

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HISTOBENCH: WORLD HISTORY EVENT EXTRACTION AND COGNITIVE-LEVEL BENCHMARKING OF GENER- ATIVE AI

Anonymous authors

Paper under double-blind review

ABSTRACT

We present HistoBench, a benchmark and dataset designed to evaluate and improve large language models’ (LLMs) ability to reason about complex, temporally grounded historical narratives. While LLMs perform well on general language tasks, their historical understanding remains limited. HistoBench provides a richly annotated collection of global events, timelines, and causal chains, alongside an interactive timeline and global map to enhance accessibility for research and education. To assess reasoning across multiple depths, we introduce a set of 1,007 historical questions structured around Bloom’s Taxonomy, covering levels from factual recall (*Remember*) to higher-order reasoning (*Evaluate* and *Create*). Our results show that models perform well on spatial and entity recognition but struggle more with temporal reasoning. Among the evaluated systems, DeepSeek-V3 consistently outperforms GPT4o-mini and Gemma-3 across nearly all levels, achieving over 90% accuracy at the most advanced stages of evaluation and creation, highlighting its stronger capacity for complex historical reasoning.

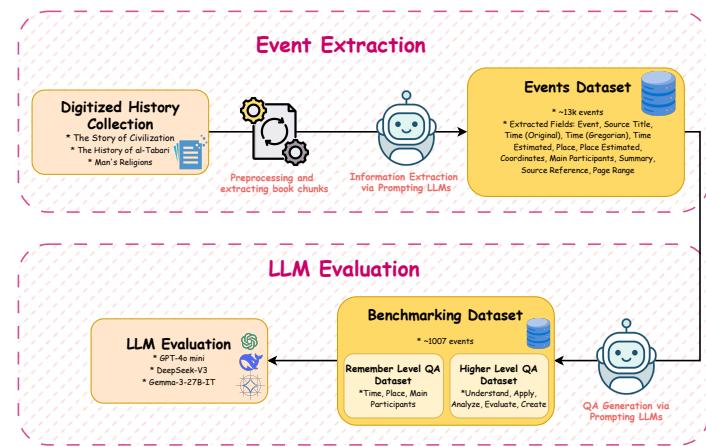
1 INTRODUCTION

The emergence of digital humanities over the last two decades has fundamentally transformed scholarship in the humanities, particularly in the field of history (Fafalios et al., 2023). Historical documents are now massively digitized into photos and texts, allowing researchers to query across collections and languages. This digitization has created an enormous volume of archives and archival data available digitally, producing a valuable but under-utilized source of large-scale digital data for digital humanities scholars (Hawkins, 2021). However, several challenges remain in this domain.

The challenges in the historical data analysis are as follows: **(i) Under-exploration of certain historical tasks:** One of the primary challenges in digital humanities is the under-exploration of certain historical tasks, particularly event extraction, which has either been applied to small-scale datasets or constrained by limited event typologies with predefined event categories (Rovera et al., 2019) (Hervieux et al., 2024). This limitation has restricted the broader application and generalizability of event extraction methods in historical research. **(ii) The lack of structured data:** Most historical texts are not in clean, structured formats suitable for direct computational analysis, therefore requiring extensive preprocessing before being usable in NLP pipelines (Wakabayashi, 2019). Available historical texts can be divided into three types from the point of automated text analysis: initially digital, printed/written but digitized, and non-digitized printed/written texts (Huistra & Mellink, 2016). In the case of solely printed or written texts, digitization is just the first step, as digitized text must be preprocessed to make it proper for automated analysis through steps like correction of Optical Character Recognition (OCR), concept or meta tagging, and lemmatization (Szabó et al., 2020). **(iii) Presenting large historical datasets:** While large-scale analysis of historical sources can provide a broader and more nuanced understanding of historical events, the sheer volume of extracted data can be overwhelming. For it to be useful, especially to non-experts, the data must be organized, filtered, and displayed in an accessible and user-friendly format. The scale and diversity of such collections presents particular challenges in identifying and extracting relevant content (Leavy et al., 2019). **(iv) Benchmarking Gaps in Historical Knowledge Evaluation:** Evaluating large language models on historical knowledge has become a key area of research as these systems are increasingly used for educational and informational purposes (Garcia & Weilbach, 2023). History

054 presents unique challenges for LLMs because it requires not just memorizing isolated facts, but un-
 055 derstanding complex relationships between events, people, and time periods (Kandpal et al., 2023).
 056 Moreover, our historical knowledge and the available digital data are heavily skewed toward West-
 057 ern narratives, and this Western bias is also evident in the knowledge encoded by large language
 058 models (Keleg & Magdy, 2023).

059 To address the first challenge, we employed large language models (LLMs) and used prompt en-
 060 gineering techniques to perform tasks such as historical event extraction. To tackle the second
 061 challenge, we developed a series of preprocessing steps, particularly tailored to the constraints and
 062 nuances of feeding book-length texts into LLMs. To overcome the third challenge, we designed a
 063 web-based user interface that enables users to visually explore and filter the extracted events through
 064 interactive timelines and maps. Therefore, both academic researchers and non-specialist users can
 065 benefit from the outputs. Scholars can use the platform for historical investigations across a wide
 066 range of time periods and geographic regions, regardless of their specific area of expertise. In ad-
 067 dition, the platform serves as an educational tool, accessible to general users with an interest in
 068 learning about historical events and patterns. To address the forth gap, we curated a dataset of 1,007
 069 multiple-choice questions derived from the structured historical data extracted from our source texts.
 070 This dataset covers a wide variety of time periods and regions, enabling a fair and representative
 071 evaluation. We then used it to benchmark the historical understanding of several state-of-the-art
 072 LLMs, providing new insights into their performance and limitations in processing historical con-
 073 tent. Figure 1 provides a visual overview of the event extraction process and large language model
 074 (LLM) evaluation pipelines in our work.



