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Abstract

Effectively encoding layout information is a
central problem in structured document under-
standing. Most existing methods rely heavily
on millions of trainable parameters to learn the
layout features of each word from Cartesian
coordinates. However, two unresolved ques-
tions remain: (1) Is the Cartesian coordinate
system the optimal choice for layout model-
ing? (2) Are massive learnable parameters truly
necessary for layout representation? In this
paper, we address these questions by propos-
ing Layout Attention with Gaussian Biases
(LAGaBi): Firstly, we find that polar coordi-
nates provide a superior choice over Cartesian
coordinates as they offer a measurement of both
distance and angle between word pairs, captur-
ing relative positions more effectively. Further-
more, by feeding the distances and angles into
2-D Gaussian kernels, we model intuitive induc-
tive layout biases, i.e., the words closer within a
document should receive more attention, which
will act as the attention biases to revise the tex-
tual attention distribution. LAGaBi is model-
agnostic and language-independent, which can
be applied to a range of transformer-based mod-
els, such as the text pre-training models from
the BERT series and the LayoutLM series that
incorporate visual features. Experimental re-
sults on three widely used benchmarks demon-
strate that, despite reducing the number of lay-
out parameters from millions to 48, LAGaBi
achieves competitive or even superior perfor-
mance. Our code is available on GitHub1.

1 Introduction

Structured document understanding (SDU) has
gained significant research attention in the field of
intelligent document processing (Park et al., 2019;
Jaume et al., 2019; Han et al., 2023). It focuses
on extracting layout structures and contents from
scanned or digital documents, leading to enhanced
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performance in several downstream tasks like form
comprehension and receipt understanding.

Unlike conventional text understanding (Liu
et al., 2019; Vaswani et al., 2017; Kenton and
Toutanova, 2019), SDU goes beyond comprehend-
ing serialized text and requires the ability to in-
terpret documents with diverse layouts (Xu et al.,
2020; Huang et al., 2022; Powalski et al., 2021;
Li et al., 2021a; Wang et al., 2022a). Documents
with varying layouts often contain text fields po-
sitioned in different ways. To take advantage of
existing pre-trained language models, early meth-
ods (Xu et al., 2020; Li et al., 2021a,c; Appalaraju
et al., 2021; Chi et al., 2020) propose to directly add
2-D position embedding to the word embedding
for each word as input for Transformer. The po-
sition embedding encode the 2-D absolute coordi-
nates (x0, y0, x1, y1) of each word in the document
through multi position encoding layers, where (x0,
y0) represents the upper left point and (x1, y1) rep-
resents the lower right point of the bounding box
for each word. Some researches (Powalski et al.,
2021; Hong et al., 2022; Lee et al., 2022; Xu et al.,
2021a; Huang et al., 2022) further proposed that ab-
solute positions are inefficient for representing the
spatial relationships between words. They employ
relative positions between words to encode spatial
relationships. For example, Hong et al.(2022) map
the relative positions into embeddings, which are
then multiplied with the semantic embedding of the
word to calculate inter-word layout scores. This
score is incorporated into the self-attention layers
to combine semantic and layout features.

Despite the significant progress made, we argue
that current methods, whether based on absolute or
relative positioning, heavily rely on a large number
of trainable parameters for position embeddings
from Cartesian coordinates, often comprising mil-
lions of parameters. This raises two unexplored
questions: (1) Is the Cartesian coordinate system
the optimal choice for layout modeling? (2) Are



massive learnable layout parameters truly neces-
sary? Concerning the former, various coordinate
systems exist, including Cartesian, polar, and spher-
ical coordinates, yet previous research has solely
focused on Cartesian coordinates. Regarding the
latter, it is intuitively expected that words closer
within a document should receive more attention.
However, this simple inductive bias may not be
effectively learned solely through gradient updates.

