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Abstract

Machine learning models are increasingly being
deployed onto edge devices, for example, for smart
sensing, reinforcing the need for reliable and effi-
cient modeling families that can perform a variety
of tasks in an uncertain world (e.g., classification,
outlier detection) without re-deploying the model.
Probabilistic circuits (PCs) offer a promising
avenue for such scenarios as they support efficient
and exact computation of various probabilistic
inference tasks by design, in addition to having
a sparse structure. A critical challenge towards
hardware acceleration of PCs on edge devices is
the high computational cost associated with mul-
tiplications in the model. In this work, we propose
the first approximate computing framework for
energy-efficient PC computation. For this, we
leverage addition-as-int approximate multipliers,
which are significantly more energy-efficient than
regular floating-point multipliers, while preserving
computation accuracy. We analyze the expected
approximation error and show through hardware
simulation results that our approach leads to a
significant reduction in energy consumption with
low approximation error and provides a remedy
for hardware acceleration of general-purpose
probabilistic models.

1 INTRODUCTION

The development of smart sensing and Internet-of-Things
applications based on embedded artificial intelligence (AI),
such as smartphones, wearables, or other sensor networks,
is pushing the computation of machine learning meth-
ods directly onto edge devices. Recent innovations (e.g.,
[12, 26, 17]) have pushed up the computational efficiency
of deep feedforward neural networks (NNs) and improved

the energy efficiency of dedicated AI processors by 10× –
100× compared to Graphical Processing Units [17]. How-
ever, NNs that have been adopted into real-world use of-
ten raise concerns related to their reliability, fairness, and
interpretability [9, 7] alongside their high inference costs
[27, 23].

Consequently, to be suitable for the challenges associated
with edge AI, there is an urgent need to develop effective
hardware acceleration of machine learning models that are
probabilistic, i.e., they enable reasoning in an uncertain
world [6], and tractable, i.e., they can reliably answer many
probabilistic queries without re-deployment. Recent work
on tractable probabilistic models, specifically on probabilis-
tic circuits (PCs) [2], poses a promising avenue as these mod-
els (i) exhibit high expressive efficiency (representational
power), (ii) enable reliable [25, 13] and fair [1] reasoning,
and (iii) allow many probabilistic queries to be computed
tractably by design. Yet, while pioneering works have ex-
plored acceleration of PCs on Field Programmable Gate
Arrays (FPGAs) [3, 21, 22] and Application-Specific Inte-
grated Circuits (ASICs) [18, 19], the hardware acceleration
of PCs poses many open challenges. In particular, their irreg-
ularity (i.e., PCs are sparsely connected making parallelism
more challenging [20]) and high computation resolution
(i.e., probabilistic inference with PCs typically requires 30 –
40 floating-point bits [22, 20] as arithmetics are performed
on probabilities) hinders their deployment on edge devices
where efficiency and reduced resolution are key due to the
limited energy resources.

In this work, we propose to approximate floating-point mul-
tipliers through Addition-as-Int [10], suggesting high poten-
tial gains in computational efficiency (Addition-as-Int can
reduce the hardware cost of multiplication by a factor of up
to 112×) with little impact on the accuracy of the computa-
tions. In addition, we carry out a theoretical analysis of the
expected error and show that our approach can result in ac-
curate computations for maximum-a-posteriori (MAP) and
marginal queries and enables to concisely trade-off accuracy
and computational efficiency.
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(a) Probabilistic Circuit
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(b) Corresponding hardware representation for MAP Inference
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Figure 1: Illustration of a PC (a) over discrete RVs (X1, X2, X3) and the corresponding hardware realization of MAP
inference (b). For this, sum nodes are replaced by max operators, and an additional propagation path for information bits is
added to back-track the most probable path (MAP result)

2 BACKGROUND: PROBABILISTIC
CIRCUITS

Probabilistic circuits (PCs) have recently been introduced
as an umbrella to unify a variety of existing tractable prob-
abilistic models (e.g., [4, 14, 15, 8]). They represent the
(possibly unnormalized) distribution function (density or
mass function) of a multivariate probability distribution
over random variables (RVs) X = {Xi}di=1 through a di-
rected acyclic graph G. The computational graph (G) con-
stitutes weighted sums S(x) =