090 Figure 1: An overview of our pipeline for historical event extraction and evaluation. The top section
 091 illustrates how structured event data is extracted from digitized historical texts using LLMs. The
 092 bottom section shows how the resulting dataset is used for evaluating LLMs across multiple reason-
 093 ing levels based on Bloom’s Taxonomy.

094 2 RELATED WORK

095 **Event Extraction:** A common approach in the task of event extraction has been to decompose it
 096 into smaller subtasks. For example, (Nguyen & Grishman, 2018) employs Graph Convolutional
 097 Networks (GCNs) to perform event detection, which involves identifying whether a specific event
 098 occurs within a given text. Another example is GRIT (Du et al., 2021), which uses a transformer-
 099 based model to extract entities related to events.

100 Subsequent work in event extraction has largely framed the task as a classification problem, often fo-
 101 cusing on identifying and categorizing event triggers—words that explicitly indicate the occurrence
 102 of an event, typically the main verb in a sentence. This approach is based on annotation guidelines
 103 such as those provided by the ACE dataset (ACE), which defines and categorizes event types. For
 104 example, Sprugnoli and Tonelli (Sprugnoli & Tonelli, 2019) introduced an annotation scheme that
 105 classifies events into 22 categories and created a dataset with these annotations, along with a model

108 to automate the annotation process. The BRAD dataset (Lai et al., 2021) is another relevant example.
 109 It contains annotated historical texts related to Black uprisings found in 19th-century African
 110 American newspapers. The study reported that existing models, based primarily on BERT, struggled
 111 to perform well on this dataset.

112 A significant shift in methodology came with research showing that framing event extraction as a
 113 question answering (QA) task yields promising results [liu-etal-2020-event]. Follow-up studies have
 114 validated the effectiveness of this approach. For instance, (Borenstein et al., 2023) introduced a multi-
 115 lingual dataset based on early modern colonial-era newspaper advertisements that document formerly
 116 enslaved individuals who liberated themselves. Using a QA-based approach with RoBERTa
 117 models, they achieved strong results on these historical texts.

118 However, these prior works have notable limitations: the questions are typically handcrafted, the
 119 tasks are limited to specific event types, and the datasets are small in scale and narrowly focused.
 120 Given the demonstrated success of QA formulations for event extraction, the emergence of large
 121 language models (LLMs) presents a powerful opportunity. These models inherently operate well
 122 in QA-like formats and enable large-scale, high-accuracy event extraction across diverse historical
 123 texts, without being constrained by fixed event taxonomies.

124 **Visualizing Historical Events:** In terms of visualizing historical events on a timeline, relatively
 125 few studies have addressed this challenge. Bedi et al. (Bedi et al., 2017) utilized the TimeMapper tool
 126 (<https://timemapper.okfnlabs.org/>) for this purpose, using the NER component of
 127 Stanford CoreNLP (Manning et al., 2014) to extract events. However, their extracted events were
 128 limited in scope, based on only around 200 sentences. Another study by Hienert et al. (Hienert &
 129 Luciano, 2012) worked with a larger dataset spanning from 300 BC to 2013. Their dataset was
 130 derived from structured data on Wikipedia, where events are already listed in chronological format
 131 on dedicated pages. Their work focused primarily on building a pipeline for event extraction and
 132 visualization from this semi-structured source.

133 **Historical Benchmarking for LLMs:** General-purpose evaluation benchmarks like
 134 MMLU (Hendrycks et al., 2021) are widely adopted across numerous academic domains, including
 135 history, as proxies for assessing large language models’ reasoning and encyclopedic
 136 knowledge. However, these benchmarks are not tailored to the unique demands of historical
 137 reasoning: they do not offer contextual narrative structure, causal chaining, or temporally grounded
 138 evaluation specific to history, motivating the need for a domain-specific dataset.

139 Dedicated historical and temporal reasoning benchmarks have made important progress, but each
 140 exhibits key limitations. HiST-LLM, built from the Seshat Global History Databank, provides structured
 141 coverage of historical societies from the Neolithic to the Industrial Revolution, but emphasizes
 142 basic factual recall and lacks systematic alignment with cognitive levels like analysis or evaluation
 143 (Hauser et al., 2024). HistBench, developed alongside the HistAgent platform, offers multilingual and
 144 multimodal historical QA, yet remains limited in scale (hundreds of questions) and does not integrate
 145 Bloom’s Taxonomy to balance cognitive complexity across tasks (Qiu et al., 2025). Temporal reasoning
 146 benchmarks such as TRAM (Wang & Zhao, 2024) and TimeBench (Chu et al., 2024) provide broad
 147 coverage of tasks involving ordering, duration, frequency, arithmetic, and some aspects of causality.
 148 Nonetheless, they lack support for causal-chain visualizations and structured narrative event
 149 extraction, and similarly omit a systematic approach to cognitive-level design.

150 In contrast, our work addresses these gaps by delivering (1) broad temporal and geographic representation
 151 of extracted events; (2) an interactive, map-based visualization interface; and (3) a deliberately
 152 designed set of 1,007 multiple-choice questions, crafted according to Bloom’s Taxonomy to span
 153 remembering through creating cognitive levels. This enables more interpretable and cognitively
 154 informed evaluation of LLM historical reasoning.

