
Published as a conference paper at ICLR 2023

NEURAL DAG SCHEDULING VIA ONE-SHOT PRIORITY
SAMPLING

Wonseok Jeon∗ , Mukul Gagrani∗, Burak Bartan, Weiliang Will Zeng, Harris Teague
Piero Zappi, Christopher Lott
Qualcomm AI Research†

ABSTRACT

We consider the problem of scheduling operations/nodes, the dependency among
which is characterized by a Directed Acyclic Graph (DAG). Due to its NP-hard
nature, heuristic algorithms were traditionally used to acquire reasonably good solu-
tions, and more recent works have proposed Machine Learning (ML) heuristics that
can generalize to unseen graphs and outperform the non-ML heuristics. However,
it is computationally costly to generate solutions using existing ML schedulers
since they adopt the episodic reinforcement learning framework that necessitates
multi-round neural network processing. We propose a novel ML scheduler that
uses a one-shot neural network encoder to sample node priorities which are con-
verted by list scheduling to the final schedules. Since the one-shot encoder can
efficiently sample the priorities in parallel, our algorithm runs significantly faster
than existing ML baselines and has comparable run time with the fast traditional
heuristics. We empirically show that our algorithm generates better schedules
than both non-neural and neural baselines across various real-world and synthetic
scheduling tasks.

1 INTRODUCTION

The problem of scheduling operations arises across many domains, such as data centers where the
incoming jobs have to be scheduled on a distributed server (Mao et al., 2019), manufacturing pipelines
in the form of job shop scheduling problems (JSSP) (Manne, 1960), and ML compilers where the
operations of a computation graph need to be scheduled on the available hardware devices (Paliwal
et al., 2020; Zhou et al., 2020). In all these cases, the problem may be abstracted using a directed
acyclic graph (DAG) where the nodes of the graph represent the operations and the edges represent
the dependency constraints between the operations and hence the problem is also referred to as DAG
scheduling. The objective is to minimize the finish time (or makespan) of the DAG subject to resource
and dependency constraints.

It is well known that this is an NP-hard problem (Kan, 2012), and practitioners have traditionally
relied on heuristic methods to obtain good solutions. One of the celebrated scheduling approaches
is list scheduling (Graham, 1969) where the idea is to schedule nodes as early as possible and
to break ties using priorities. The priorities can be obtained via different node metrics which are
computationally inexpensive such as critical-path based, shortest processing time or most operations
remaining (Haupt, 1989). More recently, researchers have proposed deep reinforcement learning
based methods to solve scheduling problems (Zhang et al., 2020; Zhou et al., 2020; Wang et al., 2021;
Mao et al., 2019). The scheduling policy in all the references utilize Graph Neural Networks (GNN)
as an encoder to derive node embeddings. Zhang et al. (2020) proposed an auto-regressive GNN based
policy for the JSSP problem which predicts the next node for scheduling given the nodes scheduled so
far. Wang et al. (2021) proposed a bi-level optimization approach which modifies the input DAG by
adding multiple edges via a learned policy and then apply the critical-path heuristic on the modified
DAG. One major drawback of the existing ML based schedulers is the computational cost as they
require multi-round neural network processing (encoding step). The multi-round neural network
processing is reflected as auto-regressive architecture (Zhang et al., 2020) or bi-level optimization

∗Equal contribution
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

1

Published as a conference paper at ICLR 2023

design (Wang et al., 2021). This drawback limits the scalability to large graphs and the applicability
to domains where solutions need to be obtained in a timely manner (e.g., scheduling computation
graphs in compilers).

In this paper, we propose a novel ML scheduler that uses a one-shot neural network encoder to sample
node priorities which are converted by list scheduling to the final schedules. Since our encoder
generates node priorities with a single forward pass of a neural network and efficiently samples
priorities in parallel, our algorithm runs significantly faster than existing ML baselines and has
comparable run time with the fast traditional heuristics.

The contributions of this paper are summarized below:

• We propose a novel end-to-end approach to learn scheduling priorities for list scheduling on
DAGs. Our model adopts the recently proposed Topoformer architecture (Gagrani et al., 2022)
as a DAG encoder and the Gumbel-Top-k trick (Kool et al., 2019b) to sample node priorities
(which are acquired by perturbing the encoder’s output and converted into valid schedules via list
scheduling). While optimizing our model with REINFORCE (Williams, 1992), we introduce logit
norm regularization and cost standardization that significantly improve our model’s representation
power and performance compared to the model used in Gagrani et al. (2022).

• Our approach uses the one-shot encoder which generates the node priorities by running the
Topoformer encoder once. This is in contrast of existing neural baselines (Wang et al., 2021; Zhang
et al., 2020), all of which involves multi-round neural network processing. Due to the one-shot
nature of our model, our method runs significantly faster than our neural baselines, while achieving
runtimes slightly worse than yet comparable with those of computationally-efficient and simple
non-ML heuristics.

• We show that our approach can be generally applied to a variety of scheduling tasks that includes
JSSP, TPC-H benchmark and scheduling for synthetic and real-world computation graphs. For
all benchmarks, our model outperforms both neural and non-neural baselines w.r.t. makespan
metric (Wang et al., 2021; Zhang et al., 2020).

2 PRELIMINARIES

2.1 SCHEDULING PROBLEM

In scheduling problems, we define a DAG as a tuple G := (V, E , δ, ρ, µ) with a set V of nodes (or
vertices) and a set E of directed edges (or arcs). Each node v ∈ V represents an operation with
δ(v) ≥ 0 denoting its operational duration and ρ(v) ≥ 0 denoting the resources required to execute v.
For a setM of machine types, each node v ∈ V has to be assigned to its own machine type µ(v) ∈M
(|M| = 1 and |M| > 1 correspond to scheduling with homogeneous machines and heterogeneous
ones, respectively). The set E of edges in the DAG G represents computational dependency among
nodes. For instance, for the scheduled start time τ(v) ≥ 0, v ∈ V for each node, a directed edge
(v1, v2) ∈ E , v1, v2 ∈ V, means τ(v1) + δ(v1) ≤ τ(v2), i.e., any node should be scheduled on or
after all its predecessor nodes are finished. We assume that each type of machine m ∈M has its own
maximum resource limit λ(m) ≥ 0, i.e., at any point of time the total amount of occupied resources
for machines of type m cannot exceed λ(m).

Let us introduce the vectorized notation τ = [τ(v)]v∈V ∈ R|V|
≥0 of the start times with a little abuse

of notation for the sake of simpler notation. We define a valid schedule as a vector τ ∈ T where
T is the set of all valid schedules (satisfying both precedence and resource constraints for given
DAG G). The objective of the scheduling problem is to find τ∗ := argminτ∈T C(τ ;G), where
C(τ ;G) := maxv∈V{τ(v)+ δ(v)}, the duration required to complete all operations, is the makespan
of schedule τ .

2.2 LIST SCHEDULING

List scheduling (Graham, 1969) is a class of priority-based schedule algorithms that are widely
adopted in practice due to their simplicity. We describe how list scheduling works as follows:

(Step 1) Input a list of node priorities and set the current decision time to be zero.
(Step 2) Find ready nodes that can be scheduled at the current decision time, i.e., nodes whose

predecessors have finished.

2

Published as a conference paper at ICLR 2023

1

3

2

4

DAG

duration

1.0

1.0

2.0

1.0

3

2

4

node priority

decision
time

final
schedule

3

2

4

2

4 4

1 1 3 1 3

2

1 3

2

4

ready
node

ready
node

ready
node

List Scheduling

ready
node

1

Figure 1: An example of list scheduling (Graham, 1969) for a 4-node DAG scheduling is described.
Each node has its own duration, while resource limit is ignored for illustration purpose. List
scheduling takes node priority as an input (e.g., 1 ≻ 3 ≻ 2 ≻ 4, brighter color implies higher priority)
and schedules the higher-priority node among ready nodes earlier than the other nodes. After all
ready nodes are scheduled, we move the decision time until a new set of ready nodes is found. We
repeat these steps until we schedule all nodes.

(Step 3) Schedule the ready nodes sequentially at the current decision time by following the order of
node priority until either all ready nodes are scheduled or further nodes cannot be scheduled
due to resource constraints.

(Step 4) Move the decision time to the earliest finish time over all scheduled nodes which have
not finished at the current decision time and repeat (Step 2) to (Step 4) until all nodes are
scheduled.

