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Abstract001

Large language models (LLMs) have demon-002
strated strong capabilities in encoding and ap-003
plying factual knowledge, much of which fol-004
lows a one-to-many (1-to-N) structure, where a005
single query corresponds to multiple valid an-006
swers. However, the existing metrics for eval-007
uating 1-to-N knowledge suffer from inherent008
limitations, such as ignoring valid alternative009
answers, failing to reflect model confidence,010
or neglecting probability distributions. To ad-011
dress these limitations, we propose a new met-012
ric, named N-Answer Kullback-Leibler Diver-013
gence (NKL), which aligns the predicted proba-014
bility distribution of an LLM with a given gold015
distribution (e.g. a pre-training corpus). NKL016
integrates both ranking and probability infor-017
mation, offering a more comprehensive evalua-018
tion. We also formalise 1-to-N knowledge eval-019
uation with two criteria—coverage and align-020
ment—under which NKL demonstrates the best021
overall performance. Experiments on Counter-022
fact and SNOMED CT further validate NKL’s023
effectiveness in knowledge probing and editing,024
providing new insights into LLMs’ ability to025
represent and modify 1-to-N knowledge 1.026

1 Introduction027

Large language models (LLMs) have demonstrated028

remarkable capabilities in acquiring knowledge029

across diverse domains (Plaat et al., 2024; Hu et al.,030

2023; Wang et al., 2023). There has been grow-031

ing interest in understanding and manipulating the032

internal knowledge of LLMs. Among these ap-033

proaches, knowledge probing (Meng et al., 2022b;034

Sung et al., 2021) and knowledge editing (Meng035

et al., 2022a; Yao et al., 2023) have received consid-036

erable attention. Knowledge probing aims to evalu-037

ate an LLM’s ability to recall and apply the knowl-038

edge learned during pre-training, while knowledge039

editing focuses on making targeted modifications to040

1Code and datasets can be found in: https://anonymous.
4open.science/r/nkl_metrics-42E4
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Figure 1: Limitations of evaluation metrics for 1-to-
N knowledge: MaxAcc (top right) only considers the
top-1 answer, missing valid alternatives like “cold” and
“flu.” Precision@3 (middle right) captures multiple cor-
rect answers but ignores overconfidence in lung cancer.
Perplexity (bottom right) evaluates probability values
without considering answer identity or ranking.

the model’s internal knowledge without retraining. 041

042However, most existing works represent knowl- 043

edge in a one-to-one format, where each query 044

is associated with a single correct answer. This 045

simplification often overlooks the complexity of 046

real-world knowledge, which often exhibits a 1-to- 047

N structure, where a query corresponds to multiple 048

valid answers (Green, 2001; Thandi et al., 2021; 049

Han et al., 2022). For instance, the query “What 050

is the treatment for hypertension?” has several 051

answers, including ACE inhibitors, beta-blockers, 052

and calcium channel blockers (Fuchs and Whelton, 053

2020). This 1-to-N pattern is widespread: 40% of 054

Counterfact (Meng et al., 2022a) and over 80% of 055

SNOMED CT (Donnelly et al., 2006) triples fol- 056

low a 1-to-N structure. While these answers are all 057

correct, they are actually not equally common or 058

likely. This is especially important in biomedicine, 059

where rare but technically valid answers may be 060

misleading. For example, given the question “What 061

disease does a cough indicate?”, lung cancer is 062

one correct answer, but far less typical than cold. 063

This highlights the importance of evaluating not 064
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only correctness of model’s prediction, but also the065