155
 156
 157
 158
 159
 160
 161

162

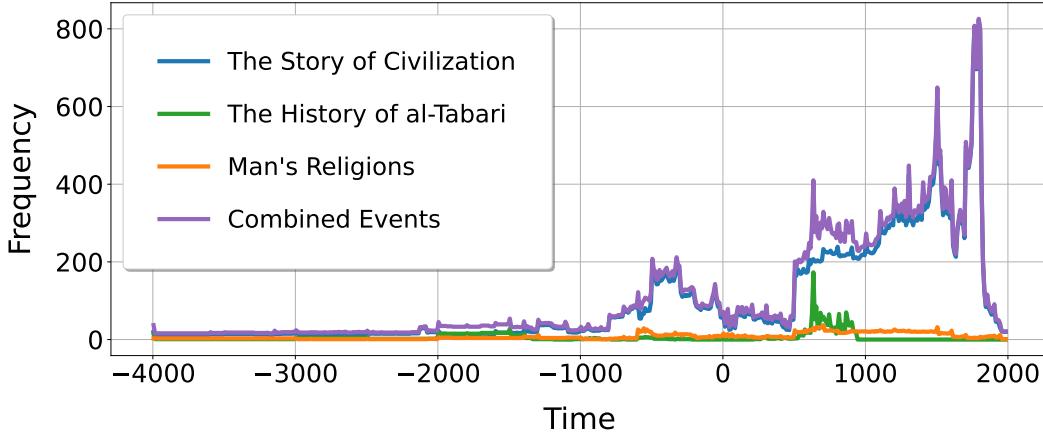
163 Table 1: Basic quantitative statistics of the selected historical texts, including total pages, word
164 counts, and character counts

165

Book	Pages #	Words #	Characters #
The Story of Civilization	9,570	4.24M	24.7M
The History of al-Tabari	6,166	1.63M	8.11M
Man's Religions	768	0.30M	1.76M
Total	16,504	6.17M	34.6M

171

172



187

188 Figure 2: Temporal distribution of events in the full dataset, categorized by source texts: The Story
189 of Civilization, The History of al-Tabari, and Man's Religions.

190

191

3 DATASET

192

193

3.1 EVENTS DATASET

194

195 We analyzed three major historical texts¹ to extract a wide range of world events, aiming to broaden
196 the geographic and cultural scope beyond a predominantly Western focus. Some information about
197 the size of these resources is provided in Table 1, which summarizes the number of pages, words,
198 and characters for each book as well as their combined totals. Our resources include:

199

200 **The Story of Civilization**, an 11-volume series by Will and Ariel Durant (1935–1975), traces the
201 broad sweep of world history from prehistoric times through the Napoleonic era in 1975. While
202 it covers both Eastern and Western civilizations, the narrative foregrounds European and Western
203 developments, weaving together political, cultural, and intellectual histories with storytelling for a
204 general readership (Durant, 1942). For detailed volume-specific distributions, see Figure 5 (temporal
205 distribution of events) in the Appendix.

206

207 **The History of al-Tabari** (also known as *Tarikh al-Rusul wa al-Muluk*), compiled by Ibn Jarir
208 al-Tabari and completed in 915CE, is an 11-volume annalistic chronicle beginning with creation
209 and covering ancient empires, prophetic traditions, and Islamic history through to the early Abbasid
210 caliphate. It offers an in-depth account of Middle Eastern history up to 915CE, with particular
211 emphasis on Persian and early Islamic narratives (al Tabari & Rosenthal, 1988). The original text
212 is in Arabic, and we conducted our analysis directly on the Arabic version to avoid potential issues
213 introduced by translation nuances.

214

215

¹We used three major historical works: *The Story of Civilization*, *The History of al-Tabari*, and *Man's Religions*, to enrich our dataset. No copyrighted text was reproduced; all historical content was paraphrased and fully attributed. This use aligns with standard academic fair-use (U.S.) and fair-dealing (U.K. and similar jurisdictions) practices, which permit paraphrasing factual material for non-commercial scholarly research provided attribution is given and no substantial portions of original expression are copied.

216 **Man’s Religions** (by John B.Noss; revised edition c.1980s; originally early 1960s editions) is a
 217 single-volume comparative overview of global belief systems. It is organized in four thematic sec-
 218 tions: primitive and extinct religions, religions of India, religions of East Asia, and religions of the
 219 Middle East, and provides factual, comparative descriptions of each tradition’s history, beliefs, and
 220 practices (Noss, 1956).

221 Drawing on these sources and after the aggregation process, the resulting dataset includes **13,233**
 222 **historical events**, categorized as follows: 11,176 from *The Story of Civilization*, 1,570 from *The*
 223 *History of al-Tabari*, and 487 from *Man’s Religions*. The temporal distribution of these events is
 224 illustrated in Figure 2, which shows a higher density in the last 1,500 years. Each extracted event in
 225 our dataset is represented using the structured fields detailed in Table 2.

226
 227
 228 Table 2: Universal data schema for historical events
 229

230 Field	231 Description
231 Event	232 A short title or description of the event
232 Source title	233 Title of the event as it appears in the original text (if 234 applicable)
233 Time (original)	235 Temporal description of the event as provided by the 236 source
235 Time (gregorian)	237 Normalized year in the Gregorian calendar (negative 238 for BCE, positive for CE)
237 Time estimated	239 Boolean flag: <code>true</code> if inferred, <code>false</code> if explicitly 240 given in the source
239 Place	241 Name of the geographical location where the event oc- 242 curred
241 Place estimated	243 Boolean flag: <code>true</code> if inferred, <code>false</code> if stated in the 244 source
243 Coordinates	245 Standardized latitude and longitude of the location
245 Main participants	246 Key individuals or groups involved in the event
246 Summary	247 A concise summary of the event, optionally generated 248 by a language model
247 Source reference	249 Name and volume of the source
249 Page range	251 Start and end pages of the event in the source material

252
 253
 254
 255 3.2 BENCHMARKING DATASET
 256

257 To evaluate the performance of large language models (LLMs), we constructed a balanced bench-
 258 marking subset derived from our large-scale event dataset.
 259

260
 261 3.2.1 EVENT SELECTION
 262

263 From the full corpus of 13,233 historical events, we selected a representative subset of 1,007 in-
 264 stances, ensuring coverage across diverse geographic regions, historical periods, and thematic do-
 265 mains. The dataset size was intentionally limited to a scale feasible for manual verification, thereby
 266 supporting the correctness and reliability of the benchmark. The distribution of the selected events is
 267 visualized in Figure 3, which demonstrates a similar distribution pattern between the full dataset and
 268 the benchmarking subset. Events from earlier historical periods are depicted in blue, transitioning to
 269 red for more recent events. Furthermore, areas with greater event density are represented with more
 intense colors, highlighting regions of significant historical concentration.

