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ABSTRACT

In the task of Object Recognition, there exists a dichotomy between the catego-
rization of objects and estimating object pose, where the former necessitates a
view-invariant representation, while the latter requires a representation capable of
capturing pose information over different categories of objects. With the rise of
deep architectures, the prime focus has been on object category recognition. Deep
learning methods have achieved wide success in this task. In contrast, object pose
regression using these approaches has received relatively much less attention. In
this paper we show how deep architectures, specifically Convolutional Neural Net-
works (CNN), can be adapted to the task of simultaneous categorization and pose
estimation of objects. We investigate and analyze the layers of various CNN mod-
els and extensively compare between them with the goal of discovering how the
layers of distributed representations of CNNs represent object pose information
and how this contradicts object category representations. We extensively experi-
ment on two recent large and challenging multi-view datasets. Our models achieve
better than state-of-the-art performance on both datasets.

1 INTRODUCTION

Impressive progress has been made over the last decade towards solving the problems of object
categorization, localization and detection. It is desirable for a vision system to address two tasks
under general object recognition: object categorization and object pose estimation (estimating the
relative pose of an object with respect to a camera). Pose estimation is crucial in many applications.
These two broad tasks are contradicting in nature. An optimal object categorization system should
be able to recognize the category of an object, independent of its viewpoint. This means that the
system should be able to learn viewpoint-invariant representations of object categories. In contrast,
a pose estimation system requires a representation that preserves the geometric and visual features
of the objects in order to distinguish its pose.

This gives rise to a fundamental question: should categorization and pose estimation be solved
simultaneously, and if so, can one aid the other? Contrasting paradigms approach this question
differently. Traditional instance-based 3D pose estimation approaches solve the instance-recognition
and pose estimation problems simultaneously, given model bases of instances in 2D or 3D (

R ). Most
recent object pose estlmatlon approaches solve the problem w1thm the detection process, where
category-specific ob]ect detectors that encode part geometry are trarned ( , ;

). Since part—geometry is a function of the pose, these approaches are able to provide coarse
estimate of the object pose with the detection. However the underlying assumption here is that the
categorization is done a-priori, and the representation is view-variant. Other recent approaches try to
solve the pose estimation simultaneously with categorization through learning dual representations:
view-invariant category representation and view-variant category-invariant representation (

, ; , )-
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With the rise of deep architectures, the main focus has been on category recognition. A wide success
has been achieved on this task. In contrast, pose estimation has not received much attention. The im-
pressive results of Convolutional Neural Ni etworks (CNNps) in tasks of categorizations (

s ) and detection ( , R ) motivated many researchers
to explore their applicability in different vision tasks Several approaches recently showed success-
ful results where they used networks that are pre-trained for a specific task (e.g. categorlzatlon) and
then use the representation of higher layers as features for another task ( ,

, ; , ). This process is known as transfer learning. As pomted
out by ( , ), this process is useful when the target task has significantly smaller
training data than what is needed to train the model. Typically the first n-layers are copied from
the pre-trained network to initialize the corresponding layers for the target task. Within the CNN
literature, typically the layers up until FC7 (which is the last layer before the output layer) are used
for that purpose ( , ).

Pose estimation is an example of a task that inherently suffers from lack of data. In fact the largest
available dataset for multiview recognition and pose estimation has 51 object categories with a total
of about 300 instances ( , ). It is hard to imagine the availability of a dataset of thou-
sands of objects where different views are sampled around each object in order to be able to train a
learning machine such as a CNN with millions of parameters. Therefore, transfer learning is critical
for this task. However the challenge lies in the contradicting objective that has been described in
the first paragraph. Current CNN models are optimized for categorization, and therefore they are
expected to achieve view invariant representation. Therefore it is not expected that feature represen-
tation at deeper layers are useful for pose estimation. However, feature representation in shallower
layers tend to be more general and less category-specific and thus may hold enough information to
discriminate between different poses. This is a key hypothesis that is explored in this paper and this
work is the first exploration of the capability of CNNs on the task of object pose estimation.

The contributions of this paper are: (1) we show how CNNs can be adapted to the task of simultane-
ous categorization and pose estimation of objects, (2) we investigate how each of these tasks affect
the other, i.e.how category-specific information can help estimate the pose of an object and how
a balance between these contrasting tasks can be achieved, (3) we analyze different CNN models
and extensively compare between them to find an efficient balance between accurate categorization
and robust pose estimation, (4) we validate our work by extensive experiments on two recent large
and challenging multi-view datasets. We achieve better than state-of-the-art performance on both
datasets.

2 RELATED WORK

Due to the surge of work in deep architectures over the last few years, there has amassed a large
number of research studies. Despite this, using CNNs for regression and capturing pose information
is still a relatively unexplored area. This motivates the goals of this paper.

We focus on the most relevant work, in particular, studies that focus on understanding the functions
of CNN layers and CNNs that solve for pose information. We also briefly touch upon previous
approaches in object categorization and pose estimation.

Although fundamentally different to object pose estimation, some research has explored using CNNs
to recognize human pose ( , ). Re-
cently ( , ) proposed joint optlmlzatlon on human pose and activity. In human
pose estimation, there is no problem getting millions of image of people at different postures. Hu-
man activities are correlated with human poses, while in the object-pose domain the category is
independent of pose. This makes joint learning of category and pose more challenging than joint
learning of human activity and pose. Some very recent work has explored joint detection and pose
estimation using CNNs ( , ).

Recent in-depth studies explore the intricacies of CNNs; including the effects of transfer-learning
and fine-tuning, properties and dlmensrons of CNN layers and the study of invariances captured in
CNN layers (e.g.( , )). A data-centric
analysis of existing CNN models for ob]ect detection has appeared in ( , ).