In this paper, we present a unified investigation
of the two aforementioned problems. Regarding
the choice of coordinate systems, we find that polar
coordinates offer a more efficient representation
than Cartesian coordinates for expressing relative
positions. By computing the differences in distance
and angle between two words in polar space, po-
lar coordinates outperform their Cartesian counter-
parts by providing extra angle information. For lay-
out learning, we discover that layout modeling can
be achieved by a specific distribution: words closer
in space receive higher layout scores, eliminating
the need for extra position embeddings. Combining
these two choices, we propose LAGaBi (Layout
Attention with Gaussian Biases). LAGaBi formu-
lates pairwise spatial relationships between tokens
using the distance and angle in the polar coordinate
system. Moreover, the distance and angle are fed
into a 2-D Gaussian distribution to output a layout
score. We choose the Gaussian distribution be-
cause it guarantees that the layout score decreases
when either the distance or angle variables increase,
making it the most commonly used distribution for
this purpose. The layout score is then incorporated
into the original self-attention as attention bias, re-
sulting in a revised distribution that considers both
text and layout features. We introduce trainable
Gaussian kernels to better align the semantic and
layout scores at different scales, adding just 4× at-
tention heads extra parameters. For instance, based
on RoBERTa (Liu et al., 2019) with 12 attention
heads, there are only 48 additional parameters that
need to be learned for encoding layout features.

Extensive experiments demonstrate that LAGaBi
achieves remarkable performance on diverse SDU
benchmarks, including FUNSD (Jaume et al.,
2019), CORD (Park et al., 2019), and XFUND (Xu
et al., 2021b), across both monolingual and multi-
lingual scenarios. LAGaBi emerges as a versatile
module that seamlessly integrates with transformer-
based language models, such as BERT (Kenton and
Toutanova, 2019), RoBERTa, and InfoXLM (Chi

et al., 2020), empowering them to effectively pro-
cess structured documents and achieve significant
performance gains of up to 27.01 points. Addi-
tionally, LAGaBi can be incorporated into complex
SDU models that leverage visual features, such as
LayoutLM (Xu et al., 2020), LayoutLMv2 (Xu
et al., 2021a), and LayoutLMv3 (Huang et al.,
2022), leading to further performance enhance-
ments and establishing new state-of-the-art results.

2 Related Works

Significant progress has recently been made by
using the Transformer-based pre-trained model
(PTM) to learn the cross-modality interaction be-
tween textual and layout information, which has
been demonstrated to be critical for structured doc-
ument understanding (Xu et al., 2020; Huang et al.,
2022; Powalski et al., 2021; Li et al., 2021a; Wang
et al., 2022a). LayoutLM (Xu et al., 2020) modified
the input of BERT (Kenton and Toutanova, 2019)
by adding position embedding layers to encode
word-level 2-D coordinates, while StructualLM (Li
et al., 2021a) proposed to encode segment-level
positions. LiLT (Wang et al., 2022a) encoded text
and layout using two different transformer layers
separately and adopted bi-directional attention to
fuse them. Besides, there are a series of works that
use multi-modal transformers to model text, lay-
out, and image simultaneously, such as SelfDoc (Li
et al., 2021b), DocFormer (Appalaraju et al., 2021),
StrucTexT (Li et al., 2021c), ERNIE-Layout (Peng
et al., 2022), mmLayout (Wang et al., 2022b).

Most of the above approaches encode the 2-D
absolute positions, ignoring the critical relative
spatial relationships between words that are es-
sential to textual semantic understanding. Hong
et al.(2022) proposed to encode the spatial relation-
ships as relative position embeddings, which are
then multiplied with the semantic embedding of
the token to calculate inter-word layout scores.This
score is incorporated into the self-attention to
combine semantic and layout features. GeoLay-
outLM (Luo et al., 2023) introduces geometric re-
lations and brand-new geometric pre-training tasks
in different levels for learning the geometric lay-
out representation, whose geometric relations are
largely dependent on some pre-defined manual
rules. TITL (Powalski et al., 2021) encodes the
relative positions between words in a simpler man-
ner, and it adopts linear layers to convert the 2-D
discrete distance (implemented through bucketing)
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Figure 1: An illustration of our Layout Attention with Gaussian Biases (LAGaBi). For each query word, we first
compute the spatial relationships of each keyword in a polar system centered on it. Then Gaussian kernels are
employed to transform these spatial relationships into attention biases, which will revise the original query-key
attention distribution. Such biases are shared across different Transformer layers. When using LAGaBi, we can
encode the document layout structure without adding position embedding layers at the bottom of the network.

between words into attention biases motivated by
T5 (Raffel et al., 2020). Such relative attention bi-
ases have also been employed by LayoutLMv2 (Xu
et al., 2021a) and LayoutLMv3 (Huang et al.,
2022), yielding notable results. Different from
them, we model the relative positions from a new
perspective, i.e. introducing polar coordinates with
distance and angle that are more efficient in repre-
senting relative spatial relationships. Furthermore,
we employ the extremely lightweight Gaussian ker-
nels to encode polar coordinates into attention bi-
ases, offering a more streamlined approach with
fewer trainable parameters and aligning better with
human intuition compared to linear layers.