270 3.2.2 FACTUAL BENCHMARKING (LEVEL: REMEMBER)
271

272 Each of the 1,007 selected events was input into GPT-4o Mini to generate three multiple-choice
273 questions, corresponding to the fields of time, place, and main participants. These questions were de-
274 signed to assess the model’s factual recall and knowledge retention. Only events that were answered
275 correctly by all models across these three questions were retained for higher-level benchmarking.

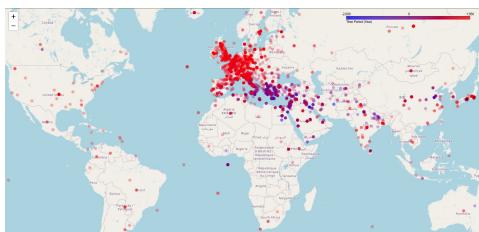
276

277 3.2.3 HIGHER-ORDER BENCHMARKING VIA BLOOM’S TAXONOMY
278

279 To assess deeper historical reasoning beyond factual recall, we adopted Bloom’s Taxonomy, a widely
280 recognized framework for classifying educational learning objectives into six hierarchical cognitive
281 levels (Anderson & Krathwohl, 2001). At the foundational level, *Remember* targets the retrieval of
282 factual knowledge, such as dates, names, or specific events. The next level, *Understand*, involves
283 grasping the meaning of historical content, such as summarizing a passage or interpreting a source.
284 *Apply* requires learners to use historical knowledge in new contexts, for example, relating a past
285 conflict to a contemporary situation. At a more advanced stage, *Analyze* focuses on breaking down
286 historical narratives into components, identifying causes, effects, and relationships. The *Evaluate*
287 level asks learners to make informed judgments, such as critiquing a historical decision or comparing
288 the reliability of multiple sources. Finally, *Create* represents the highest cognitive level, involving
289 the synthesis of new ideas or narratives based on historical understanding, such as constructing
290 a counterfactual scenario or proposing an alternative interpretation of an event. This taxonomy
291 informed the design of our evaluation framework, allowing us to probe different depths of reasoning,
292 from simple recall to complex historical synthesis.

293 **Question Generation Process:** From the original set of 1,007 events, we first identified a subset of
294 394 events for which all tested models correctly answered the factual (i.e., “Remember” level) ques-
295 tions. For each of these events, we then generated five multiple-choice questions, each aligned with
296 one of the higher-order levels of Bloom’s Taxonomy: *Understand*, *Apply*, *Analyze*, *Evaluate*, and
297 *Create*. The initial versions of these questions were produced using the GPT-4o Mini model. Sub-
298 sequently, the questions were refined and their cognitive complexity enhanced using the DeepSeek
299 model to ensure greater depth and challenge across the higher taxonomy levels.

300 This structured approach enables a comprehensive evaluation of LLMs across both lower and higher
301 order cognitive skills in the domain of historical reasoning.



302 (a) Geographic distribution of the full event
303 dataset.
304

305 (b) Geographic distribution of the benchmarking
306 subset.
307

308 Figure 3: Comparison of the geographic distributions in the full dataset and the benchmarking sub-
309 set. Time is visualized using a gradient from blue (older events) to red (more recent events). The
310 density of events in each geographic area is represented by color intensity, highlighting historically
311 rich regions.

312

313 4 METHODOLOGY
314315 4.1 DATASET PREPARATION AND PREPROCESSING
316

317 We utilized digitized versions of three major historical texts: *The Story of Civilization* (Durant,
318 2016), *The History of al-Tabari* (al Tabari, 1967), and *Man’s Religions*, the latter of which was
319 digitized using Optical Character Recognition (OCR). Preprocessing involved cleaning the raw text

324 and segmenting each book into smaller, coherent chunks. Each chunk was given a descriptive title
 325 and annotated with its start and end page numbers, based on a structural analysis of the text.
 326

327 4.2 EVENT EXTRACTION 328

329 We employed GPT-4 (32k context window) via prompt engineering to extract historical events from
 330 the preprocessed chunks. Two major challenges emerged in this process:

331 **(i) Missing temporal and spatial information:** In many cases, events lacked time or location
 332 data, both of which are essential for visualization on a temporal-spatial map. This issue stemmed
 333 either from limitations in the model’s extraction capabilities or the absence of such details in the
 334 source text. To mitigate this, each prompt included both the target text segment and a set of recently
 335 extracted events to provide historical context. When time or place was not explicitly mentioned, the
 336 model was instructed to infer it based on its training data. A separate field was added to indicate
 337 whether this information was inferred (True) or directly stated (False).

338 **(ii) Standardization of extracted fields:** For consistency and usability, temporal data was converted
 339 into numeric formats (e.g., years, centuries), and spatial data into geographic coordinates (latitude
 340 and longitude). To support this, two additional fields were defined in the model prompt to extract
 341 standardized versions of time and location directly.

343 4.3 EVALUATION OF EXTRACTED EVENTS 344

345 To assess the quality of the extracted event dataset, a random sample of 50 events was selected
 346 for manual verification. Two independent evaluators reviewed each event’s fields—including time,
 347 place, main participants, and others—labeling them as correct or incorrect based on careful exam-
 348 ination of the original text and additional historical sources. Table 3 presents the results of this
 349 evaluation, including individual assessments and their average, demonstrating strong overall per-
 350 formance with an average accuracy of 94.1%. Notably, the standardization of place information
 351 exhibited slightly lower accuracy, reflecting challenges in precisely identifying geographical co-
 352 ordinates. These results indicate that the dataset is both robust and reliable for capturing critical
 353 historical event information.