distribution over multiple correct answers. Such066

considerations lead to a critical question:067

How can we evaluate LLMs to effectively assess068

their understanding of 1-to-N knowledge?069

To address this question, we first investigate ex-070

isting evaluation metrics used in knowledge prob-071

ing and editing that can be applied to 1-to-N knowl-072

edge, including MaxAcc (Yao et al., 2023; Li et al.,073

2022; Sung et al., 2021), Precision@K (Sung et al.,074

2021; Jiang et al., 2020), and Perplexity (Onoe075

et al., 2022). These metrics offer valuable insights076

into model performance by assessing accuracy,077

ranking or probability calibration. However, they078

still have limitations in fully capturing the struc-079

tured nature of 1-to-N knowledge. As shown in Fig-080

ure 1, given the predicted answer distributions and081

the gold distributions provided by experts, existing082

metrics, i.e., MaxAcc, Precision@K and Perplexity,083

either focus solely on the highest-ranked response084

or treat top answers as equally probable, and thus085

fail to capture the true alignment between predicted086

and gold distributions in knowledge representation.087

To this end, we propose N-Answer Kullback-088

Leibler Divergence (NKL), a new evaluation metric089

designed for assessing 1-to-N knowledge probing090

and editing. NKL assesses the alignment between091

an LLM’s predicted probability distribution and the092

gold distribution reflecting the ground-truth likeli-093

hood of each candidate answer. Compared to exist-094

ing metrics, NKL provides a more comprehensive095

assessment by considering all valid answers, inte-096

grating both ranking and probability information,097

and directly aligning with the gold distribution.098

To validate the effectiveness of NKL in capturing099

1-to-N knowledge, we further formalise the task of100

1-to-N knowledge evaluation and introduce two key101

evaluation criteria: coverage, which measures an102

LLM’s ability to recall all valid answers, and align-103

ment, which evaluates how well the predicted prob-104

ability distribution matches the gold distribution of105

valid answers. Our empirical results indicate that106

NKL achieves the highest correlation scores with107

both criteria. We further demonstrate the utility of108

NKL by applying it to two key tasks: knowledge109

probing and knowledge editing, on two real-world110

datasets, namely Counterfact (Meng et al., 2022a)111

and SNOMED CT (Donnelly et al., 2006). These112

experiments allow us to gain deeper insight into113

how LLMs recall and update 1-to-N knowledge.114

Our key contributions can be summarised as fol-115

lows: (1) We propose NKL, an evaluation metric116

that measures the alignment between an LLM’s 117

predicted distribution and a given gold one; (2) We 118

formally define the task of 1-to-N knowledge prob- 119

ing and propose its two key criteria, i.e. coverage 120

and alignment; (3) We conduct a comprehensive 121

evaluation of 1-to-N knowledge probing and edit- 122

ing, showing that existing editing methods improve 123

the retrieval performance of edited LLMs but have 124

limited capacity to maintain probability alignment. 125

2 Preliminaries 126

We provide a brief introduction of 1-to-N knowl- 127

edge and its evaluation metrics in this section. Re- 128

lated work on knowledge probing and editing is 129

discussed in Appendix A. 130

2.1 1-to-N Knowledge 131

A piece of knowledge can be considered as a 132

query–answer pair (q, a) that captures the associa- 133

tion between a query and a valid answer (Meng 134

et al., 2022a; Yao et al., 2023). We define 1- 135

to-N knowledge as a setting where a query q 136

is associated with multiple valid answers A = 137

{a1, a2, . . . , ac}. Given a language model M , we 138

denote its predictive probability distribution over 139

a set of candidate answers X = {x1, . . . , xn} as: 140

P(x | q) = {PM (x1 | q), . . . , PM (xn | q)}, where 141

xi ∈ X denotes a complete candidate answer and 142

P(xi|q) is the probability that the model assigns to 143

xi. Similarly, we define a gold probability distribu- 144

tion over X : Q(x|q) = {Q(x1|q), . . . , Q(xn|q)}, 145

which reflects ground-truth likelihoods over candi- 146

date answers. These likelihoods can be derived 147

from domain-specific knowledge bases or real- 148

world prevalence statistics (see § 3.4 for details 149

on obtaining gold distribution). While P(x | q) 150

reflects the model’s learned probabilities, Q(x | q) 151

represents the gold distribution over candidate an- 152

swers, serving as the reference for evaluation. 153

2.2 Existing Evaluation Metrics for 1-to-N 154

Knowledge 155

To evaluate how well a language model M captures 156

factual knowledge, there are several metrics, such 157

as Maximum Accuracy (MaxAcc) (Yao et al., 158

2023; Li et al., 2022; Sung et al., 2021), Top-K 159

Precision (Precision@K) (Sung et al., 2021; Jiang 160

et al., 2020) and Perplexity (PPL) (Onoe et al., 161

2022), that are widely used for knowledge probing 162

and knowledge editing (Yao et al., 2023; Li et al., 163

2022). Formally, they are defined as follows: 164
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Figure 2: An overview of how NKL is used to evaluate
1-to-N knowledge. We consider two scenarios: knowl-
edge probing, which assesses the alignment between the
model’s predictive distribution and the gold distribution;
and knowledge editing, which evaluates how this align-
ment changes after the model’s internal knowledge is
modified. NKL quantifies distributional alignment in
both settings.