A comprehensive review of recent work in object recognition and pose estimation is detailed in
( , ). We highlight the most relevant research. Successful work have been
done in estimating the object pose of a single object ( , ; , ;
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s ). This model, referred to as single-instance 3D model, has the limitation of being
category-specific and does not scalable to a large number of categories and deal with high intra-
class variation. Recently, detection and pose have been solved simultaneously (e.g.(

, ; ; ; ; ; ; ; , )
Most of these methods belongs to the category of limited-pose (discrete-pose) approaches since it
uses classification for pose estimation. Very few works formulate the pose estimation problem as
regression over a continuous space. In ( , ), an object pose tree is built for doing multi-
level inference. This involves a classification strategy for pose which results in coarse estimates and
does not utilize information present in the continuous distribution of descriptor spaces. Work pre-
sented in ( , ) and ( , ) explicitly model the continuous pose
variations of objects but the scalability of these models is limited. A more recent work (

, ) proposes a feedforward approach to solve the two problems jointly by balancing
between continuous and discrete modeling of pose in order to increase performance and scalability.
In these models, the nonlinearity in the category representations is not modeled, which is mandatory
for many applications.

3  MOTIVATION

The first question we pose in this paper is how good are pre-trained representations of different CNN
layers, without fine-tuning, for the task of pose estimation? To answer this we analyzed a state-of-
the-art CNN trained on ImageNet ( , ) by testing it on dense multi-view images
from the RGBD dataset ( , ) to see how well it represented object view-manifolds and
hence able to estimate object poses. This CNN is composed of 8 layers: Convl, Pooll, Conv2,
Pool2, Conv3, Conv4, Conv5, Pool5, FC6, FC7, FC8. Pool indicates Max-Pooling layers, Conv
indicates convolutional layers and FC indicates fully connected layers.

In order to quantitatively evaluate the representations of pose within the CNN, we trained both a
pose regressor (using Kernel Ridge-Regression) and an SVM classifier for categorization (linear
one-vs-all) on the features extracted from each of the layers. Fig. 1-Left is the result of the regressor
and classifier. It clearly shows the conflict in representation of the pre-trained network. For pose
estimation, the performance increases until around Pool5 and then decreases. This confirms that
shallow layers that have sufficient abstractive representation offer better feature encoding for pose
estimation. It appears that Pool5 provides a representation that captures the best compromise in
performance, between categorization and pose discrimination.

In Fig 1-Left we report cross-evaluation of categorization using pose features and vice versa. FC8
(output) which is task specific, does not perform good pose estimation, while FC6/FC7 perform
much better. It is interesting to observe the opposite is not true; when optimizing on pose, much
of the category-specific information is still represented by the features of the CNN, as seen by the
increase in performance of category recognition using the pose-optimized features.

We further explored using other regressors on multiple views of a single object instance (GPR (

, ), WKNN ( , ), SVR ( , ), KTA ( , ).
We use a coffee mug instance that has enough visual and shape features to discriminate its poses.
Fig 1-Right shows the MAE of the pose regression. The results confirm that the pose representation
improves as we approach Pool5. This indicates that Pool5 has the best representation of the object’s
view-manifold. We also found that the performance of features based on Pool5 are the closest to
correlate with the performance when using HOG features on the objects’ multi-view images (Fig 1-
Right). This further proves that Pool5 has the abstraction capability to represent pose efficiently.

It is important to point out here that, in addition to our analysis, in-depth manifold analysis was
previously conducted to analyze the object-view manifolds and their representations within CNN
layers. This can be found in ( , ). This in-depth study corroborates the conclusions
we make here.

4 ANALYZED MODELS

We used a state-of-the-art CNN built by ( ) as our baseline network in our
experiments (winner of the LSVRC-2012 Imagenet Challenge ( )). We refer
to this model as ModelO: base network. This model is pre-trained on Imagenet. The last fully
connected layer (FC8) is fed to a 1000-way softmax which produces a distribution over the category
labels. Dropout was employed during training and Rectified Linear Units (ReLU) were used for
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faster training. Stochastic gradient descent is used for back propagation. ModelO is not fine-tuned,
and thus an analysis of it shows how the layers of a CNN trained on categorization of ImageNet
lacks the ability to represent pose efficiently. Throughout this study we vary the architecture of the
base network and the loss functions. All other models described are pre-trained on ImageNet and
fine-tuned on each of the two large dataset we experimented on.

We propose and investigate four different CNN models: Parallel Model (PM), Cross-Product Model
(CPM), Late Branching Model (LBM) and Early Branching Model (EBM).

PM is a parallel version of the base network; two parallel and independent versions of the base net-
work, one for categorization and one for pose. CPM has an output layer with units for each category
and pose combination to jointly train (depicted in Figure 2-a). LBM and EBM models are also de-
picted in Figure 2. LBM branches into two last layers, one for categorization and one for pose. EBM
performs early branching into two subnetworks, each specialized in categorization and pose estima-
tion, respectively. The output layer FC8 is not merged but instead the LBM and EBM networks are
optimized over two loss functions, one concerned with building view-invariance representations for
categorization and the other with category-invariant representations for pose estimation. Because of
the branching, this causes two units to be active, one in each branch, at the same time. The only
work that has done something similar to this is the work by ( ).

All losses are optimized by the multinomial logistic regression objective, similar to

( ) (Softmax loss). We denote softmax loss of label I € {1¢, [P} and image x as loss;(z, ), where
1 indicates if this loss is over category or pose modes, [P and [° are the labels for pose and category,
respectively.

In the following subsections we describe each model in detail.

