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Abstract
In real-world scenarios, the application of rein-
forcement learning is significantly challenged by
complex non-stationarity. Most existing meth-
ods attempt to model changes in the environment
explicitly, often requiring impractical prior knowl-
edge of environments. In this paper, we propose
a new perspective, positing that non-stationarity
can propagate and accumulate through com-
plex causal relationships during state transitions,
thereby compounding its sophistication and af-
fecting policy learning. We believe that this chal-
lenge can be more effectively addressed by implic-
itly tracing the causal origin of non-stationarity.
To this end, we introduce the Causal-Origin
REPresentation (COREP) algorithm. COREP
primarily employs a guided updating mechanism
to learn a stable graph representation for the state,
termed as causal-origin representation. By lever-
aging this representation, the learned policy ex-
hibits impressive resilience to non-stationarity.
We supplement our approach with a theoretical
analysis grounded in the causal interpretation for
non-stationary reinforcement learning, advocat-
ing for the validity of the causal-origin represen-
tation. Experimental results further demonstrate
the superior performance of COREP over exist-
ing methods in tackling non-stationarity problems.
The code is available at https://github.com/PKU-
RL/COREP.

1. Introduction
Rapid advancements in reinforcement learning (RL) (Kael-
bling et al., 1996; Sutton & Barto, 2018) have led to signif-
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icant performance gains in various domains (Silver et al.,
2018; Mirhoseini et al., 2020). However, a common as-
sumption in many RL algorithms is the stationarity of the
environment, which can limit the applicability in real-world
scenarios characterized by varying dynamics (Padakandla
et al., 2020; Padakandla, 2021). Recent efforts in the meta-
RL approaches (Finn et al., 2017) have attempted to tackle
this by enabling algorithms to adapt to changes (Poiani
et al., 2021). However, these methods struggle in the face
of more complex and unpredictable environmental dynam-
ics (Sodhani et al., 2022; Feng et al., 2022). Approaches
like FN-VAE (Feng et al., 2022) and LILAC (Xie et al.,
2020) have made strides towards improving RL algorithms
in non-stationary environments by explicitly modeling the
change factors of the environment. Nevertheless, they may
not comprehensively capture the complexity of real-world
non-stationarity. This gap highlights the need for a more
robust approach to handle the intricacies of non-stationary
environments in RL.

In this paper, we propose a novel setting for efficiently tack-
ling non-stationarity in RL from a new perspective inspired
by the causality literature (Zhang et al., 2020; Huang et al.,
2020). We contend that minor changes in dynamics can
cause significant shifts in observations due to their propaga-
tion through intricate causal relationships in the dynamics.
Thus, we need to trace the “causal origin” of these changes.
However, directly constructing a causal graph that captures
such information is a significant challenge due to the in-
herent instability in non-stationary environments (Strobl,
2019). To address this, we introduce the Causal-Origin
Representation (COREP) algorithm. COREP employs a
guided update mechanism, which enables the learning of a
stable graph representation of state, termed as causal-origin
representation. This representation aims to capture the un-
derlying causal structure in a way that is resilient to the
unpredictable changes characteristic of non-stationary envi-
ronments, aiding RL algorithms to adapt and learn policies
in such settings.

Specifically, we first propose a novel formulation of non-
stationarity in RL as the mixture of decomposed sub-
environments. In this formulation, we rewrite dynamics
functions using masks to represent causal relationships, as-
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sumed invariant within each sub-environment. However,
identifying these causal relationships without prior knowl-
edge of the sub-environments poses a significant challenge.
To overcome this, we propose the environment-shared union
graph that captures causal relationship information among
state elements. This is achieved by combining Maximal
Ancestral Graphs (MAGs) from each sub-environment. We
also provide theoretical support for the feasibility of recov-
ering this environment-shared union graph.

To effectively learn the proposed graph representation, we
design a dual graph structure comprising a core-graph and a
general-graph. The core graph focuses on learning a graph
representation that is stable to dynamic changes, guided by a
TD (Temporal Difference) error based updating mechanism.
While it concentrates on learning the most essential parts
of the graph representation, some edge information might
be overlooked. To address this, we employ a continuously
updating general-graph to compensate for potential infor-
mation loss and enhance the algorithm’s adaptability. By
integrating the core-graph and general-graph, we can finally
construct the causal-origin representation, providing a com-
prehensive understanding of the environment’s dynamics
and significantly mitigating the impact of non-stationarity
problems in RL.

Our main contributions can be summarized as follows:

• We provide a causal interpretation for non-stationary
RL and propose a novel setting that focuses on the
causal relationships within states;

• Based on the proposed formulation and setting, we de-
sign a modular algorithm that can be readily integrated
into existing RL algorithms;

• We provide a theoretical analysis that offers both inspi-
ration and theoretical support for our algorithm. Exper-
imental results further demonstrate the effectiveness of
our algorithm.

2. Preliminaries
Problem Formulation. Reinforcement learning prob-
lems are typically modeled as Markov Decision Processes
(MDPs), defined as a tuple (S,A,P,R, γ), where S is the
state space, A is the action space, P : S ×A× S → [0, 1]
represents the transition probability, R : S × A → R is
the reward function, and γ ∈ [0, 1) is the discount fac-
tor. We may also use the form of a dynamics function:
s′ = f(s,a, ε) when the environment is deterministic.
Here, ε represents random noise. The goal of an agent
in RL is to find a policy π : S → A that maximizes the
expected cumulative discounted reward, defined as the value
function V π(s) = Eπ[

∑∞
t=0 γ

trt|s0 = s], where rt is the
reward at time step t.

In non-stationary environments, the dynamics of the envi-
ronment can change over time. Our goal is to learn a policy
π that can adapt to the non-stationary environment and still
achieve high performance. For simplicity of notations, we
provide theoretical analysis in the form of the deterministic
dynamics function f .

Causal Structure Discovery. Causal structure discovery
usually aims at inferring causation from data, modeled
with a directed acyclic graph (DAG) D = (V,E), where
the set of nodes V includes the variables of interest, and
the set of directed edges E contains direct causal effects
between these variables (Pearl et al., 2000). The causal
graph is a practical tool that relates the conditional indepen-
dence relations in the generating distribution to separation
statements in the DAG (d-separation) through the Markov
property (Lauritzen, 1996). If there exist unobserved con-
founders in the dynamics, maximal ancestral graphs (MAGs)
M = (V,D,B) are often used to represent observed vari-
ables by generalizing DAGs with bidirected edges which
depicts the presence of latent confounders (Richardson &
Spirtes, 2002). The sets D,B stand for directed and bidi-
rected edges, respectively.

We also provide the definition of the partial order, a ba-
sic concept necessary for the theoretical analysis in the
manuscript. A partial order, π, on a DAG is defined to
represent a relationship between nodes where their order
is not strictly defined but still satisfies three properties as
follows: (1) Reflexivity: each node is related to itself i.e.,
A <π A; (2) Antisymmetry: if A <π B and B <π A, then
A =π B; (3) Transitivity: if A <π B and B <π C, then
A <π C. When this relationship between A and B is not
defined, i.e., neither A <π B nor B <π A, we refer to this
case as A ̸≶ B with π, or A ̸≶π B.

