisers to the proximal operator of
a regularization functional, which is however again not − ln p.

Two recent theoretical works share our concerns about existing PnP methods and strive to learn the
correct proximal operator: Fang et al. [2023] replace the usual MSE loss by a proximal matching
loss which is guaranteed in the limit to yield prox−τ ln p. Though elegant, they do not establish any
convergence rate, and their training procedure only approximates the desired limit without providing
a bound on the approximation error. Using an approach somewhat close to ours, Laumont et al.
[2023] introduce PnP-SGD, which performs stochastic gradient descent on a smoothed version of the
proximal objective Fσ . However, by keeping the smoothing parameter fixed (σk = σ), their method
only converges to the proximal operator of the smoothed density and the convergence rate depends
on the smoothness constant of Fσ, which can be arbitrarily large and lead to slow convergence as
explained in this work.

The second class of approaches which are receiving more and more attention in the context of
solving inverse problems are conditional diffusion methods. These algorithms are typically based on
modifying the smoothed prior score ∇ ln pσ(xσ)—obtained through a pretrained diffusion model—
into the posterior score∇ ln pσ(xσ | y). Coupled with sampling along the reverse diffusion SDE this
allows to generate samples from the desired probability distribution. Dhariwal and Nichol [2021]
propose to use a classifier to estimate∇ ln p(y | x), Jalal et al. [2021] approximate pσ(y | xσ) ≈ p(y |
x) obtained through the explicit likelihood term under Gaussian noise, the DPS algorithm [Chung
et al., 2023] approximates the mean of the smoothed log prior with the Tweedie formula and Boys
et al. [2024] additionally approximates the standard deviation. All such methods aim to sample from
the posterior distribution rather than identify its maximum. Moreover, they rely on approximations
that are difficult to control, offering no guarantees of sampling from the true posterior. Although
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asymptotic guarantees can be achieved with more sophisticated algorithms [Wu et al., 2023], these
methods are not designed to recover the MAP estimate.

Using flow matching, Zhang et al. [2024] approximate the MAP solution directly, without relying on
the proximal operator. Instead, they construct a trajectory that trades off between the prior and data
fidelity terms, but no convergence rates are given. Finally, Ben-Hamu et al. [2024] solve a similar
problem, but additionally need an expensive backpropagation step through an ODE at every step.

3 Main Result: Convergence Towards the Proximal Operator

We begin by showing that the MMSE Averaging recursion corresponds to gradient descent on a
sequence of smoothed approximations of the proximal objective F . We then show that these smoothed
objectives are significantly better conditioned than the original unsmoothed problem. Finally, we
prove convergence of the iterates and provide explicit convergence rates.

3.1 From MMSE Averaging to Gradient Descent on Smoothed Proximal Objectives

We can connect the recursion in MMSE Averaging to the negative log-prior − ln p by leveraging the
celebrated Tweedie identity (see for example Efron [2011]), which links the MMSE denoiser to the
gradient of the log-density of a smoothed version of the prior. Specifically, if pσ denotes the Gaussian
convolution of p with a centred Gaussian of variance σ2 (i.e. the density of X + σε), then:

MMSEσ(z) = z + σ2∇ ln pσ(z).

Plugging the above identity into the MMSE Averaging recursion allows expressing the iterate update
in terms of the score of the smoothed density pσk

, which already resembles a gradient descent update:

xk+1 = xk − αk

(
(xk − y)− (1− αk)

αk
σ2
k∇ ln pσk

(xk)

)
.

Rearranging the terms in the above expression naturally leads to the following simple observation:
Proposition 1. The MMSE Averaging recursion with choice of weights αk = 1/(k + 2) and noise
sequence σ2

k = τ/(k + 1) can be rewritten:

xk+1 = xk − αk∇Fσk
(xk), with Fσk

(x) :=
1

2
∥y − x∥2 − τ ln pσk

(x).

In this form, the recursion is naturally interpreted as a gradient descent algorithm applied to a
sequence of smoothed proximal objectives (Fσk

)k and with stepsizes (αk)k. This reformulation
not only enables a clean convergence analysis but also offers a new perspective on the MMSE
Averaging recursion: as σk → 0, one can hope that the iterates approach the minimiser of the original
(unsmoothed) proximal objective:

F (x) :=
1

2
∥y − x∥2 − τ ln p(x). (Proximal Objective)

Moreover, we argue that this smoothed approach leads to faster convergence than applying standard
gradient descent directly to the original, potentially badly conditioned Proximal Objective.

3.2 Good Conditioning Properties of Fσ

Compared to the original objective F , the function Fσ enjoys much better properties. In particular,
the next result shows that Fσ is Lσ-smooth, with smoothness controlled by the noise level σ.
Proposition 2. For any σ > 0, the function Fσ is Lσ-smooth, with

Lσ = 1 +
τ

σ2
.

The proof can be found in Appendix A and is a simple consequence of known results on the Hessian
of − ln pσ. This smoothing effect introduces a natural trade-off: for large σ, the objective Fσ

becomes easier to minimise thanks to an improved smoothness, but the minimiser of Fσ may deviate
significantly from that of the original problem. While this smoothness property holds for any density
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function p, obtaining convergence guarantees requires stronger assumptions. In particular, we will
focus on the case where p is log-concave and satisfies regularity conditions. Although this assumption
is clearly idealised and does not hold for many practical distributions, it offers a manageable setting
for theoretical analysis.
Assumption 1. The density p is log-concave, and strictly positive on Rd.

In particular, this ensures that − ln p is well-defined and convex over Rd, so that the Prox-
imal Objective function F is 1-strongly convex and admits a unique minimiser, denoted by
prox−τ ln p(y) := argminF . Furthermore, the stability of log-concavity under convolution (a
special case of the Prékopa–Leindler inequality, see [Saumard and Wellner, 2014, Proposition 3.5.])
ensures that − ln pσ is convex for all σ > 0, and hence that Fσ is 1-strongly convex. Along with
Proposition 2, this allows to quantify how much the smoothing improves the conditioning of the
objective in the following proposition.
Proposition 3. Under Assumption 1, for σ > 0, the function Fσ is Lσ-smooth and µσ-strongly
convex with Lσ = 1 + τ/σ2 and µσ = 1. The condition number of Fσ is therefore at most

κσ =
Lσ

µσ
=

(
1 +

τ

σ2

)
.

This result highlights a key benefit of the smoothed proximal objective: as σ increases the function
Fσ becomes significantly better conditioned, with the condition number κσ decreasing toward 1 as
σ →∞. For example, setting σ =

√
τ already yields a condition number of κ√

τ = 2.

Next, we impose an assumption on the third derivative of the log-prior, which is crucial in our analysis
for controlling the Lipschitz continuity of the map σ2 7→ argminFσ . Without such control, it would
be difficult to establish any meaningful convergence guarantees for the iterates of MMSE Averaging.
Assumption 2. The prior p is three times differentiable and the third derivative of ln p is bounded.
We denote by M ≥ 0 the quantity:

sup
x∈Rd

∥∥∇3 ln p(x)
∥∥
F
= M,

where for A ∈ Rd×d×d, ∥A∥F =
(∑

i,j,k A
2
ijk

)1/2
corresponds to the Frobenius norm.

This assumption controls how skewed and “non-quadratic” the log-prior is, and we make it in order
to control the stability of the minimisers prox−τ ln pσ

(y) := argminFσ as σ varies. Also note that
an upper bound on the third derivative does not imply an upper bound on the second one: indeed for
a Gaussian prior p, its negative log likelihood is a simple quadratic, which can have arbitrarily large
L-smoothness, while its third derivative is trivially 0.

3.3 Convergence of the MMSE Averaging Iterates Towards the Proximal Operator

Leveraging the upper bound on the condition number of the objectives (Fσ)σ≥0, we obtain the
following convergence result on the iterates xk of the MMSE Averaging recursion:
Theorem 1 (Convergence to the Proximal operator). Under Assumptions 1 and 2, let prox−τ ln p(y)
denote the unique solution of the Proximal Objective problem. Then, the MMSE Averaging iterates
with parameters αk = 1/(k + 2), σ2

k = τ/(k + 1) and initialised at x0 = y satisfy:

∥xk − prox−τ ln p(y)∥ ≤
(ln k) + 7

k + 1

[
∥y − prox−τ ln p(y)∥+ τ2M

√
d
]
.

Comparison with naive GD: illustration with a Gaussian prior. The most important part of our
result is that the convergence bound does not depend on the L-smoothness of − ln p, which could
be arbitrarily large. The convergence rate depends only on a bound on the third derivative of − ln p,
which may remain moderate even when the second derivative is large. This is unlike gradient descent
(GD) applied directly to the proximal objective F , whose rate scales poorly with the L-smoothness
of − ln p. We illustrate this with a toy yet instructive case of a Gaussian prior, for which the third
derivative of the log likelihood is trivially zero, yet the second derivative can be arbitrarily large. Let
p be the density of a d-dimensional Gaussian N (0, H−1), with H a positive definite matrix whose
smallest eigenvalue we arbitrarily consider to be µ = 1 and whose largest eigenvalue L≫ 1 can be
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arbitrarily large. In this setting the negative log-prior − ln p is a quadratic with Hessian H and F
is a quadratic too with Hessian equal to (I + τH). The corresponding smoothness constant of F is
therefore LF = 1+ τL, and the strong convexity constant is µF = 1+ τ . Since LF can be arbitrarily
large, gradient descent on F requires an arbitrarily small (and non-practical) step size α < 1/LF .
For α = 1/LF , the iterates satisfy the standard convergence bound:

∥xk − prox−τ ln p(y)∥ ≤
(
1− µF

LF

)k/2

∥y − prox−τ ln p(y)∥,

leading to an iteration complexity of L · log(1/ε) to reach ε-accuracy. From Theorem 1, since M = 0

the MMSE Averaging iteration converges much faster, with rate Õ(1/k) (i.e. iteration complexity
O(1/ε)), which is tight up to the log term (see Appendix A.3).

Parameter-free algorithm. A key practical advantage of our result is that it guarantees convergence
for a parameter-free choice of weights αk and noise levels σk. Specifically, these sequences depend
only on the chosen regularisation parameter τ and do not require any knowledge of smoothness or
Lipschitz constants, condition number, or other problem-specific properties of the prior distribution p.
This makes the algorithm particularly simple to use and eliminates the need for costly hyperparameter
tuning.

