
Logarithm-Approximate Floating-Point Multiplier
for Hardware-efficient Inference in Probabilistic Circuits

Lingyun Yao1 Martin Trapp2 Karthekeyan Periasamy1 Jelin Leslin1 Gaurav Singh1 Martin Andraud1

1Electrical Engineering Dept., Aalto University, Espoo, Finland
2Computer Science Dept., Aalto University, Espoo, Finland

Abstract

Machine learning models are increasingly being
deployed onto edge devices, for example, for smart
sensing, reinforcing the need for reliable and effi-
cient modeling families that can perform a variety
of tasks in an uncertain world (e.g., classification,
outlier detection) without re-deploying the model.
Probabilistic circuits (PCs) offer a promising
avenue for such scenarios as they support efficient
and exact computation of various probabilistic
inference tasks by design, in addition to having
a sparse structure. A critical challenge towards
hardware acceleration of PCs on edge devices is
the high computational cost associated with mul-
tiplications in the model. In this work, we propose
the first approximate computing framework for
energy-efficient PC computation. For this, we
leverage addition-as-int approximate multipliers,
which are significantly more energy-efficient than
regular floating-point multipliers, while preserving
computation accuracy. We analyze the expected
approximation error and show through hardware
simulation results that our approach leads to a
significant reduction in energy consumption with
low approximation error and provides a remedy
for hardware acceleration of general-purpose
probabilistic models.

1 INTRODUCTION

The development of smart sensing and Internet-of-Things
applications based on embedded artificial intelligence (AI),
such as smartphones, wearables, or other sensor networks,
is pushing the computation of machine learning meth-
ods directly onto edge devices. Recent innovations (e.g.,
[12, 26, 17]) have pushed up the computational efficiency
of deep feedforward neural networks (NNs) and improved

the energy efficiency of dedicated AI processors by 10× –
100× compared to Graphical Processing Units [17]. How-
ever, NNs that have been adopted into real-world use of-
ten raise concerns related to their reliability, fairness, and
interpretability [9, 7] alongside their high inference costs
[27, 23].

Consequently, to be suitable for the challenges associated
with edge AI, there is an urgent need to develop effective
hardware acceleration of machine learning models that are
probabilistic, i.e., they enable reasoning in an uncertain
world [6], and tractable, i.e., they can reliably answer many
probabilistic queries without re-deployment. Recent work
on tractable probabilistic models, specifically on probabilis-
tic circuits (PCs) [2], poses a promising avenue as these mod-
els (i) exhibit high expressive efficiency (representational
power), (ii) enable reliable [25, 13] and fair [1] reasoning,
and (iii) allow many probabilistic queries to be computed
tractably by design. Yet, while pioneering works have ex-
plored acceleration of PCs on Field Programmable Gate
Arrays (FPGAs) [3, 21, 22] and Application-Specific Inte-
grated Circuits (ASICs) [18, 19], the hardware acceleration
of PCs poses many open challenges. In particular, their irreg-
ularity (i.e., PCs are sparsely connected making parallelism
more challenging [20]) and high computation resolution
(i.e., probabilistic inference with PCs typically requires 30 –
40 floating-point bits [22, 20] as arithmetics are performed
on probabilities) hinders their deployment on edge devices
where efficiency and reduced resolution are key due to the
limited energy resources.

In this work, we propose to approximate floating-point mul-
tipliers through Addition-as-Int [10], suggesting high poten-
tial gains in computational efficiency (Addition-as-Int can
reduce the hardware cost of multiplication by a factor of up
to 112×) with little impact on the accuracy of the computa-
tions. In addition, we carry out a theoretical analysis of the
expected error and show that our approach can result in ac-
curate computations for maximum-a-posteriori (MAP) and
marginal queries and enables to concisely trade-off accuracy
and computational efficiency.

Accepted for the 6th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2023).

(a) Probabilistic Circuit

X1 = 0 X1 = 1

X3 = 0 X2 = 0 X3 = 1 X2 = 1 X3 = 0 X3 = 1 X2 = 0

w1,1 w1,2 w1,3

w2,1 w2,2 w3,1 w3,2

(b) Corresponding hardware representation for MAP Inference

max

w1,1 w1,2 w1,3

v11x1=0
max

1x1=1 v2
max

w2,1 w2,2 w3,1

w3,2

1x3=0

v3

1x2=0

v4

1x3=1

v5

1x2=1

v6

1x3=0

v7

1x3=1

v8

1x2=0

v9

1x2=0 1x3=1 1x2=1 1x3=0 1x3=1 1x2=0

Figure 1: Illustration of a PC (a) over discrete RVs (X1, X2, X3) and the corresponding hardware realization of MAP
inference (b). For this, sum nodes are replaced by max operators, and an additional propagation path for information bits is
added to back-track the most probable path (MAP result)