3 Methodology

Structured documents typically contain both tex-
tual words and layouts, where textual words de-
note the main content of the document, while lay-
outs record the organizational form of text. Op-
tical character recognition (OCR) as a classical
technique for image document parsing can recog-
nize the text as well as its locations. Formally,
given a document D, OCR identifies the text words

W = {wi}Ni=1 and their associated layout positions
C = {ci}Ni=1, where N is the number of words
while ci = [x0i , y

0
i , x

1
i , y

1
i ] represents the left-top

and right-bottom coordinates of the bounding box
that contains the ith word. An ideal model for doc-
ument understanding should take both text words
and their layout positions into consideration.

The key to structured document comprehension,
building upon the achievements of text understand-
ing techniques such as Transformer (Vaswani et al.,
2017), lies in effectively representing document
layouts while remaining compatible with language
representation. Therefore, there are two crucial
problems that need to be solved: 1. How to model
document layouts efficiently? 2. How to integrate
the layouts into Transformer to guide textual se-
mantic understanding of the document content?

In this paper, we introduce a novel layout mod-
eling method for structured document understand-
ing, namely Layout Attention with Gaussian Biases
(LAGaBi). As shown in Figure 1, it mainly con-
sists of two parts: modeling relative positions with
polar coordinates and layout attention with Gaus-
sian biases. The former is responsible for modeling
the 2-D relative positions between words by po-



lar coordinates which are capable of representing
inter-word spatial relationships; The latter focuses
on transforming polar coordinates into attention
biases, which will modify the original semantic
query-key attentions between words into a more
suitable distribution that accurately captures the
underlying layout structure of documents.

3.1 Spatial Relationships with Polar
Coordinates

In a structured document, the relative spatial re-
lationships between words are shown to be more
important than their absolute coordinates, which
can assist humans in better understanding pair-wise
semantic dependencies. For example, tokens in the
same line generally have stronger semantic associ-
ations with each other, while tokens that are farther
away and on different lines are more difficult to
form strong associations. Although some previous
works (Powalski et al., 2021; Xu et al., 2021a; Li
et al., 2021a) have proposed to model the relative
distances, which acted as learnable attention biases,
they still rely on learnable positional embeddings
and only utilize the relative horizontal and vertical
distances in Cartesian coordinate system.

Different from previous works, we propose to
capture inter-word spatial relationships through
polar coordinates, in which both orientations and
distances can be preserved. For each query token,
we can build a polar coordinate system centered
at its position, and calculate the polar coordinates
(spatial relationships) of its keys. More concretely,
the position of the query token is regarded as the
reference point (pole), and the horizontal direction
in the current Cartesian coordinate system is set
as the reference direction (polar axis) following
the most common reading habit, i.e., left-to-right
and top-to-down. Formally, given a query token
with its 2-D coordinates ci as the pole, the polar
coordinates uij = (ρij , θij) of the jth key in this
document page can be calculated as below:

ρij =
√
(xj − xi)2 + (yj − yi)2 (1)

θij = tan−1((yj − yi)/(xj − xi)) (2)

where ρij ∈ [0, 1] and θij ∈ [−π/2, π/2] denote
the distance and angle (orientation) from the ith
token to the jth token respectively, and (xi, yi) are
the normalized coordinates of the top-left point of
the ith bounding box. For instance, in Figure 1,
when taking "REPORT" as the reference point, the

spatial relationship between the words "FORM"
and "REPORT" can be represented as a polar co-
ordinate (0.064, 0), indicating a distance of 0.064
and an angle of 0 degrees, while that between the
words "YEAR" and "REPORT" is (0.297, 1.432).

