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ABSTRACT

This work addresses the limitations of deep neural networks (DNNs) in generalizing
beyond training data due to spurious correlations. Recent research has demonstrated
that models trained with empirical risk minimization learn both core and spurious
features, often upweighting spurious ones in the final classification, which can
frequently lead to poor performance on minority groups. Deep Feature Reweighting
alleviates this issue by retraining the model’s last classification layer using a group-
balanced held-out validation set. However, relying on spurious feature labels
during training or validation limits practical application, as spurious features are
not always known or costly to annotate. Our preliminary experiments reveal that
ERM-trained models exhibit higher gradient norms on minority group samples in
the hold-out dataset. Leveraging these insights, we propose an alternative approach
called GradTune, which fine-tunes the last classification layer using high-gradient
norm samples. Our results on four well-established benchmarks demonstrate that
the proposed method can achieve competitive performance compared to existing
methods without requiring group labels during training or validation.

1 INTRODUCTION

Despite the impressive ability of deep neural networks to achieve human-level performance on
complex vision and language tasks, their dependence on the quality of training data makes them
fail to generalize well on a group of data points that do align with the trend in training data. More
specifically, the data used to train neural networks might contain patterns that spuriously correlate
with the target task (Ye et al., 2024). For instance, the background of an image might spuriously
correlate with the class label (Wah et al., 2011). Models trained using the classical Empirical Risk
Minimization (ERM) can excessively rely on spurious features for prediction and fail to capture the
intended core feature, which often leads to poor performance on minority groups of samples where
the spurious correlation does not apply (Steinmann et al., 2024).

Kirichenko et al. (2023) have demonstrated that models trained with ERM still capture the core
features in the learned representation in addition to spurious features, and the latter is overweighted in
the last layer of the model. Moreover, they demonstrated that simply retraining the last classification
layer of the model with a small proportion of a group-balanced held-out set (i.e., data where the
spurious correlation does not hold) can mitigate the spurious correlation and achieve state-of-art
performance robustness benchmark (Kirichenko et al., 2023). Moreover, even if the held-out set
used for last-layer retraining contains a smaller proportion of the worst-group data, the resulting
last-layer retrained model still significantly outperforms the ERM model (LaBonte et al., 2024).
Furthermore, classical group robustness methods, such as group distributionally robust optimization
(Group DRO (Sagawa et al., 2019)), do not necessarily learn a better representation compared to
ERM but somewhat better weight the core feature in the last classification layer (Izmailov et al.,
2022).

However, most existing methods addressing spurious correlation require access to spurious feature
labels (group labels) for training or validation (Sagawa et al., 2019; Liu et al., 2021; Kirichenko
et al., 2023; Qiu et al., 2023). This limits the practical adoption of the technique as the spurious
features are generally unknown, and even when they are, labeling the data can be costly (Kenfack
et al., 2024). In this work, we revise last-layer retraining to alleviate the need for group labels during
training or validation. In preliminary experiments, we observe that samples in the held-out set where
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the ERM-trained model does not generalize have a higher gradient magnitude. In contrast, samples
on which the model performs well have smaller gradient norms. Samples with higher gradient
magnitudes are mainly worst-group data that do not exhibit a spurious correlation. These results align
with related works Ahn et al. (2023); Kenfack et al. (2022); Bagdasaryan et al. (2019), showing that
minority groups can have a higher gradient magnitude than samples from majority groups.

Building on this observation, we propose GradTune, a method for mitigating spurious correlation
without groups label by simply fine-tuning the last classification layer of the ERM-model using
the top-k gradient norm samples. Our intensive experiments on several datasets demonstrate that
GradTune can substantially improve worst-group accuracy and achieve group-robust performance
comparable to state-of-the-art methods without using the group labels.

2 PROBLEM SETUP

We consider a setting where the training data Dtr contains triplets {(xi, yi, ai)}Ni=1 where xi ∈ X is
a data point, yi ∈ Y its class label and ai ∈ A an unknown spurious feature. When the attribute a
spuriously correlates with the target y, ERM trained models to minimize the average cross-entropy
loss w.r.t y can strongly rely on the spurious feature and fail to generalize on the test Dtest where the
spurious correlation does not apply (Ye et al., 2024). The reliance on the spurious feature can be more
pronounced when it is easier to learn than the core features (Nam et al., 2020). More specifically, the
training data Dtr can be represented by different subgroups in gi ∈ G, where subgroups {gi}Mi=1 are
formed based on the cartesian product of class labels and the spurious attributes, i.e., G = Y × A.
The spurious correlation means an attribute value a and a label y commonly appear at the same time.
Specifically, we denote as bias-aligned samples (also majority group) the group where the spurious
features and the label match, i.e., a = y, and bias-conflicting samples (minority group) as the group
where a ̸= y (Ye et al., 2024).