∑
C∈ch(S) wS,CC(x) with∑

C∈ch(S) wS,C = 1, products P(x) =
∏

C∈ch(S) C(x), and
leaf nodes associated with parametric functions, typically
assumed to be density/mass functions of univariate probabil-
ity distributions L(x) = p(x | θL). We use ch(N) to denote
the set of children of a node (N) and θ denotes parameters
of the parametric leaves. In addition, each node N ∈ G is
associated with a scope ψ(N) ⊆ X provided by a scope
function ψ : N → P(X) [24], where P(X) denotes the
power set of X , specifying the set of RVs the node repre-
sents a joint distribution over. Fig. 1(a) illustrates a PC over
three discrete RVs using indicator functions at the leaves,
where we use ⊕ to illustrate sum nodes and ⊗ for product
nodes. Fig. 1(b) illustrates our proposed hardware realiza-
tion of MAP inference for a PC. A particularly relevant class
of PCs are those that are smooth and decomposable, as both
properties are requirements for many probabilistic queries
to be computable exactly and in time linear in the number of
nodes of G. Henceforth, we will briefly review smoothness
and decomposability.

Definition 2.1 (Smooth & Decomposability). A sum node S
is smooth if all children have the same scope, i.e., ψ(C) =
ψ(C′),∀C,C′ ∈ ch(S). Further, a product node P is de-
composable if all children have pairwise disjoint scopes,
i.e., ψ(C) ∩ ψ(C′) = ∅,∀C,C′ ∈ ch(P). A PC is smooth if
all sum nodes are smooth and decomposable if all product

nodes are decomposable.

Definition 2.2 (Determinism). A sum node S is determinis-
tic if for every complete evidence x at most one child has
a positive value. Consequently, a PC is deterministic if all
sum nodes are deterministic.

We refer the reader to [2] for further details on the structural
properties of PCs.

3 APPROXIMATE COMPUTING FOR
PROBABILISTIC CIRCUITS

Assuming positive numbers in floating-point representation,
two operands x and y can be written as x = 2Ex(1 +Mx)
and y = 2Ey (1 +My). Note that we can omit the sign bit
and only have to consider their exponent (E) and mantissa
(M) values. Therefore, the exact product x× y is given as:

x× y = 2Ex+Ey (1 +Mx)(1 +My) (1)

This product can be conveniently expressed in log-space,
i.e.,

log2(x× y) = Ex + Ey + log2(1 +Mx) + log2(1 +My),
(2)

A popular approximate solution is based on Mitchell’s
method [10]. To approximate the logarithm, Mitchell’s
method uses log2 (1 + F ) ≈ F , which is the first-order
Taylor series expansion of log2 (1 + F ). Using this approx-
imation, Eq. (2) becomes:

log2(x× y) ≈ Ex + Ey +Mx +My. (3)

Previous work pointed out that adding two IEEE 754
floating-point numbers with an integer addition instruction
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results in Mitchell’s approximate multiplication and called
as Addition-As-Int (AAI) [11]. By doing so, we can directly
obtain an approximation from Eq. (2) to Eq. (3). Denoting
×̃ as the approximate multiplication, we obtain:

x ×̃ y = FLOAT(INT(x) + INT(y)) (4)

Where INT(·) interprets the binary string of the IEEE
754 floating-point representations as integer strings and
FLOAT(·) interprets the resulting integer string back to
the IEEE 754 floating-point representation. Therefore, per-
forming AAI in hardware only requires integer addition
operators.
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Figure 2: Power cost of multipliers on 65nm CMOS using 8
exponent bits.

4 EXPERIMENTS

We evaluated our approach on four benchmark data sets:
NLTCS, Jetser, DNA, and Book, which are a subset of fre-
quently used data sets in the community (e.g., [16, 5, 24]).
We generated PC structures and parameters using Learn-
SPN [5], a popular method for structure learning, resulting
in smooth and decomposable PCs. All evaluations are per-
formed on the test set.

4.1 POWER CONSUMPTION COMPARISON
BETWEEN EXACT MULTIPLICATIONS AND
AAI

Floating-point and AAI multipliers have been designed and
simulated for various resolutions in a 65nm CMOS technol-
ogy, and models have been fitted to the simulation results.
Fig. 2 shows the resulting model for 8 exponent bits and
varying number of mantissa bits. We see that the hardware
cost is dominated by mantissa processing, and the hardware
complexity grows significantly with the number of man-
tissa bits. As AAI uses much simpler addition hardware,
the complexity and power grow linearly with the number of
bits.