3.2 Layout Attention with Gaussian Biases
How to use the essential relative spatial relation-
ships to guide the model to perceive layout infor-
mation is a problem worth exploring. Inspired
by ALiBi (Press et al., 2021) and T5 bias (Raffel
et al., 2020) that encode the 1-D relative position
information as attention biases upon the query-key
scores instead of positional embedding, we propose
to revise attention scores/distribution with 2-D at-
tention biases that integrate spatial relationships.
Specifically, the attention score in a single-head
self-attention can be modified as:

aij =
exp(qik

T
j /

√
dk + α (g(uij)− 1))∑N

j=1 exp(qikT
j /

√
dk + α (g(uij)− 1))

(3)
where qi is the ith query vetor, qi is the jth key
vetor, and dk is the dimension of the attention head.
g(uij) denotes the attention biases, which is de-
rived from the 2-D Gaussian kernel with learnable
parameters based on polar coordinates u indicating
spatial relationships. The Gaussian kernel ensures
that words farther within the document are assigned
a smaller layout score. Therefore, by incorporating
a reversed term (g(uij)− 1), we can significantly
penalize the attention scores of query-key pairs that
are farther, while making only slight revisions to
the scores of closer pairs. α is a hyper-parameter
that makes a trade-off between semantic associa-
tion and spatial dependency. It denotes how much
the spatial relationship between the key and the
query contributes to their semantic association. In
particular, a convenient formula of g(u) is:

g(u) = exp(−1

2
(u − µ)TΣ−1(u − µ)) (4)

where Σ and µ are learnable 2 × 2 and 2 × 1 co-
variance matrix and mean vector of a Gaussian
kernel, respectively. We further restrict the covari-
ances to have diagonal form, resulting in 2 × 2
parameters per kernel for each attention head. Note
that the Gaussian kernels are different across differ-
ent attention heads, but are shared across different
self-attention layers. Thus, there is a total of 2 ×
2 × Nheads learnable parameters for our attention
biases, where Nheads denotes the attention head



number in each self-attention layer. For example,
taking the RoBERTa base as the backbone, there
are 48 parameters that need to be learned. Notably,
we only include layout information in the keys and
queries but not in the values, ensuring that the text
semantics are not corrupted.
Properties of our LAGaBi: (1) It is easy to imple-
ment and can be adapted to any transformer-based
model without changing its structure. (2) The po-
sition embedding layer is discarded, and there are
very few parameters to learn, which can be done
during the fine-tuning stage, so it is quite efficient.
(3) It decouples layout and text understanding, al-
lowing the potential of language models to be fully
exploited in structured document understanding.

4 Experiments

4.1 Datasets
Pre-training Dataset. Following LayoutLM (Xu
et al., 2020), we also pre-train our model using the
IIT-CDIP Test Collection 1.0 (Lewis et al., 2006),
which is a large-scale dataset with over 11 million
scanned document images. Only 1 million of them
are used for fast pre-training. We pre-process each
document page using Tesseract2, an open-source
OCR engine, to retrieve the textual contents as well
as their layouts. We normalize the coordinates of
each token to integers in the range of 0 to 1000
and add an empty bounding box [0, 0, 0, 0] to the
special tokens [CLS], [SEP], and [PAD].
Fine-tuning Datasets. We evaluate our method on
both monolingual (English) and multilingual docu-
ment information extraction datasets listed below.
FUNSD (Jaume et al., 2019) is a form dataset that
uses forms to extract and organize textual infor-
mation. It contains 199 documents, 149 of which
are for training and 50 of which are for testing.
CORD (Park et al., 2019) is a dataset for receipt
key information extraction that includes 800, 100,
and 100 receipts for training, validating, and test-
ing, respectively. XFUND (Xu et al., 2021b) is a
multilingual version of FUNSD with 8 languages,
each language containing 199 instances (149 for
training and 50 for testing) as FUNSD.

4.2 Implemention Details
Our approach is model-agnostic and language-
independent, which can be applied to a range
of transformer-based models. In this paper, we
have evaluated our method based on three kinds