We describe a simple example of list scheduling in Figure 1. Although Graham (1969) originally
presented list scheduling for scheduling with homogeneous machines, we use the same definition of
list scheduling for both homogeneous and heterogeneous machines.

2.3 THE GUMBEL-TOP-k TRICK

Consider a random variable Y over a set Y of finite categories, where the distribution is defined by
the softmax over logits(y) ∈ R, y ∈ Y (the unnormalized log-probabilities), i.e., Pr{Y = y} ∝
exp(logits(y)), y ∈ Y, and thus

Pr{Y = y} = exp(logits(y))∑
y′∈Y exp(logits(y′))

. (1)

The Gumble-Max trick (Gumbel, 1954) is a method to sample from the categorical distributions
when logits characterizing the distributions are tractable. Specifically, the trick shows that by using
a random vector Z ∈ R|Y| where elements Z(y), y ∈ Y, are sampled from i.i.d. standard Gumbel
distribution, one can randomly generate a category as follows:

argmax
y∈Y

{logits(y) + Z(y)} ∼ Pr{Y = y}. (2)

More recent works (Vieira, 2014; Kool et al., 2019b) found that the Gumbel-Max trick can be
extended to sample k categories without replacement, which is called the Gumbel-Top-k trick. For
the extension, they introduced arg top(k) which takes a real vector on Y and outputs a sequence of
elements in Y that correspond to the k largest values; the output sequence of the elements should be
ordered by the corresponding decreasing input values (Kool et al., 2019b). As a special case where
k = |Y|, arg top(k) becomes arg sort in decreasing values. The Gumbel-Top-k trick generates the
random sequence of elements in Y

[Y1, Y2, ..., Yk] := arg top
y∈Y

(k){logits(y) + Z(y)}, (3)

and shows that the sequence is equivalent to the one from sampling k elements without replacement;
note that the random vector Z is sampled once and before applying arg top(k). In other words, the
distribution of the random sequence in Eq. (3) is shown to be described as follows (Kool et al.,
2019b):

Pr{[Y1, Y2, ..., Yk] = [y1, y2, ..., yk]} =
k∏

i=1

exp(logits(yi))∑
y′∈Y\{y1,...,yi−1} exp(logits(y

′))
. (4)

3

Published as a conference paper at ICLR 2023

1

3

2

4

DAG logits

+− Std. Gumbel

Std. Gumbel

Std. Gumbel

Std. Gumbel

perturbed
logits

+−
1

3

2

4

node
priority

List
Scheduling

1 1 3

1 3
2

1 3
2

4

GNNθ1

MLPθ2

MLPθ2

MLPθ2

MLPθ2

arg sort

Figure 2: Our neural scheduler for DAGs works as follows: (Step 1) Generate logits for all nodes
from a DAG by using a GNN encoder followed by an MLP. (Step 2) Perturb logits by adding i.i.d.
Gumbel random variables. (Step 3) Take argsort over perturbed logits to define node priorities.
Higher priority nodes have brighter colors. (Step 4) Use list scheduling to generate a schedule.

Intuitively, Eq. (4) tells us that each element in the random sequence in Eq. (3) follows the categorical
distribution that is characterized by the softmax over logits, where previously sampled categories are
excluded. In this work, we use Eq. (3) to decide the priorities over the elements in Y when k = |Y|,
which will be elaborated in the next section.

3 DAG SCHEDULING WITH NEURAL PRIORITY SAMPLER

We present our one-shot neural scheduler for DAG scheduling problems and its training method in
this section. The content in this section is summarized as follows; we introduce the formal problem
setting for the ML-based scheduling in Section 3.1; we describe how our model generates schedules
by using the one-shot neural priority encoder and list scheduling in Section 3.2; the training method
for our model and how it is relevant to the Gumbel Top-k trick are discussed in Section 3.3 with some
technical details to stabilize our algorithm, which we introduced in this work.

3.1 LEARNING-TO-SCHEDULE FRAMEWORK

Suppose we have a set G := {G1, G2, ...} of DAGs, where each DAG Gi := (Vi, Ei, δi, ρi, µi)
follows the definition in Section 2.1. We also assume that we have a device which is equipped with
machines required for the DAGs. The learning-to-schedule algorithms by Zhang et al. (2020) and
Wang et al. (2021) aim to find out a parameterized schedule generator πθ(τ |G) (with the neural
network parameter θ) that minimizes the average makespan over G, i.e.,

argmin
θ

EG∼GEτ∼πθ(·|G) [C(τ ;G)] , (5)

where τ is the schedule (the start times of nodes) and C(τ ;G) is the makespan of τ in G as in
Section 2.1. The neural schedulers of existing works (Zhang et al., 2020; Wang et al., 2021) are
sequential decision-making models that require multi-shot neural network processing. In contrast, we
use a computationally efficient single-shot neural scheduler which is described in the next subsection.

3.2 SCHEDULE GENERATOR WITH ONE-SHOT PRIORITY SAMPLER

Using one-shot node priorities was recently proposed by Gagrani et al. (2022) to solve peak memory
minimization problems in DAGs. Our neural scheduler is motivated by their idea and described in
Figure 2. We adopt Topoformer, the graph neural network (GNN) encoder presented by Gagrani
et al., as our graph encoder GNNθ1(G) ∈ (Rh)|V|, where h is the dimension of output embeddings
for each node, and θ1 is the neural network parameter of the encoder. We use MLPθ2 : Rh → R
to convert the GNN’s output node embeddings into logits over the nodes, i.e., for θ := (θ1, θ2) and
G ∈ G = {G1, G2, ...},

logitsθ(v;G) := MLPθ2([GNNθ1(G)]v) ∈ R, v ∈ V. (6)

The difference between Gagrani et al.’s algorithm and ours arises from sampling procedure using
logits. Gagrani et al. considers logits of schedulable nodes at each decoding step and sequentially

4

Published as a conference paper at ICLR 2023

samples among those schedulable nodes, whereas we sample node priorities only once at the start of
decoding. Specifically, by using i.i.d. standard Gumbel variables Z(v) ∈ R, v ∈ V, and arg sort, we
randomly sample a sequence of nodes from perturbed logits:

V⃗ := [V1, V2, ..., V|V|] := arg sort
v∈V

{logitsθ(v;G) + Z(v)︸ ︷︷ ︸
perturbed logits

}. (7)

Note that the LHS of Eq. (7) is a random sequence due to the randomness of Z and arg sort is
applied in decreasing values of the perturbed logits. We then regard the sampled random sequence
V⃗ = [V1, V2, ..., V|V|] as the sequence of node priorities V1 ≻ V2 ≻ ... ≻ V|V|, which does not
require additional computation. Due to the stochastic nature of the Gumbel-Top-k Trick described in
Section 2.3, our mapping from the random sequence to the node priorities is equivalent to sampling
nodes without replacement where nodes sampled earlier are considered to be higher-priority ones.
More importantly, the trick allows us to use the tractable distribution of the random sequence, which
becomes highly beneficial when optimizing the neural network. We will discuss this further in the
next subsection.

Finally, we use list scheduling (described in Section 2.2) with the sampled random sequence in Eq. (7)
to generate a valid schedule with the start time τ :

τ = ListScheduling(V⃗ ;G) ∈ R|V|
≥0 . (8)

3.3 ALGORITHM AND PRACTICAL CONSIDERATION

The objective of learning-to-schedule frameworks in Eq. (5) can be rewritten with our scheduler
generator as follows:

argmin
θ

EG∼GEV⃗∼πθ(·|G)CLS(V⃗ ;G), (9)

where CLS(V⃗ ;G) := C(ListScheduling(V⃗ ;G);G) is the makespan of list scheduling for given
node priorities V⃗ = [V1, ..., V|V|] and the graph G, and πθ(·|G) is the probability distribution of
sampling node priorities for G. From the Gumbel-Top-k trick discussed in Section 2.3, we can get
the tractable form of πθ(·|G) below:

πθ([v1, ..., v|V|]|G) : = Prθ{V⃗ = [v1, ..., v|V|]|G} =
|V|∏
i=1

exp(logitsθ(vi;G))∑
v∈V\{v1,...,vi−1} exp(logitsθ(v;G))

.