Graph Neural Networks (GNNs). GNNs are a class of neu-
ral networks designed for graph-structured data (Scarselli
et al., 2008; Zhou et al., 2020). Given a graph G = (V,E),
GNNs aim to learn a vector representation for each node
v ∈ V or the entire graph G, leveraging the informa-
tion of both graph structure and node features. GNNs
generally follow the message passing framework (Bal-
cilar et al., 2021). Layers in GNN can be formulated as
H(l) = σ

(∑
sLsH

(l−1)W
(l)
s

)
, where H(l) is the node

representation outputted by the l-th layer, Ls is the s-th con-
volution support which defines how the node features are
propagated, W (l)

s is learnable parameters for the s-th con-
volution support in the l-th layer, and σ(·) is the activation
function. Graph Attention Network (GAT) (Veličković et al.,
2017) is a special type of GNN following the message pass-
ing framework. Instead of handcrafting, the self-attention
mechanism is used to compute the support convolutions in
each GAT layer, where the adjacency matrix plays the role
of a mask matrix for computing the attention.
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3. Methodology
3.1. Motivation and Key Idea

In the COREP algorithm, the primary goal is to tackle non-
stationarity problems in RL by learning the underlying graph
structure of the environment, which we term causal-origin
representation. This representation strives to be both causal,
meaning it can reflect the cause-effect relationships among
state elements, and stable, meaning it is robust to the en-
vironment’s changes. To achieve this, we design a dual
GAT structure consisting of a core-GAT and a general-GAT.
The core-GAT focuses on learning the stable part of the
environment’s causal graph, with its learning guided by a
specific updating mechanism. The general-GAT, on the
other hand, is continually updated to capture any additional
information that the core-GAT might overlook. Together,
these two GATs form a comprehensive understanding of the
environment.

Specifically, in constructing the causal-origin representation,
we first transform the states of the environment into node
features and create a weighted adjacency matrix to represent
the connections between these features. We then apply a
self-attention mechanism, which helps the algorithm focus
on the most relevant parts of each node. The update of the
core-GAT is guided by a TD error detection mechanism,
which helps identify the most significant changes in the
environment. To further enhance learning efficiency, we
integrate the causal-origin representation into a Variational
Autoencoder (VAE) framework (Kingma & Welling, 2013).
Additionally, we introduce regularization terms to improve
the identifiability of causal relationships and to ensure the
structural integrity of the causal-origin representation. The
overall framework is shown in Figure 2.

3.2. Causal Interpretation of Non-Stationary RL

In this part, we will propose a causal interpretation of non-
stationarity in RL, which provides us with inspiration and
theoretical support for the algorithm design. First, for the
standard dynamics function s′ = f(s,a, ε) in RL, in or-
der to better discuss the relationship between elements, we
rewrite it as

s′i = f (cs�si ⊙ s, ca�s
i ⊙ a, ε) ,

s′ =
(
s′1, . . . , s

′
ds

)
,

(3.1)

where s denotes the state with dimension ds, s′i is the i-th
element of next state s′, ε is random noise, and ⊙ denotes
the Hadamard product (element-wise product). The masks
c·�s represent the structural dependence among elements in
the following way, e.g., the j-th element of cs�si ∈ {0, 1}ds
equals 1 if and only if sj causally affects si. Similarly, ca�s

i

is also defined in the same way. In particular, if only the i-th
element in ci

·�s equals 1 and all others are 0, it represents

that each element only causally affects itself. In this case,
Equation (3.1) simplifies to a standard dynamics function.

As mentioned before, when the environment becomes non-
stationary, the causal relationships between elements be-
come more intricate. In addition to the relationships between
states and actions, there may also be external factors causing
environmental changes. These factors can have causal rela-
tionships with both state and action, yet are not explicitly
considered in Equation (3.1). Intuitively, we assume the
presence of hidden states h in the dynamics. Similarly, we
define the underlying dynamics function:

h′i = g
(
ch�h
i ⊙ h, cs�hi ⊙ s, ca�h

i ⊙ a, ε
)
,

h′ =
(
h′1, . . . , h

′
dh

)
.

(3.2)

Considering the influence of the hidden state, the reward
function can be similarly rewritten as:

r = R
(
cs�r ⊙ s, ch�r ⊙ h, ca�r ⊙ a, ε

)
. (3.3)

The masks can be combined into matrix form as C·�s :=
[c·�si ]dsi=1, C·�h := [c·�hi ]dhi=1. Some previous work as-
sumed that similar masks are invariant over time, and simply
encoded them into some change factors (Huang et al., 2022).
Instead, we allow such C·�· to be time-varying, and pro-
pose a novel causal interpretation based on an environment-
shared union graph representation to capture the transition
information in the non-stationary environment.

With the defined underlying dynamics, we can represent the
non-stationarity as being governed by specific causal rela-
tionships. Specifically, we regard a non-stationary environ-
ment as a mixture of various stationary sub-environments.
The non-stationarity is thus interpreted as changes over
time in the mixture distribution of these sub-environments.
It’s important to emphasize that the interpretation of non-
stationarity serves primarily as theoretical insight. In prac-
tical algorithm designs, we leverage this property in an
approximate manner and do not require the environment to
be explicitly decomposed into sub-environments.

When considering a sample from the k-th sub-environment,
the defined masks C·�·

(k) are used to represent invariant rela-
tionships within that sub-environment, meaning the current
mask C·�·

current = C·�·
(k) . The relationships among variables

such as states, actions, and hidden states, are character-
ized by DAGs D(k) = (V,E(k)) over the same node set
V = {s,h,a, s′,h′,a′, r, e}. Here, e represents the en-
vironment label with an in-degree of 0, and E(k) is the
set of directed edges in each DAG. Edges in E(k) are deter-
mined by corresponding masks, i.e., an edge from node vi to
vj(vi, vj ∈ V ) exists in E(k) if and only if cvi�vj(k) = 1. Ad-
ditionally, E(k) also includes edges from e to (s,h), which
are subject to variation across different sub-environments.
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In this setting, non-stationarity is reflected by the changes
in the underlying graph structure of these DAGs.

To better understand the causal interpretation, we provide
an example case involving two sub-environments, as shown
in Figure 1. This illustrates how the proposed union graph
structure effectively captures the non-stationarity in the en-
vironment. For more detailed explanations, please refer to
Appendix A. Additionally, a toy example is provided in
Appendix B to further explain this concept.

3.3. Union Graph of the Causal Structure

In the context of the above causal interpretation, a signifi-
cant challenge arises when learning the structure of a causal
graph without access to the environment label e, which can
be considered a latent confounder that leads to spurious
correlations. In the presence of unobservable nodes, max-
imal ancestral graph (MAG) is a useful tool to generalize
DAGs (Richardson & Spirtes, 2002). For each environment-
specific DAG D(k), we can construct a corresponding MAG
M(k) (Sadeghi, 2013), as outlined in Algorithm A.1. In
these MAGs, bidirected edges (↔) are used to characterize
the change of marginal distribution of s,h over different
sub-environments. To model structural relationships in non-
stationary RL with a unified approach, we further encode
the relations among all actions, states, hidden states, and
rewards with an environment-shared union graphM∪, as
defined by Definition 3.1 below.
Definition 3.1 (Environment-shared union graph). The
environment-shared union graph M∪ := (V,D,B) has
the set of nodes V , the set of directed edges

D = {u→ v : u, v ∈ V,∃k such that u→ v inM(k)},

and the set of bidirected edges

B = {u↔ v : u, v ∈ V,∃k such that u↔ v inM(k)}.

The above defined union graphM∪ contains no cycle be-
cause Equation (3.1-3.3) implies that there exists a common
topological ordering for

{
D(k)

}
, see Appendix A for details.

Without knowing the label of the k-th sub-environment, we
cannot generally identify the structure ofM(k) for each k
from the observed data. However, we can show thatM∪
is still a MAG, hence any non-adjacent pair of nodes is
d-separated given some subset of nodes.
Proposition 3.2. Suppose that the dynamics follows Equa-
tion (3.1-3.3), then there exists a partial order π on V such
that (a) u is an ancestor of v ⇒ u <π v inM(k); and
(b) u ↔ v ⇒ u ̸≶π v inM(k). As a consequence, the
environment-shared union graphM∪ is a MAG.