As the average accuracy does not fully capture the robustness of the model to spurious correlation,
we use the worst-group accuracy (WGA) to measure the model’s reliance on spurious correlation
for predictions. Furthermore, in the presence of spurious features, a model f parametrized by θ is
optimized to minimize the loss of the worst-performing subgroup, i.e.,

argmin
θ

max
g∈G

1

|g|

|g|∑
i∈g

L(f(xi; θ), yi) (1)

3 RELATED WORK

We categorize baseline methods for comparison into two types depending on whether they require
group labels during the training and/or validation.

Methods requiring spurious features during training or validation When group labels are
available in training data, Group DRO (Sagawa et al., 2019) can be applied to optimize for the
worst-performing subgroups. Group DRO also requires a group-labeled validation set for model
selection and hyperparameter tuning. Spurious correlation can also be mitigated using reweighting
and subsampling to ensure group-balanced training data (Sagawa et al., 2020) or using synthetic
data to augment the minority group (Goel et al., 2020). However, group information can be costly to
collect or unavailable due to privacy restrictions (Kenfack et al., 2024)

Some existing methods require spurious features only in the validation set for hyperparameter tuning
or model selection. Notable examples include Just Train Twice(JTT) (Liu et al., 2021). This approach
first trains a biased model and then upweights misclassified samples to train a second model, aiming to
improve the performance of the worst-performing subgroup. (Kirichenko et al., 2023) proposed Deep
Feature Reweighting (DFR), a method that trains an ERM model and fine-tunes the last layer using a
held-out, group-balanced validation set. Similarly Selective last-layer fine-tuning (SELF) (LaBonte
et al., 2024): SELF fine-tunes the last layer using a fine-tuning set consisting of samples with higher
disagreement between the outputs of ERM and an early-stoped models (LaBonte et al., 2024). It
only requires group labels in the validation set for model selection. Automatic Feature Reweighting
(AFR) (Qiu et al., 2023) retrains the last layer of an ERM-trained model using a weighted loss that

2



Published as an SCSL Workshop Paper at ICLR 2025

emphasizes examples where the ERM model performs poorly. Unlike these methods, GradTune
can improve worst-group performance without intensive hyperparameter tuning on a group-labeled
validation.

Methods that do not utilize any spurious label information An example is bias-unsupervised
logit adjustment (uLA) (Tsirigotis et al., 2024), which employs self-supervised feature representation
learning combined with a classifier layer trained using ERM. It fine-tunes the last layer using logit
adjustment (Liu et al., 2022) to mitigate biases learned by the ERM-trained classifier. Additionally,
to highlight the importance of data quality for fine-tuning, we consider an ERM baseline where the
last layer is retrained using random data points from a held-out validation set; we name it random
finetuning. Results comparing the proposed method against the presented baselines are provided in
Section 5.

We focus on the case where the group information is unknown during the training and validation, and
we only consider it the test set for evaluation.

4 GRADTUNE: GRADIENT-BASED FINE-TUNING FOR MITIGATING SPURIOUS
CORRELATION
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Figure 1: Overview of the proposed method on the CelebA dataset, where the hair color spuriously
correlates with gender. Fig. (a) showcases the three-phase training on the proposed method: (i) during
the first phase, we train the ERM model using the training data (ii) in the second phase, we use the
pretrained ERM model to compute the gradient norm of each data point in the held-out validation set
(iii) we derive the fine-tuning set by sampling top-k (De) gradient norms data points, and we sample
the small proportion of data point at random (D′

e). Finally, we finetune the last classification layer
using the fine-tuning set. Fig. (b) shows that on the CelebA dataset, the minority group has a higher
gradient magnitude than the majority group. Fig. (c) shows after the three phases of our debiasing
mechanism, the performance of the minority group significantly improved compared to the ERM
model.

In this section, we describe the training process of our proposed method, named GradTune, for
mitigating spurious correlation without group labels. We begin by providing an overview of the three
phases of the training process and then dive into a detailed analysis of fine-tuning based on gradient
norms as a means to identify and mitigate spurious.