(10)

This enables us to use the following gradient descent rule using REINFORCE (Williams, 1992) that
optimizes the objective Eq. (9) with learning rate α > 0:

θ ← θ − αEG∼GEV⃗∼πθ(·|G)[∇θ log πθ(V⃗ |G)CLS(V⃗ ;G)]. (11)

Together with the above update rule, we found that the practical techniques we introduce are crucial
to stabilize the training and lead to significantly better performance, which are described below:

Logit Norm Regularization. When Gagrani et al. (2022) used their GNN encoder (Topoformer)
to define the model distribution, the standardization over logits was used to bound the range of
logits (See Section C.2 in Gagrani et al. (2022)). Specifically for the mean m and standard deviation
s over logits(v), v ∈ V, and a scalar hyperparameter c > 0, the standardized logits logits(v) :=
c× (logits(n)−m)/s is used to define the model’s probability of topological ordering. However,
we empirically observe that such standardization over logits leads to poor performance. We believe
this is because standardization significantly restricts the model’s representation capability. While
a rigorous proof for our argument may be complicated, we can easily show that this is true for
binary random variables. Specifically with the above definition of standardized logits and a random
variable X ∈ {0, 1}, one can only represent (Pr{X = 0},Pr{X = 1}) = (1

1+exp(2c) ,
exp(2c)

1+exp(2c)) or

(exp(2c)
1+exp(2c) ,

1
1+exp(2c)) (See Appendix A.). Note that the constant c is a hyperparameter and assumed

to be fixed during training, and the example implies that only two distributions can be described for
any given c, which supports our claim.

5

Published as a conference paper at ICLR 2023

Algorithm 1 Neural DAG Scheduler via One-Shot Priority Sampling

Input: A set G = {G1, G2, ...} of the training graphs, a node priority sampler πθ, learning rate
α > 0, a regularization coefficient clogits > 0.

1: for each epoch do
2: for each G ∈ G do
3: Sample a batch of node priorities V⃗ (1), V⃗ (2), ..., V⃗ (N) ∼ πθ(·|G).
4: Convert the priorities to valid schedules by list scheduling.
5: Evaluate makespan for all sampled schedules.
6: Standardize makespan C̄n ← C(V⃗ (n); V⃗ (1), ..., V⃗ (N), G), n = 1, ..., N, by Eq. (13).
7: Compute REINFORCE gradient gREINFORCE ← 1

N

∑N
n=1∇θ log πθ(V⃗

(n)|G)C̄n.
8: Compute logit norm gradient glogits ← clogits ×∇θLlogits(θ;G) with Eq. (12).
9: Update θ by using gradient descent: θ ← θ − α(gREINFORCE + glogits).

10: end for
11: end for
Output: πθ

After removing the standardization of logits due to the above observation, however, we still observe
instability in training caused by the unbounded logits. Therefore, we introduce the logit norm
regularizer that minimizes

Llogits(θ;G) :=
1

|V|
∑
v∈V

logitsθ(v;G)2 (12)

by gradient descent, together with the aforementioned REINFORCE objective. Intuitively, the norm
regularizer allows our model to have the logits around the origin so that we can avoid numerical errors
due to the unbounded logits while the sufficient amount of flexibility is still maintained for choosing
logits. We empirically found that this highly stabilizes training and improves the performance and
hence we apply the regularizer in all of our experiments.

Cost Standardization. Gagrani et al. (2022) stored the best-performing model so far and used
its cost as the policy gradient baseline. This so-called greedy baseline was introduced due to the
empirical performance of Kool et al. (2019a)’s algorithm on routing problems. However, if the scale
of makespan varies significantly across different training graphs, the model trained with the greedy
baseline can easily overfit a small subset of training graphs, which may lead to poor performance on
test graphs. Also, the greedy baseline requires additional resources since the intermediate models
should be stored and evaluated during training. To address these issues, we use cost standardization
that has been widely adopted in policy-gradient algorithms, e.g., PPO (Schulman et al., 2017; 2015).
Specifically for a given graph G during a training iteration, we first sample multiple node priorities,
i.e., V⃗ (1), ..., V⃗ (N) ∼ πθ(·|G), and evaluate makespan CLS(V⃗

(1);G), ..., CLS(V⃗
(N);G). During the

policy gradient update, we use the standardized makespan across the samples, i.e.,

C(V⃗ ; V⃗ (1), ..., V⃗ (N), G) :=
CLS(V⃗ ;G)−meann=1,...,N [CLS(V⃗

(n);G)]

max{stdn=1,...,N [CLS(V⃗ (n);G)], ϵ}
, (13)

where ϵ > 0 is used to clip the standard deviation in denominator for numerical stability.

The final algorithm with additional stabilization ideas is summarized in Algorithm 1. We train
our model with multiple training epochs over G where a single epoch considers each graph in G
once. For each graph G ∈ G, we randomly sample N priorities and use REINFORCE to update the
model parameter θ while regularizing the norm of logits by Eq. (12). We multiply with a constant
clogits > 0 the regularization loss to balance between REINFORCE loss and regularization. We set
clogits = 0.001 and observe that it empirically works well in all of our experiments.

4 RELATED WORKS

ML for Combinatorial Optimization. The idea of using ML to solve DAG scheduling fits into
the broader theme of using ML for Combinatorial Optimization (CO) which has received attention
recently (Bengio et al., 2021). Most of the works in the literature in ML for CO use RL to learn a

6

Published as a conference paper at ICLR 2023

policy to select actions for reward maximization which is set to be a direct function of the problem
objective. The policy can be an end-to-end policy whose actions correspond to the the solution of the
CO problem (Zhou et al., 2020; Kool et al., 2019a; Joshi et al., 2021; Khalil et al., 2017; Zhang et al.,
2020) or the policy can augment a traditional heuristic/solver of the problem to find better solutions
(Paliwal et al., 2020; Xin et al., 2021; Ahn et al., 2020; Wang et al., 2021).

End-to-End ML Schedulers. In the context of the scheduling problems, Zhang et al. (2020) and Park
et al. (2021) proposed an end-to-end GNN based policy to solve the JSSP problem which is a special
case of DAG scheduling. Their policy is auto-regressive which selects the nodes to be scheduled
iteratively and at each iteration they run the GNN on the modified disjunctive graph to get new node
embeddings. Thus, they are required to run the GNN encoder |N | times which is prohibitive for large
graphs. In order to address the complexity of auto-regressive policies for large graphs encountered in
compiler workflows, Zhou et al. (2020) came up with the idea of iterative refinement which refines
the generated schedule by running their GNN policy K times where K is a hyper-parameter. Sun
et al. (2021), Mao et al. (2019) and Zhou et al. (2022) consider the problem of scheduling jobs on
data clusters and provide end to end deep RL solutions to solve data center scheduling under various
settings.

Hybrid Schedulers. Wang et al. (2021) propose a bi-level optimization approach for DAG scheduling
where they learn a policy which modifies the input DAG by adding edges and then use the critical-path
based list scheduling method on the modified DAG to obtain a schedule for the original problem.
The authors allow upto K edges to be added to the DAG (where K is a hyper-parameter) and their
policy can run the GNN K times to get to the final schedule. Paliwal et al. (2020) proposed a neural
augmented genetic algorithm for scheduling in compilers. They used a GNN policy to learn the
parameters of the mutant distribution which was used by the genetic algorithm to find good schedules.

In contrast to these works, our method generates the node priorities end-to-end requiring only a
single pass of our GNN encoder and uses list scheduling to obtain the final schedule. This makes our
approach more efficient and scalable compared to prior works.

5 EXPERIMENTS

We evaluate our neural DAG scheduler and baselines for three different scheduling tasks: JSSP, DAG
scheduling on TPC-H dataset, and scheduling on computation graphs (See Appendix B for details
about all tasks.). We compare our algorithm with both non-neural and neural baselines. For non-neural
baselines, we consider list scheduling algorithms with different node priorities (based on Critical-Path
(CP), Most Operations Remaining (MOPNR) and Shortest Processing Time (SPT)) (Zhang et al.,
2020), and a constraint programming (Const. Prog.) solver (CP-SAT by Perron & Furnon) with 24
hours time limit. For neural baselines, we first consider Learning-to-Dispatch (L2D) algorithm by
Zhang et al. (2020) in the experiment with synthetic JSSP instances, where we train the deployed
implementation using the dataset. We also consider PPO-BiHyb (Wang et al., 2021), where we
use the deployed model of PPO-BiHyb for TPC-H dataset and train the model for the dataset with
real-world computation graphs.