Parallel Model (PM): This model consists of two base networks running in parallel, each solving
categorization and pose estimation independently. There is no sharing of information between the
two networks. The goal of this model is to see how well the traditional CNN is capable of represent-
ing object-view manifolds and hence estimating object pose, independent of category-specific infor-
mation. The category and pose losses minimized in this model are: loss.(x,1¢) and loss,(z, IP),
one for each of the tasks of categorization and pose estimation, respectively.

Cross-Product Model (CPM): CPM explores a way to combine categorization and pose estimation
by building a last layer capable of capturing both (see Fig2-a). We build a layer with the number
of units equivalent to the number of combinations of category and pose, i.e.the cross-product of
category and pose labels. The number of categories varies according to the dataset as we will see.
The pose angles (in this case yaw or azimuth angle of an object) is discretized into angle bins across
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Figure 1: Left: Linear SVM categorization and pose regression performance based on feature encoding of
different layers of a pre-trained CNN over all objects. The dotted lines are for cross-evaluation: for PM-Cat,
LBM-Cat and EBM(800)-Cat represent the models’ category representations evaluated on the task of pose
estimation (to observe the effect of how category representations encode pose information). PM-Pose, LBM-
Pose and EBM(800)-Pose are evaluated on the task of categorization to see how well pose representations in
the CNN encodes categories. This is to show the complete pose-invariant representations of the layers when
learning to categorize. Right: Pose regression on a single object - showing the Mean Absolute Error (in degrees)
of various regression algorithms from FC8 to Pool5. The horizontal lines represent the regression performance
on HOG feature descriptors computed on the images.
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Figure 2: The proposed models showing the joint loss layer in CPM, late branching in LBM and early branch-
ing in EBM. Blue layers correspond to layers with convolution, pooling and normalization. Violet colored
layers correspond to layers with just convolution. Green layers correspond to fully-connected layers.

the viewing circle. This is the case with all our pose estimating models. The loss function for CPM
is the softmax loss over the cross-product of category and pose labels: loss(z, P x 1€).

Late Branching Model (LBM): We introduce a change in the architecture by splitting/branching the
network into two last layers, each designed to be specific to the two tasks: categorization and pose
estimation. Thus, this network has a shared representation for both category and pose information
up until layer FC7 (see Fig2-b).

The goal is to learn category and pose information simultaneously from the representations encoded
in the previous layers of the CNN. The question behind this model is whether or not one last layer
would be enough to recover the pose information from the previous layers, in other words untangle
the object view-manifold and give accurate pose estimates. In other words, one can think of this
as testing the ability of the deep distributed representations of a CNN in holding both category-
specific pose-invariant information as well as pose-variant information. LBM is trained using a
linear combination of losses over category and pose: Aq - loss.(x,1°) + Ag - lossy(z,P) where
A1, A2 are weights found empirically (see appendix G).

Early Branching Model (EBM): The question of moving the branching to an earlier layer in the
network poses itself here: Can the branching be moved earlier in the network to where the pose
knowledge is still well preserved and in fact maximal across the layers?

From our experiments (described later on) we observe that the objects’ view-manifolds are maxi-
mally represented at Pool5. Thus, this network has a shared representation for both category and
pose information up until layer Pool5. At Pool5 it branches out into two subnetworks, that are jointly
optimized using a combined loss function (same as for LBM): A1 - loss.(x,1¢) + A2 - lossy(z, IP).
Similar to LBM, it is important to note that this network optimizes over two losses. This model
achieves the most efficient balance between categorization and pose estimation and achieve state-
of-the-art results on two large challenging datasets, as we shall see in Section 7.

5 DATASETS
5.1 RGBD DATASET

One of the largest and challenging multi-view datasets available is the RGB-D dataset

( ). It consists of 300 tabletop object instances over 51 different categories. Images are captured
of objects rotating on a turn-table, resulting in dense views of each object. The camera is positioned
at three different heights with elevation angles: 30°, 45° and 60°.

In previous approaches the middle height (45°) is left out for testing ( );
( ); ( ); ( ). This means that object instances at test
time have been seen before from other heights during training. For this dataset it was important to
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experiment with an additional training-testing split of the data to give more meaningful results. We
wanted to ensure that objects at test time had never seen before. We also wanted to make sure that
the instances we are dealing with have non-degenerate view manifolds. We observed that many of
the objects in the dataset are ill-posed, in the sense that the poses of the object are not distinct. This
happens when the objects have no discriminating texture or shape to be able to identify its poses
(e.g. a texture-less ball or orange). This causes object-view manifold degeneracy. For this reason,
we select 34 out of the 51 categories as objects that possess variation across the viewpoints, and
thus are not ill-posed with respect to pose estimation. We split the data into training, validation
and testing. In this datasets, most categories have few instances; therefore we left out two random
instances per category, one for validation and one for testing. In the case where a category has
less than 5 instances, we form the validation set for that category by randomly sampling one object
instance from the training set. We also left out all the middle height for testing. Thus, the testing set
is composed of unseen instances and unseen heights and this allows us to more accurately evaluate
the capability of CNNs in discriminating categories and poses of tabletop objects. We call this split,
Split 1. In order to compare with state-of-the-art we also used the split used by previous approaches
(we call this Split 2).

5.2 PASCAL3D+ DATASET

We experiment on the recently released challenging dataset of multi-view images, called Pascal3D+
( ). Pascal3D+ is very challenging because it consists of images in the wild, in
other words, images of object categories exhibiting high variability, captured under uncontrolled
settings, in cluttered scenes and under many different poses. Pascal3D+ contains 12 categories of
rigid objects selected from the PASCAL VOC 2012 dataset ( ). These objects
are annotated with pose information (azimuth, elevation and distance to camera). Pascal3D+ also
adds pose annotated images of these 12 categories from the ImageNet dataset
( ). The bottle category is omitted in state-of-the-art results. To be consistent, we do the same.
This leaves 11 categories to experiment with. There are about 11,500 and 7,000 training images
in ImageNet and Pascal3D+ subsets, respectively. We take a small portion of these images for
validation and use the rest for training. For testing, there are about 11,200 and 6,900 testing images
for ImageNet and Pascal3D+, respectively. On average there are about 3,000 object instances per
category in Pascal3D+ captured in the wild, making it a challenging dataset for estimating object
pose.