4.1 TRAINING PHASES OF GRADTUNE

The training process of GradTune can subdivided into three phases: (i) ERM training, (iii) sample
gradient norm computation, and (iii) last layer fine-tuning. We first train the ERM model and then
fine-tune its last layer using a subset of samples from the held-out validation set with high gradient
norms. This subset with higher gradient norms mainly consists of samples the ERM-trained model
failed to learn, and we hypothesize that using them to fine-tune the last layer of a pretrained ERM-
model can mitigate the spurious correlation learned by the model. GradTune improves on Ahn et al.
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(2023), which first trains a bias amplified model to weight the training data points and then trains
the debiased model using the weighted training dataset. The weights of each sample in the training
dataset are proportional to their gradient norms; the per-sample gradient vector is computed using the
bias-amplified model trained with generalized cross-entropy loss (Ahn et al., 2023; Liu et al., 2021).
The advantages of GradTune are twofold: First, the ERM model with the classical cross-entropy loss
alone can learn spurious features, which is reflected in sample gradients disparity across subgroups
(Section 4.2), and sample gradients are only computed only the validation set instead of the entire
training set. Second, recent work (Izmailov et al., 2022; Kirichenko et al., 2023; Tsirigotis et al., 2024)
demonstrated that core features are learned by the ERM model and focusing on the last classification
can substantially improve group robustness and reduce reliance on spurious features. Figure 1(a)
shows an overview of each phase of GradTune.

ERM training. The first step of GradTune consists of ERM training the model using the training
set. As the training data might contain spurious features that are not predictive of the target label,
the ERM-trained model will capture the spurious features and achieve low classification error on
the group of samples exhibiting the spurious correlation while having a higher error on samples
where the spuriousness does not hold. The sensitivity of the ERM-trained model to spuriousness
can guide the identification of worst-performing subgroups. For example, Liu et al. (2021); Nam
et al. (2020); LaBonte et al. (2024) uses the misclassification of the ERM model to derive a set
of samples that the model needs to improve, hypothesizing that this set mainly contains samples
from the worst-performing subgroups. Instead, we consider in GradTune the gradient norm of each
sample’s loss with the hypothesis that the samples from the worst-performing subgroups exhibit a
higher gradient norm for updating the model.

Reweighting set based on sample gradient norms. After training the ERM model on the training
set, we compute the per-sample gradient norm on the held-out validation set without updating the
model parameters. More specifically, we compute the classification loss for each sample and evaluate
the norm of the gradient’s loss w.r.t the model parameters. Given the computation cost of evaluating
samples’ gradient norm across all network layers, we only compute the gradient norms of the last
classification layer. This is a frequently used technique for reducing the computational complexity
of computing sample gradients (Killamsetty et al., 2021; Ahn et al., 2023; Kenfack et al., 2022;
Mirzasoleiman et al., 2020). More specifically, we compute the gradient norm of each sample in the
validation set as follows:

h(x, y) = ∥∇θfcL(fθ(x; θ), y)∥2,∀(x, y) ∈ Deval (2)

Where θfc are the parameters of the last classification layer, L the cross-entropy loss, f the ERM-
trained model, and Deval the held-out validation set. Following Ahn et al. (2022), we use the L2

norm, which has demonstrated better performance in identifying out-of-distribution data based on the
gradient vectors, while another type of norm can be considered (Huang et al., 2021).

After computing the gradient of each sample. i.e., H = {h(x, y) | (x, y) ∈ Deval}, we derive the
fine-tuning set (also called the reweighting set) Dft ⊂ Deval that will be used in the next step to
mitigate spurious correlations learned by ERM model fθ. Our fine-tuning set Dft is constructed such
that it mainly contains samples with higher gradient norms (De) along with a smaller proportion of
the samples sampled at random proportionally to their gradient norms (De′ ). For example, Figure 1(b)
shows, on the CelebA dataset, the gradient distribution of minority groups (i.e., blond males) against
the majority subgroups (i.e., blond females); gradients norms are computed on ERM models trained
with three independent random seeds; as can be seen, the top-k gradients norm might only contain
blond male images, which is why we add a smaller proportion of samples to the fine-tuning set at
random. More specifically, the fine-tuning data set consists of two subsets: (1) De containing samples
in the top-k gradient norms and (2) De′ samples not in the top-k sampled in the remaining validation
set (Deval \ De), with a sampling probability proportional to their gradient norms. More formally,
Dft = De ∪ De′ where De and De′ are defined as follows: De = {(xi, yi) | h(xi, yi) ∈ Top-k(H)}
and De′ ∼ RandomSampler(Deval \ De,M

′ − k)

Where M ′ is the size of the fine-tuning set, and k are hyperparameters. RandomSampler sample
data points with sampling probability proportional to their gradient norm. We fixed M ′ to only 500
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samples and following LaBonte et al. (2024), and we recommend using a higher proportion of M ′

for setting k to select enough minority samples.