We provide the complete proofs and a detailed explana-
tion of conditions in Appendix A. Proposition 3.2 pro-
vides theoretical support for recovering the structure of the

a
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(a) MAG M(1).
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(b) MAG M(2).
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h1
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a′

s′

h′1

h′2
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(c) Union graph M∪

Figure 1. MAG representations for two sub-environments and their
union graph. In this example, the union graph is capable of repre-
senting all possible kinds of causal relationships within the chang-
ing dynamics. More explanations can be found in Appendix A.

environment-shared union graphM∪. In the following sec-
tions, we will describe how the COREP algorithm learns a
policy that is stable under non-stationarity by utilizing the
environment-shared representation union graphM∪.

3.4. Dual Graph Attention Network Structure

In this section, we will focus on the structure design. The
detailed update mechanism will be discussed in Section 3.6.

In line with Proposition 3.2, our objective is to efficiently
learn the causal-origin representation, which encapsulates
the environment-shared union graphM∪. To achieve this,
we design a dual GAT structure comprising a core-GAT
and a general-GAT. The core-GAT is specifically designed
to learn a stable graph representation that aligns with the
environment-shared union graph. For this purpose, we use
TD error as a simple yet effective detector for significant
changes in the environment’s underlying graph structure.
This approach enables selective updates to the core-GAT, en-
suring it responds only to significant environmental changes,
thereby eliminating the need for explicit recognition of such
changes as often required by existing work (Sutton et al.,
2007). Additionally, it facilitates the approximate learning
of the environment-shared union graph.

While the core-GAT focuses on learning the stable part of
the graph representation, some edges may be overlooked or
lost in the process. To compensate for this potential loss of
information and to enhance the algorithm’s adaptation capa-
bilities, we introduce a continuously updating general-GAT.
By integrating both the core-GAT and the general-GAT,
we can construct the causal-origin representation to pro-
vide a comprehensive understanding of the environment’s
dynamics for the policy and mitigating the impact of non-
stationarity in RL.
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Graph Module

Latent:           

Decoder

Feature Network

core
GAT

general
GAT

Environment

COREP
Framework

Policy Optimization

generate
adjacency

recent TD:    

Encoder

Sampling: 
unfreeze

graph change
detection

freeze

Figure 2. Overview of the COREP framework. (1) The left part illustrates that the COREP framework can be seamlessly incorporated into
any RL algorithm. It takes the state as input and outputs the causal-origin representation for policy optimization. (2) The middle part
shows the VAE structure employed by the COREP framework, which is utilized to enhance the learning efficiency. (3) The right part
highlights the key components of COREP. The dual GAT structure is designed in line with the concept of causal-origin representation to
retain the essential parts of the graph. The TD error detection can guide the core-GAT to learn the environment-shared union graph based
on our theory. The general-GAT is continuously updated to compensate for the potential loss of information.

Specifically, we first transform states into node features us-
ing an MLP network fMLP : Rds → RN ·df and reshape the
output into node feature matrix X = {x1,x2, . . . ,xN} ∈
RN×df , whereN is the number of nodes, and df is the num-
ber of features in each node. We then compute the weighted
adjacency matrix which represents the probabilities of edges
by using Softmax on the similarity matrix of nodes:

AX = Softmax
(
XXT ⊙ (1N − IN )

)
, (3.4)

where 1N ∈ RN×N represents the matrix with all elements
equal to 1, IN ∈ RN×N represents the identity matrix, and
⊙ denotes the Hadamard product. Multiplying (1N − IN )
is for removing the self-loop similarity when computing the
weighted adjacency matrix.

Then a learnable weight matrix W ∈ Rdf×dg is applied to
the nodes for transforming X into graph features XW ∈
RN×dg where dg denotes the dimension of the graph feature.
We then perform the self-attention mechanism on the nodes:

αij = attention(xiW ,xjW |AX). (3.5)

The conditioned AX allows us to perform the masked at-
tention, i.e., we only compute αij for node j ∈ Ni(AX)
where Ni(AX) is the neighbor set of node i computed by
the weighted adjacency matrix AX . This helps us con-
sider deeper-depth neighbors of each node by combining
multiple attention(·) into a multi-layer network. For the
n-th graph attention layer, the coefficients computed by the

self-attention mechanism can be specifically expressed as:

αij =
δNi(AX)(j) · exp

(
σ
(
ln [xiW ⊕ xjW ]

T
))

∑
k∈Ni(AX) exp

(
σ
(
ln [xiW ⊕ xkW ]

T
)) ,

(3.6)
where ⊕ is the concatenation operator, σ is the activation
function, ln ∈ R2dg is the learnable weight for the n-th
graph attention layer, and δNi(AX)(j) is the indicator func-
tion, i.e., δNi(AX)(j) = 1 if j ∈ Ni(AX) otherwise 0.
Subsequently, the resulting features are concatenated to
form the graph node:

gi = σ
( ∑
j∈Ni(AX)

αijxjW
)
. (3.7)

The respective outputs of the core-GAT and the general-
GAT, i.e., Gcore

.
= {g1, g2, . . . , gN}Tcore, Ggeneral

.
=

{g1, g2, . . . , gN}Tgeneral, are concatenated to form the final
causal-origin representation. Specifically, we denote the
entire process of obtaining the causal-origin representa-
tion from s as a function G : Rds → RN×2dg , such that
G(s)

.
= Gcore ⊕Ggeneral.

We finally feed G(s) into a VAE inference process to derive
the latent representation h. More details about this process
are discussed in Section 3.5. The latent h is then provided to
the policy π(a|s,h) for policy optimization. COREP does
not restrict the choice of policy optimization algorithms. In
our implementation, we choose the standard PPO algorithm
(Schulman et al., 2017) for policy optimization.
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3.5. Incorporation with VAE

To improve the efficiency of learning the causal-origin rep-
resentation, we incorporate the causal-origin representa-
tion into the Variational AutoEncoder (VAE) framework
(Kingma & Welling, 2013). Specifically, we feed the output
G(s) into the VAE inference process to derive the mean
and variance (µh, σh) of the latent representation h. Sub-
sequently, we can sample h ∼ N (µh, σh),h ∈ Rdh . The
loss function for VAE is defined as

LVAE(s; θ, ϕ)

= Eqϕ(h|G(s)) [log pθ(G(s)|h)]−KL [qϕ(h|G(s))||p(h)]
≈ MSE(s, ŝ)−KL [qϕ (h|G(s)) ||N (0, I)] ,

(3.8)

where pθ, qϕ represent the parameterized decoder and
encoder respectively, KL(·) denotes the Kullback-
Leibler divergence, and MSE(s, ŝ) is an estimation of
Eqϕ(h|G(s)) [log pθ(G(s)|h)] which measures the mean
square error between the original state and the reconstructed
state with the causal-origin representation. It is noteworthy
that the VAE structure serves solely as a tool to enhance
learning efficiency, therefore it is not a strictly necessary
component of our method. The latent h is then provided to
the policy π(a|s,h) for policy optimization.

3.6. Guided Updating for Core-GAT

As discussed in Section 3.4, to learn the causal-origin repre-
sentation encapsulating the environment-shared union graph
M∪, we design a TD error-based detection mechanism to
guide the update of core-GAT. Specifically, we store the
TD errors of policy optimization into a buffer and com-
pute the mean of recent TD errors, denoted as δα. Here, α
controls the proportion of recent TD errors for detection.
We then check whether δα lies within the confidence inter-
val (µδ − ησδ, µδ + ησδ), where µδ, σδ are the mean and
standard deviation of the TD buffer, and η represents the
confidence level. If the recent TD error δα lies within this
interval, we freeze the weights of the core-GAT and halt
its updates; otherwise, we unfreeze its weights and proceed
with updating the core-GAT.

We further introduce a regularization that penalizes the dif-
ference between the output adjacency matrices of the two
GATs to guide the learning of the core-GAT:

Lguide = ∥Acore −Ageneral∥2. (3.9)

To enhance the identifiability, we introduce the regulariza-
tion for the MAG structure and sparsity:

LMAG = ∥Acore −AT
core∥2 + ∥Ageneral −AT

general∥2,
Lsparsity = ∥Acore∥1 + ∥Ageneral∥1.