For our model, we consider two types of operating modes. In Greedy mode, our model generates
schedules with node priorities that uses arg sort and the pure logits without adding Gumbel random
variables. In Sampling mode, we sample multiple node priorities (where the number of samples are
chosen from 16, 64 and 256, each of which corresponds to S(16), S(64), S(256) in Tables) and output
the best schedule from the priorities. We report the makespan for output schedules and the run time
of each algorithm. We report the speedup metric, which is defined as the ratio of sum duration of all
nodes and the makespan, in the computation graph scheduling task. For all tasks and operating modes,
we left the empirical result to show the effectiveness of our practical techniques in Appendix H.

5.1 JSSP

We evaluate our model on randomly generated JSSP instances from Zhang et al. (2020) which
are defined by number of jobs Nj and number of machines Nm. We summarize the results for
(Nj , Nm) = (25, 20), (25, 30), (50, 20) in Table 1. For each case, we train our algorithm for 100
training graphs and evaluate it for 50 unseen test graphs. We also train the neural baseline, L2D (Zhang
et al., 2020), with the same training and test graphs. Note that this is different from the original

7

Published as a conference paper at ICLR 2023

Table 1: Experiment results on synthetic JSSP instances are described. We use bold letters to
emphasize the minimum average makespan for each JSSP instance.

(Nj , Nm) = (25, 20) (Nj , Nm) = (25, 30) (Nj , Nm) = (50, 20)
Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

CP 2120.24 0.009 2588.72 0.017 3290.80 0.024
SPT 2265.88 0.002 2739.20 0.005 3548.20 0.008
MOPNR 2115.86 0.012 2625.96 0.023 3278.82 0.030

L2D 2253.94 1.245 2799.00 2.850 3452.70 3.711

Greedy (ours) 2032.70 0.021 2512.40 0.031 3108.56 0.049
S(16) (ours) 1970.98 0.054 2452.64 0.085 3032.44 0.138
S(64) (ours) 1948.76 0.127 2427.30 0.294 3009.08 0.469
S(256) (ours) 1932.42 0.514 2411.68 0.909 2997.10 1.527

Table 2: Experimental results on TPC-H datasets are described. We use bold letters to emphasize the
minumim average makespan.

TPC-H-50 TPC-H-100 TPC-H-150
Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

Const. Prog. 8629.4 - 19278.3 - - -

CP 9821.3 0.008 16914.1 0.027 24429.5 0.048
SPT 12818.4 0.002 19502.7 0.008 27409.4 0.021
MOPNR 11360.1 0.011 17733.1 0.032 24871.2 0.064

PPO-BiHyb 8905.4 66.484 15192.2 149.215 22371.2 571.424

Greedy (ours) 8845.6 0.057 14981.2 0.100 22332.7 0.259
S(16) (ours) 8782.4 0.114 14972.0 0.287 22330.2 0.674
S(64) (ours) 8742.5 0.216 14968.1 0.699 22323.0 1.856
S(256) (ours) 8694.4 0.540 14964.7 2.270 22320.8 6.485

training of L2D since L2D generates a new set of training graphs for every training iteration. The
results show that our algorithm works well across different numbers of machines and also outperforms
both neural and non-neural baselines. Due to one-shot decoding scheme in our model, the running
time of our model is shorter than L2D. We observe that L2D ends up with worse performance than
non-neural baselines although we train L2D until convergence. We think L2D does not generalize
well with the limited number of training graphs, while our algorithm generalizes well with the same
dataset.

5.2 TPC-H DATASET

TPC-H dataset 1 includes DAGs that consists of industrial queries and data modifications which
represent computation jobs and need to be scheduled on a homogenous machine with finite resources.
We use Wang et al.’s TPC-50/TPC-100/TPC-150 datasets for our experiments. Table 2 shows the
performance of baselines and our model on the test set. We observe that our method obtains better
average makespan than all the baselines including PPO-BiHyb on all the three instances except in
TPC-50 where constraint programming achieves slightly better makespan. One more thing to note is
that our method has much smaller run time compared to PPO-BiHyb. This is because our method
generates node priorities via a single pass of our GNN encoder and samples priorities effectiviely by
using Gumbel Top-k trick, whereas PPO-BiHyb has to run their GNN encoder multiple times and
requires beam search.

5.3 COMPUTATION GRAPHS

We test our approach on scheduling tasks for both synthetic and real-world computation graphs of
neural networks that arise in ML compilers. We consider three type of synthetic computation graphs:

1http://tpc.org/tpch/default5.asp

8

Published as a conference paper at ICLR 2023

Table 3: Experiment results on synthetic computation graphs are described. We use bold letters to
emphasize the maximum average speedup for each graph distribution.

Layered Graph Erdos-Renyi Stoc. Block Model
SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

CP 4.580 0.058 5.049 0.055 4.701 0.055
SPT 4.526 0.013 4.541 0.008 4.473 0.007
MOPNR 4.745 0.075 5.112 0.068 4.761 0.068

Greedy (ours) 4.819 0.094 5.194 0.046 4.866 0.043
S(16) (ours) 4.848 0.311 5.211 0.214 4.916 0.198
S(64) (ours) 4.872 0.750 5.227 0.542 4.944 0.477
S(256) (ours) 4.889 2.418 5.239 1.799 4.965 1.533

Table 4: Experimental results on real-world computation graphs are described. We use bold letters to
emphasize the maximum average speedup for each test set of graphs.

200 - 500 Node Graphs 500 - 700 Node Graphs 700 - 1000 Node Graphs
SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

Const. Prog. 3.267 - 3.183 - 2.497 -

CP 3.174 0.007 2.804 0.016 2.739 0.025
SPT 3.107 0.002 2.868 0.005 2.664 0.008
MOPNR 3.181 0.009 2.825 0.020 2.739 0.028

PPO-BiHyb 3.223 17.937 2.965 52.777 2.798 322.793

Greedy (ours) 3.245 0.152 3.131 0.098 2.846 0.060
S(16) (ours) 3.271 0.192 3.188 0.245 2.848 0.230
S(64) (ours) 3.278 0.263 3.199 0.456 2.856 0.606
S(256) (ours) 3.286 0.595 3.207 1.309 2.860 2.001

layered graphs (Gagrani et al., 2022), Erdos-Renyi and stochastic block model graphs (Paliwal et al.,
2020) (See appendix C.3.). Table 3 shows the performance of different methods on the synthetic
computation graphs with 1000 nodes. We observe that our method outperforms all the traditional
priority based baselines in terms of the achieved speedup (higher speedup implies lower makespan)
for all three graph distributions. We also note that the run time of our method is competitive with that
of the fast heuristics showing the scalability of our approach. Note that for scheduling applications
in ML compilers, low run time of scheduler is crucial, and our results show the applicability of our
model for such applications.

We also experiment on a set of proprietary real-world computation graphs to evaluate the practical
applicability of our neural scheduler. This dataset consists of computation graphs of diverse neural net
architectures like classifiers, convolution nets, denoisers, etc. We observe that our method achieves
superior speedup on graphs of all sizes compared to all non-neural baselines. We also compare our
approach with PPO-BiHyb and constraint programming baseline in this setting. Our results show
that we outperform both PPO-BiHyb and constraint programming in terms of the achieved speedup.
Note that we generate better schedules and run much faster than PPO-BiHyb. The fact that we beat
constraint programming shows the large search space of this problem and the effectiveness of our
approach to learn to find good schedules in this large space.

6 CONCLUSION AND FUTURE WORK

We propose an end-to-end approach to solve the general problem of scheduling over DAGs. Our
method uses a single pass of Topoformer encoder to learn the node priorities which are used with
list scheduling to generate a schedule. We also apply the Gumbel Top-k trick to efficiently sample
multiple node priorities and obtain better schedules. We demonstrate the effectiveness of our approach
on a variety of tasks which include JSSP problems, TPC-H dataset and compiler scheduling datasets.
We believe that our proposed approach can be extended to other CO problems such as routing
problems (Kool et al., 2019a) and consider it a promising direction for future work.

9

Published as a conference paper at ICLR 2023

REFERENCES

Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei Hou, and Hadi Esmaeilzadeh.
Ordering chaos: Memory-aware scheduling of irregularly wired neural networks for edge devices.
In Machine Learning and Systems (MLSys), pp. 44–57, 2020.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:89497–89509,
2020.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Mukul Gagrani, Corrado Rainone, Yang Yang, Harris Teague, Wonseok Jeon, Roberto Bondesan,
Herke van Hoof, Christopher Lott, Weiliang Will Zeng, and Piero Zappi. Neural topological
ordering for computation graphs. In Advances in Neural Information Processing Systems (NeurIPS),
2022.

Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal on Applied
Mathematics, 17(2):416–429, 1969.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. 1954.

Reinhard Haupt. A survey of priority rule-based scheduling. Operations-Research-Spektrum, 11(1):
3–16, 1989.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning TSP
requires rethinking generalization. In International Conference on Principles and Practice of
Constraint Programming (CP), 2021.

AHG Rinnooy Kan. Machine scheduling problems: classification, complexity and computations.
Springer Science & Business Media, 2012.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations (ICLR), 2019a.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: the
Gumbel-Top-k trick for sampling sequences without replacement. In International Conference on
Machine Learning (ICML), pp. 3499–3508, 2019b.

Alan S Manne. On the job-shop scheduling problem. Operations Research, 8(2):219–223, 1960.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In ACM Special Interest
Group on Data Communication (SIGCOMM), pp. 270–288, 2019.

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and Oriol
Vinyals. Reinforced genetic algorithm learning for optimizing computation graphs. In International
Conference on Learning Representations (ICLR), 2020.

Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning to
schedule job-shop problems: representation and policy learning using graph neural network and
reinforcement learning. International Journal of Production Research, 59(11):3360–3377, 2021.

Laurent Perron and Vincent Furnon. OR-tools. URL https://developers.google.com/
optimization/.

10

https://developers.google.com/optimization/
https://developers.google.com/optimization/

Published as a conference paper at ICLR 2023

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Penghao Sun, Zehua Guo, Junchao Wang, Junfei Li, Julong Lan, and Yuxiang Hu. Deepweave:
Accelerating job completion time with deep reinforcement learning-based coflow scheduling. In
International Conference on International Joint Conferences on Artificial Intelligence (IJCAI), pp.
3314–3320, 2021.

Tim Vieira. Gumbel-Max trick and weighted reservoir sampling. 2014.
URL https://timvieira.github.io/blog/post/2014/08/01/
gumbel-max-trick-andweighted-reservoir-sampling/.

Runzhong Wang, Zhigang Hua, Gan Liu, Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang, Jun Zhou,
and Xiaokang Yang. A bi-level framework for learning to solve combinatorial optimization on
graphs. In Advances in Neural Information Processing Systems (NeurIPS), pp. 21453–21466,
2021.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining deep learning model
with Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch
for job shop scheduling via deep reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 1621–1632, 2020.

Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao Liu,
Phitchaya Phothilimtha, Shen Wang, Anna Goldie, et al. Transferable graph optimizers for ML
compilers. In Advances in Neural Information Processing Systems (NeurIPS), pp. 13844–13855,
2020.

Yunfan Zhou, Xijun Li, Jinhong Luo, Mingxuan Yuan, Jia Zeng, and Jianguo Yao. Learning to
optimize dag scheduling in heterogeneous environment. In IEEE International Conference on
Mobile Data Management (MDM), pp. 137–146, 2022.

11

https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-andweighted-reservoir-sampling/
https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-andweighted-reservoir-sampling/

Published as a conference paper at ICLR 2023

A PROBABILITY DISTRIBUTION WITH STANDARDIZED LOGITS

Suppose our model has logits l0 := logits(0) and l1 := logits(1). One can easily show that the

mean and standard deviation of logits are equal to m = l0+l1
2 and s =

√
l20+l21

2 −m2 = |l0−l1|
2 ,

respectively. Now for the hyperparameter c > 0 that is assumed to be fixed, consider the standardized
logits

l̄0 := logits(0) := c× l0 −m

s
, l̄1 := logits(1) := c× l1 −m

s
(14)

and model a binary random variable X ∈ {0, 1} by using them. The probability distribution using
the softmax and the above standardized logits becomes

Pr{X = 1} = exp(l̄1)

exp(l̄0) + exp(l̄1)
=

1

1 + exp(l̄0 − l̄1)
= 1− Pr{X = 0}. (15)

Since the difference between l̄0 and l̄1 is

l̄0 − l̄1 = c× l0 −m

s
− c× l1 −m

s
= c× l0 − l1

s
= 2c× l0 − l1

|l0 − l1|
, (16)

we have

Pr{X = 1} =

{
1

1+exp(2c) , if l0 > l1,
exp(2c)

1+exp(2c) , otherwise.

and Pr{X = 0} = 1− Pr{X = 1}.

B SCHEDULING TASKS

In this subsection, we describe how the different tasks that we consider fit into our scheduling
framework described in section 2.1.

Job Shop Scheduling Problem (JSSP). JSSP is a special case of DAG scheduling where a set
of NJ jobs need to be scheduled on NM machines in M. Each job consists of a sequence of
operations that must go through NM machines in a specific order. This task can be modeled in the
framework of section 2.1 by settingM = {1, 2, . . . , NM}, we have one machine of each type i.e.
λ(m) = 1,∀m ∈ M, each node has a machine type it can be scheduled on i.e. µ(v) ∈ M, each
node occupies the machine it is scheduled on i.e. ρ(v) = 1,∀v ∈ V .

DAG Scheduling on TPC-H. In this task we need to schedule nodes with single machine type
(homogeneous case) i.e. M = 0 and all the nodes have same machine type i.e. µ(v) = 0,∀v ∈ V .
We assume the same setting as in Wang et al. (2021) for experiments and set the available resource of
machine 0 to λ(0) = 6000. Node v occupies ρ(v) ∈ N with ρ(v) ≤ 6000 resources where N is the
set of positive integers.

Computation Graph Scheduling. In this task we need to schedule computation operations of a
DAG on a hardware with 3 types of machines soM = {0, 1, 2}. We assume that we have 1 machine
of type 0 and type 1 whereas 4 machines of type 2 i.e. λ(0) = λ(1) = 1, λ(2) = 4. This hardware
setting is inspired from the structure of real ML accelerators which have multiple machines (threads)
of different types available for data processing. A node v can be scheduled on one machine of its
machine type µ(v) ∈M i.e., the resource required ρ(v) = 1,∀v ∈ V .

C DATASET

C.1 SYNTHETIC JSSP INSTANCES

We generate synthetic JSSP instances by using the code deployed by Zhang et al. (2020)2. For
reproducibility of this dataset, we fix our seed as 0 and sample 150 instances for all combinations of
Nj ∈ {25, 50}, Nm ∈ {10, 20, 30}, respectively. We use the first 100 instances as training instances
and the last 50 instances as test instances.

2https://github.com/zcaicaros/L2D/blob/main/DataGen/generate_data.py

12

https://github.com/zcaicaros/L2D/blob/main/DataGen/generate_data.py

Published as a conference paper at ICLR 2023

C.2 TPC-H DATASET

We use TPC-H dataset generated by Wang et al. (2021)3. The dataset for each of TPC-50, TPC-100,
TPC-150 experiments consists of 50 training graphs and 10 test graphs. The average number of nodes
for TPC-50, TPC-100 and TPC-150 dataset are 467.2, 929.8 and 1384.5 respectively.

C.3 SYNTHETIC COMPUTATION GRAPH DATASET

Layered graphs. Layered graphs were introduced in Gagrani et al. (2022) as a model to generate
synthetic graphs which have similar structure to the computation graph of a neural network. We use
the default parameters specified in Gagrani et al. (2022) to generate the graphs. In order to generate
the node duration, we first sample the memory size m(v) of each node v ∈ V and then use the
following affine model to generate the duration δ(v) for node v ∈ V ,

δ(v) = round(100×m(v)) + 1. (17)

We sample m(v) by first sampling the value from Gaussian Mixture Model (GMM) m(v) ∼
GMM(w, µ, σ)

∣∣
R+

and projecting it to non-negative values. We use a mixture of four Gaussians
and set the means to (mean1,mean2,mean3,mean4) = (0.5, 1, 3, 5) and standard deviations to
(std1, std2, std3, std4) = (0.5, 1, 1, 1).

We sample the machine type µ(v) of node v such that Pr(µ(v) = j) ∝ λ(j) i.e. the probability that
a node has machine type j is proportional to the available resources λ(j) for machine type j. In our
computational graph experiments we used λ(0) = λ(1) = 1, λ(2) = 4 which leads to the following
multi-nomial distribution for µ(v):

Pr(µ(v) = j) =

1/6, if j = 0,

1/6, if j = 1,

2/3, if j = 2.