Last layer fine-tuning The last step of our method focuses on fine-tuning the last classification
layer using the fine-tuning set (Dft) obtained in the previous step. Here, we fine-tune the last layer,
without resetting the model’s parameters, of the ERM model using the fine-tuning set. In other words,
we fine-tune the ERM model in a continual learning fashion using a small proportion of the validation
set, consisting mainly of samples from the worst-performing subgroups and a smaller proportion of
samples from the best-performing subgroups to avoid catastrophic forgetting in the ERM model. This
means our fine-tuning set is close to, but not perfectly group-balanced, and recent literature (LaBonte
et al., 2024; Jain et al., 2024), in the context of biased training data, has demonstrated that we can
substantially improve group robustness without necessarily relying on a group-balanced dataset.
According to LaBonte et al. (2024), worst-group accuracy may be affected by characteristics of
the reweighting dataset other than group balance. Recent studies positioned class-balance training
as a solid baseline for mitigating spurious correlation without group labels (Idrissi et al., 2022).
Therefore, we perform the fine-tuning step with class-balance sampling during training to account for
the imperfect group imbalance in the fine-tuning set. Our results show that class-balance sampling
during fine-tuning is an important aspect of GradTune for better improving WGA. As can be seen in
Figure 1(c), we report on the CelebA dataset, the average WGA of a Resnset-50 model trained with
ERM before and after applying GradTune; the model is trained for three random seeds, and the WGA
is averaged across seeds, results shows that GradTune can improve the ERM-model’s WGA by up to
30%. This suggests the gradient norm disparity across samples in the held-out validation set provides
a strong signal about the data impacting the worst-group accuracy. In the following subsection, we
will see on several benchmarks that the gradient norms of the samples from the worst-performing
subgroups are higher than those from the best-performing subgroups.

4.2 DOES WORST-PERFORMING GROUPS EXPERIENCE A HIGHER GRADIENT NORM?

In this subsection, we demonstrate on several datasets that samples from the worst-performing
subgroups receive higher gradient norms from ERM-trained models. We trained ERM models
across three independent random seeds and measured the per-sample gradient norms on the held-out
validation set.
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Figure 2: Distribution of the gradient norm of samples from different subgroups across different
datasets. We trained ERM models and computed the gradient norm of samples in the held-out
validation dataset. The gradient norms are average over three seeds.

Figure 2 shows, across datasets, that ERM-trained models provide higher gradient norms to data
points where spurious correlation applies. The next section shows how leveraging these insights
and applying GradTune on ERM models improves their robustness to spurious correlation without
knowing any information about the spurious features.

5 EXPERIMENTS

This section provides empirical results demonstrating the superiority of GradTune against existing
state-of-the-art methods. We first describe the experimental setup, followed by the baseline methods
used for comparison, and then present the results and discussion. The source code is available in the
following repository: https://github.com/patrikken/GradTune.
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Table 1: Comparison to other baseline methods. We report the average and standard deviation across
three independent runs. Bolded and underlined represent the best and second best values, respectively.

Method Group Labels Waterbirds CelebA MultiNLI CivilComments

train val Average WGA Average WGA Average WGA Average WGA

Group DRO ✓ ✓ 93.5 91.4 92.9 88.9 81.4 77.1 88.9 69.9

JTT ✗ ✓ 93.3 85.6±0.2 88.0 81.1 78.6 72.6 92.6 69.3
DFR ✗ ✓ 94.2±0.5 91.9±1.0 92.7±0.5 87.6±2.2 81.0±0.1 70.2±0.4 86.0±0.0 76.1±0.2

SELF ✗ ✓ 94.4±0.5 91.2±1.1 92.7±2.1 68.3±11.0 69.4±10.3 50.3±22.7 65.6±28.3 56.3±24.1

AFR ✗ ✓ 94.2±1.2 90.4±1.1 91.3±0.3 82.0±0.5 81.4±0.2 73.1±0.6 89.8±0.6 68.7±0.6

ERM ✗ ✗ 87.4±1.1 73.2±1.0 93.5±0.2 71.5±1.9 81.8±0.2 62.6±1.6 90.1±0.1 70.5±0.8

Random ✗ ✗ 90.5±1.2 80.9±2.9 92.4±0.8 81.7±3.9 80.8±0.8 56.8±8.8 85.9±0.9 71.2±1.2

uLA ✗ ✗ 91.5±0.7 86.1±1.5 93.9±0.2 86.5±3.7 - - - -
GradTune ✗ ✗ 94.3±0.2 91.0±0.6 90.7±0.6 85.6±3.8 81.6±0.4 64.2±4.3 89.9±0.2 78.6±1.3

5.1 SETUP

Datasets We consider four datasets commonly used for spurious correlation studies (Kirichenko
et al., 2023; Ahn et al., 2023; Izmailov et al., 2022; LaBonte et al., 2024) across vision and language
tasks: Waterbirds, CelebA dataset (Liu et al., 2015), MultiNLi dataset (Williams et al., 2017), and
CivilComments (Koh et al., 2021). Details about the datasets can be found in Appendix A