(3.10)

The LMAG can penalize asymmetry in the adjacency matri-
ces of both the core and general graphs, ensuring alignment
with the design of MAGs which utilize bidirected edges
to characterize the change of marginal distribution of s,h
across different sub-environments. The Lsparsity can encour-
age a sparse representation, which is crucial for maintaining
a manageable and interpretable graph structure.

We finally compute the total loss function Ltotal as shown in
Equation (3.11), combining the policy optimization objec-
tive Lpolicy with the regularization loss functions:

Ltotal = Lpolicy + λ1Lguide + λ2(LMAG + Lsparsity + LVAE),
(3.11)

where LVAE is calculated according to Equation (3.8). It
is important to note that, despite the presence of multiple
regularization terms, we simplify the objective by aggregat-
ing these terms based on their magnitudes, setting only two
hyperparameters. Empirical results also demonstrate that
COREP does not rely on complex parameter tuning.

By computing and backpropagating the gradient of Ltotal,
along with the policy optimization in an end-to-end manner,
COREP prevents the distinct loss functions from leading
to irregular causal structures and ensures that the policy
learned can effectively tackle non-stationarity problems in
RL. The detailed steps of COREP are outlined in Algorithm
C.1. Implementation details are shown in Appendix C.

4. Experiments
In this section, our objective is to thoroughly evaluate the
COREP algorithm by addressing three key questions: (1)
How effective is COREP in tackling non-stationarity? (2)
What specific contribution does each component of COREP
make to its overall performance? (3) Can COREP maintain
consistent performance across various degrees and settings
of non-stationarity? To answer these questions, we conduct
various experiments and provide corresponding analyses.
Due to the page limitation, only parts of these experiments
are presented in the main manuscript. For complete results,
further analysis, and implementation details, please refer to
Appendix C and D. To ensure reproducibility, we include
our code in the supplementary material.

Baselines. We compare COREP with the following base-
lines: FN-VAE (Feng et al., 2022), VariBAD (Zintgraf et al.,
2019), and PPO (Schulman et al., 2017). FN-VAE is the
SOTA method for tackling non-stationarity, VariBAD is one
of the SOTA algorithms in meta-RL that also has certain
capabilities in handling non-stationarity, and PPO is a clas-
sical algorithm known for its strong stability. Furthermore,
to examine the performance degradation caused by non-
stationarity, we include an Oracle that has full access to
non-stationarity information.
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Figure 3. Learning curves of our COREP algorithm and other baselines in different tasks. Solid curves indicate the mean of all trials with
5 different seeds. Shaded regions correspond to the standard deviation among trials. Dashed lines represent the asymptotic performance of
PPO and Oracle.

Environment settings. The experiments are conducted on
various environments from the DeepMind Control Suite
(Tassa et al., 2018), which is a widely used benchmark for
RL algorithms. We modify the environments to introduce
non-stationarity, enabling a comprehensive evaluation of
COREP. In our settings, similar to prior work FN-VAE, we
introduce periodic noises to the environmental dynamics to
represent non-stationarity. To support our claim that COREP
can handle more complex non-stationarity, we design a more
intricate setting, i.e., we randomly sample the coefficients
for both within-episode and across-episode non-stationarity
at every time step. Specifically, our modification can be
expressed as:

s′ = f(s, a) + f(s, a) · αd
[
ct1 cos(c

t
2 · t) + ci3 sin(c

i
4 · i)

]
.

(4.1)
Here, αd controls the overall degree of non-stationarity, and
ctk, c

i
k ∼ N (0.5, 0.5) represent the changing coefficients

of within-episode and across-episode non-stationarity, re-
spectively. This design generates various combinations of
non-stationarity for each time step and episode, posing more
significant challenges to our COREP algorithm and the com-
pared baselines.

Performance. As illustrated in Figure 3, COREP outper-
forms all baselines across various environments, showcas-
ing consistent performances in the face of non-stationarity.
Notably, in complex environments such as Swimmer Swim-

mer6, Fish Upright, and Quadruped Walk, COREP not only
achieves higher performance but also exhibits smaller vari-
ances. This indicates its strong resilience and adaptability
to intricate non-stationary environments.

Comparatively, VariBAD demonstrates certain resistance
to non-stationarity due to its adaptive capabilities. How-
ever, the large variances indicate a lack of stability in non-
stationary settings. The FN-VAE method, which explicitly
models the change factors, shows competitive performance
in simpler environments but struggles to maintain consis-
tency in more complex scenarios, underscoring its limita-
tions in handling more challenging non-stationarity. Fur-
thermore, the narrow performance gap between COREP and
Oracle indicates the effectiveness of COREP in reducing
the impact of non-stationarity on performance.

Ablation study. We conduct ablation studies to analyze the
contribution of each component in COREP. To ensure con-
sistency in our conclusion, the experiments are conducted
under various non-stationarity settings: within-episode &
across-episode (labeled as W+A-EP), within-episode (W-
EP), and across-episode (A-EP) non-stationarities.

As depicted in Figure 4(a), removing all COREP-specific de-
signs and retaining only the VAE process (the ‘w/o COREP’
variant) results in substantial decreases in performance. This
highlights the overall effectiveness of our designs.
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Figure 4. Mean returns of 3 different trials with: (a) different com-
ponents and non-stationarity settings. Returns are normalized to
the full version of COREP in each environment; (b) different de-
grees of non-stationarity. Returns are normalized to the COREP
algorithm with standard degree 1.0.

In the single GAT variant, which maintains the same net-
work structure without introducing a secondary GAT and
corresponding update mechanisms, we observe a significant
performance gap compared to the full COREP. This result
indicates that merely incorporating a graph representation
is insufficient for capturing non-stationarity information
effectively.

The removal of the TD error detection mechanism (the
‘w/o Lguide’ variant) lead to considerable performance drops,
further substantiating the importance of the guided update
mechanism in COREP.

These results demonstrate the effectiveness and necessity
of the two key designs in our method (i.e., the dual GAT
structure and the guided update mechanism) in tackling
non-stationarity. Additionally, the results also show that the
regularization terms LMAG and Lsparse play important roles
in enhancing COREP’s ability to handle non-stationarity.
Furthermore, the inclusion of the VAE process in COREP
is found to be effective in improving the performance as
expected.

Different degrees of non-stationarity.

We further investigate the impact of varying degrees of non-
stationarity in the environment, as depicted in Figure 4(b).
The results suggest that the compared baselines are more
affected by the degree of non-stationarity. Contrastively,
COREP exhibits consistent performance when encountering
different degrees of non-stationarity, further demonstrating
our claim that COREP can effectively tackle more complex
non-stationarity.

Visualization. To visualize the graph structure learned by
COREP, we respectively show the weighted adjacency ma-
trix of core-GAT and general-GAT in Cheetah Run and
Walker Walk. Please refer to Section D.6 for more details.
It can be seen that core-GAT focuses more on a few core
nodes in its learned graph structure, while general-GAT
compensates for some overlooked detailed information by
core-GAT. The results align well with our claim made in
Section 3.1.

Hyperparameter study. We conduct additional experi-
ments to study COREP’s sensitivity to the hyperparameters
λ1, λ2 in the objective function (3.11). Results are shown in
Appendix D.7, indicating that the performance of COREP
is not sensitive to the hyperparameters. Even with extensive
adjustments to λ1, λ2, COREP consistently surpasses the
SOTA baseline. Notably, we observe instances in certain
environments with higher performance than default. This
suggests that with more precise tuning, there is potential
to further enhance COREP’s effectiveness. These findings
suggest that COREP’s superior performance is largely at-
tributed to its designs rather than relying on hyperparameter
tuning.