6 CNN LAYER ANALYSIS

Similar to the analysis performed in Section 3, we do the same on all our described models. This
gives insight into the ability of these models to represent pose and the intrinsic differences between
them. We perform kernel Ridge-regression and SVM classification on each layer of the CNN mod-
els. The results of this analysis on the two muti-view datasets are shown in Fig. 3 and 4.

From Fig. 3 and 4, we can see that the base network monotonically decreases in pose accuracy after
layer Pool5. Pool5 seems to again hold substantial pose information, before it is lost in the following
layers. This is the premise behind the design of our EBM model. EBM is able to efficiently untangle
the object-view manifold and achieve good pose estimation on the branch specific to pose estimation.

From Fig. 3 and 4, it can be observed that the LBM is able to achieve a good boost in pose perfor-
mance at its last layer. From 3-right, it can be observed that at the layers Conv4 and Pool5 EBM
has slightly worse accuracy than LBM and PM on the RGBD dataset. This indicates that the op-
timization is putting emphasis on the category information just before branching to achieve better
pose estimation at deeper layers.

CPM does quite worse than the other models on both datasets, in both categorization and pose
estimation. This can be seen in Fig. 3-Left and 3-Right and to some extent in Fig. 4. The reason
for this lies in the fact that CPM shares information to jointly optimize over category and pose. The
drop is more evident in the task of categorization, indicating again that category information aids in
estimating the pose, but not the other way round. The drop is more on the RGBD dataset because
there are a lot more categories than Pascal3D+ and thus a lot more inter-class confusion. This is
analogous to using category labels to separate between objects of different categories which may
help bring similar posed objects of the same category together in the latent space encoded in the
layers. On the other hand there is no clear untangling of the object-view manifold, where the pose
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Figure 3: Analysis of layers trained on the RGBD dataset. Left: the performance of linear SVM
category classification over the layers of different model. Right: the performance of pose regression
over the layers of different models (including the category parts of some of the models - this shows

the lack of pose information encoded within the object category representations)
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Figure 4: Analysis of layers trained on the Pascal3D+ dataset. Left: the performance of linear SVM
category classification over the layers of different model. Right: the performance of pose regression
over the layers of different models

information is stored, and thus this lack of pose information negatively impacts the categorization
of objects.

k-NN Layer Analysis We conduct £k — NearestNeighbor pose estimation over the Pascal3D
dataset on all the layers of the 4 models with varying neighborhood sizes (shown in Fig. 5). Com-
paring the two models (LBM and EBM), we gain slight improvement in categorization and a large
improvement in pose estimation performance when using EBM. From Figure 5 and 9 in the Ap-
pendix, we conclude that as we go deeper into the network - up to layer Conv5 - we gain more
category separation and object-view manifold preservation. This shows how the early branching
better resolves the contradiction between the pose estimation and categorization tasks while shar-
ing the low level filter representations that are helpful for both tasks. After Conv5, there are two
common layers in EBM. In these two layers, linear separability between categories increases (seen
in Fig. 9), but the object-view manifolds collapse (as seen in Fig. 5). This hurts the pose estima-
tion. At the same time, this supports the aforementioned claim that enforcing better categorization
(fine-tuning) hurts pose estimation. In our best performing model (EBM), in Figure 5, remarkable
improvement to the pose object-view manifold is attained. For pose, the drop in KNN-classifier as
the K increases vanishes when going deeper in network; see FC6 and FC7 layers EBM in Fig. 5.
KNN figure for categorization on Pascal3D dataset could be seen in appendix A. In a similar be-
havior EBM behaves better than CPM and PM. An interesting behavior that CPM works clearly on
Pascal3D dataset compared to RGBD; see Appendix A for KNN analysis on RGBD dataset. This
is due that RGBD dataset has both dense poses and also larger number of categories ( 5 times Pas-
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Figure 5: Comparison between EBM and LBM for categorization and pose estimation at each layer of the
CNN using k-NN with varying k = {1,3,5,7,9}. This experiment was conducted on the Pascal3D dataset.

cal3D). This increases the information/uncertainty to model that are beyond the capacity of CPM
for RGBD dataset and generally as the number of categories and poses increase.

Local Pose Measurement Analysis: In Appendix B, we further analyzed four local measurement
pose analysis proposed in ( , ) to analyze layers of the five models we study against
the pose manifold. The purpose of this analysis is to show how the learning representations for each
model is untangle to the circle manifold where the pose inhabits

7 EXPERIMENTS

Here we describe the experimental setup and present the quantitative results of our experiments as
well as comparisons with state-of-the-art.

7.1 TRAINING AND TESTING

All models are trained by back propagation with Stochastic gradient descent. Refer to appendix E
for parameter settings, e.g. learning rate, decay, efc. At training time, we randomly sample 227x227
patches from the down-scaled 256x256 images. At test time the center 227x227 patches are taken.

All classification losses are optimized by the multinomial logistic regression objective. Similar
to ( , ), we optimized it by maximizing the average of the log-probability of the
correct label under the prediction distribution across training cases. The pose softmax output (FC8)
layer produces the pose probability distribution given the image. For each of the category and pose
losses, the gradient with respect to the CNN parameters is computed which is then fed into CNN
training for back propagation.