Sketch of proof. The proof (given in Appendix A.3) combines techniques for approximate gradient
optimization and a priori estimates on the solution to a partial differential equation. We begin by
applying the standard descent lemma to the smoothed objective Fσk

, which yields a contraction
towards its minimiser at a rate determined by the condition number κσk

which is controlled through
Proposition 3, guaranteeing consistent progress. However, because the minimiser of Fσk

changes
with σk, we must control how much it drifts over the iterations. To do this, we study the evolution of
the minimiser of Fσ as a function of σ by analysing the differential equation it satisfies. This is made
possible by the fact that pσ satisfies the heat equation. The resulting ODE for arg min Fσ involves
the quantity∇∆ ln pσ, which we are able to bound uniformly in σ by M

√
d by carefully analysing

the parabolic inequality satisfied by ∥∇3 ln pσ(x)∥F and using the bound from Assumption 2 for
σ = 0. Summing the incremental drift contributions and combining them with the contraction bound
yields the final convergence result toward the true proximal point.

Link with cold diffusion. There is a notable similarity between our algorithm and a heuristic
approach introduced in Bansal et al. [2023], which generates images by inverting a known degradation.
When the degradation operator is defined as a linear interpolation between the degraded image y
and the clean image x (as explained in Section 6.2 in Delbracio and Milanfar [2023]), cold diffusion
initialises at x0 = y and applies the following iteration for a fixed number of steps N :

xk+1 = (1− αk)Dθ(xk, k) + αky, with αk = 1− k

N

where Dθ is a trained denoiser, as for our recursion MMSE Averaging. However, note that the choice
αk := k/N differs from the schedule used in our theoretical analysis. While this empirical scheme
yields strong results for very small N , it lacks convergence guarantees and tends to diverge as the
number of iterations increases. We suspect that this instability may be due to the fact that the fixed
ratio k/N does not necessarily correspond to a well-behaved weighting policy.

Comparison with standard random smoothing techniques. The smoothing that appears through
− ln pσ differs significantly from classical random smoothing approaches (e.g., Nesterov and
Spokoiny [2017]). In standard random smoothing, the goal is to regularise a possibly non-
smooth function h by convolving it with a Gaussian, yielding a smooth approximation hσ(z) :=
Eε∼N (0,σ2I)[h(z + ε)]. This smoothed function hσ inherits favourable differentiability properties
that are well understood and can be leveraged in zeroth-order or gradient-based optimisation. In
contrast, our approach considers the logarithm of a smoothed function—specifically, − ln pσ , where
pσ is the Gaussian convolution of a density p. This subtle change has a major impact: the logarithm
does not commute with convolution, and the resulting function exhibits different analytic properties.
As a result, existing results from the standard random smoothing literature cannot be directly applied.
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Extension to priors supported on an affine subspace. Our analysis naturally extends to the case
where the prior distribution µ is supported on an affine subspace S ⊂ Rd of dimension r ≪ d,
representing a first step toward modelling the assumption that clean images lie on a low-dimensional
manifold within the ambient space. Indeed, assuming that the restriction of µ to S admits a positive
log-concave density p with respect to the r-dimensional Lebesgue measure on S, the smoothed
density pσ is then defined over Rd and can naturally be decomposed into a Gaussian term orthogonal
to S and a convolution restricted to S. Specifically, for any point z ∈ Rd, the smoothed density pσ(z)
factorizes into a Gaussian penalty for the distance of z to S, and the intrinsic smoothing of p along S.
Importantly, this decomposition allows us to express the third-order derivatives of ln pσ in terms of
derivatives intrinsic to S. As a result, Theorem 2 still holds but with ambient dimension d replaced
by the effective dimension r ≪ d. We formally prove this in Appendix A.4.

Extension when using approximate scores. In practice we do not have access to the exact∇ ln pσ
but only to an approximation of the score, often provided by a trained neural network gσ ≈ ∇ ln pσ . In
this more realistic case, the MMSE Averaging recursion becomes xk+1 = xk−αk(∇Fσk

(xk)+τξk)
where ξk := ∇ ln pσk

(xk) − gσk
(xk) denotes the approximation error at step k. Assuming that

these errors are uniformly bounded along the trajectory, i.e. ∥ξk∥ ≤ ξ, we can show that the iterates
converge to a point at distance O(ξ) from the true proximal point, with the same rate as in Theorem 1.
We refer to Appendix A.3 for the proof.

4 From Approximate Proximal Operators to MAP Estimation

We now return to the original MAP optimisation problem, recalled here:

arg min
x∈Rd

λf(x)− ln p(x).

We denote the objective by J(x) := λf(x)− ln p(x) and work under the following assumption on
the data fidelity term f :

Assumption 3. The data fidelity term f is convex, lower-bounded, and Lf -smooth.

This is a mild assumption that holds for many common data fidelity terms, such as f(x) = 1
2∥Ax−y∥2

which is Lf -smooth with Lf = 1/λmax(A
⊤A). Note that we do not require f to be strongly convex.

Under this assumption, we denote x⋆
MAP ∈ argminJ any minimiser of J .

Algorithm. When the proximal operator is accessible, minimising J can be achieved using proximal
gradient descent, starting from x(0) = y:

x(n+1) = prox−τ ln p(x
(n) − τλ∇f(x(n))). (PGD)

Under Assumptions 1 and 3, the classical result of Beck and Teboulle [2009] (see their Theorem 3.1)
guarantees that for a step size τ ≤ 1/(λLf ), the following convergence rate holds:

J(x(n))− J(x⋆
MAP) ≤

∥y − x⋆
MAP∥2

2τn
.

In our setting, however, we do not have direct access to the exact proximal operator prox−τ ln p.
Instead, we compute an approximate version using the MMSE Averaging recursion. Given a sequence
(kn)n≥1 specifying the number of internal iterations used to approximate each proximal step, this
leads naturally to an inexact proximal gradient descent algorithm.
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Algorithm 1 Approximate Proximal Gradient Descent (Approx PGD)
Require: Noisy image y, step size τ > 0, parameter λ > 0, number of inner steps (kn)n≥1

Initialise: x̂(0) ← y
for n = 0, 1, 2, . . . do

1. Data fidelity gradient descent step
z
(n+1)
0 ← x̂(n) − τλ∇f(x̂(n))

2. Approximate proximal step x̂(n+1) ≈ prox−τ ln p(z
(n+1)
0 )

for k = 0, . . . , kn+1 − 1 do
σk ←

√
τ

k+1

αk ← 1
k+2

z
(n+1)
k+1 ← (1− αk)MMSEσk

(z
(n+1)
k ) + αkz

(n+1)
0

end for
x̂(n+1) ← z

(n+1)
kn+1

end for

We prove the following convergence result for the approximate proximal gradient descent iterates
from Algorithm 1.

Theorem 2 (Convergence towards the MAP estimator with explicit bounds). For τ ≤ 1
λLf

and
a number of steps in the inner loop which increases as kn = ⌊c · n1+η⌋ for c, η > 0, under
Assumptions 1 to 3 the approximate proximal gradient descent iterates (x̂(n))n from Algorithm 1
satisfy:

1

n

n∑
i=1

J(x(i))− J(x⋆
MAP) ≤ O

(
1

n

)
and ∥x̂(n) − x(n)∥ ≤ Õ

(
1

n1+η

)
,

where x(n) := prox−τ ln p(x̂
(n−1)−τλ∇f(x̂(n−1))) denotes the exact proximal update at iteration n.

The constants hidden in the O(1/n) and Õ(1/n) terms depend explicitly on the problem parameters
and are given in detail in Appendix A.5.

Comment on the convergence bound. This result provides a meaningful convergence guarantee
in the context of MAP estimation. Since we do not assume strong convexity of f , it is more natural
to measure progress through convergence in function value rather than in the iterates themselves.
However, a direct bound on J(x̂(n))− J⋆ cannot be expected in general: because the iterates x̂(n)

are only approximate updates of the true proximal points x(n), even a small error between x̂(n) and
x(n) can result in a large discrepancy in objective value due to the potentially poor conditioning of J .
Instead, our analysis shows that the iterates x̂(n) are close to the exact proximal iterates x(n), whose
average MAP error is provably small. As a result, even though we cannot directly control J(x̂(n)),
we ensure that the iterates are close to the iterates x(n) which provably converge (in average) towards
the optimum.

Sketch of proof. We start from the classical descent inequality for proximal gradient updates. Since
we use approximate proximal steps x̂(n), we quantify the error ε(n) = x̂(n) − x(n) using Theorem 1
and bound its impact on the objective. Summing over iterations and controlling the errors yields the
O(1/n) rate for the objective. The second bound follows directly from the convergence of the inner
loop to the true proximal operator thanks to Theorem 1. Note that although our proof follows a similar
strategy to that of Schmidt et al. [2011], which analyses inexact proximal gradient methods, their
results do not directly apply here—because our approximation guarantee from Theorem 1 concern
the iterates and not the objective function values.

Finally, note that while we consider an approximate version of proximal gradient descent, one could
also analyse its accelerated counterpart, in the spirit of FISTA Beck and Teboulle [2009], which
would yield faster convergence rates under the same assumptions. We leave this direction for future
work.
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5 Numerical Visualisations

To better understand the effect of smoothing on the proximal objective—and how it influences the
gradient descent trajectory—we consider a simple two-dimensional example where the prior p is

a Gaussian distribution with a highly anisotropic covariance Σ =

(
1 0
0 1/L

)
for L ≫ 1. In this

setting, the density p(x1, x2) is sharply concentrated around the x1-axis and rapidly decays as soon
as x2 ̸= 0. The corresponding proximal objective F (x) = 1

2∥y − x∥2 − τ ln p(x) is then a quadratic
function with Hessian equal to

∇2F (x) = I + τΣ−1 =

(
1 + τ 0
0 1 + τL

)
.

As illustrated in Figure 2 this severe ill-conditioning leads gradient descent on F to stagnate, making
very little progress toward the true proximal point prox−τ ln p(y).