2https://github.com/tesseract-ocr/tesseract

of baselines: 1) monolingual models (BERT (Ken-
ton and Toutanova, 2019) and RoBERTa (Liu et al.,
2019)), 2) multilingual model (InfoXLM (Chi et al.,
2020)), and 3) document understanding models
(LayoutLM (Xu et al., 2020), LayoutLMv2 (Xu
et al., 2021a), and LayoutLMv3 (Huang et al.,
2022)). Gaussian kernels will be included in the
self-attention blocks of each model, which describe
the relative spatial relationship between tokens.
Pre-training. We only conduct pre-training tasks
for the two monolingual models: BERT+LAGaBi
and RoBERTa+LAGaBi. We initialize the weight
of them with the corresponding baselines, except
the Gaussian kernels. The parameters of the Gaus-
sian kernels, namely covariance matrixes and mean
vectors, are randomly initialized. Both models
are simply supervised by masked language mod-
eling (MLM) loss during pre-training. Adam op-
timizer (Kingma and Ba, 2014) is adopted with a
learning rate of 5e − 5, weight decay of 1e − 2
and (β1, β2) = (0.9, 0.999). The batch size is set to
128 and all the two models are trained for 200,000
steps on 8 NVIDIA v100 32GB GPUs.
Fine-tuning. In this paper, we mainly focus on the
document understanding task of semantic entity
labeling, which aims at assigning each semantic en-
tity a BIO label. We add a token-level classification
layer upon the base models (including monolingual,
multilingual, and document understanding models)
to predict the BIO labels for this task. Word-level
F1 score is adopted as the evaluation metric. The
fine-tuning process takes 2000 steps using a batch
size of 16 and the Adam optimizer with a learning
rate of 5e-5 for FUNSD and 7e-5 for CORD and
XFUND. Fine-tuning configurations for document
understanding models follow their official releases.
Hyper-parameter α is set to 4 for all experiments,
which has been tuned on the CORD’s val set.

4.3 Experimental Results

4.3.1 Performance on monolingual datasets

We first evaluate our method on the monolingual
form and receipt understanding datasets. From the
results shown in Table 1, we can observe that:
(1) The lightweight LAGaBi enables simple in-
tegration with language models, allowing them
to effectively process structured documents. For
example, without any pre-training on document
data, RoBERTa+LAGaBi has achieved 84.84% and
95.97% F1 scores on FUNSD and CORD, sur-
passing baseline model RoBERTa by 18.38% and



Model #Parameters Pre-training Modality FUNSD CORD

BERT (Kenton and Toutanova, 2019) 110M - T 60.26 89.68
RoBERTa (Liu et al., 2019) 125M - T 66.48 93.54
BROS (Hong et al., 2022) 110M 11M T+L 81.21 -
FormNet (Lee et al., 2022) 217M 11M T+L 84.69 -
LiLT (Wang et al., 2022a) 131M 11M T+L 88.41 96.07

BERT+LAGaBi(w/o pre-train) 110M+48 - T+L 74.14 (+13.88) 93.44 (+3.76)
BERT+LAGaBi(w/ pre-train) 110M+48 1M T+L 87.27 (+27.01) 95.82 (+6.14)
RoBERTa+LAGaBi(w/o pre-train) 125M+48 - T+L 84.84 (+18.36) 95.97 (+2.43)
RoBERTa+LAGaBi(w/ pre-train) 125M+48 1M T+L 89.15 (+22.67) 96.56 (+3.02)

LayoutLM (Xu et al., 2020) 160M 11M T+L+I 79.27 94.31∗

LayoutLMv2 (Xu et al., 2021a) 200M 11M T+L+I 82.70 94.95
StrucTexT (Li et al., 2021c) 107M 11M T+L+I 83.09 -
DocFormer (Appalaraju et al., 2021) 183M 11M T+L+I 83.34 96.33
LayoutLMv3 (Huang et al., 2022) 133M 11M T+L+I 90.29 96.56

LayoutLM+LAGaBi(w/o pre-train) 160M+48 - T+L+I 87.77 (+8.10) 94.93(+0.62)
LayoutLMv2+LAGaBi(w/o pre-train) 200M+48 - T+L+I 88.16 (+5.49) 97.05(+2.10)
LayoutLMv3+LAGaBi(w/o pre-train) 133M+48 - T+L+I 91.00 (+0.71) 97.05 (+0.49)

Table 1: Performance on FUNSD and CORD for monolingual structured document understanding. “T/L/I” denotes
the “text/layout/image” modality. (+x) denotes the gain in F1 score compared to base model, while ∗ show the result
from our re-implementation. All the F1 scores in percentage (%) are reported.