Models. For the vision tasks, we use the Restnet-50 model pretrained (He et al., 2016) on ImageNet-
1k (Russakovsky et al., 2015) and BERT model pretrained on Book Corpus (Kenton & Toutanova,
2019) for language tasks. For fair comparison to previous work (LaBonte et al., 2024; Qiu et al.,
2023; Kirichenko et al., 2023), we use half of the validation set for the fine-tuning set and keep all
the hyperparameters, i.e., we do not perform model selection using the other half as in LaBonte
et al. (2024); Qiu et al. (2023). More details about the hyperparameters can be found in Appendix B.
For applying GradTune to fine-tuning the last layer, we fix the size of the fine-tuning set M ′ = 500
following LaBonte et al. (2024) and use 80% of M ′ for the top-k, i.e., k = 400 and provide ablation
on different values in Section 5.1.

Baselines. We considered five baseline methods for comparison and them depending on whether
they use group labels during the training and/or validation: this includes Group DRO (Sagawa et al.,
2019); Just Train Twice (JTT) (Liu et al., 2021); Deep Feature Reweighting (DFR) (Kirichenko
et al., 2023); Selective Last-layer Fine-tuning (SELF) (LaBonte et al., 2024); Automated Feature
Reweighting(AFR) (Qiu et al., 2023); Bias-Unsupervised Logit Adjustment (uLA) (Tsirigotis et al.,
2024); ERM model trained with class-balance1; Random finetuning fine-tuning last-layer with random
samples from Dft. More details about each baseline and related work can be found in the Appendix 3.

5.2 RESULTS AND DISCUSSION.

Table 1 summarizes the comparison to other baselines across the four datasets considered. We report
the average accuracy and WGA obtained across three independent random seeds. Since we do not
conduct hyperparameter tuning for these experiments, we also do not use group annotations for
model selection. The results show that GradTune achieves competitive performance with methods
requiring group information during training or validation. Notably, GradTune outperforms uLA on
the waterbirds dataset and achieves comparable performance on the CelebA dataset. Note that for
the CelebA dataset, the worst-performing subgroup of 85.6%±3.8 comes from the majority group
(non-blond female) while the minority group’s (blond-male) accuracy has improved from 73.2%
to 89%, this suggests the fine-tuning step targetted improvement on the minority group. These
results show that we can fine-tune ERM trained on high gradient samples and substantially improve
WGA without intensive hyperparameter tuning, as in existing methods, or applying early stopping
to worst-group validation accuracy. Surprisingly, we can also see that fine-tuning the ERM model
with random samples from the held-out validation set improves WGA. A similar observation was

1Throughout the paper, the performance of the ERM reported is the ERM model trained with class balance,
which is a strong baseline for group robustness without group annotations (Idrissi et al., 2022; LaBonte et al.,
2024).
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made in (LaBonte et al., 2024) while the extent of improvement in WGA depends on the contribution
of the selected data points in the fine-tuning set. Our results posit gradient norms across samples as
reliable selection criteria for fine-tuning sets when the group information is unknown. However, we
observed that the WGA improvement of our methods is not substantial on the MultiNLI dataset. Our
analysis revealed that the validation set in MultiNLI does contain enough data points from minority
groups to improve substantially beyond the ERM model.
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Figure 3: Study of the size of the fine-tuning set. Even with as little as 20 samples in the fine-
tuning set, GradTune improves WGA over ERM, and the performance gets better as the size of the
fine-tuning set increases.

On Figure 3, we plot the worst-group accuracy against different sizes of the fine-tuning step (Dft),
i.e., 20, 100, 250, and 500. As can be seen in the Figure, even only 20 data points in the fine-tuning
set, GradTune improve the WGA of the ERM-trained model, and the performance gets better as
more data points are included in the fine-tuning set, especially for the Celeba and Waterbirds data,
while the WGA is not much impacted in the MultiNLI and CivilComments datasets that require more
training data for significant improvement.

6 CONCLUSION

In this paper, we present a novel method called GradTune for identifying and mitigating spurious
correlations without using group labels. We demonstrate that ERM-trained models exhibit higher
gradient norms on samples from the minority group in the hold-out dataset. The central intuition
of this work is that fine-tuning the last classification layer with these high-gradient norm samples
can substantially reduce the spurious correlation learned by the model and effectively emphasize
the core features. Through various experiments and ablation studies, we show the effectiveness of
the proposed methods, with competitive performance with existing methods, while not using group
labels during training and validation for model selection. Developing model selection techniques
without group labels remains an important and open research direction.
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A DATASETS

We evaluate the worst-case performance of the proposed method on three classification tasks: two
from the vision domain (Waterbirds and CelebA) and two from the language domain (CivilComments
and MultiNLI)

• Waterbirds (Sagawa et al., 2019; Liu et al., 2021) is a dataset of birds derived from Caltech-
UCSD Birds (CUB) (Wah et al., 2011) by synthetically creating a spurious correlation
between bird species and the background. In particular, the class label is the type of bird
appearing in the image (waterbirds and landbirds), and the background landscape (water,
land) spuriously correlates with the bird type. Here, the minority subgroups represent images
with the background landscape not aligned with the bird type, i.e., {waterbird, land
background} and {landbird, water background}.