However, smoothing the prior leads to a significant change in behaviour. Since pσ corresponds to the
convolution of p with a Gaussian of variance σ2, it remains Gaussian with covariance Σσ = Σ+σ2I2.
The smoothed proximal objective Fσ(x) =

1
2∥y − x∥2 − τ ln pσ(x) is then also quadratic, but now

with Hessian

∇2Fσ(x) = I + τΣ−1
σ =

(
1 + τ/(1 + σ2) 0

0 1 + τL/(1 + Lσ2)

)
.

As σ increases, this Hessian interpolates between the poorly conditioned ∇2F and the well-
conditioned identity matrix I2. This transition is clearly visualised in Figure 1, which shows how
the level curves of Fσ become more isotropic as σ increases. However, while smoothing improves
conditioning, it also causes the minimiser prox−τ ln pσ

(y) = argminFσ to drift away from the solu-
tion prox−τ ln p(y) = argminF which we ultimately aim to recover (the red triangle in Figure 1).
This highlights the need for a decreasing schedule of σk within the recursion: to benefit from better
conditioning at early stages while still converging to the correct solution. This strategy leads to
significantly improved optimisation performance. As shown in Figure 2, gradient descent applied
to the sequence of smoothed objectives (Fσk

)k, using the step size and noise schedule specified in
Proposition 1, converges rapidly to the desired solution.

x1 axis

x
2

ax
is

σ = 0
y

prox−τ ln p(y)

prox−τ ln pσ(y)

x1 axis

x
2

ax
is

σ = τ/2

x1 axis

x
2

ax
is

σ = τ

Figure 1: Visualisation of the level curves of the smoothed proximal objective Fσ(x) =
1
2∥y−x∥2−

τ ln pσ(x) for different values of σ. The unsmoothed objective F is poorly conditioned (left plot),
but the conditioning improves significantly as σ increases.
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x1 axis

x
2

ax
is

GD on F

GD on (Fσk)k

GD on F

GD on (Fσk)k

100 101 102

Number of iterations k

10−2

10−1

100

‖xk − prox−τ ln p(y)‖

GD on F

GD on (Fσk)k

Figure 2: Illustration of the iterate trajectories (left plot) and convergence rates (right plot) of
naive gradient descent on F (which has condition number κ = 500) versus gradient descent on
the smoothed objectives (Fσk

)k, using a toy 2D Gaussian prior. Gradient descent on F , using a
stepsize α = 0.8/LF (chosen for better visualisation), suffers from poor conditioning and makes little
progress toward the optimal solution prox−τ ln p(y). In contrast, gradient descent on the smoothed
objectives (Fσk

)k converges rapidly, clearly exhibiting a O(1/k) rate.

6 Conclusion

In this work, we prove that the iterative denoising-based scheme MMSE Averaging converges to
the proximal operator of the negative log-prior − ln p, a central component in MAP estimation for
inverse problems. We show that, under suitable choices of averaging weights αk and noise levels σk,
the algorithm can be interpreted as gradient descent on a sequence of smoothed proximal objectives.
Leveraging this perspective, we prove that the iterates converge to the true proximal point at a rate of
Õ(1/k), under the assumption that the prior p is log-concave and has bounded third derivatives.

This result offers a principled foundation for a class of denoising-based schemes and connects them
to classical optimisation theory. Importantly, it provides an explicit way to approximate the proximal
operator of − ln p, enabling the use of standard proximal methods to solve the MAP problem. We
demonstrate this by incorporating our approximation into proximal gradient descent and deriving
convergence guarantees for the resulting algorithm.

Despite these advances, our theoretical guarantees rely on strong assumptions — most notably that
the prior is log-concave, sufficiently smooth, and supported on all of Rd. Extending the analysis to
more realistic settings, such as non-convex priors or those supported on low-dimensional manifolds,
is an exciting direction for future work.
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Organisation of the appendix.

1. In Appendix A, we provide the proofs of Proposition 2 and Theorems 1 and 2. We also show
that Theorem 1 is tight in the case of Gaussian priors, and extend it to priors supported on a
low-dimensional affine subspace, and provide a convergence guarantee in the more realistic
setting where we do not have access to the true score function but only to an approximation.

2. In Appendix B, we provide several lemmas which enable to control σ 7→ x⋆
σ .

A Proofs of Proposition 2 and Theorems 1 and 2

A.1 Preliminary results

We start by the following proposition establishing that − ln pσ is convex and 1
σ2 -smooth.

Proposition 4. Fix σ > 0. Under Assumption 1, x 7→ − ln pσ(x) is convex with a Hessian satisfying:

−∇2 ln pσ(z) =
1

σ2

[
Id −

1

σ2
Var(ε|X + σε = z)

]
⪯ 1

σ2
Id.

Proof. The convexity of x 7→ − ln pσ(x) follows directly by the classical fact that a convolution
of log-concave densities with a Gaussian is still log-concave (see [Saumard and Wellner, 2014,
Proposition 3.5]). The fact that the Hessian is upper-bounded by 1

σ2 Id is a direct consequence of
an identity which can be seen as a "second order Tweedie formula" (e.g. Lemma A.1 in Gribonval
[2011] or in Lee and Vázquez [2003] equation 5.8.):

−∇2 ln pσ(z) =
1

σ2

[
Id −

1

σ2
Var(ε|X + σε = z)

]
⪯ 1

σ2
Id,

where ε denotes a standard d-dimensional Gaussian random variable (ε ∼ N (0, Id)) and the matrix
inequality is due to the positiveness of the covariance matrix. For completeness we give the proof of
the second order Tweedie identity. From the standard Tweedie identity (see, e.g. Efron [2011]) we
have that:

−∇ ln pσ(z) =
z − E

[
X|X + σε = z

]
σ2

=
1

σ2

∫
Rd

(z − x)p(x|z)dx

=
1

σ2

∫
Rd

(z − x)
ϕσ(∥z − x∥)p(x)∫

Rd ϕσ(∥z − x′∥)p(x′)dx′ dx,

where ϕσ(z) = exp(− z2

2σ2 ). Notice that ϕ′
σ(z) = − z

σ2ϕσ(z). We can now compute the Hessian
of − ln pσ , letting Xσ = X + σε:

−∇2 ln pσ(z) =
1

σ2

(
Id −

1

σ2

∫
Rd

(z − x)⊗2p(x|z)dx+
1

σ2

[ ∫
Rd

(z − x)p(x|z)dx
]⊗2

)
=

1

σ2

(
Id −

1

σ2

(
E[(Xσ −X)⊗2|Xσ = z]− E[Xσ −X|Xσ = z]⊗2]

))
=

1

σ2

(
Id −

1

σ2
Var(ε|Xσ = z)

)
,

which concludes the proof.

Now, we recall and prove Proposition 2, which is a direct consequence of Proposition 4.
Proposition 2. For any σ > 0, the function Fσ is Lσ-smooth, with

Lσ = 1 +
τ

σ2
.

Proof. The result directly follows from Proposition 4 which implies that − ln pσ is 1/σ2-smooth, so
that Fσ is Lσ-smooth with Lσ = 1 + τ

σ2 .
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A.2 Analysis of the MMSE Averaging iterates

We start by recalling our main result Theorem 1, which provides a convergence rate towards the
proximal operator of the MMSE Averaging recursion.

Theorem 1 (Convergence to the Proximal operator). Under Assumptions 1 and 2, let prox−τ ln p(y)
denote the unique solution of the Proximal Objective problem. Then, the MMSE Averaging iterates
with parameters αk = 1/(k + 2), σ2

k = τ/(k + 1) and initialised at x0 = y satisfy:

∥xk − prox−τ ln p(y)∥ ≤
(ln k) + 7

k + 1

[
∥y − prox−τ ln p(y)∥+ τ2M

√
d
]
.

Proof. From Proposition 3, we are guaranteed that Fσk
is strongly convex and smooth with

µσk
= 1, Lσk

= 1 +
τ

σ2
k

= k + 2, κσk
= k + 2.

To avoid heavy notations, we denote x⋆
σk

:= prox−τ ln pσk
(y) = arg min Fσk

as well as x⋆ :=

prox−τ ln p(y) = arg min F , note that these quantities are well defined and unique by the strong
convexity of Fσk

and F .

Recall that due to Proposition 1, one step of the MMSE Averaging recursion can be seen as one
step of gradient descent on Fσk

with stepsize αk = 1
k+2 , which exactly corresponds to αk = 1/Lσk

.
Hence, at iteration k, a standard convex optimisation result (see Theorem 2.1.15 in Nesterov [2013])
guarantees the contraction:

∥xk+1 − x⋆
σk
∥ ≤

(
1− 2

µσk

µσk
+ Lσk

)1/2

∥xk − x⋆
σk
∥

=
(κσk

− 1

κσk
+ 1

)1/2

∥xk − x⋆
σk
∥

=
(k + 1

k + 3

)1/2

∥xk − x⋆
σk
∥ (1)

We now use the triangle inequality to write:

∥xk+1 − x⋆
σk
∥ ≤

(k + 1

k + 3

)1/2(
∥xk − x⋆

σk−1
∥+ ∥x⋆

σk−1
− x⋆

σk
∥
)
. (2)

And we clearly see that we need to be able to control the regularity of σ 7→ x⋆
σ. This is done in

Proposition 9, where we show that x⋆
σ is Lip schitz in σ2:

∥x⋆
σ1
− x⋆

σ2
∥2 ≤ C(σ2

1 − σ2
2),

for σ2 ≤ σ1 ≤
√
τ and where C := 1

τ ∥x⋆ − y∥+ τM
√
d. Since σk ≤

√
τ , we can use this bound

and insert it in inequality (2) to get:

∥xk+1 − x⋆
σk
∥ ≤

(k + 1

k + 3

)1/2(
∥xk − x⋆

σk−1
∥+ (σ2

k−1 − σ2
k) · C

)
.

It remains to unroll the inequality until k = 1, and using the fact that Πk
i=j

(
i+1
i+3

)
= (j+1)(j+2)

(k+2)(k+3) :

∥xk+1 − x⋆
σk
∥ ≤

√
6√

(k + 2)(k + 3)
∥x1 − x⋆

σ0
∥+

k∑
j=1

√
(j + 1)(j + 2)

(k + 2)(k + 3)
(σ2

j−1 − σ2
j )C.