All the results that are presented in the paper were based on the prediction of argmazpesep(pose|z),
where pose is one of the 16 pose bins and x is the given image.

In addition, we conduct an experiment where we predict the pose by computing the expected pose
in the distribution of p(pose|x); see Eq. 1.

Blp(poselz)) = 3 plposeila) x (pose) m

7

where ¢(pose;) is the center angle of the corresponding bin pose; (the pose of the i'" bin).

The detailed definitions of the performance metrics used in our experiments are described in ap-
pendix D.
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7.2 RESULTS

Table 1 shows the category recognition and pose estimation performance for the different models on
the two training-testing splits of the RGBD dataset. Table 2 shows our best performing model EBM
compared to state-of-the-art approaches. Using the pose prediction rule of eq. 1, the pose accuracy
of EBM(800) increased from 78.83% to 79.30% for the argmaz prediction on split 2 of RGBD.

Looking at the closest previous approach in Table 2, ( , ) achieves 96.01%
classification accuracy. This is achieved using both visual and depth channels. We only used RGB
(without depth) in our approach. ( R ) achieves a lower 94.84% with RGB

only, which shows the advantage of our CNN models for classification.

We achieve 2.3% increase in category recognition and about 2% increase in pose estimation
(79.30%) using EBM(800), when compared with state-of-the-art. These measurements are likely
to increase further when using EBM(4096), as we see slight improvement of EBM(4096) over
EBM(800) in Table 2. It is also possible that running k-NN on top of the layer features could
improve performance further. We achieved 97.14% categorization using EBM. We also achieved
99.0% classification accuracy using Nearest Neighbor classification on the Pool5 layer of EBM,
which indicates that we learned better convolutional filters.

Table 3 shows the performance of our models on Pascal3D+. We compare the accuracy achieved
by our models with state-of-the-art results by (

, ). It must be noted here that we are solvmg shghtly dlfferent problems
to some of these approaches. In ( ), the authors solve detection and pose estima-
tion, assummg correct detection. On the other hand ( , ) solve just pose estimation,
assuming that the object categories are known. ( ; , ) solve
joint detection and pose estimation. In our case we are ]omtly solvmg both category recognition and
pose estimation, which can be considered a harder problem than that of ( , )and (

, ). Our pose estimation performance is better than all these previous approaches. For
the sake of this comparison, we computed the pose performance using the metrics applied in (
, ). These metrics are pose accuracy for images with pose errors < 22.5° and < 45°.

Table 3 shows both our categorization and pose estimation results on Pascal3D compared against
previous approaches. The table indicates 13.69% improvement of our method over ( ,
) (the best performing previous approach) in pose < 22.5° metric and 4% improvement in
pose < 45°, which are 51gn1ﬁcant results. It is 1mportant to note that comparing to ( ,
, ) is slightly unfair because these works solve for

detectlon and pose 51multaneously, while we do not solve detection.

We also show our performance when including ImageNet images in the training set and also the
test set - see Table 3 (rows 7-8). The results show the benefit of ImageNet training images which
boosts pose performance to 76.9% (from 57.89%) and 88.26% (from 63.0%) for pose < 22.5° and
pose < 45°, respectively.

In Table 3, on the in the wild images of Pascal3D+, our EBM model achieves an impressive increase
of ~8% and ~5% over the state-of-the-art models using the two pose accuracy metrics, respectively.

7.3 COMPUTATIONAL ANALYSIS AND CONVERGENCE

We performed computational analysis on the convergence of the models and show that EBM con-
verges substantially faster than all the other models. In Fig. 6 we show the convergence rates of
the proposed models. EBM here is the larger EBM (4096) network. Despite having many more
parameters than most of the other models (about ~112 million parameters compared to 60 million
in the base network), EBM converges substantially faster than all the other models. This shows the
ability of this particular network to specialize faster in the two tasks. The shared first five layers are
able to build up the object-view manifolds, preserve them and enhance them in the pose subnetwork
of the model, while the other subnetwork specializes in pose-invariant category recognition.
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Table 1: A summary of all the results of the CNN models. Split 2 is the traditional RGBD dataset split. Split 1
is the one we describe that better evaluates our experiments. Split 2 is the state-of-the-art training-testing split.
C indicates category performance and P indicates pose accuracy (where it is measured using 3 different metrics
consistent with state-of-the-art. P (< 22.5°) indicates that the pose accuracy is measured for objects where the
pose error was less than 22.5°

Model Split | C% P% (< 22.5%) P% (< 45%) P%
(AAAI)

PM 1 89.63 69.58 81.09 81.21

CPM 1 80.68 63.46 75.45 77.35

LBM 1 91.48 68.25 7931 79.94

EBM (4096) 1 89.94 71.49 82.19 82.00

EBM (800) 1 89.84 71.29 82.29 81.91

EBM (400) 1 89.77 70.80 81.73 81.65

EBM (200) 1 90.11 67.70 79.43 79.71

EBM (100) 1 90.34 69.15 80.09 80.36
[ EBM (800) [ 2 [ 97.14 [ 66.13 [ 77.02 [ 78.83 |
| EBM (4096) | 2 | 97.07 ] 65.82 | 7651 | 78.66 |

SVM/Kernel Reg - Model 0 (best category - FC6) 1 86.71 - - 64.39

SVM/Kernel Reg - Model 0 (best pose - Conv4) 1 58.64 - - 67.39

SVM/Kernel Reg - HOG 1 80.26 - - 27.95

Table 2: RGBD Dataset: Comparison with state-of-the-art approaches on category recognition and pose esti-
mation (Ours use only RGB channel).