(1) MaxAcc:165

E(q,A)∼PI
{
argmax

x∈X
PM (x | q) ∈ A

}
,166

where I(·) is an indicator function that returns 1 if167

the most probable predicted answer by the model168

belongs to the ground-truth set A and 0 otherwise.169

The query-answer pairs (q,A) are sampled from170

a data distribution P . MaxAcc measures if the171

model’s top-1 prediction matches any answer in A.172

(2) Precision@K:173

E(q,A)∼P I
{
top-K
x∈X

PM (x | q) ∩ A ≠ ∅
}
,174

where I(·) is an indicator function that returns 1 if175

at least one of the top-K predicted answers belongs176

to the ground-truth set A, and 0 otherwise. This177

metric evaluates whether the model can recall any178

valid answer among its top-K ranked predictions.179

(3) PPL:180

E(q,A)∼P exp

(
− 1

|A|
∑
a∈A

logPM (a | q)

)
,181

where PM (a | q) is the probability assigned to a182

correct answer a. PPL assesses the average uncer-183

tainty of the model over answers in A, with lower184

values indicating that the model assigns higher185

probabilities to correct answers.186

3 The NKL Metric for Evaluating 1-to-N187

Knowledge188

3.1 Evaluation Criteria for 1-to-N Knowledge189

To effectively evaluate the ability of LLMs to repre-190

sent and update 1-to-N knowledge through probing191

and editing, we propose two fundamental criteria 192

that define the desired properties of an ideal evalu- 193

ation metric. 194

Criterion 1 (Coverage). For 1-to-N knowledge, 195

where a query q is associated with multiple valid 196

answers A, an LLM should maximise the size of 197

the retrieved subset Â ⊆ A, where Â denotes the 198

set of valid answers generated by the model. 199

Criterion 2 (Alignment). For 1-to-N knowledge, 200

an LLM’s predicted probability distribution P(x | 201

q) should align with the gold distribution Q(x | q). 202

In knowledge probing and editing, Criterion 203

1 ensures that an LLM, whether a foundational 204

model or an edited one, retrieves a diverse set of 205

valid answers rather than overfitting to a single 206

dominant response, reflecting its ability to repre- 207

sent 1-to-N knowledge, i.e. the breadth of coverage. 208

Meanwhile, Criterion 2 ensures that a well-trained 209

model allocates probability mass in proportion to 210

the gold distribution of valid answers, preventing 211

overconfidence in rare responses or underestimat- 212

ing frequent ones, i.e. the distribution alignment. 213

3.2 N-Answer Kullback-Leibler Divergence 214

Intuitively, a well-trained model should handle 1- 215

to-N knowledge by allocating its probability mass 216

over multiple valid answers in accordance with a 217

specified gold distribution. This gold distribution 218

may reflect real-world prevalence or be deliberately 219

designed to support specific evaluation objectives. 220

The proposed N-Answer Kullback-Leibler Diver- 221

gence (NKL) metric quantifies the divergence be- 222

tween the predicted distribution of the model and 223

the expected gold distribution, ensuring that cover- 224

age and alignment with real-world knowledge are 225

taken into account. 226

Specifically, given a query q, PM (x | q) defines 227

the probability that model M assigns to a candidate 228

answer x ∈ X . For an answer xi, the predictive 229

distribution is given by the following formula: 230

PM (xi|q)=PM (t1, t2, . . . , tk | q), (1) 231

=

k∏
j=1

PM (tj | q, t1, t2, . . . , tj−1), (2) 232

=exp

 k∑
j=1

logPM (tj | q, t<j)

, (3) 233

where tj represents the j-th token in the tok- 234

enized form of the answer xi and k denotes the 235
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token length of xi. Now, suppose that query q has236

N possible outputs and C correct answers. The237

probability distribution of these N possible outputs238

predicted by the model can be formulated as:239

P(x | q) = {PM (x1 | q), . . . , PM (xn | q)}. (4)240

Given Q(x | q) as the gold probability distribu-241

tion under the given query q. Then we have:242

Q(x | q) = {Q(x1 | q), . . . , Q(xn | q)}. (5)243

We then compute the KL divergence of Q and P.244

DKL(Q||P) =
n∑

i=1

Q(xi|q) log
Q(xi|q)
PM (xi|q)

, (6)245

= entropy(Q)−
n∑

i=1

Q(xi|q)logPM (xi|q). (7)246

Given that entropy(Q) is a constant. NKL can247

then be formulated as:248

NKL = −
n∑

i=1

Q(xi | q) logPM (xi | q), (8)249

= −
∑
xi∈A

Q(xi | q) logPM (xi | q), (9)250

where we transition from summing over all n can-251

didate answers to summing over the set of valid an-252

swers A, under the assumption that the probability253

mass of incorrect answers in the gold distribution254

Q(x|q) is negligible. By combining Equations (3)255

and (9), and incorporating length normalisation for256

multi-token cases to ensure fair comparison across257

answer sequences of varying lengths [add citation],258

we derive the NKL formulation for the multi-token259

scenario:260

NKL = −
∑
xi∈A

Q(xi|q)
|xi|

|xi|∑
j=1

logPM (tj | q, t<j),

(10)