2.43% respectively. RoBERTa+LAGaBi also out-
performs several representative document under-
standing models such as LayoutLM (Xu et al.,
2020) and LayoutLMv2 (Xu et al., 2021a). The
results show that LAGaBi is a powerful method
for capturing essential layout features, allowing
language models to be easily extended to adapt to
structured document understanding tasks.
(2) Pre-training brings profits. After pre-training
on 1 million unlabeled document data, our method
exhibits extra improvements. RoBERTa+LAGaBi
with pre-train surpasses all other approaches ex-
cept LayoutLMv3 (Huang et al., 2022). While
there is still a minor difference on FUNSD be-
tween our model and LayoutLMv3, our method
is significantly easier to implement, introducing
only 48 extra learnable parameters to the vanilla
Transformers structure, making it more computa-
tionally efficient and flexible.
(3) The LAGaBi could also be seamlessly cou-
pled with other layout embedding and multi-
modal-based document understanding models,
improving their performance even further. Per-
formance improvements on LayoutLM (Xu et al.,
2020), LayoutLMv2 (Xu et al., 2021a) and Lay-
outLmv3 (Huang et al., 2022)) are obvious, with
F1 score gains of 8.10%, 5.49%, 0.71% on FUNSD
and 0.62%, 2.10%, 0.49% on CORD. The process

is particularly efficient since it only requires fine-
tuning based on the published pre-trained weights
rather than pre-training from scratch. Furthermore,
by combining LAGaBi with the top-performing
LayoutLMv3 model, we achieve new state-of-the-
art results on both FUNSD and CORD datasets.

4.3.2 Performance on multilingual dataset

Following the multi-lingual LayoutXLM (Xu et al.,
2021b) and LiLT (Wang et al., 2022a), we also
evaluate our method based on InfoXLM (Chi et al.,
2020) on three sub-tasks: language-specific fine-
tuning, multi-task fine-tuning, and zero-shot trans-
fer learning. We first perform fine-tuning based
on the Gaussian kernels with random initialization.
For a fair comparison, following LiLT, we also
adopt the pre-trained Gaussian kernels for further
fine-tuning, and we employ the Gaussian kernels in
RoBERTa+LAGaBi which have been pre-trained
on 1M monolingual document data in Sec 4.3.1.
Results on XFUND are shown in Table 2.

LAGaBi is also valid in multilingual scenarios,
allowing multilingual language models to un-
derstand structured documents and outperform
existing best-performing methods. LAGaBi can
largely increase the performance of the multilin-
gual language model InfoXLM on all three tasks,
regardless of whether the Gaussian kernels are



Task Model Pre-train Data FUNSD XFUND Avg.
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c XLM-RoBERTa (2020) - 66.70 87.74 77.61 61.05 67.43 66.87 68.14 68.18 70.47
InfoXLM (2020) - 68.52 88.68 78.65 62.30 70.15 67.51 70.63 70.08 72.07
LayoutXLM (2021b) 30M-Mutli 79.40 89.24 79.21 75.50 79.02 80.82 82.22 79.03 80.56
LiLT (2022a) 11M-Mono 84.15 89.38 79.64 79.11 79.53 83.76 82.31 82.20 82.51

InfoXLM+LAGaBi - 83.35 89.38 84.01 78.06 82.80 84.40 84.95 83.25 83.78
InfoXLM+LAGaBi 1M-Mono 84.17 89.65 84.73 77.51 83.86 85.19 83.89 83.47 84.06
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ot

XLM-RoBERTa (2020) - 66.70 41.44 30.23 30.55 37.10 27.67 32.86 39.36 38.24
InfoXLM (2020) - 68.52 44.08 36.03 31.02 40.21 28.80 35.87 45.02 41.19
LayoutXLM (2021b) 30M-Mutli 79.40 60.19 47.15 45.65 57.57 48.46 52.52 53.90 55.61
LiLT (2022a) 11M-Mono 84.15 61.52 51.84 51.01 59.23 53.71 60.13 63.25 60.61

InfoXLM+LAGaBi - 83.35 47.91 46.13 48.98 54.84 47.40 53.23 58.82 55.08
InfoXLM+LAGaBi 1M-Mono 84.17 39.88 35.77 44.82 54.45 46.72 51.64 56.37 51.73
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sk

XLM-RoBERTa (2020) - 66.33 88.30 77.86 62.23 70.35 68.14 71.46 67.26 71.49
InfoXLM (2020) - 65.38 87.41 78.55 59.79 70.57 68.26 70.55 67.96 71.06
LayoutXLM (2021b) 30M-Mutli 79.24 89.73 79.64 77.98 81.73 82.10 83.22 82.41 82.01
LiLT (2022a) 1M-Mono 85.74 90.47 80.88 83.40 85.77 87.92 87.69 84.93 85.85