354 Table 3: Evaluation of extracted events based on annotations by two dependent human annotators
 355

	time	time estimated	time standard	place	place estimated	place standard	main participants	pages	total
annotator 1	90%	96%	98%	94%	100%	88%	96%	100%	95.25%
annotator 2	88%	96%	88%	94%	98%	88%	98%	94%	93%
average	89%	96%	93%	94%	99%	88%	97%	97%	94.125%

361 4.4 LLM EVALUATION 362

363 We evaluated the performance of three large language models: GPT-4o Mini (OpenAI et al., 2024),
 364 DeepSeek-V3 (DeepSeek-AI et al., 2025), and Gemma-3-27B-IT (Team et al., 2025). Evaluation
 365 proceeded in two stages:

366 **Factual Benchmarking (Remember level):** Each model was assessed using three multiple-choice
 367 questions per event, targeting the fields of time, place, and main participants.

368 **Higher-Order Reasoning Benchmarking:** Events for which all three models answered correctly
 369 at the factual level were selected to generate more advanced questions. These were mapped to the
 370 upper levels of Bloom’s Taxonomy (*Understand, Apply, Analyze, Evaluate, and Create*) to evaluate
 371 the models’ deeper historical reasoning capabilities.

373 5 RESULTS 374

375 For each multiple-choice question, the model’s response was evaluated against the ground truth to
 376 determine its correctness. Overall accuracy was then calculated based on the proportion of correct
 377 responses. Table 4 presents the performance of the three models at the *Remember* level, while

378 Table 5 reports their results across the remaining five levels of Bloom’s Taxonomy. They offer a
 379 detailed view of how different large language models perform across various dimensions of historical
 380 understanding. Below are several key insights drawn from the evaluation data:
 381

382 **Overall Performance Levels.** (1) All models generally perform better on higher-order cognitive
 383 tasks (like *Evaluate* and *Create*) compared to the *Remember* and *Understand* levels. (2) *DeepSeek-*
 384 *V3* consistently outperforms *GPT4o-mini* and *Gemma-3* across nearly all categories and Bloom’s
 385 levels, indicating stronger historical reasoning and comprehension capabilities.
 386

387 **Remember Level (Table 4).** (1) Models excel in recognizing *Place* and *Main Participants*, with
 388 accuracy around 90% or above, while performance on *Time* is considerably lower (66.5%–75.9%).
 389 This suggests temporal understanding remains more challenging than spatial or entity recognition
 390 at the factual recall level. (2) *DeepSeek-V3* leads on all three *Remember* subcategories, pushing its
 391 total accuracy to 88.65%, about 5 percentage points higher than the other two models.
 392

393 **Higher-Order Cognitive Levels (Table 5).** (1) Accuracy improves progressively from *Under-*
 394 *stand* (approximately 74–84%) to *Evaluate* and *Create* levels (approximately 79–92%), demon-
 395 strating that models can perform well on complex reasoning tasks when provided with structured
 396 historical data. (2) *DeepSeek-V3* again ranks highest across all five levels, exceeding 90% accuracy
 397 at *Evaluate* and *Create*, suggesting a better grasp of complex historical concepts and analysis. (3)
 398 *Gemma-3* trails behind *GPT4o-mini*, especially at the *Apply*, *Analyze*, *Evaluate*, and *Create* levels,
 399 indicating weaker performance in applying and synthesizing historical information.
 400

401 Table 4: Model performance at the remember level, showing the number of correct answers along-
 402 side the corresponding accuracy percentages
 403

model	time	place	main participants	total
gpt4o-mini	670 (66.534%)	911 (90.466%)	943 (93.644%)	83.55%
deepseek-v3	764 (75.868%)	955 (94.836%)	959 (95.233%)	88.65%
gemma-3-27b-it	704 (69.911%)	911 (90.466%)	916 (90.963%)	83.78%

412 Table 5: Model performance on higher-order levels (bloom’s taxonomy), showing the number of
 413 correct answers alongside the corresponding accuracy percentages
 414

model	understand	apply	analyze	evaluate	create
gpt4o-mini	298 (75.63 %)	327 (82.99 %)	348 (88.32 %)	357 (90.60 %)	349 (88.57 %)
deepseek-v3	332 (84.26 %)	335 (85.02 %)	351 (89.08 %)	364 (92.38 %)	362 (91.87 %)
gemma-3-27b-it	291 (73.85 %)	301 (76.39 %)	312 (79.18 %)	327 (82.99 %)	311 (78.93 %)

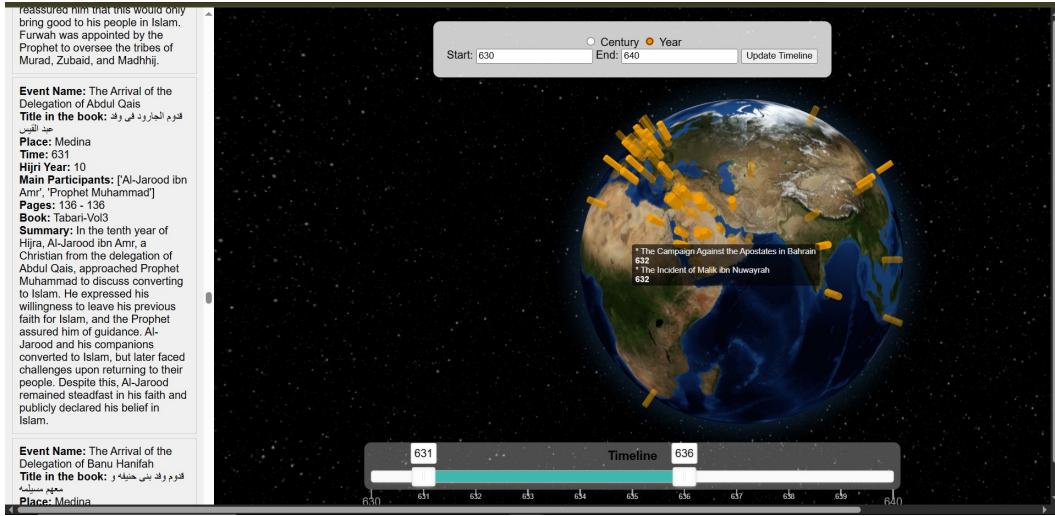
6 VISUALIZATION

425 To facilitate the exploration of the extracted historical events, we developed a web-based visual-
 426 ization platform featuring an interactive 3D globe. Users can select specific time intervals, by
 427 year or century, and view the corresponding events geographically displayed on the globe. An
 428 adjustable timeline is provided to further refine the temporal range and dynamically update the dis-
 429 played events.