261

where |xi| is the token length of the answer xi.262

3.3 Properties and Discussion263

NKL integrates ranking and probability in-264

formation. NKL simultaneously captures both265

ranking and probability information, making it266

a comprehensive measure for 1-to-N knowledge.267

As shown in Equation (9), by weighting the log-268

likelihood with Q(x), it ensures that predicted prob-269

abilities align with real-world relevance, enforcing270

a probability-sensitive ranking. Higher-probability271

answers in Q(x) contribute more to the evaluation, 272

making NKL sensitive to both correctness and con- 273

fidence. This allows NKL to provide a fine-grained 274

assessment of the model’s ability to capture the 275

knowledge distribution in 1-to-N scenarios. 276

Comparison between NKL and Standard KL 277

Divergence. NKL is derived from the standard 278

Kullback-Leibler (KL) divergence (Kullback and 279

Leibler, 1951), a fundamental measure of distribu- 280

tional difference widely used in NLP (Lang et al., 281

2024), but is specifically tailored for evaluating 1- 282

to-N knowledge. The primary differences between 283

NKL and standard KL divergence lie in two key as- 284

pects. First, as shown in Equation (9), we omit the 285

entropy of the gold distribution, as its estimation 286

requires computing the probability of all candidate 287

answers for a given query, which is computation- 288

ally expensive. Additionally, since this entropy is 289

constant and irrelevant to model ranking, remov- 290

ing it simplifies computation without affecting the 291

evaluation outcome. Second, compared to standard 292

KL divergence, which considers the entire output 293

space, NKL focuses explicitly on correct answers. 294

As shown in Equation (9), we assume that in an 295

ideal distribution Q(x | q), the probability of incor- 296

rect responses is negligible and can be discarded. 297

NKL for 1-to-1 Knowledge. While NKL is de- 298

signed for evaluating 1-to-N knowledge, it remains 299

applicable in 1-to-1 scenarios. In a 1-to-1 setting, 300

where a query q has a single correct answer a∗, the 301

gold distribution Q(x | q) becomes a Dirac delta 302

distribution concentrated entirely on a∗, i.e., 303

Q(xi | q) =

{
1, xi = a∗

0, otherwise.
(11) 304

Substituting this into the equation (9), we obtain: 305

NKL = −Q(a∗ | q) logPM (a∗ | q), (12) 306

= − logPM (a∗ | q), (13) 307

which degenerates to the standard negative log- 308

likelihood (NLL) commonly used for model evalu- 309

ation in 1-to-1 knowledge. This confirms that NKL 310

generalises NLL as a special case, extending its ap- 311

plicability from 1-to-1 to 1-to-N knowledge while 312

maintaining consistency with traditional metrics. 313

3.4 Accessing the Gold Distribution 314

To compute NKL, we require a gold distribution 315

Q(x|q) that captures the real-world prevalence of 316

different correct answers. Inspired by previous 317

works (Mallen et al., 2023; Kandpal et al., 2023), 318
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we construct Q(x|q) from corpus statistics, esti-319

mating the probability of each answer based on320

the co-occurrence number of subject-object pairs.321

Specifically, we represent knowledge as a collec-322

tion of factual triples (s, r, o), where s is the sub-323

ject, r is the relation, and o is the object. In our324

framework, the query q corresponds to the T (s, r),325

where T is the manual template, while the correct326

answers A = {a1, a2, . . . , a|A|} correspond to the327

valid objects o for that relation. To estimate the328

gold distribution Q(x|q), we count how frequently329

each pair (s, o) appears in the corpus. These raw330

counts are then normalised to relative frequencies331

over the correct answers, so that Q(x|q) reflects332

their empirical distribution in the corpus.333

4 Experiments334

We conduct three main experiments to evaluate our335

proposed NKL. First, we perform a simulation336

experiment (§4.2) to examine whether NKL satis-337

fies the two core criteria under controlled settings.338

Second, we conduct benchmarking of probing339

and editing (§4.3) on real-world datasets to eval-340

uate how effectively LLMs capture and update 1-341

to-N knowledge. Third, we conduct a probability342

alignment analysis (§4.4) to examine how knowl-343

edge editing affects probability alignment in 1-to-N344

knowledge, as demonstrated by a case study.345

Statistic COUNTERFACT SNOMED CT

Records 21,919 43,242
Subjects 20,391 22,753
Objects 6,482 8,232
Relations 34 24
1-to-N Instances 8,768 36,755

Table 1: Statistics of COUNTERFACT and SNOMED
CT datasets. We report the number of records, subjects,
objects, relations, and 1-to-N instances.