Approach Category % Pose (AAAI) %
( s ) 94.30 (RGB + Depth) 53.50
( R ) 94.84 (RGB only)/ 96.01 (RGB+ Depth) 76.01
( s ) 92.00 (RGB only)/ 93.10 (RGB + Depth) 61.57
( 5 ) 85.00 77.31
Ours (EBM(800)) 97.14 79.30
Table 3: Pascal3D dataset ( ): Comparison with state-of-the-art approaches on
category recognition and pose estlmatlon The AAAI pose metric is the performance metric used
in( , : ; " , )
Train: Pascall2, Test: Pascall12
Approach Category Pose % (error < 22.5) Pose % (error < 45) Pose AAAI metric
( 01 | - 15.60 18.70 -
( 01y | - 17.30 21.50 N
( 8 ) - 18.60 27.60 -
( s - 36.00 44.50 -
)
R ) - 44.20 59.00 -
EBM (4096) 83.0 51.80 64.27 73.53
EBM (800) 83.10 51.37 64.20 73.26
LBM 82.69 48.38 60.11 70.88
CPM 76.35 49.39 61.90 71.80
PM 84.0 47.34 61.30 71.60
Train: Pascall2 + ImageNet, Test: Pascall2
EBM (300) [ 83.79 [ 51.89 [ 60.74 [ 7539
Train: Pascall2 + ImageNet, Test: Pascall2 + ImageNet
EBM (800) [ 92.83 [ 67.26 [ 75.11 [ 83.27
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(a) PM (b) CPM (c) LBM (d) EBM(4096)
0.9 005 0.9 0.9
o085 7 0.85 0.85
os o° o 0.8
0.75 0.85 0.75 0.75
07 o 0.7
065 o7 0.65

o 5000 o 5000 5000 0 5000

Figure 6: Comparison of convergence between the models. On the left is the category error and on
the right is the pose error, on the validation set, respectively for each model (a) to (d). The error is
computed per batch during each iteration. CPM shows the error for the joint category and pose. It
can be seen that EBM (4096) converges much faster than the others which is another benefit of early
branching. This is despite have a lot more parameters than the other models. This indicates that each
of the subnetworks of EBM are able to specialize in both categorization and pose estimation faster.
Each iteration is computed on one batch of 100 training samples.

8 DISCUSSION

Analysis of the layers of all the CNN models is shown in Fig. 3 to 9. We provide quantitative results
over two challenging datasets and summarize them in Tables 1, 2 and 3.

We compare our models with multiple baselines in Table 1: Linear SVM and Kernel Ridge-
Regression on HOG descriptors ( ) as well as on features extracted from the
best performing layers of the base network on each task. These baseline results were expected to be
quite lower than our models’ performance due to the lack of fine-tuning in the base model and due to
the sharing of the network layers between the two tasks of category recognition and pose estimation.

Without fine-tuning the base network does not represent the object-view manifold well enough to
estimate the pose efficiently. After fine-tuning on each of the respective datasets, we were able to
achieve good category performance using the PM model. The downside of this model is its inability
to perform robust pose estimation on the more challenging natural sparser-views of Pascal3D+. This
is evident in the results shown in Table 3, where PM achieves less pose accuracy.

In Tables 1 and 3, we see again that CPM does worse than the other models in both datasets. This
is more evident in the task of categorization, e.g., a drop of ~7% and 2%-3% in category and pose
accuracy on Pascal3D+, respectively, and similarly ~10% and ~6% on the RGBD dataset. This
motivates the need for branching in the networks and branching at the particular layer that better
represents both category and pose. Interestingly, we found that CPM performs relatively better on
Pascal3D+. We argue that the reason is that object poses in natural images are dominated by a
smaller range of viewpoints and hence most of the pose-bins have vanishing probability (easier to
learn). In addition, Pascal3D+ has a smaller number of categories.

LBM performs relatively well on RGBD, but not on Pascal3D+. This can be attributed to the fact that
RGBD has many more categories and is composed of images of objects under controlled settings
and not in-the-wild like in Pascal3D+. The images in the RGBD dataset are captured at dense views
as the object rotates on a turn-table. This is why the pose information is more prevalent in the last
layers. This is evident from the steep monotonically increasing curve of LBM in Fig. 3-Left. This
is not the case in Pascal3D+ where the increase is more steady and in fact there is a decrease after
layer FC6 (see Fig. 4-Right).

The reason why EBM performs better than PM even though its weights are randomly initialized
is that PM’s FC6 and FC7 layers in the pose-specific branch are initialized with category-specific
weights from pre-training. This adversely affects pose estimation since it is a contradictory task
that requires view-variant representations and not view-invariant representations like that required
in categorization. Therefore initializing FC6/FC7 by another network trained for a different task is
not likely to help. We show that learning the convolutional filters jointly with categories help make
them discriminative for both tasks and thus achieves a good accuracy on both tasks (see Fig. 3 to 9
and Tables 1, 2 and 3).
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Comparing between EBM and LBM, we see that early branching is able to achieve a good balance
between categorization and pose estimation by sharing the representations up to where we found the
layer representation still capture pose information. We see this in Tables 1, 3 and Figures 1 to 5,
where better pose accuracy and slightly better categorization accuracy is achieved by EBM. We also
see that in Figure 5 that the object view-manifold collapses in the last two layers (one layer before
LBM) and thus achieves better pose discrimination than LBM.

The slight effect of decreasing the size of the layers in the pose subnetwork of EBM can be observed
from the results in Table 1 and 3.