5. Related Work
Non-stationary RL. Pioneering research in non-stationary
RL primarily focused on directly detecting changes that
had already occurred (Da Silva et al., 2006), rather than
anticipating them. Various methods have been developed
to anticipate changes in non-stationary RL settings. For
example, Prognosticator (Chandak et al., 2020) tried to
maximize future rewards without explicitly modeling non-
stationary environments, while MBCD (Alegre et al., 2021)
employed change-point detection to determine whether an
agent should learn a new policy or reuse existing ones. How-
ever, these methods with change-point detection may not
work well in complex non-stationary environments and of-
ten requires providing priors.

In cases where the evolution of non-stationary environ-
ments can be represented as a Semi-Markov chain, Hid-
den Markov-MDPs or Hierarchical Semi-Markov Decision
Processes can be employed to address non-stationarity prob-
lems (Choi et al., 1999; Hadoux et al., 2014). Some later
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work attempts to resist non-stationarity by leveraging the
generalization of meta-learning (Finn et al., 2017). For
example, Adaption via Meta-learning (Al-Shedivat et al.,
2017) integrated continuous adaptation into the learning-
to-learn framework to solve the non-stationarity problems.
TRIO (Poiani et al., 2021) tracked non-stationarity by in-
ferring the evolution of latent parameters, capturing the
temporal change factors during the meta-testing phase. Gr-
BAL (Nagabandi et al., 2018) meta-trained dynamic priors,
enabling efficient adaptation to local contexts.

However, these methods require the pre-definition of non-
stationary tasks and subsequent meta-training on them. In
real-world scenarios, though, we cannot access such infor-
mation about the non-stationarity. An alternative line of
research directly tries to learn latent representations to cap-
ture non-stationary components, leveraging latent variable
models to directly model change factors in environments
or estimating latent vectors describing the non-stationary
aspects of dynamics.

Specifically, LILAC (Xie et al., 2020) regarded the change
factor as a latent variable and explicitly modeled the latent
MDP. FN-VAE (Feng et al., 2022) modeled multiple latent
variables of non-stationarities to achieve better performance.
However, in real-world scenarios, non-stationarity itself is
often more complex. Simply modeling the latent dynamics
may not solve such complex scenarios well. Interpreting
nonstationarity from a causal perspective is another novel
approach.

In addition, some work learns controllers on a collection
of pre-defined stationary environments (Provan et al., 2022;
Deng et al., 2022; Zhang & Li, 2019), which can get a guar-
anteed controller for any mixture of these stationary envi-
ronments, thereby improving performance in more complex
environments. Although our method theoretically treats non-
stationary environments as mixtures of sub-environments in
a similar way, we use a more elegant update mechanism in
practical design to ensure that our method is applicable to
continuously changing environments.

Some other research (Saengkyongam et al., 2023) seeks to
identify an invariant causal structure to mitigate the impact
of non-stationarity, presenting similarities to our approach.
However, their methodology relies on offline data and has
been tested solely in simple contextual Bandits environ-
ments. In contrast, our COREP algorithm is capable of
online learning and addresses non-stationarity in more com-
plex environments.

Causal structure learning. Various approaches for learning
causal structure from observed data have been proposed, see
(Vowels et al., 2022) for a review. These approaches mainly
fall into two broad categories: constraint-based methods
and score-based methods. The constraint-based methods

check the existence of edges by performing conditional
independence tests between each pair of variables, e.g. PC
(Spirtes et al., 2000), IC (Pearl et al., 2000), and FCI (Spirtes
et al., 1995; Zhang, 2008). In contrast, score-based methods
generally view causal structure learning as a combinatorial
optimization problem, and measure the goodness of fit of
graphs over the data with a score, then optimize such score
to find an optimal graph or equivalent classes (Chickering,
2002; Koivisto & Sood, 2004; Silander & Myllymäki, 2006;
Cussens et al., 2017; Huang et al., 2018).

Recently, some gradient-based methods that transform the
discrete search into a continuous optimization by relaxing
the space over DAGs have been proposed. These meth-
ods allow for applying continuous optimizations such as
gradient descent to causal structure learning. For example,
NOTEARS (Zheng et al., 2018) reformulated the structure
learning problem as a continuous optimization problem,
and ensured acyclicity with a weighted adjacency matrix.
DAG-GNN (Yu et al., 2019) proposed a generative model pa-
rameterized by a GNN and applied a variant of the structural
constraint to learn the DAG. Some researchers (Saeed et al.,
2020) considered the distribution arising from a mixture of
causal DAGs, used MAGs to represent DAGs with unob-
served nodes, and showed the identifiability of the union of
component MAGs.

6. Conclusions, Limitations and Future Work
In this work, we first offer a novel interpretation of non-
stationarity in RL, characterizing it through the union of
MAGs. This new perspective has inspired us to design the
COREP algorithm, which features a dual GAT structure
and an update mechanism guided by TD-error detection.
Focusing on the causal relationships whthin the dynamics,
COREP learns a causal-origin representation that remains
stable amidst changes in the environment, effectively ad-
dressing non-stationarity problems in RL. Our theoretical
analysis offers both inspiration and foundational support
for COREP. Furthermore, experimental results from various
non-stationary environments demonstrate the efficacy of our
algorithm.

However, the COREP algorithm does face certain limita-
tions, particularly scalability issues in high-dimensional
state spaces due to the computationally intensive nature of
its graph-based representation. In our future work, we aim to
overcome these challenges by integrating the causal-origin
representation with other types of latent variable models,
such as normalizing flows and probabilistic graphical mod-
els. This is expected to enhance both the scalability and the
performance, making COREP more applicable in real-world
scenarios.
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real-time robust adaptive control for non-stationary envi-
ronments. IFAC-PapersOnLine, 55(6):73–78, 2022.

Richardson, T. and Spirtes, P. Ancestral graph markov
models. The Annals of Statistics, 30(4):962–1030, 2002.

Sadeghi, K. Stable mixed graphs. Bernoulli, 19(5B):2330–
2358, 2013.

Saeed, B., Panigrahi, S., and Uhler, C. Causal structure
discovery from distributions arising from mixtures of
dags. In International Conference on Machine Learning,
pp. 8336–8345. PMLR, 2020.

Saengkyongam, S., Thams, N., Peters, J., and Pfister, N.
Invariant policy learning: A causal perspective. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2023.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.
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A. Causality Background and Proofs
We first review the definition of the Markov condition, the faithfulness assumption and some graphical concepts shown in
the condition of Theorem 3.2. We use paD(v), chD(v), and anD(v) to denote the parents, children and ancestor of node v,
respectively; for the detailed definitions, see e.g. (Lauritzen, 1996).

Definition A.1 (Global Markov Condition (Pearl et al., 2000)). A distribution P over V satisfies the global Markov condition
on graph D if for any partition (X,Y, Z) such that X is d-separated from Y given Z, then X and Y are conditionally
independent given Z.

Definition A.2 (Faithfulness (Pearl et al., 2000)). There are no independencies between variables that are not entailed by
the Markov Condition.

Under the above assumptions, we can tell the conditional independences using the d-separation criterion from a given
DAG D (Pearl et al., 2000). Similarly, the MAGs are ancestral graphs where any non-adjacent pair of nodes is d-separated
(Richardson & Spirtes, 2002). The following algorithm shows how to construct a MAG from DAG (Saeed et al., 2020):

Algorithm A.1 Construction of the maximal ancestral graph
1: Input: DAG D = (V,E)
2: Initialize D = ∅, B = ∅
3: for u, v ∈ chD(y) do
4: add u↔ v to B.
5: end for
6: for t, u, v such that (t→ u) ∈ E and (u↔ v) ∈ B do
7: if u ∈ anD(v) then
8: add t→ v to D
9: end if

10: end for
11: for u, v such that (u↔ v) ∈ B do
12: if u ∈ anD(v) then
13: remove u↔ v from B and add u→ v to D
14: end if
15: end for

To illustrate the above algorithm, we provide two figures. Figure 5 shows the underlying causal DAGs for the two
environments, and Figure 6 depicts the output of Algorithm A.1 as well as the corresponding environment-shared union
graph.
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Figure 5. DAG representations for two sub-environments.
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Figure 6. MAG representations for two sub-environments and their union graph.