(18)

Erdos-Renyi and Stochastic Block Model. These two graph distributions are well-known families
of random undirected graphs and were used in Paliwal et al. (2020) for their experiments. We set
the probability of an edge between any two nodes as p = 0.05 for the Erdos-Renyi graphs. We use
the following parameters for the stochastic block model: the number of communities k = 4, the
probability for an edge between two nodes of same community pin = 0.3, the probability for an
edge between two nodes of different communities pout = 0.001. We use the procedure described in
Paliwal et al. (2020) to convert the instances from these two graph families into a DAG. We use the
same distribution to generate node duration and their machine type as in layered graph for these two
graph distributions as well.

The results for 1000-node graphs are shown in the main part of our work, and 500-node graph results
are in Appendix E.

D BASELINE ALGORITHMS

D.1 PRIORITY-BASED LIST SCHEDULING BASELINES

We consider classical list scheduling baselines that use the following values as node priorities Zhang
et al. (2020); Wang et al. (2021):

Critical-Path (CP). The priority for each node is determined by the length of the critical path from
the node to the target node in a DAG.

Most OPeratioNs Remaining (MOPNR). The priority for each node is computed using the number
of operations remaining on the longest path from the node to the target node in a DAG.

Shortest Processing Time (SPT). The priority for each node is computed using the inverse of the
processing time of the node.

3https://github.com/Thinklab-SJTU/PPO-BiHyb/tree/main/dag_data/tpch

13

https://github.com/Thinklab-SJTU/PPO-BiHyb/tree/main/dag_data/tpch

Published as a conference paper at ICLR 2023

D.2 CONSTRAINT PROGRAMMING BASELINE

Constraint programming models are commonly used to solve scheduling problems in the literature.
We have developed constraint programming formulations and carried out numerical simulations to
provide a baseline comparison for our methods.

1. Constraint programming for computation graph scheduling. The developed constraint pro-
gramming problem has start times of jobs and machine assignments as discrete variables. The
constraints consist of precedence constraints, correct machine assignment constraints, and con-
straints for enforcing no overlap of tasks if they are assigned to the same machine.

2. Constraint programming for DAG scheduling with TPC-H dataset. The constraint program-
ming problem for the TPC-H dataset experiments has only the start times of jobs as variables.
The constraints ensure that the precedence relations in a DAG are satisfied, and the total resource
usage does not exceed the given resource budget. In addition, the task durations for this dataset
have been scaled by 1000 and rounded to the nearest integer. The reason for this step is that the
CP-SAT solver only works with integer valued data, and the duration values for this dataset are of
floating point precision. We have solved the constraint programming problem using the scaled and
rounded duration values. We have then divided the resulting makespan by 1000. This rounding
step introduces an error of at most 0.0005 seconds per node. Overall, for a 1000-node graph,
this leads to an error of at most 0.5 seconds in the worst case. This is negligibly small since the
makespan values for this dataset are in the order of few thousand seconds.

We have implemented these formulations using Google OR-Tools and solved them using the CP-SAT
solver (Perron & Furnon). Differently from other baselines, the constraint programming solver is
guaranteed to find the optimal schedule given enough time. Due to practical reasons, we have set a
time limit of 24 hours for the solver in the simulations. In most of the experiments, the time limit was
reached before finding the optimal solution. In these cases, we have reported the best result obtained
prior to the moment of time-out. Across all experiments, the solver has found the optimal solution for
only 3 graphs in the TPC-H-50 dataset. For these 3 jobs, the amounts of time that the solver has run
to find the optimal solutions are 2429, 21949, 39274 seconds, which are still significantly larger than
our algorithms’ run time.

We have observed that the memory requirements of the solver for large graphs could exceed the
available memory in our servers. The graphs in TPC-H-150 fall into this category, where the
experiments resulted in out-of-memory errors. We have not reported results for these graphs in Table
2.

In the experiments, we have provided initial feasible schedules for the solver. This is sometimes
referred to as solution hinting or warm start. This speeds up the solver considerably. Initial feasible
schedules could be obtained in different ways. One way is to generate a topological order of the DAG
and map it to a sequential schedule without any parallelization. Another way is to run list scheduling
and initialize the solver using the output of the list scheduling algorithm. We have experimented with
both options. We have found that using the output of list scheduling leads to a better initialization for
the solver.

D.3 NEURAL BASELINES

In this section we provide how our neural baselines are used. For all the tasks, we use a machine with
a single GPU (Nvidia Tesla V-100) with 32 GB memory that is also used to train and evaluate our
model.

L2D. While the original implementation of L2D uses a new set of training graphs for every training
iteration, we consider more practical scenario where the number of training graphs is restricted. We
use the aforementioned 100 training graphs and 50 test graphs for each JSSP instance. We use 4
environments (that was proposed by Zhang et al. (2020)), which ends up with training 4 graphs per
training iteration. We train the L2D model for 3000 iterations over 5 different seeds and report the
one that performs the best. Note that we tested learning rates 2× 10−5 (the default learning rate in
their implementation) and 1× 10−4 for L2D and the learning rate 1× 10−4 works much better, and
thus we report the results for this case.

14

Published as a conference paper at ICLR 2023

Table 5: Experiment results on synthetic JSSP instances (Nj = 25).

(Nj , Nm) = (25, 10) (Nj , Nm) = (25, 20) (Nj , Nm) = (25, 30)
Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

CP 1673.56 0.005 2120.24 0.009 2588.72 0.017
SPT 1807.90 0.001 2265.88 0.002 2739.20 0.005
MOPNR 1656.26 0.007 2115.86 0.012 2625.96 0.023

L2D 1725.58 0.577 2253.94 1.245 2799.00 2.850

Greedy (ours) 1578.58 0.018 2032.70 0.021 2512.40 0.031
S(16) (ours) 1540.92 0.045 1970.98 0.054 2452.64 0.085
S(64) (ours) 1527.40 0.092 1948.76 0.127 2427.30 0.294
S(256) (ours) 1519.16 0.321 1932.42 0.514 2411.68 0.909

Table 6: Experiment results on synthetic JSSP instances (Nj = 50).

(Nj , Nm) = (50, 10) (Nj , Nm) = (50, 20)
Makespan Time (sec) Makespan Time (sec)

CP 2903.14 0.012 3290.80 0.024
SPT 3111.74 0.003 3548.20 0.008
MOPNR 2897.60 0.016 3278.82 0.030

L2D 2964.96 1.084 3452.70 3.711

Greedy (ours) 2814.58 0.024 3108.56 0.049
S(16) (ours) 2800.32 0.064 3032.44 0.138
S(64) (ours) 2797.84 0.165 3009.08 0.469
S(256) (ours) 2796.98 0.644 2997.10 1.527

PPO-BiHyb. For the experiment with TPC-H dataset, we use the pretrained model4 deployed by the
author. We confirmed that the results reported in their paper are reproducible and evaluate the run
time in our machine settings. For computation graph scheduling, we train PPO-BiHyb for 40 epochs
(where 1 epoch is defined to train all training graphs in the dataset once).

E ADDITIONAL RESULTS

E.1 JSSP

We describe empirical results for (Nj , Nm) = (25, 10), (25, 20), (25, 30) in Table 5 and (Nj , Nm) =
(50, 10), (50, 20) in Table 6. For broader settings, we can see that our neural scheduler outperforms
our baselines.

E.2 COMPUTATION GRAPHS

We describe empirical results for both 500 and 1000 node synthetic computation graphs in Table 7.
Over all sizes and graph distributions, our algorithm achieves better speedup within a short time.

F TRAINING AND MODEL DETAILS

F.1 TRAINING

In this section we provide the training details of our model on the different scheduling tasks that
we consider. For all the tasks we trained our model on a machine with a single GPU (Nvidia Tesla
V-100) with 32 GB memory. We used Adam optimizer for training on all the tasks.

4https://github.com/Thinklab-SJTU/PPO-BiHyb/tree/main/pretrained

15

https://github.com/Thinklab-SJTU/PPO-BiHyb/tree/main/pretrained

Published as a conference paper at ICLR 2023

Table 7: Experiment results on synthetic graph datasets are described.