4.2 ENERGY SAVING WITH DIFFERENT
NUMBER OF BITS

We replaced all multipliers with AAI to assess the error
and the power savings for MAR and MAP queries under
varying resolutions. For MAR queries, we computed the
squared error according to a software baseline (64-bits), i.e.,∑

x(p(x)−q(x))2 where q(·) denotes the model with lower
resolution multipliers and p(·) the PC in software. In addi-
tion, we calculated the maximum and minimum obtainable
errors. For MAP queries, we calculated the MAP inference
accuracy over the latent variables (assuming complete evi-
dence) regarding the baseline. We collected the optimized
bits in Table 1 where theNb represents 32 bits,Nbe andNba

are the number of bits related to the smallest error in the
exact multiplier and approximate multiplier respectively.

MAR queries. With AAI, the error varies across bench-
marks but generally requires higher exponent bits E , c.f.
Fig. 3. In practice, exact multipliers produce a small er-
ror at the tested resolutions, as seen in Table 1. Indeed, E
determines the minimum representable value, and M repre-
sents the quantization in every exponent range, which only
depends on the representation error. Going from a 32-bit
resolution to Nbe enables saving around 2× power. We find
that using AAI can allow for 24× to 40× extra savings if
the tolerated error is a few percent. The total power savings
from 32-bit to the optimal AAI are between 56× and 88×,
c.f. Table 1 .

MAP queries. We find that the resolution of MAP com-
putation can be drastically reduced while introducing no
error since MAP stays correct as long as the argmax at sum
nodes stays the same. Further, AAI multipliers can achieve
higher accuracy for fewer bits, c.f. Fig. 4. In contrast to
exact floating-point multiplication, where mantissa values
are normalized (see Appendix A), and successive multi-
plications result in smaller mantissa values, AAI handles
normalization by using a carry, hence, requiring fewer bits.
Most power savings are obtained fromNb toNbe, i.e. 18.6×.
Switching for AAI increases savings by up to 11×. Total
power savings can be 206×, c.f. Table 1 .

5 CONCLUSION AND DISCUSSION

We introduced approximate computing in PCs to increase
their energy efficiency for deployment on edge devices
and provided a theoretical and empirical analysis of the
introduced error. Specifically, we investigated the energy
efficiency and approximation error of Addition-as-Int mul-
tipliers in PCs for different benchmarks and query types
(marginals and MAP). Our results show that maximum
power savings of 88× and 206× can be achieved for MAR
and MAP queries, respectively.
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Table 1: Overview of optimal configuration and performances over several data sets. Nbe and Nba correspond to the settings
with the smallest error and the loss is the error relative to the max. error.

Data set Query
Power Exact ⊗ AAI ⊗ Loss
Nb = 32 Nbe Power Nba Power Exact AAI
µW ,@Nb (E,M) µW ,@Nbe (E,M) µW ,@Nba % %

NLTCS MAP 85482 5,3 4594 5,1 414 0 0
MAR 85482 8,15 36699 8,7 1035 3e-7 0.8

Jester MAP 660408 5,3 35492 5,1 3199 0 0
MAR 660408 8,15 283530 11,11 11731 4e-7 5.9

DNA MAP 674902 5,3 36271 5,1 3269 0 0
MAR 674902 11,15 306942 11,3 7629 3e-6 3.3

Book MAP 1272053 5,3 68364 5,1 6162 0 0
MAR 1272053 8,15 546124 11,7 18488 7e-6 0.4

3 7 11 15

0

1

2

3

·10−3

A
A

IM
ul

ti.
A

pp
ro

x.
E

rr
or

NLTCS

3 7 11 15

0

0.5

1

·10−26
Jester

3 7 11 15

0

1

2

·10−68
DNA

3 7 11 15

0

0.5

1

·10−2
Book

3 7 11 15

0

1

2

3

·10−3

Mantissa

E
xa

ct
M

ul
ti.

A
pp

ro
x.

E
rr

or

3 7 11 15

0

0.5

1

·10−26

Mantissa
3 7 11 15

0

1

2

·10−68

Mantissa
3 7 11 15

0

0.5

1

·10−2

Mantissa

Figure 3: Results for AAI (first row) and exact (second row) multipliers using varying number of exponent ( E=8,
E=11) and mantissa bits. Maximum possible error ( ) is shown for reference.
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Figure 4: MAP accuracy (ACC) results for AAI (first row) and exact (second row) multipliers using varying the number of
exponent and mantissa bits ( m=1, m=3, m=5).
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