2 BACKGROUND: PROBABILISTIC
CIRCUITS

Probabilistic circuits (PCs) have recently been introduced
as an umbrella to unify a variety of existing tractable prob-
abilistic models (e.g., [4, 14, 15, 8]). They represent the
(possibly unnormalized) distribution function (density or
mass function) of a multivariate probability distribution
over random variables (RVs) X = {Xi}di=1 through a di-
rected acyclic graph G. The computational graph (G) con-
stitutes weighted sums S(x) =

∑
C∈ch(S) wS,CC(x) with∑

C∈ch(S) wS,C = 1, products P(x) =
∏

C∈ch(S) C(x), and
leaf nodes associated with parametric functions, typically
assumed to be density/mass functions of univariate probabil-
ity distributions L(x) = p(x | θL). We use ch(N) to denote
the set of children of a node (N) and θ denotes parameters
of the parametric leaves. In addition, each node N ∈ G is
associated with a scope ψ(N) ⊆ X provided by a scope
function ψ : N → P(X) [24], where P(X) denotes the
power set of X , specifying the set of RVs the node repre-
sents a joint distribution over. Fig. 1(a) illustrates a PC over
three discrete RVs using indicator functions at the leaves,
where we use ⊕ to illustrate sum nodes and ⊗ for product
nodes. Fig. 1(b) illustrates our proposed hardware realiza-
tion of MAP inference for a PC. A particularly relevant class
of PCs are those that are smooth and decomposable, as both
properties are requirements for many probabilistic queries
to be computable exactly and in time linear in the number of
nodes of G. Henceforth, we will briefly review smoothness
and decomposability.

Definition 2.1 (Smooth & Decomposability). A sum node S
is smooth if all children have the same scope, i.e., ψ(C) =
ψ(C′),∀C,C′ ∈ ch(S). Further, a product node P is de-
composable if all children have pairwise disjoint scopes,
i.e., ψ(C) ∩ ψ(C′) = ∅,∀C,C′ ∈ ch(P). A PC is smooth if
all sum nodes are smooth and decomposable if all product

nodes are decomposable.

Definition 2.2 (Determinism). A sum node S is determinis-
tic if for every complete evidence x at most one child has
a positive value. Consequently, a PC is deterministic if all
sum nodes are deterministic.

We refer the reader to [2] for further details on the structural
properties of PCs.

3 APPROXIMATE COMPUTING FOR
PROBABILISTIC CIRCUITS

Assuming positive numbers in floating-point representation,
two operands x and y can be written as x = 2Ex(1 +Mx)
and y = 2Ey (1 +My). Note that we can omit the sign bit
and only have to consider their exponent (E) and mantissa
(M) values. Therefore, the exact product x× y is given as:

x× y = 2Ex+Ey (1 +Mx)(1 +My) (1)

This product can be conveniently expressed in log-space,
i.e.,

log2(x× y) = Ex + Ey + log2(1 +Mx) + log2(1 +My),
(2)

A popular approximate solution is based on Mitchell’s
method [10]. To approximate the logarithm, Mitchell’s
method uses log2 (1 + F) ≈ F , which is the first-order
Taylor series expansion of log2 (1 + F). Using this approx-
imation, Eq. (2) becomes:

log2(x× y) ≈ Ex + Ey +Mx +My. (3)

Previous work pointed out that adding two IEEE 754
floating-point numbers with an integer addition instruction

2

results in Mitchell’s approximate multiplication and called
as Addition-As-Int (AAI) [11]. By doing so, we can directly
obtain an approximation from Eq. (2) to Eq. (3). Denoting
×̃ as the approximate multiplication, we obtain:

x ×̃ y = FLOAT(INT(x) + INT(y)) (4)

Where INT(·) interprets the binary string of the IEEE
754 floating-point representations as integer strings and
FLOAT(·) interprets the resulting integer string back to
the IEEE 754 floating-point representation. Therefore, per-
forming AAI in hardware only requires integer addition
operators.

0 5 10 15 20

0
2
0

4
0

Number of mantissa bits

Po
w

er
(µ
W

)

Exact multiplier

AAI

Figure 2: Power cost of multipliers on 65nm CMOS using 8
exponent bits.

4 EXPERIMENTS

We evaluated our approach on four benchmark data sets:
NLTCS, Jetser, DNA, and Book, which are a subset of fre-
quently used data sets in the community (e.g., [16, 5, 24]).
We generated PC structures and parameters using Learn-
SPN [5], a popular method for structure learning, resulting
in smooth and decomposable PCs. All evaluations are per-
formed on the test set.