In this paper, we characterize the nonstationarity as a mixture of stationary distributions. Formally, we take the following
definition.

Definition A.3 (Mixture of stationary distributions). The marginal distribution of {s,h,a, s′,h′,a′} is a mixture of
stationary distributions across environments, i.e.,

P (s,h,a, s′,h′,a′) =
∑
k

πkP (s,h,a, s
′,h′,a′ | e = k),

where πk denotes the probability that the sample is from the k-th environment varying over time, and P (s,h,a, s′,h′,a′ |
e = k) is invariant over time.

Proof of Proposition 3.2. The outline of the proof are as follows. We first construct a strict partial order π on V . Then,
we induce the MAGsM(1), . . . ,M(k) from the DAGs D(1), . . . ,D(k) by applying the rules defined in Algorithm A.1.
We show the constructed partial order π is compatible, that ∀k, it holds that (a) u ∈ an(v) ⇒ u <π v inM(k); and (b)
u↔ v ⇒ u ̸≶π v inM(k). Finally we leverage the existing results in (Saeed et al., 2020) to conclude thatM∪ is a MAG.

We define a relation π on V as following: for any variable u ∈ {s,h,a} and any variable v ∈ {s′,h′,a′}, we have (i)
u <π v; (ii) v <π r′. To show the above defined π is a strict partial order, we first notice that π is irreflexive, because
u ̸<π u, v ̸<π v and r′ ̸<π r′. The transitivity and asymmetry also hold by definition of π. Therefore, π is a partial order on
V .

The Algorithm A.1 constructs an MAG from DAG with three steps. The first step is to add bidirected edges among the nodes
in ch(e). Different values of e leads different marginal distribution of s,h, hence ch(y) ⊆ {s,h}. Therefore, the bidirected
edges are added with both nodes belonging to {s,h}. For the second step, there is no such node t, with (t→ u) ∈ E and
(u↔ v) ∈ B, because the nodes in {s,h} have no ancestor other than itself. So the second step adds the directed edges
when u = v. The third step in our case is redundant. Equation (3.1) shows that there is no instantaneous causal effects in
the system, so there is no u, v such that (u↔ v) ∈ B while u ∈ anD(v). From all above, if the input of Algorithm A.1 is
D(k), then it outputs a MAGM(k) = (V,D(k), B(k)) with the set of nodes V , the set directed edges D equals to the set of
directed edges E(k) after removing the node e, and the set of bidirected edges B(k) consists edges among nodes in {s,h}.

Then, we check the condition (a) and (b) to showM(1), . . . ,M(k) are compatible with the above defined π. For (a), if u is
the ancestor node of v, then the structure ofM(k) implies that either u ∈ {s,h} and v ∈ {s′,h′} are nodes in {s′,h′}, or
u is a node from {s′,h′} and v = r′. For (b), if u↔ v, then u, v are nodes in {s,h}, hence u ̸≶π v inM(k). These means
that π is a common strict partial order on V for all MAGs. In this setup, we can leverage existing results from Lemma 4.3
(Saeed et al., 2020) to show that the environment-shared union graphM∪ is also a maximal ancestral graph.
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B. Toy Example under the Causal Interpretation
To better understand the causal interpretation for non-stationary RL, let’s consider a simple toy example. Given a stationary
environment with a state space represented as (s1, s2). In this example, to maintain simplicity, we focus only on the state’s
mask, omitting the action mask and noise term. We define the original dynamics function as f(cs ⊙ s, a) = cs ⊙ s+ a. For
the toy environment, we consider a basic causal model wherein s′i is only influenced by si.

Consequently, the original mask is

cs =

(
1 0
0 1

)
(B.1)

Given this, we can derive that
s′1 = s1 + a

s′2 = s2 + a.
(B.2)

We denote the non-stationarity in our experiments (Eq 4.1) simplistically as s′ = f(s, a)[1 + n(t)], where n(t) represents
the introduced non-stationarity, which makes the dynamics becoming time-varying. In this scenario, the non-stationary
environment’s dynamics function becomes

s′1 = s1 + a+ (s1 + a)n(t)

s′2 = s2 + a+ (s2 + a)n(t).
(B.3)

It is obvious that the dynamics introduces a time-varying term. In this context, we can define hi
.
= (si + a)n(t), leading to

s′i = si + hi + a. This allows us to deduce the dynamics of h as

h′i = (s′i + a) · n(t+ 1)

= (si + hi + 2a) · n(t+ 1)
.
= gi(c

t
s ⊙ s, cth ⊙ h, a),

(B.4)

where cts, c
t
h symbolize the time-varying masks caused by non-stationarity n(t).

More specifically, we derive

cts = cth =

(
n(t+ 1) 0

0 n(t+ 1)

)
(B.5)

The masks represent the causal effects between variables after non-stationary changes occur in this example. The values
represent the degree of causal effects, which can be treated as edge weights after normalization. Based on our theory,
COREP’s goal is to learn the union graph shared by these graph structures and edge weights during the change process. That
is, through a common graph with edge weights, it includes all possible non-stationary changes. Therefore, the information
of non-stationarity in the final learned graph is reflected both in the topology of the union graph and in the edge weights
representing probabilities.

By introducing the time-varying masks and h, we can make the dynamics function remains stationary, transferring non-
stationarity to the causal model. Thus, we have provided a walk-through under the simple toy example.

In fact, as illustrated in Figures 5 and 6, there are more intricate causal relationships in complex environments. As depicted
above, h can encapsulate not only the inherent environmental information but also the complex causal relationships with
non-stationarity. Our proposed union MAG (Proposition 3.2) and the correspondingly designed dual-GAT architecture
aim to learn such intricate causal models, enabling generic RL algorithms to handle non-stationarity under this causal
representation.
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C. Implementation and Training Details
C.1. Pseudo code for COREP

In Algorithm C.1, we summarize the steps of COREP. For more specific details, please refer to the code provided in our
supplementary material.

Algorithm C.1 Causal-Origin REPresentation (COREP)
1: Init: env; VAE parameters θ, ϕ; policy parameters: ψ; replay buffer B; TD buffer Bδ .
2: for i = 0, 1, . . . do
3: Collect trajectory τi with πψ(a|s,h).
4: Update replay buffer B[i]← τi.
5: for j = 0, 1, . . . do
6: Sample a batch of episodes Ej from B and TD errors {δk} from Bδ .
7: Transform states into X through MLPs.
8: Compute AX = Softmax

(
XXT ⊙ (1N − IN )

)
.

9: Compute δα =
(∑

|Bδ|−α|Bδ|<k<|Bδ| δk

)
/α|Bδ|.

10: if δα /∈ (µδ − ησδ, µδ + ησδ) then
11: unfreeze weights of core-GAT.
12: else
13: freeze weights of core-GAT.
14: end if
15: Get graph representation Gcore,Ggeneral from core-GAT and general-GAT.
16: Compute Lguide,LMAG,Lsparsity according to Equation (3.9, 3.10).
17: Input G(s) = Gcore ⊕Ggeneral into VAE encoder qϕ and infer µh, σh.
18: Sample h ∼ N (µh, σh)
19: Decode ŝ from h using decoder pθ, then compute LVAE according to Equation (3.8).
20: Do policy optimization for πψ(a|s,h), then compute Lpolicy and TD error δ.
21: Compute Ltotal according to Equation (3.11) and use it for gradient-updating θ, ϕ, ψ.
22: Push δ into TD buffer Bδ .
23: end for
24: end for
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C.2. Hyperparameters

We list the hyperparameters for MLP, GAT, and VAE structures in Table C.1, and the hyperparameters for policy optimization
and training in Table C.2.

Table C.1. Hyperparameters for the structure of MLP, GAT, and VAE.