4.1 Experimental Setup346

Datasets. We conduct experiments on two347

datasets: COUNTERFACT (Meng et al., 2022a)348

and SNOMED CT (Donnelly et al., 2006). To349

identify 1-to-N knowledge in COUNTERFACT,350

we follow Elazar et al. (2021) to extract subject-351

relation pairs from queries within COUNTER-352

FACT and retrieve corresponding objects from353

Wikidata (Vrandečić and Krötzsch, 2014), reveal-354

ing that approximately 40% of queries have mul-355

tiple valid answers. We further estimate the356

real-world prevalence of these answers by follow-357

ing Kandpal et al. (2023), mapping query-answer358

pairs to pretraining documents and computing their 359

co-occurrence number. For dataset splitting, we 360

strictly adhere to the original splits provided by 361

Meng et al. (2022a) to ensure consistency in evalu- 362

ation. For SNOMED CT, we extract over 200,000 363

triples and identify 1-to-N knowledge by detecting 364

subjects linked to multiple objects via the same 365

relation. We annotate PubMed (Roberts, 2001) us- 366

ing PubTator (Wei et al., 2013) and perform entity 367

linking with SapBERT (Liu et al., 2021) to com- 368

pute co-occurrence number, excluding triples with 369

zero co-occurrence due to lack of textual support. 370

Dataset statistics are shown in Table 1, and the data 371

splitting procedure is described in Appendix C. 372

Large Language Models. Following previous 373

work (Meng et al., 2022a; Yao et al., 2023; 374

Wang et al., 2024), we select three widely used 375

LLMs in knowledge probing and editing: Llama3- 376

8B (Dubey et al., 2024), Mistral-7B (Jiang et al., 377

2023), and GPT-J-6B (Wang and Komatsuzaki, 378

2021). 379

Knowledge Editing Methods. For knowledge edit- 380

ing, we evaluate the following methods using our 381

NKL and the compared evaluation metrics. Editing 382

details are provided in Appendix D. 383

• ROME (Meng et al., 2022a): ROME modi- 384

fies an MLP layer by treating it as a key-value 385

memory, allowing new information to be inte- 386

grated. It utilises causal mediation analysis to 387

precisely identify the optimal editing location. 388

• MEMIT (Meng et al., 2023): Building on 389

ROME’s localisation strategies, MEMIT intro- 390

duces explicit parameter updates across mul- 391

tiple layers to embed new knowledge more 392

effectively. 393

• MEND (Mitchell et al., 2022): MEND en- 394

ables rapid, targeted updates by applying low- 395

rank gradient transformations. It facilitates 396

quick and localised model modifications us- 397

ing a single input-output example while miti- 398

gating overfitting. 399

• FT (Yao et al., 2023): FT refines model param- 400

eters via gradient descent, focusing updates 401

on a single MLP layer identified by ROME. 402

Compared Evaluation Metrics. To comprehen- 403

sively evaluate 1-to-N knowledge within LLMs, 404

we compare our proposed N-Answer Kullback- 405

Leibler Divergence (NKL) with several existing 406

metrics that have been widely adopted in prior 407

work (Yao et al., 2023; Li et al., 2022; Sung et al., 408
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Metric Criterion 1 Criterion 2

Max ACC 0.4030 0.1776
Precision@K 0.4537 0.2084
Perplexity 0.3780 0.4285
NKL 0.7352 0.7624

Table 2: Pearson correlations of evaluation metrics
with Criterion 1 and Criterion 2. Higher values indi-
cate stronger alignment with coverage (Criterion 1) and
probability alignment (Criterion 2) in assessing 1-to-N
knowledge in LLMs.

2021; Jiang et al., 2020; Onoe et al., 2022). Specif-409

ically, we include: Maximum Accuracy (Max-410

Acc), which captures whether the model’s top-411

1 prediction is correct; Top-K Precision (Preci-412

sion@K), which considers whether any correct413

answer appears among the top-K predictions; and414

Perplexity (PPL), which reflects the model’s over-415

all uncertainty over the answer space. Formal def-416

initions and formulations of these metrics can be417

found in § 2.2.418

4.2 Simulation Experiment419

(RQ1) : Does NKL more effectively meet both420

evaluation criteria for measuring 1-to-N knowl-421

edge than the compared metrics?422

To evaluate the effectiveness of NKL in measur-423

ing Criterion 1 (coverage of valid answers) and424

Criterion 2 (alignment with real-world probabil-425

ity distributions), we follow Li et al. (2020) and426

conduct a simulation experiment by simulating lan-427

guage model predictions on 1-to-N knowledge us-428

ing a controlled distribution.429

Simulation Setup. As illustrated in Figure 6, we430

design two controlled strategies to evaluate whether431

evaluation metrics meet two desired criteria: sensi-432

tivity to answer coverage (Criterion 1) and sensitiv-433

ity to probability alignment (Criterion 2). To isolate434

these factors, we construct synthetic distributions435

sampled from a standard Gaussian. The predictive436

distribution simulates a language model’s output by437

normalising scores over the full vocabulary, while438

the gold distribution retains the scores assigned to439

correct answers, normalised to reflect an ideal 1-440

to-N distribution. Based on these two distributions,441

we introduce the following strategies:442

(1) Answer Masking (For Criterion 1): To sim-443

ulate reduced answer coverage, we progressively444

remove high-probability correct answers from the445

predictive distribution. This yields a series of in-446

creasingly degraded distributions—from full cover-447
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Figure 3: Pearson correlations of evaluation metrics
with Criterion 1 (a) and Criterion 2 (b) across different
answer quantities in the simulation experiment. Higher
values indicate stronger alignment with the respective
criterion.