430 The intensity of the color bars on the map increases with the number of events associated with
 431 a given location; higher event density results in more saturated color markers. By hovering over
 a location, users can access a tooltip displaying detailed information about the associated events.

432 Additionally, a side panel presents a scrollable list of all currently filtered events, allowing for easier
 433 navigation and inspection.

434
 435 This visualization platform is implemented using HTML and JavaScript, with the support of the
 436 Globe.GL library², a UI component built on Three.js/WebGL for interactive geographic data visu-
 437 alization. A screenshot of the interface is shown in Figure 4.



455 Figure 4: An example visualization of historical events on the interactive globe interface.
 456
 457

458 7 CONCLUSION

459
 460 This paper introduced *HistoBench*, a comprehensive benchmark and dataset aimed at evaluating
 461 large language models' (LLMs) capabilities in understanding temporally grounded and context-rich
 462 historical narratives. By extracting and structuring over 13,000 events from diverse historical texts,
 463 we not only broadened the geographic and cultural scope of available historical datasets but also
 464 enabled meaningful analysis through an interactive globe-based visualization interface. Further-
 465 more, we constructed a cognitively balanced benchmark of 1,007 multiple-choice questions, guided
 466 by Bloom's Taxonomy, to assess both factual recall and higher-order reasoning in history-focused
 467 tasks.

468 Our evaluation of three leading LLMs revealed notable performance differences across cognitive
 469 levels and question types, with DeepSeek-V3 demonstrating superior accuracy and reasoning con-
 470 sistency. These findings highlight both the potential and current limitations of LLMs in processing
 471 complex historical content. Further work may explore expanding the dataset to cover a broader
 472 range of cultures and historical traditions, as well as extracting additional layers of information,
 473 such as historical figures, their relationships, and interconnections, to enable more advanced forms
 474 of contextual and relational reasoning in historical language understanding.

475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485

²<https://globe.gl/>

486 REFERENCES
487488 ACE. *ACE (Automatic Content Extraction) English Annotation Guidelines for Events*, 5.4.3
489 2005.07.01 edition, 2005.490 A.J.M.J. al Tabari and F. Rosenthal. *The History of al-Tabari*. Bibliotheca Persica. State University
491 of New York Press, 1988. ISBN 9780887065620. URL <https://books.google.com/books?id=VEL81WaqXtsC>.492
493 Ibn Jarir al Tabari. Tarikh al-rusul wa al-muluk (the history of al-tabari). https://www.ghbook.ir/index.php?option=com_dbook&task=viewbook&book_id=9678&lang=fa, 1967. Accessed online.494
495 L.W. Anderson and D.R. Krathwohl. *A Taxonomy for Learning, Teaching, and Assessing: A Revision*
496 *of Bloom's Taxonomy of Educational Objectives*. Longman, 2001. ISBN 9780801319037. URL
497 <https://books.google.com/books?id=EMQ1AQAAIAAJ>.500 Harsimran Bedi, Sangameshwar Patil, Swapnil Hingmire, and Girish Palshikar. Event timeline
501 generation from history textbooks. In Yuen-Hsien Tseng, Hsin-Hsi Chen, Lung-Hao Lee, and
502 Liang-Chih Yu (eds.), *Proceedings of the 4th Workshop on Natural Language Processing Tech-*
503 *niques for Educational Applications (NLPTEA 2017)*, pp. 69–77, Taipei, Taiwan, December 2017.
504 Asian Federation of Natural Language Processing. URL <https://aclanthology.org/W17-5912>.505
506 Nadav Borenstein, Natália da Silva Perez, and Isabelle Augenstein. Multilingual event extrac-
507 tion from historical newspaper adverts. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
508 Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational*
509 *Linguistics (Volume 1: Long Papers)*, pp. 10304–10325, Toronto, Canada, July 2023. Asso-
510 ciation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.574. URL <https://aclanthology.org/2023.acl-long.574>.511
512 Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Haotian Wang, Ming Liu, and Bing
513 Qin. Timebench: A comprehensive evaluation of temporal reasoning abilities in large language
514 models, 2024. URL <https://arxiv.org/abs/2311.17667>.515
516 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
517 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
518 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
519 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
520 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
521 Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
522 Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
523 Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
524 Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
525 Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
526 Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
527 Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
528 Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
529 ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
530 Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
531 Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
532 aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
533 Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
534 Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
535 Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
536 Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
537 Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
538 Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
539 Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhihong Yan, Zhihong Shao,

540 Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 541 Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
 542 <https://arxiv.org/abs/2412.19437>.

543

544 Xinya Du, Alexander Rush, and Claire Cardie. GRIT: Generative role-filler transformers for
 545 document-level event entity extraction. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.),
 546 *Proceedings of the 16th Conference of the European Chapter of the Association for Compu-
 547 tational Linguistics: Main Volume*, pp. 634–644, Online, April 2021. Association for Compu-
 548 tational Linguistics. doi: 10.18653/v1/2021.eacl-main.52. URL <https://aclanthology.org/2021.eacl-main.52>.