• CelebA (Liu et al., 2015) dataset contains images of celebrities with 40 facial attributes. In
this dataset, the attribute hair color is spuriously correlated gender. We consider hair
color {blond, non-blond} as the class label and gender {male, female} as group
information.

• CivilComments (Koh et al., 2021) is a textual dataset collected from online comments. The
task is to predict whether a comment is toxic or non-toxic. The label is spuriously
correlated with comments related to some demographic subgroups such as gender (male,
female), race (white, black), and sexual orientation (LGBT). We consider a binary indicator
of comments related to these demographic subgroups as spurious group information.

• MultiNLI (Williams et al., 2017) is a language dataset that classifies pairs of sentences as
contradiction, entailment, or neither. The spurious feature is the presence of negation in the
second sentence; the presence of negation words (“no”, “never”...) is correlated with the
contradiction class and serves as a spurious feature.

Table 2: Statistics of the datasets considered. Class probabilities exhibit significant variations when
conditioned on spurious features. It’s important to note that Waterbirds is the sole dataset with a
distribution shift, while MultiNLI is the only inherently class-balanced dataset. The minority groups
within each class are in italics. Due to rounding, the probabilities may not total exactly 1.

Dataset
Group g Training distribution p̂ Data quantity

Class y Spurious s p̂(y) p̂(g) p̂(y | s) Train Val Test

Waterbirds

landbird land .768 .730 .984 3498 467 2225
landbird water .038 .148 184 466 2225
waterbird land .232 .012 .016 56 133 642
waterbird water .220 .852 1057 133 642

CelebA

non-blond female .851 .440 .758 71629 8535 9767
non-blond male .411 .980 66874 8276 7535
blond female .149 .141 .242 22880 2874 2480
blond male .009 .020 1387 182 180

CivilComments

neutral no identity .887 .551 .921 148186 25159 74780
neutral identity .336 .836 90337 14966 43778
toxic no identity .113 .047 .079 12731 2111 6455
toxic identity .066 .164 17784 2944 8769

MultiNLI

contradiction no negation .333 .279 .300 57498 22814 34597
contradiction negation .054 .761 11158 4634 6655
entailment no negation .334 .327 .352 67376 26949 40496
entailment negation .007 .104 1521 613 886
neither no negation .333 .323 .348 66630 26655 39930
neither negation .010 .136 1992 797 1148
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B HYPERPARAMETERS

We use standard hyperparameters following recent literature that uses fine-tuning for spurious corre-
lation mitigation (LaBonte et al., 2024; Kirichenko et al., 2023; Izmailov et al., 2022). For the vision
tasks, we use the Restnet-50 model pretrained (He et al., 2016) on ImageNet-1k (Russakovsky et al.,
2015) and BERT model pretrained on Book Corpus and English Wikipedias (Kenton & Toutanova,
2019) for language tasks. These pretrained models serve as the starting point for ERM models across
the four datasets we consider. For data preprocessing, we apply standard ImageNet normalization
along with typical flip and crop augmentation for the vision tasks and BERT tokenization for the
language tasks. For ERM and last-layer finetuning (Section 4.1), we do not vary any hyperparameters;
their fixed values are listed in Table 3. Specifically, our reweighting set is fixed to 500, containing
the top-400 gradient norm samples, and the remaining 100 data points are sampled at random pro-
portionally to their gradient norm. As in recent work on last-layer retraining methods in Kirichenko
et al. (2023); LaBonte et al. (2024), the held-out dataset has a fixed size of 600 for Waterbirds,
9934 for CelebA, 22590 for CivilComments, and 41231 for MultiNLI, which correspond to half of
the validation set provided in each dataset. With the ERM-trained model, we calculate the sample
gradient only in these held-out sets and determine the fine-tuning set (Dft) based on gradient norms.
We set the size of the fine-tuning set to just 500 samples and demonstrated in the main paper that the
worst-group performance can be improved over the ERM-trained model with as few as 20 data points
in the fine-tuning set.