age (all correct answers present) to low coverage 448

(all correct answers removed). As shown in Fig- 449

ure 6, this mimics real-world cases where a model 450

only recalls a subset of correct answers. We then 451

compute Pearson correlation coefficients between 452

each metric and this degradation sequence to assess 453

how well the metric captures coverage sensitivity. 454

(2) Linear Interpolation (For Criterion 2): To 455

examine whether a metric is sensitive to probabil- 456

ity alignment, we linearly interpolate between the 457

gold distribution Q(x) and the predictive distribu- 458

tion PM (x), forming a continuum of intermediate 459

distributions: 460

Pλ(x|q) = λQ(x|q) + (1− λ)PM (x|q). 461

Varying λ from 1 to 0 transitions the distribution 462

from perfect alignment (λ = 1) to the model’s orig- 463

inal prediction (λ = 0). We again compute Pearson 464

correlations to evaluate how well each metric re- 465

sponds to increasing misalignment. 466

Results and Analysis. Table 2 presents the correla- 467

tion of each metric with Criterion 1 and Criterion 468

2, while Figure 3 further examines how perfor- 469

mance varies with the number of correct answers. 470

As shown in Table 2, NKL exhibits the highest cor- 471

relation with Criterion 1, substantially exceeding 472

MaxAcc and Precision@K. This suggests that NKL 473

more effectively captures the extent to which an 474

LLM retrieves a diverse set of valid answers, rather 475

than overfitting to a single dominant response. In 476

contrast, Perplexity shows a weaker correlation, 477

indicating that it does not sufficiently emphasise 478

coverage. Figure 3 (a) further examines the effect 479

of varying the number of correct answers. NKL 480

consistently demonstrates the strongest correlation 481

with Criterion 1 across all settings, while the cor- 482

relations of MaxAcc and Precision@K remain rel- 483

atively low. 484
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Model COUNTERFACT

NKL (↓) MaxAcc (↑) Prec@K (↑) PPL (↓)

Llama3 5.03 0.28 (–) 0.34 (–) 172.45 (–)
Mistral 6.38 0.24 (–) 0.27 (–) 256.32 (–)
GPT-J 7.13 0.13 (–) 0.15 (–) 325.67 (–)

Model SNOMED CT

NKL (↓) MaxAcc (↑) Prec@K (↑) PPL (↓)

Llama3 6.41 0.24 (⊕1) 0.38 (⊕1) 145.23 (⊕1)
Mistral 5.38 0.23 (⊖1) 0.35 (⊖1) 238.57 (⊖1)
GPT-J 7.10 0.11 (–) 0.16 (–) 402.78 (–)

Table 3: Ranking comparison of LLM baselines on
COUNTERFACT and SNOMED CT. Each column re-
ports a metric score, with NKL as the reference. For
MaxAcc, Prec@K, and PPL, we indicate whether a
model’s ranking on that metric differs from its NKL-
based ranking: ⊕ / ⊖ indicate higher/lower rankings,
with the number showing the change magnitude, and “–”
denotes no change.

For Criterion 2, NKL again achieves the highest485

correlation, indicating its ability to assess whether486

a model appropriately distributes probability mass487

among correct answers in accordance with their488

real-world prevalence. Perplexity also exhibits a489

moderate correlation, as it captures probability dis-490

tributions but lacks sensitivity to ranking. In con-491

trast, MaxAcc and Precision@K show only weak492

correlations, reinforcing their insensitivity to prob-493

ability calibration. Figure 3 (b) further supports494

these findings, illustrating that NKL maintains the495

highest correlation with Criterion 2 as the number496

of valid answers increases, while the performance497

of other metrics remains relatively stagnant. No-498

tably, NKL’s correlation continues to rise with in-499

creasing answer count, whereas Perplexity plateaus.500

This indicates that NKL effectively captures addi-501

tional structural information in 1-to-N knowledge,502

leveraging both probability alignment and ranking503

sensitivity. As valid answers increase, NKL more504

effectively captures nuanced distributions, outper-505

forming Perplexity in modeling real-world knowl-506

edge prevalence.507

4.3 Benchmarking 1-to-N Knowledge508

(RQ2) : How well do existing LLMs perform in509

benchmarking 1-to-N knowledge probing?510

To evaluate how well LLMs capture 1-to-N511

knowledge, we benchmark their performance on512

Counterfact and SNOMED CT using multiple eval-513

uation metrics. Table 3 presents the probing perfor-514

mance of different LLMs. We observe that Llama3515

achieves the highest MaxAcc and Precision@K516

Original ROME MEMIT MEND FT0

2

4

6

8

NK
L 

(
 b

et
te

r)