549

550 W. Durant. *The Story of Civilization*. The Story of Civilization. Simon and Schuster, 1942. URL
 551 <https://books.google.com/books?id=T24gAAAAMAAJ>.

552

553 Will Durant. The story of civilization (complete). <https://archive.org/embed/TheStoryOfCivilizationcomplete>, 2016. Accessed: 2016-12-22.

554

555 P. Fafalios, Yannis Marketakis, A. Axaridou, Yannis Tzitzikas, and M. Doerr. A workflow model for
 556 holistic data management and semantic interoperability in quantitative archival research. *Digital
 557 Scholarship in the Humanities*, 2023.

558

559 Giselle Gonzalez Garcia and Christian Weilbach. If the sources could talk: Evaluating large lan-
 560 guage models for research assistance in history, 2023. URL <https://arxiv.org/abs/2310.10808>.

561

562 Jakob Hauser, Daniel Kondor, Jenny Reddish, Majid Benam, Enrico Cioni, Federica Villa, James S.
 563 Bennett, Daniel Hoyer, Pieter Francois, Peter Turchin, and R. Maria del Rio-Chanona. Large
 564 language models' expert-level global history knowledge benchmark (hist-llm). In A. Globerson,
 565 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural
 566 Information Processing Systems*, volume 37, pp. 32336–32369. Curran Associates, Inc., 2024.
 567 URL https://proceedings.neurips.cc/paper_files/paper/2024/file/38cc5cba8e513547b96bc326e25610dc-Paper-Datasets_and_Benchmarks_Track.pdf.

568

569 Ashleigh Hawkins. Archives, linked data and the digital humanities: increasing access to digitised
 570 and born-digital archives via the semantic web. *Archival Science*, 2021.

571

572 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 573 cob Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.

574

575 Natalie Hervieux, Peiran Yao, Susan Brown, and Denilson Barbosa. Language resources from
 576 prominent born-digital humanities texts are still needed in the age of llms. *NLP4DH*, 2024.

577

578 Daniel Hienert and Francesco Luciano. Extraction of historical events from wikipedia.
 579 In *KNOW@LOD*, 2012. URL <https://api.semanticscholar.org/CorpusID:28503128>.

580

581 Hieke Huistra and Bram Mellink. Phrasing history: Selecting sources in digital repositories. *His-
 582 torical Methods: A Journal of Quantitative and Interdisciplinary History*, 49(4):220–229, 2016.
 583 doi: 10.1080/01615440.2016.1205964.

584

585 Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
 586 models struggle to learn long-tail knowledge, 2023. URL <https://arxiv.org/abs/2211.08411>.

587

588 Amr Keleg and Walid Magdy. Dlama: A framework for curating culturally diverse facts for prob-
 589 ing the knowledge of pretrained language models, 2023. URL <https://arxiv.org/abs/2306.05076>.

590

594 Viet Dac Lai, Minh Van Nguyen, Heidi Kaufman, and Thien Huu Nguyen. Event extraction from
 595 historical texts: A new dataset for black rebellions. In Chengqing Zong, Fei Xia, Wenjie Li,
 596 and Roberto Navigli (eds.), *Findings of the Association for Computational Linguistics: ACL-*
 597 *IJCNLP 2021*, pp. 2390–2400, Online, August 2021. Association for Computational Linguis-
 598 tics. doi: 10.18653/v1/2021.findings-acl.211. URL <https://aclanthology.org/2021.findings-acl.211>.

600 Susan Leavy, Gerardine Meaney, Karen Wade, and Derek Greene. Curatr: A platform for semantic
 601 analysis and curation of historical literary texts. *ArXiv*, abs/2306.08020, 2019. URL <https://api.semanticscholar.org/CorpusID:203165320>.

602 Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David Mc-
 603 Closky. The Stanford CoreNLP natural language processing toolkit. In Kalina Bontcheva and
 604 Jingbo Zhu (eds.), *Proceedings of 52nd Annual Meeting of the Association for Computational*
 605 *Linguistics: System Demonstrations*, pp. 55–60, Baltimore, Maryland, June 2014. Association
 606 for Computational Linguistics. doi: 10.3115/v1/P14-5010. URL <https://aclanthology.org/P14-5010>.

607 Thien Huu Nguyen and Ralph Grishman. Graph convolutional networks with argument-aware pool-
 608 ing for event detection. In *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-
 609 gence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI*
 610 *Symposium on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18*.
 611 AAAI Press, 2018. ISBN 978-1-57735-800-8.

612 John B. Noss. *Man’s Religions*. The Macmillan Co., 1956.

613 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
 614 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-
 615 Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol,
 616 Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Con-
 617 neau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
 618 Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
 619 Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
 620 Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
 621 Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
 622 Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
 623 Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
 624 Walkin, Brendan Quinn, Brian Guaraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
 625 Lugaressi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
 626 Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
 627 Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
 628 Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
 629 Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
 630 Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
 631 Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
 632 Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
 633 Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Kho-
 634 rasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit,
 635 Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming
 636 Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun,
 637 Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
 638 Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim
 639 Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Ja-
 640 cob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James
 641 Lennon, Jamie Kiro, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
 642 Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
 643 Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe
 644 Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay,
 645 Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijveld,
 646 Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang,

648 Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood,
 649 Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel
 650 Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Work-
 651 man, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka,
 652 Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas
 653 Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens,
 654 Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
 655 Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty,
 656 Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese,
 657 Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang,
 658 Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail
 659 Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
 660 Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers,
 661 Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Fe-
 662 lix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum,
 663 Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen
 664 Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum,
 665 Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe
 666 Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Ran-
 667 dall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza
 668 Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
 669 dani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmat-
 670 ullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino,
 671 Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez
 672 Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi Xia,
 673 Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir
 674 Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal
 675 Patwardhan, Thomas Cunningham, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas
 676 Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom
 677 Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi,
 678 Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
 679 Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
 Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov.
 Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