4.1 POWER CONSUMPTION COMPARISON
BETWEEN EXACT MULTIPLICATIONS AND
AAI

Floating-point and AAI multipliers have been designed and
simulated for various resolutions in a 65nm CMOS technol-
ogy, and models have been fitted to the simulation results.
Fig. 2 shows the resulting model for 8 exponent bits and
varying number of mantissa bits. We see that the hardware
cost is dominated by mantissa processing, and the hardware
complexity grows significantly with the number of man-
tissa bits. As AAI uses much simpler addition hardware,
the complexity and power grow linearly with the number of
bits.

4.2 ENERGY SAVING WITH DIFFERENT
NUMBER OF BITS

We replaced all multipliers with AAI to assess the error
and the power savings for MAR and MAP queries under
varying resolutions. For MAR queries, we computed the
squared error according to a software baseline (64-bits), i.e.,∑

x(p(x)−q(x))2 where q(·) denotes the model with lower
resolution multipliers and p(·) the PC in software. In addi-
tion, we calculated the maximum and minimum obtainable
errors. For MAP queries, we calculated the MAP inference
accuracy over the latent variables (assuming complete evi-
dence) regarding the baseline. We collected the optimized
bits in Table 1 where theNb represents 32 bits,Nbe andNba

are the number of bits related to the smallest error in the
exact multiplier and approximate multiplier respectively.

MAR queries. With AAI, the error varies across bench-
marks but generally requires higher exponent bits E , c.f.
Fig. 3. In practice, exact multipliers produce a small er-
ror at the tested resolutions, as seen in Table 1. Indeed, E
determines the minimum representable value, and M repre-
sents the quantization in every exponent range, which only
depends on the representation error. Going from a 32-bit
resolution to Nbe enables saving around 2× power. We find
that using AAI can allow for 24× to 40× extra savings if
the tolerated error is a few percent. The total power savings
from 32-bit to the optimal AAI are between 56× and 88×,
c.f. Table 1 .

MAP queries. We find that the resolution of MAP com-
putation can be drastically reduced while introducing no
error since MAP stays correct as long as the argmax at sum
nodes stays the same. Further, AAI multipliers can achieve
higher accuracy for fewer bits, c.f. Fig. 4. In contrast to
exact floating-point multiplication, where mantissa values
are normalized (see Appendix A), and successive multi-
plications result in smaller mantissa values, AAI handles
normalization by using a carry, hence, requiring fewer bits.
Most power savings are obtained fromNb toNbe, i.e. 18.6×.
Switching for AAI increases savings by up to 11×. Total
power savings can be 206×, c.f. Table 1 .

5 CONCLUSION AND DISCUSSION

We introduced approximate computing in PCs to increase
their energy efficiency for deployment on edge devices
and provided a theoretical and empirical analysis of the
introduced error. Specifically, we investigated the energy
efficiency and approximation error of Addition-as-Int mul-
tipliers in PCs for different benchmarks and query types
(marginals and MAP). Our results show that maximum
power savings of 88× and 206× can be achieved for MAR
and MAP queries, respectively.

3

Table 1: Overview of optimal configuration and performances over several data sets. Nbe and Nba correspond to the settings
with the smallest error and the loss is the error relative to the max. error.

Data set Query
Power Exact ⊗ AAI ⊗ Loss
Nb = 32 Nbe Power Nba Power Exact AAI
µW ,@Nb (E,M) µW ,@Nbe (E,M) µW ,@Nba % %

NLTCS MAP 85482 5,3 4594 5,1 414 0 0
MAR 85482 8,15 36699 8,7 1035 3e-7 0.8

Jester MAP 660408 5,3 35492 5,1 3199 0 0
MAR 660408 8,15 283530 11,11 11731 4e-7 5.9

DNA MAP 674902 5,3 36271 5,1 3269 0 0
MAR 674902 11,15 306942 11,3 7629 3e-6 3.3

Book MAP 1272053 5,3 68364 5,1 6162 0 0
MAR 1272053 8,15 546124 11,7 18488 7e-6 0.4

3 7 11 15

0

1

2

3

·10−3

A
A

IM
ul

ti.
A

pp
ro

x.
E

rr
or

NLTCS

3 7 11 15

0

0.5

1

·10−26
Jester

3 7 11 15

0

1

2

·10−68
DNA

3 7 11 15

0

0.5

1

·10−2
Book

3 7 11 15

0

1

2

3

·10−3

Mantissa

E
xa

ct
M

ul
ti.