And from inequality (1) we have that ∥x1 − x⋆
σ0
∥ ≤ 1√

3
∥x0 − x⋆

σ0
∥. Since x0 = y, this leads to:

∥xk+1 − x⋆
σk
∥ ≤

√
2√

(k + 2)(k + 3)
∥y − x⋆

σ0
∥+

k∑
j=1

√
(j + 1)(j + 2)

(k + 2)(k + 3)
(σ2

j−1 − σ2
j )C.
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Now since σ2
k = τ

k+1 , we have that (σ2
j−1 − σ2

j ) =
τ

j(j+1) , hence for k ≥ 1:

∥xk+1 − x⋆
σk
∥ ≤

√
2√

(k + 2)(k + 3)
∥y − x⋆

σ0
∥+

k∑
j=1

√
(j + 1)(j + 2)

(k + 2)(k + 3)

τC

j(j + 1)

≤
√
2

k + 2
∥y − x⋆

σ0
∥+ τC

k + 2

k∑
j=1

j + 2

j(j + 1)

And we can simply bound:

k∑
j=1

j + 2

j(j + 1)
=

k∑
j=1

(1
j
+

1

j
− 1

j + 1

)
≤ 1 +

k∑
j=1

1

j
≤ 2 + ln(k),

Therefore

∥xk+1 − x⋆
σk
∥ ≤

√
2

k + 2
∥y − x⋆

σ0
∥+ (2 + ln(k))τC

k + 2
.

Now using the triangular inequality ∥xk+1 − x⋆∥ ≤ ∥xk+1 − x⋆
σk
∥ + ∥x⋆

σk
− x⋆∥ and using

Proposition 9 which bounds ∥x⋆
σk
− x⋆∥ ≤ σ2

kC we get that:

∥xk+1 − x⋆∥ ≤
√
2

k + 2
∥y − x⋆

σ0
∥+ (2 + ln(k))τC

k + 2
+

τC

k + 1
.

And using the triangular inequality again:

∥y − x⋆
σ0
∥ ≤ ∥y − x⋆∥+ ∥x⋆ − x⋆

σ0
∥

≤ ∥y − x⋆∥+ σ2
0C

= ∥y − x⋆∥+ τC,

where the second inequality is due to Proposition 9. Therefore:

∥xk+1 − x⋆∥ ≤
√
2∥y − x⋆∥
k + 2

+
(ln k) + 2 +

√
2

k + 1
τC,

≤
√
2∥y − x⋆∥
k + 1

+
(ln k) + 4

k + 1
τC.

Plugging the definition of C = 1
τ ∥x⋆ − y∥+ τM

√
d we can finally write:

∥xk+1 − x⋆∥ ≤ (ln k) + 7

k + 1

(
∥x⋆ − y∥+ τ2M

√
d
)
,

which concludes the proof.

This next proposition proves the tightness of Theorem 1 (up to constants and the log-term) in the case
of Gaussian prior. Here we assume that p is the density of a d-dimensional Gaussian N (µ,Σ), with
Σ a positive definite matrix. Without loss of generality, we can assume that the Gaussian is centered:
i.e., µ = 0.

Proposition 5 (Exact convergence rate for Gaussian priors.). Under the assumption that the prior p
is a d-dimensional centered Gaussian N (0,Σ), then we have that the MMSE Averaging recursion
with αk = 1/(k + 2), σ2

k = τ/(k + 1) initialised at x0 = y satisfies the identity:

xk − prox−τ ln p(y) =
y − prox−τ ln p(y)

k + 1
.

Proof. In this setting, the negative log-prior − ln p is a quadratic with Hessian H = Σ−1, and F is a
quadratic:

F (x) =
1

2
∥y − x∥2 + τ

2
x⊤Σ−1x.
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Its minimiser is given by:

x⋆ := prox−τ ln p(y) = (I + τΣ−1)−1y.

And since pσ ∼ N (0,Σ+ σ2Id), the smoothed objective writes:

Fσk
(x) =

1

2
∥y − x∥2 + τ

2
x⊤(Σ + σ2

kId)
−1x,

and its gradient is:
∇Fσk

(x) = x− y + τ(Σ + σ2
kId)

−1x.

We now prove the result by induction. For k = 0, we have x0 = y and the base case trivially holds.

Inductive step: The inductive hypothesis provides that:

xk = x⋆ +
1

k + 1
(y − x⋆).

Using the identity x⋆ = (I + τΣ−1)−1y, we have:

y − x⋆ = τΣ−1x⋆ ⇒ xk = x⋆ +
τ

k + 1
Σ−1x⋆.

Then,

(Σ + σ2
kId)

−1xk = (Σ + τ
k+1Id)

−1
(
I + τ

k+1Σ
−1

)
x⋆ = Σ−1x⋆ =

y − x⋆

τ
,

so that:

∇Fσk
(xk) = xk − y + (y − x⋆) = x⋆ − y +

1

k + 1
(y − x⋆) + (y − x⋆) =

y − x⋆

k + 1

Now from Proposition 1, the update writes:

xk+1 = xk −
1

k + 2
∇Fσk

(xk)

= x⋆ +
y − x⋆

k + 1
− y − x⋆

(k + 1)(k + 2)

= x⋆ +
(y − x⋆)

k + 2
.

This completes the inductive step, and hence the proof.

A.3 Extension when using approximate scores

In practice, when using a trained denoiser, we do not have access to the exact score∇ ln pσ , but only
to an approximation gσ ≈ ∇ ln pσ . In this more realistic case, the update rule becomes:

xk+1 = xk − αk

(
xk − y − τgσk

(xk)
)

where we use the approximation gσ instead of the true score −∇ ln pσ . This recursion rewrites

xk+1 = xk − αk(∇Fσk
(xk) + τξk) (Noisy recursion)

where ξk := ∇ ln pσk
(xk) − gσk

(xk) denotes the approximation error at step k. Assuming that
these errors are uniformly bounded along the trajectory, i.e. ∥ξk∥ ≤ ξ, we can show that the iterates
converge to a point at distance O(ξ) from the true proximal point, with the same rate as in Theorem 1.

Proposition 6 (Convergence with approximate scores). Under Assumptions 1 and 2, let prox−τ ln p(y)
denote the unique solution of the Proximal Objective problem. If the score approximation errors
satisfy ∥ξk∥ ≤ ξ for all k, then the Noisy recursion iterates with parameters αk = 1/(k + 2),
σ2
k = τ/(k + 1) and initialised at x0 = y satisfy:

∥xk − prox−τ ln p(y)∥ ≤
(ln k) + 7

k + 1

[
∥y − prox−τ ln p(y)∥+ τ2M

√
d
]
+

√
3
2τξ.
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Proof. To avoid heavy notations, we denote x⋆
σk

:= prox−τ ln pσk
(y) = arg min Fσk

as well as
x⋆ := prox−τ ln p(y) = arg min F , note that these quantities are well defined and unique by the
strong convexity of Fσk

and F .

Let x̃k+1 := xk − αk∇Fσk
(xk) be the noiseless step. Following the exact same arguments as in the

proof of Theorem 1, we get the single–step contraction

∥x̃k+1 − x⋆
σk
∥ ≤

(k + 1

k + 3

)1/2
∥xk − x⋆

σk
∥.

Since xk+1 = x̃k+1 − αkτξk, the triangle inequality leads to:

∥xk+1 − x⋆
σk
∥ ≤

(k + 1

k + 3

)1/2

∥xk − x⋆
σk
∥+ τ

k + 2
∥ξk∥. (3)

Next, as in the noiseless case, we decompose as:

∥xk − x⋆
σk
∥ ≤ ∥xk − x⋆

σk−1
∥+ ∥x⋆

σk−1
− x⋆

σk
∥ ≤ ∥xk − x⋆

σk−1
∥+ C(σ2

k−1 − σ2
k),

with C = 1
τ ∥x⋆ − y∥+ τM

√
d and σ2

k−1 − σ2
k = τ

k(k+1) . Plugging this into the previous inequality
and unrolling from j = 1 to k gives

∥xk+1 − x⋆
σk
∥ ≤

√
6√

(k + 2)(k + 3)
∥x1 − x⋆

σ0
∥+

k∑
j=1

√
(j + 1)(j + 2)

(k + 2)(k + 3)
(σ2

j−1 − σ2
j )C

+

k∑
j=1

√
(j + 2)(j + 3)

(k + 2)(k + 3)

τ

j + 2
∥ξj∥.

From inequality (3) with k = 0, we have that ∥x1 − x⋆
σ0
∥ ≤ 1√

3
∥x0 − x⋆

σ0
∥+ τ

2∥ξ0∥. Since x0 = y,
we get:

∥xk+1 − x⋆
σk
∥ ≤

√
2√

(k + 2)(k + 3)
∥y − x⋆

σ0
∥+

k∑
j=1

√
(j + 1)(j + 2)

(k + 2)(k + 3)
(σ2

j−1 − σ2
j )C

+

k∑
j=0

√
(j + 2)(j + 3)

(k + 2)(k + 3)

τ

j + 2
∥ξj∥.

The second sum is bounded exactly as in the noiseless case:

k∑
j=1

√
(j + 1)(j + 2)

(k + 2)(k + 3)

τC

j(j + 1)
≤ (2 + ln k) τC

k + 2
.

For the noise sum, using ∥ξj∥ ≤ ξ and
√

(j+2)(j+3)
(k+2)(k+3)

1
j+2 ≤

√
3/2√

(k+2)(k+3)
, we obtain

k∑
j=0

√
(j + 2)(j + 3)

(k + 2)(k + 3)

τ

j + 2
∥ξj∥ ≤

√
3/2(k + 1)τξ√
(k + 2)(k + 3)

≤
√

3
2τξ.

Putting things together, exactly as in the proof of Theorem 1, we obtain for all k ≥ 1:

∥xk+1 − x⋆∥ ≤ (ln k) + 7

k + 1

(
∥x⋆ − y∥+ τ2M

√
d
)
+
√

3
2τξ.