LLaMA3 Mistral GPT-J

Figure 4: An evaluation of NKL on Llama3, Mistral,
and GPT-J under various knowledge editing methods.
NKL measures the divergence between the model’s pre-
dictions and the gold distribution. The figure shows that
all editing methods increase NKL relative to the original
models, with ROME generally introducing larger shifts
than others.

on both datasets, suggesting that it retrieves more 517

correct answers compared to Mistral and GPT-J. 518

However, on SNOMED CT, Mistral achieves a 519

lower NKL, indicating that while Llama3 retrieves 520

more correct answers, Mistral’s probability dis- 521

tribution aligns better with real-world knowledge. 522

Meanwhile, GPT-J exhibits the highest NKL and 523

PPL values across both datasets, suggesting that its 524

predictive probabilities deviate the most from the 525

expected answer distribution, making it the least 526

aligned with real-world knowledge. 527

(RQ3) : How well do existing editing methods 528

adapt to 1-to-N knowledge? 529

We evaluate the effectiveness of existing knowl- 530

edge editing methods in handling 1-to-N knowl- 531

edge. Table 4 presents the performance of var- 532

ious editing techniques across three base mod- 533

els (Llama3, Mistral, and GPT-J) on COUNTER- 534

FACT. We observe that all editing methods signifi- 535

cantly improve MaxAcc and Precision@K, demon- 536

strating their ability to make newly injected knowl- 537

edge more retrievable. Among them, ROME 538

achieves the highest improvements in both metrics, 539

suggesting that its key-value intervention mecha- 540

nism effectively strengthens the recall of edited 541

knowledge. MEMIT also performs well, though 542

slightly below ROME, while MEND and FT show 543

relatively moderate improvements. Across all edit- 544

ing methods, Llama3 achieves the highest post- 545

editing retrieval performance, demonstrating strong 546

capacity for integrating new knowledge. Although 547

GPT-J attains lower absolute scores compared to 548

Llama3 and Mistral, it exhibits the most substan- 549

tial relative improvement post-editing, indicating a 550

high degree of responsiveness to knowledge editing 551

despite its weaker baseline. These results highlight 552
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Method NKL ↓ MaxAcc ↑ Prec@K ↑ PPL ↓

Llama3 5.03 0.28 0.34 172.45

ROME 6.28 (↑1.25) 0.68 (↑0.40) 0.75 (↑0.41) 324.87 (↑152.42)
MEMIT 6.94 (↑1.91) 0.59 (↑0.31) 0.64 (↑0.30) 355.23 (↑182.78)
MEND 5.86 (↑0.83) 0.56 (↑0.28) 0.60 (↑0.26) 231.14 (↑58.69)
FT 5.52 (↑0.49) 0.38 (↑0.10) 0.47 (↑0.13) 297.52 (↑125.07)

Mistral 6.38 0.24 0.27 256.32

ROME 7.02 (↑0.64) 0.62 (↑0.39) 0.70 (↑0.44) 372.14 (↑115.82)
MEMIT 7.48 (↑1.10) 0.56 (↑0.33) 0.62 (↑0.35) 398.76 (↑142.44)
MEND 6.24 (↓0.14) 0.52 (↑0.29) 0.57 (↑0.31) 275.34 (↑19.02)
FT 6.53 (↑0.15) 0.35 (↑0.12) 0.46 (↑0.19) 312.47 (↑56.15)

GPT-J 7.13 0.13 0.15 325.67

ROME 8.10 (↑0.97) 0.58 (↑0.46) 0.68 (↑0.52) 448.29 (↑122.62)
MEMIT 7.33 (↑0.20) 0.53 (↑0.40) 0.60 (↑0.45) 384.58 (↑58.91)
MEND 7.64 (↑0.51) 0.50 (↑0.37) 0.56 (↑0.41) 391.74 (↑66.07)
FT 7.96 (↑0.83) 0.30 (↑0.17) 0.41 (↑0.26) 420.13 (↑94.46)

Table 4: Knowledge editing performance on COUN-
TERFACT. Lower NKL and PPL indicate better per-
formance, while higher MaxAcc and Precision@K are
desirable.