InfoXLM+LAGaBi - 86.67 90.90 86.49 81.74 86.44 87.74 88.18 86.72 86.89
InfoXLM+LAGaBi 1M-Mono 86.35 92.00 86.86 81.50 87.00 87.96 87.58 87.24 87.22

Table 2: The performance on FUNSD and XFUND with different settings, including language-specific fine-tuning
(fine-tuning on X, testing on X), zero-shot transfer (fine-tuning on FUNSD, testing on X), and multi-task fine-tuning
(fine-tuning on all 8 languages, testing on X). “1M-Mono” denotes 1 million monolingual (English) documents used
for pre-training, while “30M-Multi” is the multilingual version. All the F1 scores in percentage (%) are reported.

pre-trained or not. InfoXLM+LAGaBi using the
pre-trained Gaussian kernels outperforms the top-
performing method LiLT on both language-specific
and multi-task fine-tuning tasks, with average F1
scores of 84.06% and 87.22%, demonstrating the
efficacy of LAGaBi in multilingual scenarios. On
the zero-shot transfer learning task, LAGaBi fell
slightly behind its counterparts. This may be due to
the inherent gaps between different languages, such
as differences in reading order and semantic den-
sity. For example, English usually uses spaces to
separate words and has uneven word lengths, while
Chinese appears as a tighter sequence with smaller
semantic units (i.e., characters). Such layout knowl-
edge learned from a specific language shows lim-
ited contributions to other languages. This phe-
nomenon also proves the effectiveness of LAGaBi
in modeling layouts, i.e. it actually has acquired
the layout knowledge for a specific language after
fine-tuning on the corresponding data.

4.4 Ablation Studies

To investigate the impacts of our learnable Gaus-
sian kernels and polar coordinates, we have con-

ducted extensive ablation experiments based on sev-
eral RoBERTa variants equipped with different lay-
out encoding mechanisms (e.g. layout embedding
layers, linear bias layers, and fixed/learnable Gaus-
sian Kernels), and spatial relationships (e.g. dis-
tance, angle, and 2D-xy distance). All the variants
are evaluated without further pre-training, and only
fine-tuned for 2000 steps on FUNSD and CORD.
Results on FUNSD’s test set and CORD’s valida-
tion set are shown in Table 3. From the result, we
can observe that LAGaBi with learnable Gaussian
kernels and polar coordinates (#8) can significantly
outperform the baseline (#1) and the model with
linear layout embedding layers (#2), indicating that
models encoding layouts as attention biases are
superior to layout embedding-based methods.

Impact of the Gaussian kernels. To study the
effects of various methods for converting polar co-
ordinates to attention biases, we compared linear
layers (#3), fixed Gaussian kernels (#4), and learn-
able Gaussian kernels (#8). The results demon-
strate that linear layers are far less effective than
Gaussian kernels, which is likely due to the fact that
the Gaussian kernels are more in line with human



Figure 2: Visualization of the attention maps. The word-word attention scores are obtained by aggregating token-
level attention in the last layer of transformers. We also annotate the position and order of each word in the original
document page, and the attention scores are rounded to two decimal places for better visualization.

Task # Ablation Strategy FUNSD CORD

1 RoBERTa(baseline) 66.48 92.29
2 + embedding layers 69.59 92.67

Impact of
Gaussian

3 + linear bias layers 76.32 93.00
4 + fixed kernels 83.81 93.00

Impact of
Polar-Coor.

5 + Euclidean distance 73.05 93.72
6 + Angle 84.48 94.70
7 + 2D-xy distance 79.85 94.21

8 + LAGaBi 84.84 94.77

Table 3: Ablation studies on the effectiveness of the
learnable Gaussian kernels and the polar coordinates.

intuition than linear layers. Learnable Gaussian
kernels (#8) also achieve better performance than
fixed Gaussian kernels whose mean is 0 and vari-
ance is 1 (#4), since the learnable Gaussian kernels
enjoy better flexibility to adapt to different formats.
Impact of the polar coordinates. Polar coordi-
nates, which consist of two elements: distance and
angle, is a typical technique for describing spatial
relationships. We analyzed the effects of distance
(#5) and angle (#6), as well as the classical 2-D
relative horizontal and vertical distances proposed
by TITL (Powalski et al., 2021) (#7). The results
suggest that the model with angle information (#6)
is more effective than the model with distance in-
formation (#5 and #7). We hypothesize that this
is because angles are less impacted by size scal-
ing than distances, but they are more sensitive to
location changes. Furthermore, LAGaBi achieves
much better performance than the model that em-
ploys horizontal and vertical distances, which fur-
ther reveals the superiority of polar coordinates.