Layered Graph Erdos-Renyi Stoc. Block Model
SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

50
0

N
od

e
G

ra
ph CP 4.314 0.025 4.973 0.015 4.664 0.018

SPT 4.214 0.004 4.480 0.002 4.416 0.003
MOPNR 4.428 0.033 5.033 0.018 4.715 0.023

Greedy (ours) 4.513 0.042 5.113 0.017 4.835 0.021
S(16) (ours) 4.558 0.129 5.152 0.082 4.901 0.082
S(64) (ours) 4.585 0.269 5.168 0.182 4.935 0.185
S(256) (ours) 4.603 0.803 5.178 0.545 4.956 0.539

10
00

N
od

e
G

ra
ph CP 4.580 0.058 5.049 0.055 4.701 0.055

SPT 4.526 0.013 4.541 0.008 4.473 0.007
MOPNR 4.745 0.075 5.112 0.068 4.761 0.068

Greedy (ours) 4.819 0.094 5.194 0.046 4.866 0.043
S(16) (ours) 4.848 0.311 5.211 0.214 4.916 0.198
S(64) (ours) 4.872 0.750 5.227 0.542 4.944 0.477
S(256) (ours) 4.889 2.418 5.239 1.799 4.965 1.533

JSSP. In this case we train our model on each JSSP instance with 100 training graphs and test it on 50
unseen graphs. We train our model for 20 epochs with 5 random seeds and pick the best performing
model. We use the number of samples N = 1000.

TPC-H Dataset. We train our model on each TPC instance for 100 epochs with 10 random seeds
and pick the best performing model. We use the number of samples N = 2000.

Computation Graphs. For each synthetic graph distribution, we consider the graph size equal to
either 500 or 1000 and generate a training set of 3000 graphs and 300 unseen test graphs. For the
real-world graphs, our dataset consists of 92 train graphs and 23 test graphs. We train for our model
for 20 epochs with 5 random seeds and pick the best performing model. We use the number of
samples N = 1000 for both synthetic and real computation graphs.

We summarize the time and epochs required for convergence in Table 8.

F.2 MODEL ARCHITECTURE

We use topoformer encoder with the same hyperparameters as described in Gagrani et al. (2022). We
use clogits = 0.001 and ϵ = 0.1 for clipping the denominator in Eq. (13).

F.3 INPUT FEATURES

We use the following input node features x⃗v for node v ∈ V:

• Node duration δ(v)
• Node resource requirement ρ(v)
• One hot representation of node machine type µ(v)
• The critical path duration from v to the target node and critical path duration from source node to v

Note that for tasks where ρ(v) = 1,∀v we ignore ρ(v) from the input feature. We normalize each
entry i of the input features across the nodes so that the features are in between 0 and 1 as follows:

x⃗v[i] =
x⃗v[i]

maxv′∈V x⃗v′ [i]

In addition, we also augment the node features with the Laplacian positional encodings Dwivedi &
Bresson (2020) of dimension 20 by computing it on the undirected version of the DAG. We pass the
input feature x⃗v through a linear layer to obtain the initial embedding of node v for the topoformer
encoder.

16

Published as a conference paper at ICLR 2023

Table 8: Training time details for the experiments. We report the rough duration for the convergence
time for training and number of epochs to convergence for each of the experiment reported in the
paper.

Experiment name Convergence time Time per epoch # epochs to converge

Real-world computation graphs 25 min 3 min 8
Syn. - Layered (500) 2.5 hour 1.2 hour 2
Syn. - Erdos-Renyi (500) 3 hour 1.2 hour 2.5
Syn. - Stoc. Block Model (500) 3.5 hour 1.2 hour 3
Syn. - Layered (1k) 3 hour 2.4 hour 1.25
Syn. - Erdos-Renyi (1k) 8 hour 2.4 hour 3.3
Syn. - Stoc. Block Model (1k) 8 hour 2.4 hour 3.3

TPC-H dataset - TPC-50 1 hour 3.6 min 16.7
TPC-H dataset - TPC-100 5 hour 14.4 min 20.8
TPC-H dataset - TPC-150 16 hour 28.8 min 33

JSSP dataset - (25, 10) 30 min 2 min 15
JSSP dataset - (25, 20) 45 min 4.5 min 10
JSSP dataset - (25, 30) 1 hour 7.5 min 8
JSSP dataset - (50, 10) 45 min 4.5 min 10
JSSP dataset - (50, 20) 3 hour 12 min 15

G PERFORMANCE IMPROVEMENT RELATIVE TO GAGRANI ET AL. (2022)

We use Topoformer (Gagrani et al., 2022) in our method and summarize the key differences between
Gagrani et al. (2022)’s method and ours below:

• Our method
1. Aims to solve scheduling problems
2. Perturbs logits (via i.i.d. Gumbel noise) to sample node priorities (not necessarily satisfying

precedence constraints) and convert the priorities into schedules via list scheduling.
3. While using REINFORCE, cost standardization is used.
4. Logits are regularized, i.e., its L2 norm is minimized together with REINFORCE loss.

• Gagrani et al. (2022)’s method
1. Aim to solve peak memory minimization (which is not a scheduling problem).
2. Logits are used to sample sequences satisfying the precedence constraints on DAGs.
3. While using REINFORCE, greedy baseline is used, motivated by [15].
4. Logits are standardized.

For items 3 and 4, our motivations are described as follows. REINFORCE with greedy baseline in
Gagrani et al. (2022) uses the policy gradient

EV⃗∼πθ(V⃗ |G)∇θ log πθ(·|G)[C(V⃗ ;G)− C(πθ′(G);G)]

for a fixed G, where πθ′ is the greedy policy and its parameter θ′ is copied from θ when the policy πθ

with θ shows the best performance during training (normally evaluated at the end of multiple epochs).
The problems of greedy baseline are:

1. it may become unstable if cost scales differ too much across training graphs,
2. it slows down training since further forward computation with πθ′ is required,
3. it requires additionally memory to store θ′,

all of which can be resolved by the cost standardization technique that we used in our paper. Also,
if we use logit standardization used by Gagrani et al. (2022), we empirically observed performance
degradation, which we believe is due to logit standardization restricting the representation power of
the model and motivated us to use logit norm regularization instead (example in Appendix A).

To prove the effectiveness of our technical improvements, we did ablation studies for our algorithm
with all tasks in our submission. Specifically, we compare our method with Gagrani et al. (2022)’s
method using both greedy baseline and logit standardization while maintaining the priority sampling

17

Published as a conference paper at ICLR 2023

Table 9: Experiment results on synthetic JSSP instances with ablation studies. Greedy and Sampling
methods with (-) indicate results from the model trained with greedy baseline and logit standardization
in Gagrani et al. (2022).

(Nj , Nm) = (25, 20) (Nj , Nm) = (25, 30) (Nj , Nm) = (50, 20)
Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

CP 2120.24 0.009 2588.72 0.017 3290.80 0.024
SPT 2265.88 0.002 2739.20 0.005 3548.20 0.008
MOPNR 2115.86 0.012 2625.96 0.023 3278.82 0.030

L2D 2253.94 1.245 2799.00 2.850 3452.70 3.711

Greedy (-) 2077.60 0.022 2610.86 0.028 3129.16 0.056
S(16) (-) 2004.78 0.055 2493.38 0.083 3055.20 0.142
S(64) (-) 1979.86 0.129 2467.00 0.291 3037.38 0.484
S(256) (-) 1957.76 0.512 2446.04 0.844 3015.78 1.568

Greedy (ours) 2032.70 0.021 2512.40 0.031 3108.56 0.049
S(16) (ours) 1970.98 0.054 2452.64 0.085 3032.44 0.138
S(64) (ours) 1948.76 0.127 2427.30 0.294 3009.08 0.469
S(256) (ours) 1932.42 0.514 2411.68 0.909 2997.10 1.527

via Gumbel and list scheduling (this is necessary since we have to fairly compare performances in
scheduling domains). We train the model for all scheduling tasks; JSSP, DAG scheduling, real and
synthetic computation graphs.

G.1 JSSP

Our method is shown to perform better than Gagrani et al. (2022)’s method (See Table 9.). Also,
note that our method always outperform Gagrani et al. (2022)’s method when they are in the same
mode and the same task. Runtimes for both methods are comparable with each other. We observe
that Gagrani et al. (2022)’s method can outperform our neural and non-neural baselines for our JSSP
instances.

G.2 DAG SCHEDULING ON TPC-H DATASET

Our method outperforms Gagrani et al. (2022)’s method (See Table 10.). Runtimes for both methods
are comparable with each other. For TPC dataset, our method can be regarded to make significant
improvement due to the following observations:

1. S (256) of Gagrani et al. (2022)’s method (which shows the lowest makespan among the runs with
Gagrani et al. (2022)’s method) is always outperformed by Greedy mode of our method (which is
the highest makespan among our methods).