Hyperparameter Value

MLP activation ReLU
MLP hidden dim 512
MLP learning rate 1e-3

GAT activation ELU
GAT hidden dim 32 (Cartpole Swingup, Reacher Easy/Hard, Cup Catch, Cheetah Run)

64 (Otherwise)
GAT node numbers 4 (Cartpole Swingup, Reacher Easy/Hard, Cup Catch)

8 (Cheetah Run, Hopper Stand)
16 (Otherwise)

node feature dim 16 (Cartpole Swingup, Reacher Easy/Hard, Cup Catch, Cheetah Run)
32 (Otherwise)

GAT head numbers 2 (Quadruped Walk, Fish Upright, Walker Walk, Swimmer Swimmer6/15)
1 (Otherwise)

VAE encoder hidden dim 128
VAE decoder hidden dim 64
latent representation dim 4 (Cartpole Swingup, Reacher Easy/Hard, Cup Catch)

8 (Cheetah Run, Hopper Stand)
16 (Otherwise)

Table C.2. Hyperparameters for policy optimization and training.

Hyperparameter Value

Policy hidden dim 256 (Swimmer Swimmer6/15, Walker Walk, Fish Upright, Quadruped Walk)
128 (Otherwise)

Policy learning rate 7e-4
λ1 (for Lguide) 0.1

λ2 (for LMAG/Lsparsity/LVAE) 1e-3
PPO update epoch 16

PPO γ 0.97
PPO ε clip 0.1

TD buffer size 2000
Confidence level η 1.96

17



Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation

D. Full Experiment Details
D.1. Details about Environment Settings.

Figure 7. The environment we use in our experiment. We add non-stationary noise to the observations of these environments according to
Equation (4.1).

Figure 7 shows the environments we use in the experiment. We add non-stationary noise to the observations of these
environments according to Equation (4.1). These environments vary in terms of complexity, from low-dimensional problems
like “Reacher Easy” to high-dimensional ones like “Quadruped Walk”. All these tasks require the agent to understand and
control its physical embodiment in order to achieve the desired goals. The specific descriptions of these environments and
goals are as follows.

Cartpole Swingup. The cart can move along a one-dimensional track. The pole is attached to the cart with a joint allowing
it to rotate freely. The initial state has the pole hanging down, and the goal is to apply forces to the cart such that the pole
swings up and is balanced upright. Actions typically involve applying a horizontal force to the cart.

Reacher Easy. The agent is a two-joint robotic arm. The arm must move in a two-dimensional plane to touch a target
position. The arm’s state includes its joint angles and velocities. The action is the torque applied to each of the joints. The
target’s position is fixed in this version.

Reacher Hard. The task is the same as ”Reacher Easy,” but the target position is randomly placed in each episode, making
the task more difficult as the agent has to learn to reach various positions.

Cup Catch. The agent is a robotic arm holding a cup, and there’s a ball attached to the cup with a string. The arm needs to
move in a way to swing the ball and catch it in the cup. The arm’s state includes the position and velocity of the arm joints
and the position and velocity of the ball. The actions are the torques applied at the arm’s joints.

Cheetah Run. The agent is a model of a cheetah-like robot with 9 DoF(Degrees of Freedom): the agent can flex and extend
its ”spine,” and each leg has two joints for flexing and extending. The agent’s state includes the joint angles and velocities,
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and the actions are the torques applied to each of the joints. The goal is to move forward as fast as possible.

Hopper Stand. The agent is a one-legged robot, and its goal is to balance upright from a resting position. The agent’s state
includes the angle and angular velocity of the torso, as well as the joint angles and velocities. The actions are the torques
applied to the joints.

Swimmer Swimmer6. The agent is a snake-like robot swimming in a two-dimensional plane. The robot has 6 joints, and
the goal is to swim forward as fast as possible. The agent’s state includes the joint angles and velocities, and the actions are
the torques applied to the joints.

Swimmer Swimmer15. This is a more complex version of the Swimmer environment, with the agent being a 15-joint
snake-like robot. Like the simpler version, the goal is to swim forward as fast as possible.

Finger Spin. The agent is a robot with two fingers, and there’s a freely spinning object. The goal is to keep the object
spinning and balanced on the fingertips. The state includes the positions and velocities of the fingers and the object, and the
actions are the forces applied by the fingers.

Walker Walk. The agent is a bipedal robot, and the goal is to walk forward as fast as possible. The agent’s state includes the
angle and angular velocity of the torso, and the joint angles and velocities. The actions are the torques applied to the joints.

Fish Upright. The agent is a fish-like robot swimming in a three-dimensional fluid. The goal is to swim forward while
maintaining an upright orientation. The agent’s state includes the orientation and velocity of the fish, and the actions are the
torques and forces applied to move the fish.

Quadruped Walk. The agent is a quadrupedal (four-legged) robot. Like the bipedal walker, the goal is to walk forward as
fast as possible. The agent’s state includes the angle and angular velocity of the torso, and the joint angles and velocities.
The actions are the torques applied to the joints.

To ensure consistency in our conclusion, the experiments are conducted under various non-stationarity settings, which
include ‘within-episode & across-episode’, ‘within-episode’, and ‘across-episode’ non-stationarities. These settings are
respectively denoted as (W+A)-EP, W-EP, and A-EP. Specifically, these non-stationarities can be expressed as

s′ = f(s, a) + f(s, a) · αd
[
ct1 cos(c

t
2 · t) + ci3 sin(c

i
4 · i)

]
(D.1)

s′ = f(s, a) + f(s, a) · αd
[
ct1 cos(c

t
2 · t)

]
(D.2)

s′ = f(s, a) + f(s, a) · αd
[
ci3 sin(c

i
4 · i)

]
(D.3)

We experimented only under (W+A)-EP when looking at the performance of the algorithm, while in a more detailed ablation
study we experimented with all three different setings.

D.2. Settings of Baselines

For VariBAD, we meta-train the models (5000 batch size, 2 epochs for all experiments) and show the learning curves of
meta-testing. The tasks parameters for meta-training are uniformly sampled from a Gaussian distribution N (0, 1).

For all approaches, we use the same backbone algorithm for policy optimization, i.e., PPO with the same hyperparameters,
as shown in Table C.2.
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D.3. Full Results of Performance
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Figure 8. Learning curves of COREP and baselines in different environments. Solid curves indicate the mean of all trials with 5 different
seeds. Shaded regions correspond to standard deviation among trials. The dashed lines represent the asymptotic performance of PPO and
Oracle.

Figure 8 shows the full learning curves. We add non-stationary noise as Equation (D.1) to all environments. According
to the results, COREP consistently performs well in environments of different complexities, proving the effectiveness of
the algorithm. Especially in Hopper Stand, Swimmer Swimmer6, Swimmer Swimmer15, Finger Spin, Fish Upright, and
Quadruped Walk, COREP demonstrates a larger performance gap, highlighting its superiority over baselines.

FN-VAE has the ability to approach our COREP in some simple environments (Cartpole Swingup, Reacher Easy, Reacher
Hard, and Cup Catch), but still exhibits significant variance, reflecting its instability, especially in more complex environ-
ments where it performs even worse than VariBAD (Finger Spin, Quadruped Walk). VariBAD shows a large performance
gap and variance in all environments, indicating poor stability to non-stationarity. PPO’s performance is consistently the
worst across all environments due to the lack of any optimization for non-stationarity.

20



Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation

D.4. Full Results of Ablation Study
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Figure 9. Final mean returns of 3 different trials on all environments with different components and non-stationarity settings. Returns are
normalized to the full version of COREP in each environment.