Table 3: ERM and last-layer fine-tuning hyperparameters. For training the ERM models and fine-
tuning the last layer, we used the same fixed hyperparameters as in the previous work (Kirichenko
et al., 2023; LaBonte et al., 2024; Qiu et al., 2023). We increased the number of epochs for the
fine-tuning step to 500 for all datasets.

Dataset Optimizer Initial LR LR schedule Batch size Weight decay Epochs

Waterbirds SGD 3× 10−3 Cosine 32 1× 10−4 100
CelebA SGD 3× 10−3 Cosine 100 1× 10−4 20
CivilComments AdamW 1× 10−5 Linear 16 1× 10−4 10
MultiNLI AdamW 1× 10−5 Linear 16 1× 10−4 10

C ADDITIONNAL RESULTS

Class balance fine-tuning. In the last phase of WGA, we perform last-layer fine-tuning using a
class balance batch sampler; thereby, in expectation, different classes are equally represented across
batches. This experiment compares the fine-tuning step of WGA with class imbalance and class
balance sampling. Table 5 reports the average accuracy and the WGA of last-layer fine-tuning with
class balance or imbalance sampling. Results show that while class imbalance fine-tuning improves
upon the ERM model, it performs worse in terms of WGA than class balance fine-tuning, except on
the CivilComments dataset where class imbalance fine-tuning has slightly better WGA. Intuitively, it
is challenging to derive a perfect group-balance fine-tuning set without group labels; class-balance
sampling can improve the balance across subgroups during training, which justifies the improved
worst-group performance.

Table 4: Comparison between GradTune with class balance fine-tuning vs class-imbalance fine-tuning.
We report the average and standard deviation over three independent runs.

Method Waterbirds CelebA MultiNLI CiviComments

Average WGA Average WGA Average WGA Average WGA

ERM 87.4±1.1 73.2±1.0 93.5±0.2 71.5±1.9 81.8±0.2 62.6±1.6 90.1±0.1 70.5±0.8

Class imbalance 94.8±0.2 78.3±3.1 84.6±1.2 77.9±1.7 81.1±0.4 59.7±7.7 89.3±0.6 79.1±3.2

Class balance 94.3±0.2 91.0±0.6 90.7±0.6 85.6±3.8 81.6±0.4 64.2±4.3 89.9±0.2 78.6±1.3

Last layer retraining vs. fine-tuning. Table 5 compares applying GradTune with last-layer
retraining vs. fine-tuning. For retraining, we reset the parameters of the last layer, while for
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fine-tuning, we continue training the last layer of the ERM model without resetting the weights.
Empirically, we observed that fine-tuning provides better WGA than retraining. We hypothesize
this is because fine-tuning uses some of the knowledge already encoded by the initial weights while
retaining, despite improving the performance, suffers from the fact the retraining set is not fully
balanced. For example, on the Waterbirds, the held-out dataset is a prior group balance dataset due to
the distribution shift (Liu et al., 2022), and the WGA difference between fine-tuning and retraining is
1%. More investigations are needed to fully understand the last-layer retraining/fine-tuning effect on
the group robustness, which we leave for future work.

Table 5: Comparison between GradTune with last-layer fine-tuning and retraining. While retraining
and fine-tuning both improve WGA, finetuning the last layer without resetting the model’s weights
provides better WGA. We report the average and standard deviation over three independent runs

Method Waterbirds CelebA MultiNLI CiviComments

Average WGA Average WGA Average WGA Average WGA

ERM 87.4±1.1 73.2±1.0 93.5±0.2 71.5±1.9 81.8±0.2 62.6±1.6 90.1±0.1 70.5±0.8

Retraining 94.2±0.1 89.9±1.0 90.2±0.7 83.5±4.0 81.8±0.1 61.7±2.7 90.1±0.1 77.5±0.9

Finetuning 94.3±0.2 91.0±0.6 90.7±0.6 85.6±3.8 81.6±0.4 64.2±4.3 89.9±0.2 78.6±1.3

Gradient distribution across groups. Figure 4 complements Figure 2 in the main paper and shows
the average gradient norm within bias-aligned and bias-conflicting groups. We report the average
and standard deviation of the majority and the minority groups over three independent runs. We
observe that across the dataset, the worst-group data in the held-out dataset have higher gradient
norms. Intuitively, as the ERM-trained model poorly generalizes on minority group data, gradient
updates for these points in the held-out set will be much higher as they will provide more signal to
the pretrained model for parameters’ updates.
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Figure 4: Average gradient norm of different groups across different datasets. We trained ERM
models and computed the gradient norm of samples in the held-out validation dataset. The gradient
norms are averaged over three independent runs.