Thus, the iterates converge to an O(ξ) neighbourhood of prox−τ ln p(y) with the same O(1/k) rate
as in the noiseless case.
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A.4 Extension to distributions supported on affine subspaces of Rd

In this subsection we prove that Theorem 1 can naturally be extended to the case where the prior
distribution is supported on an affine subspace of dimension r ≪ d, in which case the dimension d
which appears in the upperbound reduces to the effective dimension r. Formally, we assume that the
clean images x are drawn from a probability distribution µ on Rd satisfying the following:
Assumption 4. There exists an affine subspace S ⊂ Rd of dimension r ≤ d such that the probability
distribution µ ∈ P(Rd) satisfies:

• µ is supported on S: µ(Rd \ S) = 0. Moreover, the restriction of µ to S admits a density
p : S → R+ with respect to the r-dimensional Lebesgue measure on S. By abuse of notation,
we extend p to Rd by setting p(x) = 0 for x ∈ Rd \ S.

• p(x) > 0 for all x ∈ S.

• p is log-concave.

Let ϕσ(x) = exp
(
−∥x∥2

2σ2

)
denote the Gaussian kernel on Rd of variance σ2, now let Cσ :=

(2πσ2)1/2 such that
∫
Rd ϕσ(x) = Cd

σ. The smoothed density function pσ : Rd → R+ then writes,
for all z ∈ Rd:

pσ(z) =
1

Cd
σ

∫
Rd

ϕσ(z − x) dµ(x)

=
1

Cd
σ

∫
S

p(x)ϕσ(z − x) dx.

For z ∈ Rd, let z⊥ denote the orthogonal projection of z on S. Using orthogonality, notice that:

pσ(z) =
ϕσ(z − z⊥)

Cd−r
σ

· 1

Cr
σ

∫
S

p(x)ϕσ(z⊥ − x)dx.

Therefore, for z ∈ S, letting p̃σ(z) :=
1
Cp

σ

∫
S
p(x)ϕσ(z − x)dx denote the convolution of p with the

Gaussian kernel over S, we get that

− ln pσ(z) =
∥z − z⊥∥22

2σ2
− ln p̃σ(z⊥) + (d− r) lnCσ.

And importantly:
−∇∆ ln pσ(z) = −∇S∆S ln p̃σ(z⊥),

where the∇S and ∆S denote the intrinsic gradients and Laplacians on S.

Therefore using Lemma 5 for p̃σ we have the following upper bound:
sup
z∈Rd

∥∇∆ ln pσ(z)∥ = sup
z⊥∈S

∥∇S∆S ln p̃σ(z⊥)∥

≤ √r sup
z⊥∈S

∥∇3
S ln p(z⊥)∥.

From this point onward, the proof of Theorem 1 carries through, with the ambient dimension d
replaced by the effective dimension r.

A.5 Analysis of the approximate PGD Algorithm 1

We now restate and prove the convergence of the approximate PGD algorithm towards the MAP
estimator. The following is a restatement of Theorem 2 with explicit constants.
Theorem 3 (Convergence towards the MAP estimator with explicit bounds). For τ ≤ 1

λLf
and a

number of steps in the inner loop which increases as kn = ⌊c · n1+η⌋ for c, η > 0, the approximate
proximal gradient descent iterates (x̂(n))n from Algorithm 1 satisfy:

1

n

n∑
i=1

J(x(i))− J(x⋆
MAP) ≤

1

2τn

(
∥y − x⋆

MAP∥2 +
∞∑
i=1

∥εi∥2 + 2Rη,c

∞∑
i=1

∥εi∥
)

∥x̂(n) − x(n)∥ ≤ (1 + η) ln(n) + ln(c) + 7

c · n1+η
·Rη,c,
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where x(n) := prox−τ ln p(x̂
(n−1) − τλ∇f(x̂(n−1)) corresponds to the true proximal mapping, and

where the quantities Rη,c,
∑∞

i=1 ∥εi∥ and
∑∞

i=1 ∥εi∥2 are explicitly upper bounded in Lemma 1.

For, e.g., η = 1 and c = 10, the bounds become:

1

n

n∑
i=1

J(x(i))− J⋆ ≲
1

τk

(
300 · ∥y − x⋆

MAP∥2 + 600 ·
(
τλ∥∇f(x⋆

MAP)∥+ τ2M
√
d
))

∥x̂(n) − x(n)∥ ≲ 2 ln(n) + 10

n2
·
(
6 · ∥y − x⋆

MAP∥2 + 12 ·
(
τλ∥∇f(x⋆

MAP)∥+ τ2M
√
d
))

.

Proof. For τ ≤ 1
λLf

, the classic inequality after one step of the true proximal descent x(n+1) :=

prox−τ ln p(x̂
(n) − τλ∇f(x̂(n))) provides that (see, e.g. equation 3.6 in Beck and Teboulle [2009]):

J(x(n+1))− J⋆ ≤ 1

2τ
(∥x̂(n) − x⋆

MAP∥2 − ∥x(n+1) − x⋆
MAP∥2). (4)

Now for n ≥ 1, let εn := x̂(n) − x(n) correspond to approximation error which can be quantified
using Theorem 1. Letting J⋆ := J(x⋆

MAP), for n ≥ 1, inequality (4) can be expanded as:

J(x(n+1))− J⋆ ≤ 1

2τ

(
∥x(n) − x⋆

MAP∥2 − ∥x(n+1) − x⋆
MAP∥2 + ∥x̂(n) − x(n)∥2 + 2⟨x̂(n) − x(n), x(n) − x⋆

MAP⟩
)

≤ 1

2τ

(
∥x(n) − x⋆

MAP∥2 − ∥x(n+1) − x⋆
MAP∥2 + ∥εn∥2 + 2∥εn∥ · ∥x(n) − x⋆

MAP∥
)

≤ 1

2τ

(
∥x(n) − x⋆

MAP∥2 − ∥x(n+1) − x⋆
MAP∥2 + ∥εn∥2 + 2Rη,c∥εn∥

)
,

where the second inequality is due to the Cauchy-Schwarz inequality, and the bound ∥x(n)−x⋆
MAP∥ ≤

Rη,c is due to Lemma 1. It remains to sum this inequality from i = 1 to n− 1 and add inequality 4
with n = 0 to get:

n∑
i=1

(J(x(i))− J⋆) ≤ 1

2τ

(
∥x̂0 − x⋆

MAP∥2 − ∥x(n) − x⋆
MAP∥2 +

n−1∑
i=1

∥εi∥2 + 2Rη,c

n−1∑
i=1

∥εi∥
)

≤ 1

2τ

(
∥y − x⋆

MAP∥2 +
∞∑
i=1

∥εi∥2 + 2Rη,c

∞∑
i=1

∥εi∥
)

where the second inequality is due to Lemma 1. Diving by n leads to the first result. The second
comes from the fact that ∥εn∥ = ∥x̂(n) − x(n)∥ for which the upper bound is given in Lemma 1.

The following lemma provides a bound on this approximation error at each step, along with bounds
on other useful quantities.
Lemma 1. For τ ≤ 1

λLf
and a number of steps in the inner loop which increases as kn =

⌊c · n1+η⌋ for c, η > 0, let (x̂(n))n denote the approximate proximal gradient descent iterates
from Algorithm 1 and let εn := x̂(n) − x(n) denote the approximation error at iteration n, where
x(n) := prox−τ ln p(x̂

(n−1) − τλ∇f(x̂(n−1))) is the true proximal point. Then it holds that:

∥x(n) − x⋆
MAP∥ ≤ Rη,c, ∥εn∥ ≤

(1 + η) ln(n) + ln(c) + 7

c · n1+η
·Rη,c,

∞∑
n=1

∥εn∥ ≤ Sη,c ·Rη,c,

∞∑
n=1

∥εn∥2 ≤ Tη,c ·R2
η,c.

where
Rη,c := Bη,c + τλ∥∇f(x⋆

MAP)∥+ τ2M
√
d

Bη,σ := exp(2Sη,c)
[
∥y − x⋆

MAP∥+ Sη,c ·
(
τλ∥∇f(x⋆

MAP)∥+ τ2M
√
d
)]

Sη,c :=
1 + η

cη2
(
1 + η · (ln(c) + 7)

)
Tη,c :=

4(1 + η)2

c2(2η + 1)3
+

2(ln(c) + 7)2

c2

(
1 +

1

2η + 1

)
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For, e.g., η = 1, c = 10, these quantities simply become:

Rη,c ≈ Bη,σ ≈ 60 · ∥y − x⋆
MAP∥+ 120 ·

(
τλ∥∇f(x⋆

MAP)∥+ τ2M
√
d
)

Sη,c ≈ Tη,c ≈ 2

Proof. From inequality (4), for n ≥ 1 we have that:

∥x(n) − x⋆
MAP∥ ≤ ∥x̂(n−1) − x⋆

MAP∥ (5)

≤ ∥x̂(n−1) − x(n−1)∥+ ∥x(n−1) − x⋆
MAP∥

= ∥εn−1∥+ ∥x(n−1) − x⋆
MAP∥.

Furthermore, from Theorem 1, since c · n1+η − 1 ≤ kn ≤ c · n1+η , we get for n ≥ 1:

∥εn∥ := ∥x̂(n) − x(n)∥ ≤ (ln kn) + 7

kn + 1

[
∥x̂(n−1) − τλ∇f(x̂(n−1))− x(n)∥+ τ2M

√
d
]

≤ (1 + η) ln(n) + ln(c) + 7

c · n1+η

[
∥x(n) − (Id − τλ∇f)(x̂(n−1))∥+ τ2M

√
d
]
.