9 CONCLUSION

This paper is the first exploration of using CNNs for object pose estimation. We present our analysis
and comparison of CNN models with the goal of performing both efficient object categorization and
pose estimation. Despite the dichotomy in categorization and pose estimation, we show how CNNs
can be adapted, by novel means introduced in this paper, to simultaneously solve both tasks. We
make key observations about the intrinsics of CNNs in their ability to represent pose. We quantita-
tively analyze the models on two large challenging datasets with extensive experiments and achieve
better than state-of-the-art accuracy on both datasets.
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A k-NN RESULTS
A.1 PascaL3D

KNN figures for categorization on Pascal3D dataset.
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Figure 7: Comparison of the categorization at each layer of the CNN using £-NN with varying
k= {1,3,5,7,9} from top to bottom. This experiment was conducted on the PASCAL3D dataset
categorization

15



Workshop track - ICLR 2016

A.2 RGBD DATASET

It is clear how CPM is very unstable for dense poses that exist in RGBD dataset.
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Figure 8: Comparison of the pose estimation at each layer of the CNN using k-NN with varying
k=1{1,3,5,7,9} from top to bottom. This experiment was conducted on the RGBD dataset cate-
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Figure 9: Comparison of the categorization at each layer of the CNN using k-NN with varying
k=1{1,3,5,7,9} from top to bottom. This experiment was conducted on the RGBD dataset cate-

gorization (training points)
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B LOCAL POSE MEASUREMENT ANALYSIS ON RGBD DATASET

We applied three local measurement analysis proposed in ( , ) to analyze features
against dense poses. For more details about the description of these measurements, please refer
to ( , ). The main property that these measurements quantified is how these repre-
sentations align with the the circle manifold that represent the pose of the categories.

All the figures shows that EBM achieves the best behavior in untangling both the categorization and
the pose branches. It is clear that CPM behaves the worst for pose estimation as we argued in the
paper for several reasons.

1. Z-EffectiveSV 90 (The lower the better)

2. TPS-RCond-CF-poly (The higher the better)”

3. Nuclear Norm (The higher the better)

4. KPLS-Kernel Regression Error (The lower the better)
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Figure 10: Comparison of the pose estimation at each layer of the CNN using “Effectibe SV 90%”
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Figure 11: Comparison of the pose estimation at each layer of the CNN using “TPS-RCond (poly-
nomal)[” measurement
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Figure 12: Comparison of the pose estimation at each layer of the CNN using ‘“Nuclear Norm”
measurement (FC8 to Pool5)
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Figure 13: Comparison of the pose estimation at each layer of the CNN using KPLS Kernel Regres-
sion Error measurement
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C COMPUTATIONAL ANALYSIS AND CONVERGENCE(MORE DETAILS)

The following figures show the loss/validation curves for the trained CNNs. The loss is shown per
the batch being processed at each iteration(one training batch/iteration). The interesting behavior
we notice in all the networks is that the categorization part converges very quickly, while the pose
part takes sometime to converge. This is since, in all networks, the layers were initialized with the
ImageNet categorization CNN. For the pose part, initialization for a categorization network might
not be helpful especially for the top layers (e.g. FC6,FC7, and FC8), since they were trained for
a different purpose that might be conflicting. Furthermore, training on a joint loss as in EBM and
LBM positively affects the convergence as can be seen in figures 17 and 18. It is not hard to see that
the Early Branching reduced the validation pose error significantly faster compared to the remaining
models despite having much more parameters than many of the other models. Refer to section 4 for
the number of parameters.
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Figure 14: PM Category CNN Training
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Figure 15: PM Pose CNN Training
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Figure 16: CPM Training Error (this is the error of both classifying the correct category in the correct
pose bin)
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Figure 17: LBM Training (Categorization Error on the left, Pose Binning Error in the middle, Loss
on the right)
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Figure 18: EBM Training (Categorization Error on the left, Pose Binning Error in the middle, Loss
on the right)

D ERROR METRICS

The two metrics < 22.5 and < 45 used to evaluate the performance of pose estimation are the per-
centages of test samples that satisfy AE < 22.5° and AE < 45°, respectively, where the Absolute
Error (AE) is AE = |Estimated Angle — GroundTruth|). The AAAI pose accuracy (used exten-
sively in the previous work we compare with) is equal to 1 — [min(|0; — 6,|,27 — |0; — 0;])/7].

E TRAINING PARAMETERS

The base learning rate is assigned 0.5 x 1073. For fine-tuning, the learning rate of the randomly
initialized parameters (e.g. FCS8 parameters in PM) are assigned to be ten times higher than the
learning rate of the parameters initialized from the pretrained CNN (e.g. Conv1 to PoolS5 in all the
models). The decay of the learning rate  is 0.1. While training our CNNs, we drop the learning
rate by a factor of v every 5000 iterations. The momentum and the weight decay were assigned
to 0.9 and 0.0001 respectively. Training images are randomly shuffled before feeding the CNN for
training. The training batch size was 100 images.

F INITIALIZATION AND MODELS’ PARAMETERS

The ImageNet CNN used in our paper (AlexNet) [16] has ~60 million parameters. In this section,
we present how all the models were initialized in our experiments. Then, we analyze the number of
parameters in the model for each of RGBD and Pascal3D datasets.

F.1 INITIALIZATION
F.1.1 EBM MODEL

In EBM, we initialize all the convolutional layers by the convolution layer parameters of AlexNet.
We initialize FC6 and FC7 of the category branch by the parameters of AlexNet model. The remain-
ing layers were initialized randomly (i.e.FC6, FC7, and FCS8 of the pose branch subnetwork, and
FC8 of the category Branch subnetwork).

F.1.2 LBM MODEL

For LBM, we initialize all the layers by the pretrained AlexNet model for the convolution layers,
FC6, and FC7. FC8 weights are initialized randomly.

F.1.3 CPM MODEL

We initialize all the layers by the pretrained AlexNet model for the convolution layers, FC6, and
FC7. We initialized FC8 parameters randomly.