Ablation on the impact of top-k gradient norms sampling. In the main paper, we fixed the
fine-tuning size to 500 and used the top-400 gradient norm samples, and the remaining 100 points
were sampled randomly with probability proportional to their gradient norm. In this experiment, we
vary the value of k in Waterbirds and Celeba and analyze its impact on the WGA.
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Figure 5: Impact of the top-k gradient norm samples
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Figure 5 shows the overall accuracy and the worst-group accuracy for different values of k ∈
{5, 50, 100, 200, 300, 400, 450, 500}. When k is closer to zero, most data points in the fine-tuning set
are mainly randomly sampled with a probability proportional to their gradient norm; for higher values
of k, higher gradient norm samples are included in the fine-tuning set first. When k is close to zero,
on the Celeba dataset, the fine-tuning set does not ensure enough samples from the minority group,
and when the k is closer to 500, the fine-tuning set only contains samples from minority groups. This
is why the worst-group accuracy decreases in both cases. Furthermore, as can be seen in Table 6,
the group experiencing the worst performance changes depending on the value of k: for k = 5, the
corresponding worst-group is blond,male with 77.4% accuracy and for k = 495 the worst-group
shifts to nonblond,female with 77.9% accuracy. This justifies combining the top-k gradient
norm samples and randomly sampled data points to avoid overfitting on a specific group. We also
observe higher standard deviations for values of k below have 50% of M ′; this is due to the fact that
most data points are randomly drawn based on gradient norms.

The Waterbirds dataset is less sensitive to k, and the worst-performing subgroups remain almost the
same for all values of k but sharply decrease as the value of k gets closer to 100% of M ′, similarly in
the CelebA dataset. The consistent worst-group performance in the Waterbirds dataset is due to the
relatively smaller size of the validation set and the smaller discrepancy between the gradient norms
of the minority and the majority group (Cf. Figure 4). Furthermore, Table 7 shows the group-wise
accuracy comparison between the ERM model before and after applying GradTune. These results
show the performance of the worst-performing subgroups significantly improves after fine-tuning the
last layer with the fine-tuning set. We also observe that in most cases, the worst-performing subgroup
becomes the majority group; we argue this is due to catastrophic forgetting after continual training of
the last layer of the model. A better fine-tuning strategy can be derived to ensure the model maintains
its performance on the majority group. A validation set with group labels can also be used to select a
model that better compromises the performance across subgroups.

Table 6: Average and worst-group accuracy (%) for different Top-k gradient norm samples. We report
the average and standard deviation over three independent runs

Top-k CelebA Waterbirds

Avg WGA Worst Group Avg WGA Worst Group

5 92.5±0.7 77.4±3.1 blond,male 94.1±0.4 91.2±0.6 waterbirds,water
50 91.8±0.6 81.9±3.4 blond,male 94.3±0.3 90.8±1.1 waterbirds,water
100 91.0±0.6 83.7±5.6 blond,male 94.2±0.5 91.1±2.0 waterbirds,water
200 90.8±1.1 83.9±6.9 blond,male 94.4±0.6 90.4±0.6 waterbirds,water
300 90.5±1.3 85.8±1.5 nonblond,female 94.4±0.2 90.5±1.2 waterbirds,water
400 90.1±0.6 85.7±0.7 nonblond,female 94.4±0.0 90.3±1.6 waterbirds,water
450 89.7±0.7 84.8±1.3 nonblond,female 94.5±0.3 89.9±1.0 waterbirds,water
495 84.9±3.1 77.9±3.5 nonblond,female 94.6±0.2 89.7±1.4 waterbirds,water
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Table 7: Group-wise accuracy comparison between ERM before and after applying GradTune.

Dataset Groups ERM ERM after GradTune

Waterbirds

landbirds,land 99.5±0.2 95.6±0.9

landbirds,water 76.9±3.2 94.4±0.3

waterbirds,land 73.2±1.1 92.7±0.5

waterbirds,water 96.6±0.3 91.0±0.7

Celeba

nonblond,female 90.1±0.3 85.6±3.85

nonblond,male 97.5±0.2 93.3±1.8

blond,female 96.2±0.2 97.8±0.4

blond,male 71.5±2.0 86.7±6.0

Civilcomments

neutral,no-identity 95.0±0.1 94.8±0.2

neutral,identity 85.9±0.6 85.3±0.8

toxic,no-identity 79.4±0.3 79.6±0.8

toxic,identity 70.5±0.9 78.6±1.4

Multinli

contradiction,no-negation 81.2±0.5 80.5±1.6

contradiction,negation 95.2±0.2 95.0±0.6

entailment,no-negation 83.5±0.5 83.3±1.1

entailment,negation 77.3±0.8 78.3±1.0

neither,no-negation 78.9±1.1 79.2±1.1

neither,negation 62.6±1.7 64.2±4.4
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