(6)

Now, we use the triangle inequality to write:

∥x(n) − (Id − τλ∇f)(x̂(n−1))∥
≤∥x(n) − x⋆

MAP∥+ ∥x⋆
MAP − (Id − τλ∇f)(x⋆

MAP)∥ (7)

+ ∥(Id − τλf)(x⋆
MAP)− (Id − τλf)(x̂(n−1))∥

Now, since x⋆
MAP satisfies the fixed point property x⋆

MAP = prox−τ ln p((Id − τλ∇f)(x⋆
MAP)), and

from the definition of x(n), we can write:

∥x(n) − x⋆
MAP∥ = ∥prox−τ ln p

(
(Id − τλ∇f)(x̂(n−1))

)
− prox−τ ln p

(
(Id − τλ∇f)(x⋆

MAP)
)
∥

≤ ∥(Id − τλ∇f)(x̂(n−1))− (Id − τλ∇f)(x⋆
MAP)∥,

where the inequality is due to the non-expansiveness of the proximal operator. Inequality 7 then
becomes

∥x(n) − (Id − τλ∇f)(x̂(n−1))∥ ≤ 2∥(Id − τλf)(x⋆
MAP)− (Id − τλf)(x̂(n−1))∥+ τλ∥∇f(x⋆

MAP)∥
≤ 2∥x⋆

MAP − x̂(n−1)∥+ τλ∥∇f(x⋆
MAP)∥,

where the second inequality is because Id − τλf is Lipschitz for τ ≤ 1/(λLf ). Therefore, injecting
this bound in the inequality 6, we get for n ≥ 1:

∥εn∥ ≤
(1 + η) ln(n) + ln(c) + 7

c · n1+η

[
2∥x̂(n−1) − x⋆

MAP∥+ τλ∥∇f(x⋆
MAP)∥+ τ2M

√
d
]

≤ (1 + η) ln(n) + ln(c) + 7

c · n1+η

[
2∥εn−1∥+ 2∥x(n−1) − x⋆

MAP∥+ τλ∥∇f(x⋆
MAP)∥+ τ2M

√
d
]
.

(8)

where the second inequality still holds for n = 1 with the convention ε0 = 0 and x0 = x̂0 = y.
Now adding the inequality ∥x(n) − x⋆

MAP∥ ≤ ∥εn−1∥+ ∥x(n−1) − x⋆
MAP∥ from inequality (5) to

the above inequality 8, and letting wn := ∥εn∥+ ∥x(n) − x⋆
MAP∥ for n ≥ 0, we get the following

recursive inequality for n ≥ 1:

wn ≤ (1 + 2Cn)wn−1 + CnA,

where

Cn :=
(1 + η) ln(n) + ln(c) + 7

c · n1+η
, A := τλ∥∇f(x⋆

MAP)∥+ τ2M
√
d, w0 = ∥y − x⋆

MAP∥.

It now remains to unroll the recursive inequality on wn, which is done in the auxiliary Lemma 2 to
obtain:

wn ≤ exp(2Sη,c) (w0 +ASη,c) ,
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where
Sη,c :=

1 + η

cη2
(
1 + η · (ln(c) + 7)

)
,

Putting things together we get the following uniform bound on wn:

wn ≤ Bη,σ := exp(2Sη,c)
[
∥y − x⋆

MAP∥+ Sη,c ·
(
τλ∥∇f(x⋆

MAP)∥+ τ2M
√
d
)]

From the definition of wn = ∥εn∥+ ∥x(n) − x⋆
MAP∥, we trivially get that ∥x(n) − x⋆

MAP∥ ≤ Bη,c,
and now from inequality (8) we get, for n ≥ 1:

∥εn∥ ≤
(1 + η) ln(n) + ln(c) + 7

c · n1+η

[
2Bη,c + τλ∥∇f(x⋆

MAP)∥+ τ2M
√
d
]
.

Letting Rη,c := 2Bη,c + τλ∥∇f(x⋆
MAP)∥+ τ2M

√
d ≥ Bη,c we prove the two first inequalities of

the statement.

Now to bound
∑∞

n=1 ∥εn∥ we simply reuse the bound obtained on
∑

i Ci ≤ Sη,c in the proof of
Lemma 2 to obtain: ∞∑

n=1

∥εn∥ ≤ Sη,c ·Rη,c.

Finally for
∑∞

n=1 ∥εn∥2 we upperbound:
∞∑

n=1

(
(1 + η) ln(n) + ln(c) + 7

c · n1+η

)2

≤ 2(1 + η)2

c2

∞∑
n=1

ln2(n)

n2(1+η)
+

2(ln(c) + 7)2

c2

∞∑
n=1

1

n2(1+η)
.

We now bound the two series using integrals:
∞∑

n=1

ln2(k)

n2(1+η)
≤

∫ ∞

1

ln2(x)

x2(1+η)
dx =

2

(2η + 1)3
,

∞∑
n=1

1

n2(1+η)
≤ 1 +

∫ ∞

1

1

x2(1+η)
dx = 1 +

1

2η + 1
.

Putting everything together, we obtain the bound:
∞∑

n=1

∥εn∥2 ≤
( 4(1 + η)2

c2(2η + 1)3
+

2(ln(c) + 7)2

c2
(
1 +

1

2η + 1

))
R2

η,c,

which concludes the proof.

Lemma 2. The recursive inequality

wn ≤ (1 + 2Cn)wn−1 + CnA, where Cn :=
(1 + η) ln(n) + ln(c) + 7

c · n1+η

unrolls as:
wn ≤ exp(2Sη,c) (w0 +ASη,c) ,

where
Sη,c :=

1 + η

cη2
(
1 + η · (ln(c) + 7)

)
.

Proof. We iteratively apply the inequality to obtain:

wn ≤ w0

n∏
j=1

(1 + 2Cj) +A

n∑
i=1

Ci

n∏
j=i+1

(1 + 2Cj),

with the convention that empty products are equal to 1.

We now bound the product
∏n

j=1(1 + 2Cj) by using the inequality log(1 + x) ≤ x to get:

log

n∏
j=1

(1 + 2Cj) =

n∑
j=1

log(1 + 2Cj) ≤
n∑

j=1

2Cj ,
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hence,
n∏

j=1

(1 + 2Cj) ≤ exp

2

n∑
j=1

Cj

 .

To bound the sum
∑∞

j=1 Cj , we split the numerator:

∞∑
j=1

Cj =
1 + η

c

∞∑
j=1

ln j

j1+η
+

ln(c) + 7

c

∞∑
j=1

1

j1+η
.

We use the known bounds:
∞∑
j=1

1

j1+η
≤ 1 +

∫ ∞

1

1

t1+η
dt = 1 +

1

η
,

∞∑
j=2

ln j

j1+η
≤

∫ ∞

1

ln t

t1+η
dt =

1

η2
,

which gives:
∞∑
j=1

Cj ≤
1 + η

cη2
+

(ln(c) + 7)

c

(
1 +

1

η

)
=

1 + η

cη2
(
1 + η · (ln(c) + 7)

)
=: Sη,c.

Then we have:
n∏

j=1

(1 + 2Cj) ≤ exp (2Sη,c) ,

n∑
i=1

Ci

n∏
j=i+1

(1 + 2Cj) ≤ Sη,c exp(2Sη,c).

Plugging these into the expression for wn yields the final bound:

wn ≤ exp(2Sη,c) (w0 +ASη,c) .
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B Controlling σ 7→ x⋆
σ

The goal of this appendix is to show that the minimiser x⋆
σ is Lipschitz-continuous with respect to σ2.

To establish this, we need to control how the objective function Fσ evolves as σ changes. A natural
way to approach this is through a PDE perspective, since the smoothed density pσ satisfies the heat
equation. This connection allows us to describe how pσ , its logarithm, and its gradient (i.e., the score
function) evolve with respect to σ2.

Throughout this appendix, we use the following notation for differential operators acting on functions
f : Rd → R:

• ∇f denotes the gradient of f , a vector in Rd,

• ∇2f denotes the Hessian of f , a d× d matrix of second-order partial derivatives,

• ∇3f denotes the third-order derivative tensor of f , a rank-3 tensor in Rd×d×d,

• ∆f = tr(∇2f) denotes the Laplacian of f .

The first lemma provides several PDEs satisfied by pσ , ln pσ , and the score function∇ ln pσ .

Lemma 3. Let p(x) be a probability density and denote by pσ(x) its convolution with an isotropic
centered Gaussian of variance σ2. For σ > 0, it holds that pσ(x) > 0 for all x ∈ Rd and pσ follows
the heat equation:

∂pσ
∂σ2

=
1

2
∆pσ.

Moreover, − ln pσ follows the following partial differential equation:

∂ ln pσ
∂σ2

=
1

2
(∆ ln pσ + ∥∇ ln pσ∥2).

Taking the gradient in the previous equation we get that the score functions follow:

∂∇ ln pσ(x)

∂σ2
=

1

2

[
∇∆ ln pσ(x) + 2[∇2 ln pσ(x)]∇ ln pσ(x)

]
Proof. Standard results (see, e.g., [Evans, 2022, Chapter 2]) guarantee that (σ, x) 7→ pσ(x) is C∞

on R⋆
+ × Rd and satisfies the heat equation:

∂pσ
∂σ2

=
1

2
∆pσ.

By differentiating ln pσ w.r.t. σ2 and using the above, we directly have:

∂ ln pσ
∂σ2

=
1

2

∆pσ
pσ

,

To get the PDE satisfied by ln pσ notice that:

∆ ln pσ =
∆pσ
pσ
− ∥∇ ln pσ∥2,

Using both equation above directly yields:

∂ ln pσ
∂σ2

=
1

2
(∆ ln pσ + ∥∇ ln pσ∥2).

Taking the gradient in the above identity leads to the last partial differential equation of the Lemma
and concludes the proof.

This next lemma justifies the use of smoothed gradient descent by confirming that, as the smoothing
parameter σ → 0, the minimisers of the smoothed objectives Fσ converge to the minimiser of the
original (non-smoothed) objective F . In other words, the limit of the smoothed minimisers coincides
with the proximal point we ultimately aim to recover.
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Lemma 4. Recall that we define

F (x) :=
1

2
∥y − x∥2 − τ ln p(x) and Fσ(x) :=

1

2
∥y − x∥2 − τ ln pσ(x).

Recall that prox−τ ln p(y) := arg min
x∈Rd

F (x) and that prox−τ ln pσ
(y) := arg min

x∈Rd

Fσ(x). It holds

that
prox−τ ln pσ

(y) →
σ→0

prox−τ ln p(y).

Proof. Let K be a compact set, since p is continuous and p(x) > 0 on K (Assumption 1), we have
that there exists a > 0 such that infx∈K p(x) ≥ a. Now since p is Lipschitz continuous on K,
Theorem 2 in Nesterov and Spokoiny [2017] ensures that supx∈K |pσ(x)− p(x)| −→

σ→0
0. Therefore

for σ small enough infx∈K pσ(x) ≥ a/2 and from standard inequalities on the logarithm:

| ln(pσ(x))− ln(p(x))| ≤ |pσ(x)− p(x)|
min(pσ(x), p(x))

≤ 2

a
|pσ(x)− p(x)|.