F.1.4 PM MODEL

Since there are two separate models, one for category and one for Pose. We initialize all the layers
by the pretrained AlexNet model for the convolution layers, FC6, and FC7. We initialized FCS8
parameters randomly.
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F.2 NUMBER OF MODEL PARAMETERS FOR RGBD DATASET
F.2.1 EBM MODEL

EBM Model has 111,654,944 parameters. These are as follows starting from the in-
put layer (number of filters x filter width x filter height x number of channels):
96x11x11x3 + 256x5x5x48 + 384x3x3x256 + 384x3x3x192 + 256x3x3x192) + Pool5-
FC6 (pose) 9216x4096, FC6(pose)-FC7(pose) 4096x4096, FC7(pose)-FC8(pose) 4096x16
Pool5-FC6(category) 9216x4096, FC6(category)-FC7(category) 4096x4096, FC7(category)-
FC8(category) 4096x51.

F.2.2 LBM MODEL

LBM has 57,133,088 params = convolution-layers’ parameters (96x11x11x3 + 256x5x5x48 +
384x3x3x256 + 384x3x3x192 + 256x3x3x192) + 9216x4096 + 4096x4096 + (fc8-cat) 4096x51 +
(fc8-pose) 4096x16. These are organized as (number of filters x filter width x filter height x number
of channels) and starting from the input layer.

F.2.3 CPM MODEL

CPM has 60,200,992 params = convolution-layers’ parameters (96x11x11x3 + 256x5x5x48 +
384x3x3x256 + 384x3x3x192 + 256x3x3x192) + 9216x4096 + 4096x4096 + (fc8-cat and pose)
4096x51x16. These are organized as (number of filters x filter width x filter height x number of
channels) and starting from the input layer.

F.2.4 PM MODEL

PM has 113,991,744 parameters (56,924,192 for pose and 57,067,552 for category). These are
shown below as (number of filters x filter width x filter height x number of channels) and starting
from the input layer.

PM Model Pose Parameters: The 56,924,192 pose parameters comes from convolution-layers’
parameters (96x11x11x3+ 256x5x5x48 + 384x3x3x256 + 384x3x3x192 + 256x3x3x192) + fully
connected layers’ parameters (9216x4096 + 4096x4096 + 4096x16).

PM Model Category Parameters: The 57,067,552 category parameters comes from convolution-
layers’ parameters (96x11x11x3+ 256x5x548 + 384x3x3x256 + 384x3x3x192 + 256x3x3x192) +
fully connected layers’ parameters (9216x4096, + 4096x4096 + 4096x51).

F.3 NUMBER OF MODEL PARAMETERS FOR PASCAL3D DATASET
F.3.1 EBM MODEL

EBM Model 111,495,200 params = convolution layers’ parameters (96x11x11x3 + 256x5x5x48 +
384x3x3x256 + 384x3x3x192 + 256x3x3x192) + Pool5-FC6 (pose) 9216x4096, FC6(pose)-
FC7(pose) 4096x4096, FC7(pose)-FC8(pose) 4096x16 PoolS-FC6(category) 9216x4096,
FC6(category)-FC7(category) 4096x4096, FC7(pose)-FC8(pos) 4096x16.  These are orga-
nized as (number of filters x filter width x filter height x number of channels) and starting from the
input layer.

F.3.2 LBM MODEL

LBM has 56,969,248 params = convolution layers’ parameters (96x11x11x3 + 256x5x5x48 +
384x3x3x256 + 384x3x3x192+ 256x3x3x192)+ 9216x4096 + 4096x4096 + (fc8-cat) 4096x11 +
(fc8-pose) 4096x16. These are organized as (number of filters x filter width x filter height x number
of channels) and starting from the input layer.

F.3.3 CPM MODEL

CPM has 57,579,552 params = convolution layers’ parameters (96x11x11x3 + 256x5x5x48 +
384x3x3x256 + 384x3x3x192 + 256x3x3x192) + 9216x4096 + 4096x4096 + (fc8-cat and pose)
4096x11x16. These are organized as (number of filters x filter width x filter height x number of
channels) and starting from the input layer.
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F.3.4 PM MODEL

PM has 113,827,904 parameters (56,924,192 for pose and 56,903,712 for category. These are shown
below as (number of filters x filter width x filter height x number of channels) and starting from the
input layer.

PM Model Pose Parameters: The 56,924,192 pose parameters comes from convolution layers’
parameters (96x11x11x3+ 256x5x5x48 + 384x3x3x256 + 384x3x3x192 + 256x3x3x192) + fully
connected layers’ parameters (9216x4096, + 4096x4096 + 4096x16).

PM Model Category Parameters: The 56,903,712 category parameters comes from convolution
layers’ parameters (96x11x11x3 + 256x5x5x48 + 384x3x3x256 + 384x3x3x192 + 256x3x3x192) +
fully connected layers’ parameters (9216x4096, + 4096x4096 + 4096x11).

G EFFECT OF L0OSS FUNCTION WEIGHTS ON EBM MODEL

We found that changing the weights for EBM slightly affected the performance; see table 4. Our
intuition behind this behavior is that EBM splits into separate parameters starting from Pool5, which
makes each of the pose and the category have some independent parameters (FC6,FC7,FCS) in
addition to the shared parameters (Convl to Pool5).

Table 4: Effect of A\; and A5 for EBM

Parameters Categorization % Pose %
AM=1X=1 89.94 82.00
AM=1X=2 89.39 81.80
AM=2X=1 89.25 81.89

Since \; = 1, Ao = 1 is slightly better than others, we performed all of our Model 5 experiments
in the paper with this setting.
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