A
pp

ro
x.

E
rr

or

3 7 11 15

0

0.5

1

·10−26

Mantissa
3 7 11 15

0

1

2

·10−68

Mantissa
3 7 11 15

0

0.5

1

·10−2

Mantissa

Figure 3: Results for AAI (first row) and exact (second row) multipliers using varying number of exponent (E=8,
E=11) and mantissa bits. Maximum possible error () is shown for reference.

1 2 5 8

0.6

0.8

1

A
A

IM
ul

ti.
M

A
P

A
C

C

NLTCS

1 2 5 8

0.6

0.8

1

Jester

1 2 5 8

0.6

0.8

1

DNA

1 2 5 8

0

0.5

1

Book

1 2 5 8

0.6

0.8

1

Exponent

E
xa

ct
M

ul
ti.

M
A

P
A

C
C

1 2 5 8

0.6

0.8

1

Exponent
1 2 5 8

0.6

0.8

1

Exponent
1 2 5 8

0

0.5

1

Exponent

Figure 4: MAP accuracy (ACC) results for AAI (first row) and exact (second row) multipliers using varying the number of
exponent and mantissa bits (m=1, m=3, m=5).

4

Acknowledgements

MT acknowledges funding from the Academy of Finland
(grant number 347279).
MA acknowledges partial funding from the Academy of Fin-
land through the project WHISTLE (grant number 332218).
This work has also been partially funded by the European
Union through the SUSTAIN project. Views and opinions
expressed are, however, those of the author(s) only and
do not necessarily reflect those of the European Union or
EISMEA. Neither the European Union nor the granting
authority can be held responsible for them.

References

[1] YooJung Choi. Probabilistic Reasoning for Fair and
Robust Decision Making. PhD thesis, 2022.

[2] YooJung Choi, Antonio Vergari, and Guy Van den
Broeck. Probabilistic circuits: A unifying framework
for tractable probabilistic models. oct 2020.

[3] Young-kyu Choi, Carlos Santillana, Yujia Shen, Adnan
Darwiche, and Jason Cong. Fpga acceleration of prob-
abilistic sentential decision diagrams with high-level
synthesis. ACM Trans. Reconfigurable Technol. Syst.,
sep 2022. ISSN 1936-7406. doi: 10.1145/3561514.

[4] Adnan Darwiche. A differential approach to inference
in bayesian networks. J. ACM, 50(3):280–305, 2003.
doi: 10.1145/765568.765570.

[5] Robert Gens and Domingos Pedro. Learning the struc-
ture of sum-product networks. In International con-
ference on machine learning, pages 873–880. PMLR,
2013.

[6] Zoubin Ghahramani. Probabilistic machine learning
and artificial intelligence. Nature, 521(7553):452–
459, May 2015. ISSN 1476-4687. doi: 10.1038/
nature14541.

[7] Ari Heljakka, Martin Trapp, Juho Kannala, and Arno
Solin. Disentangling model multiplicity in deep learn-
ing. arXiv preprint arXiv: 2206.08890, 2023.

[8] Doga Kisa, Guy Van den Broeck, Arthur Choi, and
Adnan Darwiche. Probabilistic sentential decision di-
agrams. In Chitta Baral, Giuseppe De Giacomo, and
Thomas Eiter, editors, 14th International Conference
on Principles of Knowledge Representation and Rea-
soning KR. AAAI Press, 2014.

[9] Gary Marcus. The next decade in AI: Four steps to-
wards robust artificial intelligence. arXiv preprint
arXiv: 2002.06177, 2020.

[10] John N Mitchell. Computer multiplication and divi-
sion using binary logarithms. IRE Transactions on
Electronic Computers, (4):512–517, 1962.

[11] Tsuguo Mogami. Deep neural network training with-
out multiplications. arXiv preprint arXiv:2012.03458,
2020.

[12] B. Moons and M. Verhelst. Energy-efficiency and
accuracy of stochastic computing circuits in emerg-
ing technologies. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 4(4):475 –
486, 2014. ISSN 2156-3357. doi: 10.1109/JETCAS.
2014.2361070.

[13] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejan-
dro Molina, Martin Trapp, Xiaoting Shao, Kristian Ker-
sting, and Zoubin Ghahramani. Random sum-product
networks: A simple and effective approach to proba-
bilistic deep learning. In Amir Globerson and Ricardo
Silva, editors, 35th Conference on Uncertainty in Arti-
ficial Intelligence (UAI), volume 115 of Proceedings
of Machine Learning Research, pages 334–344. AUAI
Press, 2019.