Figure 9 shows the performance after removing different components in COREP. All (W+A)-EP, W-EP, and A-EP non-
stationary noises, i.e. Equation (D.1, D.2, D.3), are separately added to the environments. Each point of Figure 9 represents
the normalized return, which is used to observe the contribution of removed components to the overall algorithm. Specifically,

• ‘w/o COREP’ remove all COREP-specific designs and retaining only the VAE process;

• ‘w/o VAE’ is a version without the VAE process;

• ‘w/o Lguide’ removes the guided update mechanism containing TD detection;

• ‘w/o Lsparsity’ removes the corresponding loss Lsparsity in Equation (3.11);

• ‘w/o LMAG’ removes the corresponding loss LMAG in Equation (3.11);

• ‘single GAT’ maintains the same network structure without introducing a secondary GAT and corresponding update
mechanism.
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D.5. Full Results on Non-stationarity Degrees
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Figure 10. Final mean returns of 3 different trials on Cheetah Run and Swimmer Swimmer6 environments with different degrees of
non-stationarity. Returns are normalized to the COREP algorithm with standard degree 1.0.

To analyze the impact of varying degrees of non-stationarity in the environment, we change the values of αd in Equation
(D.1). As depicted in Figure 10, the results suggest that the performance of the compared baselines is more affected by the
degree of non-stationarity. Conversely, COREP exhibits consistent performance when encountering different degrees of
non-stationarity, further affirming our claim that COREP can effectively tackle more complex non-stationarity.
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D.6. Visualization of Learned Graph

To visualize the graph learned by the COREP algorithm, we respectively show the weighted adjacency matrices of core-GAT
and general-GAT after 5M steps in the Cartpole Swingup, Reacher Hard, and Cup Catch environment in Figure 11, 12, 13.
It is noteworthy that the number of graph nodes is set to be the same as the observation dimension of each environment to
bring better empirical insights into how the dual graph actually functions. For further information about the actual meaning
of each dimension in different environments, please refer to the DeepMind Control Suite technical report (Tassa et al., 2018).

In these heatmaps, each value on a grid represents the weight of an edge from a node on the y-axis to a node on the x-axis.
A higher value indicates a greater causal influence.

Based on the results, it can be seen that core-GAT indeed focuses more on a few core nodes in its learned graph structure,
while general-GAT compensates for some overlooked detailed information by core-GAT. The results align well with our
claim made in the manuscript.
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Figure 11. Weighted adjacency matrix of core-GAT (left) and general-GAT (right) in Cartpole Swingup after 5M steps.
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Figure 12. Weighted adjacency matrix of core-GAT (left) and general-GAT (right) in Reacher Hard after 5M steps.

23



Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.00 0.00 0.01 0.98 0.01 0.00 0.00 0.00

0.00 0.00 0.97 0.01 0.00 0.01 0.01 0.00

0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.83

0.00 0.00 0.34 0.00 0.00 0.54 0.12 0.00

0.00 0.00 0.66 0.00 0.00 0.00 0.33 0.00

0.24 0.00 0.63 0.00 0.00 0.00 0.00 0.12

0.04 0.00 0.00 0.00 0.00 0.96 0.00 0.00

0.84 0.00 0.00 0.08 0.00 0.08 0.00 0.00

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.01 0.01 0.28 0.39 0.22 0.02 0.03 0.04

0.05 0.00 0.47 0.24 0.01 0.05 0.16 0.02

0.01 0.00 0.01 0.36 0.00 0.01 0.05 0.56

0.01 0.01 0.55 0.00 0.01 0.13 0.24 0.05

0.05 0.01 0.61 0.01 0.00 0.08 0.24 0.00

0.42 0.02 0.37 0.01 0.01 0.00 0.00 0.16

0.30 0.10 0.06 0.15 0.03 0.35 0.01 0.01

0.29 0.02 0.00 0.38 0.09 0.21 0.00 0.00

Figure 13. Weighted adjacency matrix of core-GAT (left) and general-GAT (right) in Cup Catch after 5M steps.

D.7. Study on Tunning Parameters of Loss Terms

We conduct additional experiments to study COREP’s sensitivity to the hyperparameters λ1, λ2 in the objective function
(3.11). Results are shown in Table D.1 and Table D.2.

The results indicate that the performance is not sensitive to the values of these hyperparameters. Even with extensive
adjustments to these parameters, COREP consistently surpasses the performance of SOTA baseline. Notably, we observe
instances in certain environments where adjustments lead to even higher performance. This suggests that with more precise
tuning, there is potential to further enhance COREP’s effectiveness.

These findings are significant as they demonstrate that COREP’s superior performance is largely attributed to its designs
in structure and process, rather than relying on hyperparameter tuning. The low sensitivity to hyperparameter values also
implies ease of use and adaptability in diverse settings.

Table D.1. Sensitivity results of parameter λ1. The results indicate that the performance is not sensitive to λ1, even with significant
adjustments to its value, COREP still outperforms FN-VAE.

λ1 Cartpole Swingup Reacher Easy Reacher Hard Cup Catch Cheetah Run Hopper Stand

0.5 732.3± 30.6 947.6± 24.6 938.4± 29.2 868.5± 24.7 634.8± 41.6 651.4± 29.3
0.1 (original) 743.4± 21.2 964.6± 17.3 947.2± 23.1 877.5± 19.2 651.1± 44.3 645.5± 25.8

0.05 732.8± 26.6 939.3± 16.4 949.4± 25.7 870.1± 19.8 642.7± 52.8 656.7± 32.3
0.01 722.3± 28.4 945.2± 23.3 934.3± 19.5 864.6± 25.5 629.4± 57.2 641.3± 33.8
0.001 717.5± 31.9 928.8± 25.8 936.9± 25.7 858.3± 18.6 622.8± 49.2 627.5± 27.5

FN-VAE 710.3± 64.5 913.3± 38.7 928.1± 21.9 851.3± 31.6 606.5± 75.3 580.9± 47.3

Table D.2. Sensitivity analysis of parameters λ2. The results indicate that the performance is not sensitive to λ2, even with significant
adjustments to its value, COREP still outperforms FN-VAE.

λ2 Cartpole Swingup Reacher Easy Reacher Hard Cup Catch Cheetah Run Hopper Stand

0.01 728.7± 36.1 936.3± 23.7 931.5± 24.4 864.9± 25.8 632.2± 37.5 623.5± 32.1
0.005 745.6± 34.8 955.3± 25.3 953.6± 22.1 872.5± 21.5 644.5± 36.1 638.1± 24.6

0.001 (original) 743.4± 21.2 964.6± 17.3 947.2± 23.1 877.5± 19.2 651.1± 44.3 645.5± 25.8
0.0005 718.6± 31.5 946.6± 19.6 945.5± 19.4 856.3± 18.7 621.6± 48.4 641.1± 29.6
0.0001 721.1± 35.9 949.5± 27.8 940.6± 19.7 859.2± 26.4 618.1± 55.7 619.5± 31.7

FN-VAE 710.3± 64.5 913.3± 38.7 928.1± 21.9 851.3± 31.6 606.5± 75.3 580.9± 47.3
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E. Compute Resource Details
We list the hardware resources used in Table E.1, and list the training time required for a single trial in each environment in
Table E.2.

Table E.1. Computational resources for our experiments.

CPU GPU RAM

Intel I9-12900K@3.2GHz (24 Cores) Nvidia RTX 3090 (24GB) × 2 256GB

Table E.2. Computing time of each single trial in different environments.

Environment Training Time

Cartpole Swingup 12 hours
Reacher Easy 16 hours
Reacher Hard 20 hours

Cup Catch 16 hours
Cheetah Run 24 hours
Hopper Stand 28 hours

Swimmer Swimmer6 28 hours
Swimmer Swimmer15 36 hours

Finger Spin 28 hours
Walker Walk 28 hours
Fish Upright 30 hours

Quadruped Walk 42 hours

F. Licenses
In our code, we have used the following libraries which are covered by the corresponding licenses:

• Numpy (BSD-3-Clause license)

• PyTorch (BSD-3-Clause license)

• PyTorch Geometric (MIT license)

• DeepMind Control (Apache-2.0 license)

• OpenAI Gym (MIT License)
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