680 Jiahao Qiu, Fulian Xiao, Yimin Wang, Yuchen Mao, Yijia Chen, Xinzhe Juan, Shu Zhang, Siran
 681 Wang, Xuan Qi, Tongcheng Zhang, Zixin Yao, Jiacheng Guo, Yifu Lu, Charles Argon, Jundi
 682 Cui, Daixin Chen, Junran Zhou, Shuyao Zhou, Zhanpeng Zhou, Ling Yang, Shilong Liu, Hongru
 683 Wang, Kaixuan Huang, Xun Jiang, Yuming Cao, Yue Chen, Yunfei Chen, Zhengyi Chen, Ruowei
 684 Dai, Mengqiu Deng, Jiye Fu, Yunting Gu, Zijie Guan, Zirui Huang, Xiaoyan Ji, Yumeng Jiang,
 685 Delong Kong, Haolong Li, Jiaqi Li, Ruipeng Li, Tianze Li, Zhuoran Li, Haixia Lian, Mengyue
 686 Lin, Xudong Liu, Jiayi Lu, Jinghan Lu, Wanyu Luo, Ziyue Luo, Zihao Pu, Zhi Qiao, Ruihuan
 687 Ren, Liang Wan, Ruixiang Wang, Tianhui Wang, Yang Wang, Zeyu Wang, Zihua Wang, Yujia
 688 Wu, Zhaoyi Wu, Hao Xin, Weiao Xing, Ruojun Xiong, Weijie Xu, Yao Shu, Yao Xiao, Xiaorui
 689 Yang, Yuchen Yang, Nan Yi, Jiadong Yu, Yangyuxuan Yu, Huiting Zeng, Danni Zhang, Yunjie
 690 Zhang, Zhaoyu Zhang, Zhiheng Zhang, Xiaofeng Zheng, Peirong Zhou, Linyan Zhong, Xiaoyin
 691 Zong, Ying Zhao, Zhenxin Chen, Lin Ding, Xiaoyu Gao, Bingbing Gong, Yichao Li, Yang Liao,
 692 Guang Ma, Tianyuan Ma, Xinrui Sun, Tianyi Wang, Han Xia, Ruobing Xian, Gen Ye, Tengfei
 693 Yu, Wentao Zhang, Yuxi Wang, Xi Gao, and Mengdi Wang. On path to multimodal historical
 694 reasoning: Histbench and histagent, 2025. URL <https://arxiv.org/abs/2505.20246>.

695 Marco Rovera, F. Nanni, and Simone Paolo Ponzetto. Providing advanced access to historical war
 696 memoirs through the identification of events, participants and roles. *arXiv.org*, 2019.

697 Rachele Sprugnoli and Sara Tonelli. Novel event detection and classification for historical texts.
 698 *Computational Linguistics*, 45(2):229–265, June 2019. doi: 10.1162/coli_a_00347. URL <https://aclanthology.org/J19-2002>.

699 700 Martina Katalin Szabó, Orsolya Ring, B. Nagy, L. Kiss, Júlia Koltai, Gábor Berend, László Vidács,
 701 László Vidács, A. Gulyás, and Zoltán Kmetty. Exploring the dynamic changes of key concepts

702 of the hungarian socialist era with natural language processing methods. *Historical Methods: A*
 703 *Journal of Quantitative and Interdisciplinary History*, 2020.

704

705 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 706 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 707 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 708 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
 709 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
 710 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
 711 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 712 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 713 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
 714 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 715 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 716 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 717 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 718 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 719 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 720 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 721 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 722 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 723 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
 724 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 725 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 726 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 727 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 728 Stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 729 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 730 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 731 Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 732 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evcı, Vedant Misra, Vincent Roseberry,
 733 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 734 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 735 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 736 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 737 ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 738 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 739 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier
 740 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 741 Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

742

743 J. F. Wakabayashi. Digital approaches to translation history. *The International Journal of Trans-*
 744 *lation and Interpreting Research*, 2019. URL <https://api.semanticscholar.org/CorpusID:201388968>.

745

746

747

748

749

750

751

752

753

754

755

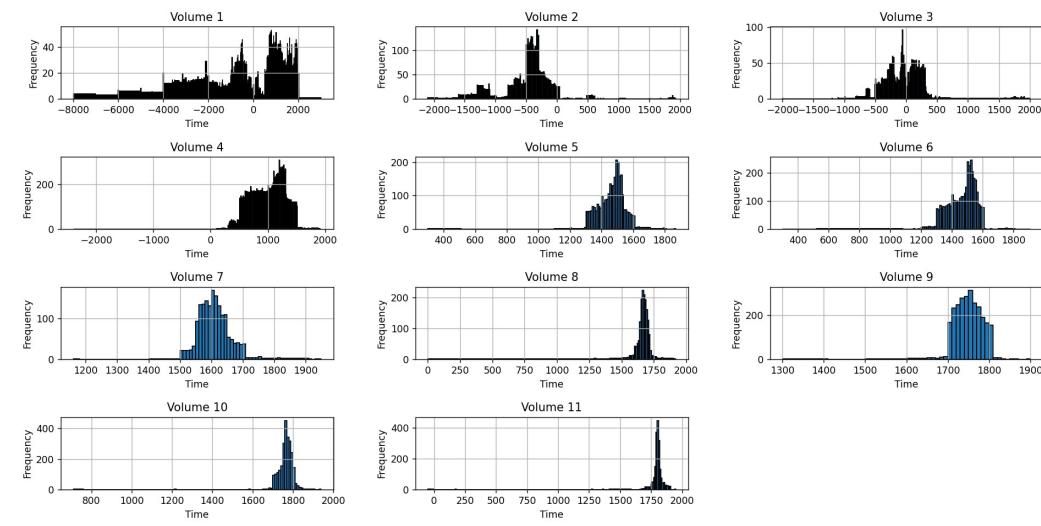
756 **A APPENDIX**
757

Figure 5: Bar chart showing the temporal distribution of extracted events by volume.