Therefore supx∈K | ln(pσ(x))− ln(p(x))| −→
σ→0

0 on all compact sets K, and trivially:

sup
x∈K
|Fσ(x)− F (x)| −→

σ→0
0.

To ease notations, let x⋆
σ be the minimiser of Fσ and x⋆ that of F . Note that such minimisers exist

and are unique since Fσ and F are strongly convex by Proposition 4. Consider the values Fσ(x
⋆). By

optimality of x⋆
σ we know that Fσ(x

⋆
σ) ≤ Fσ(x

⋆). Moreover, since Fσ → F uniformly on compact
sets, we have Fσ(x

⋆)→ F (x⋆), so in particular, the sequence (Fσ(x
⋆
σ)) is uniformly bounded above:

Fσ(x
⋆
σ) ≤ Fσ(x

⋆) ≤ F (x⋆) + 1,

for σ small enough. Now, assume that ∥x⋆
σ∥ → ∞ along some sequence. Since the functions Fσ

are all 1-strongly convex, they can all be lower bounded by the same quadratic and we would have
Fσ(x

⋆
σ)→∞, contradicting the bound above. Therefore, the sequence (x⋆

σ)σ2∈(0,τ ] is bounded, and
thus contained in a fixed compact set K ⊂ Rd.

Since Fσ → F uniformly on K, any cluster point x∞ of (x⋆
σ) satisfies

F (x∞) = lim
σ→0

Fσ(x
⋆
σ) ≤ lim

σ→0
Fσ(x

⋆) = F (x⋆).

Therefore, by uniqueness of the minimiser of F , it must be that x∞ = x⋆ so that x⋆
σ −→

σ→0
x⋆.

The next proposition establishes the existence and smoothness of the solution path x⋆
σ as a function

of σ.
Proposition 7 (Existence of the smooth solution path). Recall that

Fσ(x) :=
1

2
∥y − x∥2 − τ ln pσ(x).

Denote by x⋆
σ the minimiser of Fσ for any σ > 0. Then σ2 7→ xσ is continuously differentiable on

(0, τ ] and satisfies the following ordinary differential equation:

dx⋆
σ

dσ2
=: ẋ⋆

σ = −∇2Fσ(x
⋆
σ)

−1∂σ2∇Fσ(x
⋆
σ).

Proof. By smoothness of the solution of the heat equation (see, e.g., [Evans, 2022, Chapter 2]), we
have that x 7→ Fσ(x) is differentiable for any σ > 0 and (σ2, x) 7→ ∇xFσ(x) is jointly differentiable
on R⋆

+ × Rd. Then, by Proposition 4, we have that the Hessian∇2Fσ(x) is invertible and satisfies:
∇2Fσ(x) ⪰ Id. We can then apply the implicit function theorem, which guarantees the existence of a
unique solution path σ2 7→ x⋆

σ to the implicit equation: ∇Fσ(x
⋆
σ) = 0 that is differentiable on (0, τ ].

By strong convexity of Fσ , this solution path coincides with the minimisers of Fσ for all σ > 0. The
ODE followed by σ2 → x⋆

σ is obtained by taking the derivative with respect to σ2 of the identity
∇Fσ(x

⋆
σ) = 0.
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Proposition 8 (Bound on the solutions). Let x⋆
σ := argminx∈Rd Fσ(x), then for σ2 ≤ τ it holds

that

∥x⋆
σ − y∥ ≤ ∥y − prox−τ ln p(y)∥+

1

2
τ2M

√
d

Proof. Let use write ẋ⋆
σ =

dx⋆
σ

dσ2 (note that the derivative is with respect to σ2 and not σ). From
Proposition 7, we have that x⋆

σ follows the differential equation:

ẋ⋆
σ = −∇2Fσ(x

⋆
σ)

−1∂σ2∇Fσ(x
⋆
σ)

= τ∇2Fσ(x
⋆
σ)

−1∂σ2∇ ln pσ(x
⋆
σ)

=
1

2
[−∇2 ln pσ(x

⋆
σ) +

1

τ
Id]

−1[∇∆ ln pσ(x
⋆
σ) + 2[∇2 ln pσ(x

⋆
σ)]∇ ln pσ(x

⋆
σ)
]

(9)

where the last equality follows from Lemma 3. Furthermore, recalling the optimality condition
satisfied by x⋆

σ , i.e.: ∇ ln pσ(x
⋆
σ) =

1
τ (x

⋆
σ − y), if follows that:

ẋ⋆
σ = − 1

2τ
Qσ(x

⋆
σ − y) +Bσ, (10)

where the matrix Qσ and vector Bσ are given by:

Qσ := −[−∇2 ln pσ(x
⋆
σ) +

1

τ
Id]

−1∇2 ln pσ(x
⋆
σ) ⪰ 0 (11)

Bσ :=
1

2
[−∇2 ln pσ(x

⋆
σ) +

1

τ
Id]

−1∆∇ ln pσ(x
⋆
σ). (12)

Here, the matrix Qσ is positive semi-definite since −∇2 ln pσ(x) is positive by Proposition 4. Now
from eq. (10), we get:

1

2

d∥x⋆
σ − y∥2
dσ2

= ⟨ẋ⋆
σ, x

⋆
σ − y⟩

= − 1

2τ
∥x⋆

σ − y∥2Qσ
+ ⟨Bσ, x

⋆
σ − y⟩

≤ ⟨Bσ, x
⋆
σ − y⟩

≤ ∥Bσ∥∥x⋆
σ − y∥.

From the upperbound ∥∇∆ log pσ(x
⋆
σ)∥ ≤M

√
d which follows from Lemma 5, we directly have

that ∥Bσ∥ ≤ τ
2M
√
d. Injecting this bound in the above inequality and dividing both sides by

∥x⋆
σ − y∥ yields:

d∥x⋆
σ − y∥
dσ2

≤ τ

2
M
√
d.

Integrating of the above inequality from 0 to σ2, using that limσ→0 x
⋆
σ = prox−τ ln p(y)

from Lemma 4, we get:

∥x⋆
σ − y∥ ≤ ∥y − prox−τ ln p(y)∥+

1

2
σ2τM

√
d

≤ ∥y − prox−τ ln p(y)∥+
1

2
τ2M

√
d,

where the last inequality is since we consider σ2 ≤ τ .

Proposition 9 (Lipschitz continuity of σ2 7→ x⋆
σ). Let x⋆

σ := argminx∈Rd Fσ(x), then for σ2
2 ≤

σ2
1 ≤ τ , it holds that:

∥x⋆
σ1
− x⋆

σ2
∥ ≤ (σ2

1 − σ2
2)
[1
τ
∥y − prox−τ ln p(y)∥+ τM

√
d
]
,

And taking σ2 → 0 in the above inequality:

∥x⋆
σ − prox−τ ln p(y)∥ ≤ σ2

[1
τ
∥y − prox−τ ln p(y)∥+ τM

√
d
]
,
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Proof. Recall from Equation (9):

ẋ⋆
σ =

1

2
[−∇2 ln pσ(x

⋆
σ) +

1

τ
Id]

−1[∇∆ ln pσ(x
⋆
σ) + 2[∇2 ln pσ(x

⋆
σ)]∇ ln pσ(x

⋆
σ)
]

Now, by Proposition 4, we have that −∇2 ln pσ(x) ⪰ 0, and a spectral norm bound on the inverse
yields:

∥[−∇2 ln pσ(x
⋆
σ) +

1

τ
Id]

−1∇∆ ln pσ(x
⋆
σ)∥ ≤ τ∥∇∆ ln pσ(x

⋆
σ)∥

and:

∥[−∇2 ln pσ(x
⋆
σ) +

1

τ
Id]

−1[∇2 ln pσ(x
⋆
σ)]∇ ln pσ(x

⋆
σ)∥ ≤ ∥∇ ln pσ(x

⋆
σ)∥.

Putting things together we obtain that:

∥ẋ⋆
σ∥ ≤ ∥∇ ln pσ(x

⋆
σ)∥+

τ

2
∥∇∆ ln pσ(x

⋆
σ)∥ (13)

≤ ∥∇ ln pσ(x
⋆
σ)∥+

τ

2
M
√
d, (14)

where the second inequality is due to Lemma 5. Now recall that the optimality condition which define
x⋆
σ is∇ ln pσ(x

⋆
σ) =

1
τ (x

⋆
σ − y). Plugging this equality in the upperbound we get that:

∥ẋ⋆
σ∥ ≤

1

τ
∥y − x⋆

σ∥+
τ

2
M
√
d

≤ 1

τ
∥y − prox−τ ln p(y)∥+ τM

√
d,

where the last inequality is due to Proposition 8.

From here it suffices to notice that, for σ1 ≥ σ2 > 0:

∥x⋆
σ1
− x⋆

σ2
∥ =

∥∥∥∫ σ2
2

σ2
1

ẋ⋆
σdσ

2
∥∥∥

≤
∫ σ2

2

σ2
1

∥ẋ⋆
σ∥dσ2

≤ (σ2
1 − σ2

2)
[1
τ
∥y − prox−τ ln p(y)∥+ τM

√
d
]
,

which proves the first statement. The second follows from the fact that x⋆
σ2
−→
σ2→0

prox−τ ln p(y) by

Lemma 4.

This last result is the most technical lemma in this work. It establishes that the third derivative of the
smoothed log-density ln pσ can be uniformly controlled—independently of σ. This regularity bound
is essential for tracking how the minimisers x⋆

σ evolve as σ varies.

Lemma 5. For all σ ≥ 0, it holds that supx∈Rd ∥∇∆ ln pσ(x)∥ ≤
√
dM .

We would like to emphasise again that the following proof is entirely based on the computations
and insights that Filippo Santambrogio generously shared with us in response to an email we
sent asking for ideas on how to approach this result. The proof is technical and relies on several
surprising simplifications that Filippo identified.

Proof. To simplify notations, throughout the proof we let t := σ2 and let V (t, x) := − ln p√t(x) =
ln pσ(x) correspond to the convex potential associated to pσ. The proof first relies on showing that
∥∇3V (t, x)∥ must be maximal for t = 0.
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Establishing a parabolic inequality for ∥∇3V (t, x)∥. From Lemma 3, we have that the potential
V follows the following PDE:

∂tV =
1

2
(∆V − ∥∇V ∥2).