2. Our neural baseline, PPO-BiHyb Wang et al. (2021), always outperforms Gagrani et al. (2022)’s
method for all TPC tasks.

G.3 SCHEDULING COMPUTATIONAL GRAPHS

G.3.1 SYNTHETIC GRAPHS

Our method outperforms Gagrani et al. (2022)’s method (See Table 11.). Runtimes for both methods
are comparable with each other. For synthetic computation graphs, the following observations make
our method more outstanding:

1. S (256) mode of Gagrani et al. (2022)’s method (that shows the lowest makespan among the runs
using Gagrani et al. (2022)’s method) is always outperformed by Greedy mode of our method
(which is the highest makespan among our methods).

2. Our non-neural baseline, MOPNR, always outperforms Gagrani et al. (2022)’s Greedy mode and
some of sampling modes.

18

Published as a conference paper at ICLR 2023

Table 10: Experiment results on TPC-H dataset with ablation studies. Greedy and Sampling methods
with (-) indicate results from the model trained with greedy baseline and logit standardization in
Gagrani et al. (2022).

TPC-H-50 TPC-H-100 TPC-H-150
Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

Const. Prog. 8629.4 - 19278.3 - - -

CP 9821.3 0.008 16914.1 0.027 24429.5 0.048
SPT 12818.4 0.002 19502.7 0.008 27409.4 0.021
MOPNR 11360.1 0.011 17733.1 0.032 24871.2 0.064

PPO-BiHyb 8905.4 66.484 15192.2 149.215 22371.2 571.424

Greedy (-) 9300.4 0.219 16185.5 0.139 23788.9 0.143
S(16) (-) 9079.9 0.322 15974.1 0.340 23477.6 0.425
S(64) (-) 9037.3 0.467 15804.1 0.748 23412.2 1.233
S(256) (-) 8976.2 0.959 15684.9 2.338 23264.4 4.419

Greedy (ours) 8845.6 0.057 14981.2 0.100 22332.7 0.259
S(16) (ours) 8782.4 0.114 14972.0 0.287 22330.2 0.674
S(64) (ours) 8742.5 0.216 14968.1 0.699 22323.0 1.856
S(256) (ours) 8694.4 0.540 14964.7 2.270 22320.8 6.485

Table 11: Experiment results on 1000-node synthetic computation graphs with ablation studies.
Greedy and Sampling methods with (-) indicate results from the model trained with greedy baseline
and logit standardization in Gagrani et al. (2022).

Layered Graph Erdos-Renyi Stoc. Block Model
SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

CP 4.580 0.058 5.049 0.055 4.701 0.055
SPT 4.526 0.013 4.541 0.008 4.473 0.007
MOPNR 4.745 0.075 5.112 0.068 4.761 0.068

Greedy (-) 4.597 0.051 4.871 0.047 4.657 0.060
S(16) (-) 4.706 0.196 4.989 0.219 4.792 0.217
S(64) (-) 4.740 0.515 5.028 0.529 4.833 0.536
S(256) (-) 4.767 1.730 5.056 1.716 4.863 1.775

Greedy (ours) 4.819 0.094 5.194 0.046 4.866 0.043
S(16) (ours) 4.848 0.311 5.211 0.214 4.916 0.198
S(64) (ours) 4.872 0.750 5.227 0.542 4.944 0.477
S(256) (ours) 4.889 2.418 5.239 1.799 4.965 1.533

G.3.2 REAL-WORLD GRAPHS

Our method outperforms Gagrani et al. (2022)’s method and shows comparable runtimes for all tasks
(See Table 12.).

19

Published as a conference paper at ICLR 2023

Table 12: Experiment results on real-world computation graphs with ablation studies. Greedy and
Sampling methods with (-) indicate results from the model trained with greedy baseline and logit
standardization in Gagrani et al. (2022).

200 - 500 Node Graphs 500 - 700 Node Graphs 700 - 1000 Node Graphs
SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

Const. Prog. 3.267 - 3.183 - 2.497 -

CP 3.174 0.007 2.804 0.016 2.739 0.025
SPT 3.107 0.002 2.868 0.005 2.664 0.008
MOPNR 3.181 0.009 2.825 0.020 2.739 0.028

PPO-BiHyb 3.223 17.937 2.965 52.777 2.798 322.793

Greedy (-) 3.227 0.196 3.114 0.028 2.822 0.045
S(16) (-) 3.248 0.243 3.151 0.153 2.843 0.238
S(64) (-) 3.254 0.324 3.179 0.404 2.847 0.656
S(256) (-) 3.258 0.644 3.192 1.317 2.853 2.205

Greedy (ours) 3.245 0.152 3.131 0.098 2.846 0.060
S(16) (ours) 3.271 0.192 3.188 0.245 2.848 0.230
S(64) (ours) 3.278 0.263 3.199 0.456 2.856 0.606
S(256) (ours) 3.286 0.595 3.207 1.309 2.860 2.001

H COMBINING SEARCH ALGORITHM WITH NEURAL SCHEDULER

We also conducted ablation studies to study the effect of using more powerful search algorithm with
our method and analyze the performance-run time tradeoff against using sampled priorities. We
combine our neural scheduler with genetic algorithm (GA) search. The initial population for GA is
obtained by sampling 256 node priority vectors using our learned model. We let GA run for 100
generations with a population size of 1000. We use the publicly available GA implementaiton of
Pymoo (Blank & Deb, 2020) for our experiments.

Computation graph scheduling (synthetic). We observe that for layered graphs and stochastic
block model, using GA improves the performance marginally whereas there is no improvement for
the Erdos-Renyi graphs. Also, the GA search increases the runtime significantly compared to the
runtime of our method in sampling mode S(256).

Table 13: Experiment results on synthetic computation graphs with GA.

Layered Graph Erdos-Renyi Stoc. Block Model
SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

S(256) 4.889 2.418 5.239 1.799 4.965 1.533
S(256) + GA 4.997 723.245 5.239 707.659 4.982 700.248

Computation graph scheduling (real-world). We found that using GA improves the speedup of
schedules, while requiring significantly more computation time. The time required for GA increases
as the graph size grows.

Table 14: Experiment results on real-world computation graphs with GA.

200 - 500 Node Graphs 500 - 700 Node Graphs 700 - 1000 Node Graphs
SpeedUp Time (sec) SpeedUp Time (sec) SpeedUp Time (sec)

S(256) 3.286 0.595 3.207 1.309 2.860 2.001
S(256) + GA 3.304 151.331 3.240 403.829 2.882 687.288

20

Published as a conference paper at ICLR 2023

DAG Scheduling (TPC dataset). For TPC-H-50, we observed that GA search can improve the
performance, whereas either no improvement (TPC-H-100) or negligible improvement (TPC-H-150)
was observed for other datasets. Similar to computation graph scheduling tasks, significantly longer
computation time is required, and the required time increases as the graph size increases.

Table 15: Experimental results on TPC-H datasets with GA.

TPC-H-50 TPC-H-100 TPC-H-150
Makespan Time (sec) Makespan Time (sec) Makespan Time (sec)

S(256) 8694.4 0.540 14964.7 2.270 22320.8 6.485
S(256) + GA 8646.2 246.942 14964.7 965.119 22320.7 2089.547

21

	Introduction
	Preliminaries
	Scheduling Problem
	List Scheduling
	The Gumbel-Top-k Trick

	DAG Scheduling with Neural Priority Sampler
	Learning-to-Schedule Framework
	Schedule Generator with One-Shot Priority Sampler
	Algorithm and Practical Consideration

	Related Works
	Experiments
	JSSP
	TPC-H Dataset
	Computation Graphs

	Conclusion and Future Work
	Probability distribution with standardized logits
	Scheduling Tasks
	Dataset
	Synthetic JSSP Instances
	TPC-H Dataset
	Synthetic Computation Graph Dataset

	Baseline Algorithms
	Priority-Based List Scheduling Baselines
	Constraint Programming Baseline
	Neural Baselines

	Additional Results
	JSSP
	Computation Graphs

	Training and Model details
	Training
	Model architecture
	Input features

	Performance improvement relative to gagrani2022neural
	JSSP
	DAG scheduling on TPC-H dataset
	Scheduling computational graphs
	Synthetic graphs
	Real-world graphs

	Combining Search Algorithm with Neural Scheduler