4.5 Analysis

Impact of α. Hyper-parameter α makes a trade-
off between semantic and layout contributions
when computing pair-wise attention scores in our
LABaBi, which is important. We conduct several
experiments with different α settings to study the
impact of α based on RoBERTa without any further
pre-training. F1 scores on CORD’s validation set
are listed in Table 4, showing the model achieves
its best performance when α = 4.

α = 0 1 2 3 4 5

CORD 92.29 92.82 93.08 93.46 94.77 94.39

Table 4: Impact of different α settings. All the scores
are from CORD’s validation set.

Visualization analysis. We visualize the word-
level attention maps of the baseline RoBERTa and
our RoBERTa+LAGaBi. Due to space limitations,
in this paper, we only show the attention maps of
the first 8 words in the input sequence. The case in
Figure 2 is from the test set of FUNSD. As shown
in Figure 2, the RoBERTa incorrectly associates the
character "R." with all the words, while most other
words are treated as unrelated. According to the
attention map in the RoBERTa+LAGaBi, greater
attention scores arise between "R." and "F.", "J."
and "D.", all of which are placed in the signature
area, whereas attention scores between remote irrel-
evant words such as "DATE" and "STRU" are zeros.
This demonstrates that LAGaBi indeed learns more
accurate semantic associations by incorporating
layout information. More examples and detailed
analysis can be seen in Appendix.A.



5 Conclusion

In this paper, we propose a model-agnostic and
language-independent method that leverages Lay-
out Attention with Gaussian Biases to encode the
relative spatial positions for structured document
understanding (SDU). Specifically, we first model
the inter-word spatial relationships using polar co-
ordinates. Then the query-key attention scores are
revised by the Gaussian biases that are related to
their spatial relationships. Our method can be ap-
plied to a series of Transformer-based models with
extremely few parameters, improving their perfor-
mance for SDU tasks. Experiments based on six
transformer-based SDU models and three mono-
lingual/multilingual benchmarks fully demonstrate
the effectiveness of our proposal. This research
provides new ideas for structured document under-
standing tasks, which are expected to promote the
efficient development of document intelligence.

Limitations

Despite the superior performance exhibited by
LAGaBi, it does have some limitations. Firstly,
in our experiments with the LayoutLM series that
integrate multi-modal features, LAGaBi was only
fine-tuned for validation without pre-training. We
believe that leveraging multi-modal pre-training
could further improve LAGaBi’s performance
based on LayoutLM, and this will be explored in
future investigations. Secondly, although we have
empirically demonstrated the effectiveness of po-
lar coordinates and Gaussian distribution in layout
learning, our motivation is driven by a simple intu-
ition rather than rigorous mathematical proof.
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A Appendix

Figure 3 in this section shows the attention dis-
tribution of four additional examples on FUNSD.
From all the examples, it can be observed that
the RoBERTa model typically treats each word
in isolation, while RoBERTa+LAGaBi can learn
the more accurate correlations between different
words based on their layout relationships.

We also visualize the word-level attention maps
of LayoutLMv3 and LayoutLMv3+LAGaBi. Lay-
outLMv3 is currently the top-performing method
for structured document understanding, which uti-
lizes the 2-D relative positions through linear atten-
tion biases. From the attention maps shown in Fig-
ure 4, we can observe that LayoutLMv3+LAGaBi
refers more to layout information when modeling
the inter-word semantic correlations, while Lay-
outLMv3 is relatively independent. For example,
in the third sample of Figure 4, LAGaBi learns
more dense associations among “Tiers", “II.", and
“&" in the neighborhood than LayoutLMv3, which
is in line with human intuition.



Figure 3: Visualization of more examples based on RoBERTa.



Figure 4: Visualization of examples base on LayoutLMv3.