For i, j, k ∈ [d], we let wijk := ∂ijkV , which therefore follows:

∂twijk =
1

2
(∆wijk − ∂ijk∥∇V ∥2).

Now let uijk = w2
ijk, multiplying the previous equation by wijk we get:

∂tuijk = wijk∆wijk − wijk∂ijk∥∇V ∥2

=
1

2

(
∆uijk − (∆wijk)

2
)
− wijk∂ijk∥∇V ∥2

≤ 1

2
∆uijk − wijk∂ijk∥∇V ∥2

Summing over i, j, k and letting S(t, x) := ∥∇3V (t, x)∥2 =
∑

ijk uijk, we have that:

∂tS ≤
1

2
∆S −

∑
ijk

wijk∂ijk∥∇V ∥2

It remains to control the last term in the inequality. Since ∥∇V ∥2 =
∑

ℓ(∂lV )2, taking the third
derivative with respect to i, j, k we get that:

∂ijk∥∇V ∥2 = 2
∑
ℓ

∂lV · ∂ijklV + ∂jklV · ∂ilV + ∂iklV · ∂jlV + ∂ijlV · ∂klV

= 2⟨∇V,∇wijk⟩+ 2
∑
ℓ

wjkl · ∂ilV + wikl · ∂jlV + wijl · ∂klV.

Multiplying the equality by wijk and summing over i, j, k we get:∑
ijk

wijk∂ijk∥∇V ∥2 = ⟨∇V,∇S⟩+ 2
∑
ijkℓ

wijkwjkl · ∂ilV + wijkwikl · ∂jlV + wijkwijl · ∂klV.

However notice that from the convexity of V (σ, ·) for all σ ≥ 0, we get that:∑
jk

(∑
iℓ

wijkwjkl · ∂ilV︸ ︷︷ ︸
≥0

)
≥ 0,

which implies that the function S(t, x) := ∥∇3V (t, x)∥2 satisfies the following parabolic inequality

∂tS ≤
1

2
∆S − ⟨∇V,∇S⟩. (15)

Proving that S is maximal for t = 0. To prove that S must attain its maximum for t = 0, let us
fix t1 > 0 and for t ∈ [0, t1], we let S̃(t, x) = S(t1 − t, x) and Ṽ (t, x) = V (t1 − t, x) correspond
to the "reversed time" counterparts of S and V . Adapting Equation (15), the parabolic inequality
satisfied by S̃ is:

∂tS̃ ≥ −
1

2
∆S̃ + ⟨∇Ṽ ,∇S̃⟩. (16)

For t ∈ [0, t1], we now consider the following stochastic differential equation:

dXt = −∇Ṽ (t,Xt)dt+ dBt, (17)

initialised at Xt=0 = x0 for some x0 ∈ Rd. From Lemma 6, we are guaranteed the existence and
uniqueness of a strong solution to this stochastic differential equation over [0, t1]. We can then apply
the Itô formula to S̃(t,Xt):

dS̃(t,Xt) = ∂tS̃(t,Xt) dt+ ⟨∇S̃(t,Xt),dXt⟩+
1

2
∆S̃(t,Xt)dt

= ∂tS̃(t,Xt) dt− ⟨∇S̃(t,Xt),∇Ṽ (t,Xt)⟩dt+
1

2
∆S̃(t,Xt)dt+ ⟨∇S̃(t,Xt),dBt⟩

≥ ⟨∇S̃(t,Xt),dBt⟩,
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where the last inequality is due to the parabolic inequality on S̃ from eq. (16). Now integrating from
t = 0 to t = t1 we obtain:

S̃(t1, Xt1) ≥ S̃(0, Xt=0) +

∫ t1

0

⟨∇S̃(t,Xt),dBt⟩

= S̃(0, x0) +

∫ t1

0

⟨∇S̃(t,Xt),dBt⟩.

Since the expectation of the stochastic integral is 0, and recalling that S̃(t, x) = S(t1 − t, x), we
obtain:

E[S(0, Xt1)] = E[S̃(t1, Xt1)] ≥ S̃(0, x0) = S(t1, x0).

It remains to use that supx S(0, x) <∞ from Assumption 2 to obtain that:

sup
x∈Rd

S(0, x) ≥ E[S(0, Xt1)] ≥ S(t1, x0).

Since this inequality holds for all x0 ∈ Rd and t1 > 0, we get that:

sup
x∈Rd

S(t, x) ≤ sup
x∈Rd

S(0, x), ∀t ≥ 0.

Therefore, recalling that S(t, x) := ∥∇3V (t, x)∥2 = ∥∇3 ln p√t(x)∥2, we finally have that for
all σ ≥ 0:

sup
x∈Rd

∥∇3 ln pσ(x)∥ ≤ sup
x∈Rd

∥∇3 ln p(x)∥.

From ∥∇3∥ to ∥∇∆∥. From the Cauchy-Schwartz inequality, one gets:

∥∇∆f∥2 =

d∑
i=1

 d∑
j=1

∂ijjf

2

≤ d

d∑
i,j=1

(∂ijjf)
2 ≤ d

d∑
i,j,k=1

(∂ijkf)
2 = d∥∇3f∥2,

which concludes the proof.

Lemma 6. For a horizon time t1 > 0, let Ṽ (t, x) = − ln p√t1−t(x) denote the backward-time
log-density defined over [0, t1] × Rd. Then for all initialisation Xt=0 = x0 ∈ Rd, the stochastic
differential equation defined in Equation (17) which we recall here:

dXt = −∇Ṽ (t,Xt)dt+ dBt,

has a unique strong solution over [0, t1].

Proof. From Proposition 4 we have for all x ∈ Rd:

0 ⪯ ∇2V (t, x) = −∇2 ln p√t(x) ⪯
1

t
Id.

Therefore Ṽ (t, x) := V (t1 − t, x) satisfies:

0 ⪯ ∇2Ṽ (t, x) ⪯ 1

t1 − t
· Id.

This entails that for all ε > 0,∇Ṽ is globally Lipschitz for t ∈ [0, t1 − ε]:

∥∇Ṽ (t, x)−∇Ṽ (t, x′)∥ ≤ 1

ε
∥x− x′∥,

which ensures the existence of a unique strong solution over [0, t1 − ε] (see e.g. Theorem 5.2.1 in
Oksendal [2013]) and hence over [0, t1). It remains to show that Xt does not blow up as t→ t−1 .
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Proving that Xt is bounded over [0, t1). To do so, we consider the Lyapunov 1
2∥Xt − x0∥2, for

which the Itô formula provides that:
1

2
d∥Xt − x0∥2 = ⟨dXt, Xt − x0⟩+

d

2
dt

= ⟨∇Ṽ (t,Xt), x0 −Xt⟩dt+
d

2
dt+ ⟨dBt, Xt − x0⟩.

Now recall that for all t, the function x 7→ V (t, x) is convex (Proposition 4) and hence we have the
inequality ⟨∇V (t, x′), x− x′⟩ ≤ V (t, x)− V (t, x′), which leads to:

1

2
d∥Xt − x0∥2 ≤ (Ṽ (t, x0)− Ṽ (t,Xt))dt+

d

2
dt+ ⟨dBt, Xt − x0⟩.

Recalling the integral definition of pσ as pσ(x) =
∫
Rd p(z)ϕσ(x− z)dz, where ϕσ denotes gaussian

density function of variance σ2 = t, we have that supx pσ(x) ≤ pmax := supx p(x) as well as
infσ∈[0,t1] pσ(x0) =: pmin(x0) > 0 (since p is assumed strictly positive over Rd from Assumption 1).
Therefore

d∥Xt − x0∥2 ≤ Cdt+ 2⟨Xt − x0,dBt⟩,
with C = 2 ln(pmax/pmin(x0)) + d. Now integrating from 0 to t < t1 we obtain:

∥Xt − x0∥2 ≤ Ct+ 2

∫ t′

0

⟨Xt′ − x0,dBt′⟩

≤ Ct+Mt, (18)

where Mt := 2
∫ t

0
⟨Xt′ − x0,dBt′⟩ is a continuous-time martingale.

Bounding Mt over [0, t1) Taking the expectation in the last inequality we get:

E[∥Xt − x0∥2] ≤ Ct ≤ Ct1.

Now notice that due to the Itô isometry, we have that:

E[M2
t ] = 4E

[ ∫ t

0

∥Xt′ − x0∥2dt′
]
= 4

∫ t

0

E
[
∥Xt′ − x0∥2

]
dt′ ≤ 4Ct21.

We now apply Doob’s martingale inequality to the process M2
t :

P
(
sup
t′≤t

M2
t′ ≥ A2

)
≤ E[M2

t ]

A2
≤ 4Ct21

A2
.

And since {
sup
t′<t1

M2
t′ ≥ A2

}
=

⋃
n≥1

{
sup

t′<t1− 1
n

M2
t′ ≥ A2

}
,

where the sequence of events are monotonically increasing, we obtain that:

P
(
sup
t′<t1

M2
t′ ≥ A2

)
= lim

n→∞
P
(

sup
t′<t1− 1

n

M2
t′ ≥ A2

)
≤ 4Ct21

A2
.

Therefore lim
A→∞

P
(
sup
t<t1

M2
t ≥ A2

)
= 0 which translates into:

P
(
sup
t<t1

Mt <∞
)
= 1.

Due to inequality 18, this means that the trajectories (Xt(ω))t∈[0,t1) are bounded for almost all ω.
Therefore, due to the continuity of∇Ṽ (t, x) over R× Rd, the path t 7→ Ṽ (t,Xt(ω)) is bounded on
[0, t1). Hence, for almost all ω,

Xt(ω) = x0 −
∫ t

0

∇Ṽ (t′, Xt′(ω))dt
′ +Bt(ω)

must admit a limit when t→ t−1 . Hence Xt extends continuously to t = t1 and Xt1(ω) still satisfies
the integral form of the SDE. Hence a strong solution exists on the whole interval [0, t1]. Unicity
over [0, t1] follows from unicity over [0, t1) and taking the limit in t−1 .
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