[14] Hoifung Poon and Pedro M. Domingos. Sum-product
networks: A new deep architecture. In Fábio Gagliardi
Cozman and Avi Pfeffer, editors, 27th Conference on
Uncertainty in Artificial Intelligence (UAI), pages 337–
346. AUAI Press, 2011.

[15] Tahrima Rahman, Prasanna V. Kothalkar, and Vibhav
Gogate. Cutset networks: A simple, tractable, and
scalable approach for improving the accuracy of chow-
liu trees. In Toon Calders, Floriana Esposito, Eyke
Hüllermeier, and Rosa Meo, editors, European Confer-
ence in Machine Learning and Knowledge Discovery
in Databases ECML, volume 8725 of Lecture Notes
in Computer Science, pages 630–645. Springer, 2014.

[16] Amirmohammad Rooshenas and Daniel Lowd. Learn-
ing sum-product networks with direct and indirect vari-
able interactions. In International Conference on Ma-
chine Learning, pages 710–718. PMLR, 2014.

[17] Jae-sun Seo, Jyotishman Saikia, Jian Meng, Wangxin
He, Han-sok Suh, Anupreetham, Yuan Liao, Ahmed
Hasssan, and Injune Yeo. Digital versus analog arti-
ficial intelligence accelerators: Advances, trends, and
emerging designs. IEEE Solid-State Circuits Maga-
zine, 14(3):65–79, 2022. doi: 10.1109/MSSC.2022.
3182935.

[18] N. Shah, L. I. G. Olascoaga, S. Zhao, W. Meert, and
M. Verhelst. 9.4 piu: A 248gops/w stream-based pro-
cessor for irregular probabilistic inference networks
using precision-scalable posit arithmetic in 28nm. In

5

2021 IEEE International Solid- State Circuits Confer-
ence (ISSCC), volume 64, pages 150–152, 2021. doi:
10.1109/ISSCC42613.2021.9366061.

[19] N. Shah, W. Meert, and M. Verhelst. Dpu-v2: Energy-
efficient execution of irregular directed acyclic graphs.
In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1288–1307, Los
Alamitos, CA, USA, oct 2022. IEEE Computer Soci-
ety.

[20] Nimish Shah, Laura I Galindez Olascoaga, Wannes
Meert, and Marian Verhelst. Problp: A framework for
low-precision probabilistic inference. In Proceedings
of the 56th Annual Design Automation Conference
2019, pages 1–6, 2019.

[21] L. Sommer, J. Oppermann, A. Molina, C. Binnig,
K. Kersting, and A. Koch. Automatic mapping of
the sum-product network inference problem to fpga-
based accelerators. In 2018 IEEE 36th International
Conference on Computer Design (ICCD), pages 350 –
357, 2018. doi: 10.1109/ICCD.2018.00060.

[22] Lukas Sommer, Lukas Weber, Martin Kumm, and An-
dreas Koch. Comparison of arithmetic number for-
mats for inference in sum-product networks on fpgas.
In 2020 IEEE 28th Annual international symposium
on field-programmable custom computing machines
(FCCM), pages 75–83. IEEE, 2020.

[23] Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. Energy and policy considerations for deep learn-
ing in NLP. In Proceedings of the 57th Conference of
the Association for Computational Linguistics (ACL),
pages 3645–3650. Association for Computational Lin-
guistics, 2019.

[24] Martin Trapp, Robert Peharz, Hong Ge, Franz
Pernkopf, and Zoubin Ghahramani. Bayesian learning
of sum-product networks. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, 32nd Con-
ference on Neural Information Processing Systems
(NeurIPS), pages 6344–6355, 2019.

[25] Fabrizio Ventola, Steven Braun, Zhongjie Yu, Martin
Mundt, and Kristian Kersting. Probabilistic circuits
that know what they don’t know. arXiv preprint arXiv:
2302.06544, 2023.

[26] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay,
L. Chen, B. Zhang, and P. Deaville. In-memory com-
puting: Advances and prospects. IEEE Solid-State
Circuits Magazine, 11(3):43–55, Summer 2019. ISSN
1943-0590. doi: 10.1109/MSSC.2019.2922889.

[27] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael
Niemier, Jason Cong, Yu Hu, and Yiyu Shi. Scaling

for edge inference of deep neural networks. Nature
Electronics, 1(4):216–222, 2018.

6

	Introduction
	Background: Probabilistic Circuits
	Approximate Computing for Probabilistic Circuits
	Experiments
	Power Consumption comparison between exact multiplications and AAI
	Energy Saving with Different Number of Bits

	Conclusion and Discussion