the effectiveness of existing editing approaches in553

enhancing the retrieval of injected knowledge for554

1-to-N settings.555

4.4 Analysing Probability Alignment in556

1-to-N Knowledge557

(RQ4) : Do existing editing methods maintain558

probability alignment in 1-to-N knowledge?559

Although existing methods improve retrieval,560

they fail to preserve probability alignment. As561

shown in Table 4, NKL consistently increases post-562

editing, indicating that the predictive distributions563

diverge from the expected gold distribution. This564

suggests that while edited facts become more re-565

trievable, their probability assignments no longer566

reflect real-world prevalence. Figure 4 further567

shows that ROME achieves the highest retrieval568

performance but also yields the largest NKL in569

most cases, suggesting excessive probability re-570

distribution that overemphasises edited facts. In571

contrast, FT produces the lowest NKL, indicating572

better preservation of the probability landscape,573

though at the cost of weaker retrieval gains.574

(RQ5) : Why does knowledge editing degrade575

NKL performance on 1-to-N knowledge?576

As reported in Table 4 and Figure 4, NKL con-577

sistently increases, indicating greater divergence578

between the predicted and gold distributions after579

knowledge editing. To better understand this effect,580

we present a case study in Figure 5. The question581

“Which disease can cause chest pain?” has multiple582

correct answers with varying frequencies. After583

editing, the probability of the target answer (e.g.,584

Myocardial

infarctio
n

Gastro
esophageal

reflux disease
Pulmonary

embolism

Costochondritis

Pneumothorax
10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y

Which disease can cause chest pain?
Gold Base LLM Edited LLM

Figure 5: Case study on the question “Which disease can
cause chest pain?” The gold distribution is compared
with the outputs of the base LLaMA 3 and the edited
Llama 3 by MEMIT. Editing improves alignment with
the gold distribution, particularly for frequent answers.

Myocardial infarction) increases, improving its re- 585

trievability and thereby boosting retrieval-based 586

metrics such as MaxAcc and Precision@K. How- 587

ever, this improvement comes at the cost of re- 588

duced probabilities for other correct answers (e.g., 589

Pulmonary embolism), leading to a less faithful 590

alignment with the full gold distribution. This sug- 591

gests that editing 1-to-N knowledge may introduce 592

unintended interference among correct answers, 593

which partially explains the observed degradation 594

in NKL. These findings highlight a challenge in 595

1-to-N knowledge editing: existing methods priori- 596

tise recall but fail to maintain probability alignment. 597

The NKL increase underscores the need for future 598

approaches that not only enhance retrieval but also 599

ensure probability distributions remain consistent 600

with real-world knowledge. 601

5 Conclusion 602

We introduce N-Answer Kullback-Leibler Diver- 603

gence (NKL) as a novel metric for evaluating 1-to- 604

N knowledge in LLMs by integrating both ranking 605

and probability alignment. Theoretical analysis 606

confirms that NKL better satisfies key evaluation 607

criteria for multi-answer evaluation, while knowl- 608

edge probing reveals that existing LLMs tend to 609

overfit to dominant answers. Knowledge editing 610

experiments show that while current methods im- 611

prove retrieval accuracy, they often distort proba- 612

bility distributions, leading to increased NKL. We 613

also explore broader applications of NKL beyond 614

editing, in Appendix B. We hope that NKL can 615

serve as a faithful and comprehensive metric for 616

evaluating LLMs’ ability to represent diverse and 617

probabilistically coherent 1-to-N knowledge. 618
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Limitations619

One limitation of our approach lies in the construc-620

tion of the gold probability distribution used to621

compute NKL. Specifically, we approximate the622

gold distribution based on the co-occurrence fre-623

quencies of answers within the dataset. While this624

provides a practical and scalable proxy for real-625

world answer prevalence, it may not accurately626

reflect ground truth probabilities, especially in do-627

mains where frequency does not directly corre-628

spond to importance, correctness, or expert consen-629

sus. This introduces a potential source of bias in the630

evaluation, as models aligned with frequency-based631

distributions may not necessarily reflect true knowl-632

edge fidelity. Moreover, in datasets with limited633

coverage or long-tail distributions, co-occurrence634

counts may be sparse or noisy, further affecting635

the robustness of NKL. Future work could explore636

leveraging human annotations, curated ontologies,637

or probabilistic knowledge graphs to build more638

reliable gold distributions for evaluating 1-to-N639

knowledge representations.640
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Appendix871

In the Appendix, we introduce more details along872

with related works, discussions on applications,873

dataset details and experimental details:874

• Appendix A: Related Works.875

• Appendix B: Discussion876

• Appendix C: Dataset Details.877

• Appendix D: Experimental Details.878

A Related Work879

A.1 Knowledge Probing880

Knowledge probing aims to assess the factual881

knowledge stored within LLMs. A foundational882

method in this area is LAMA (Petroni et al., 2019),883

which uses cloze-style prompts to test whether884

LLMs can recover factual triples from a knowl- 885

edge base. LAMA (Petroni et al., 2019) demon- 886

strated that even without fine-tuning, models like 887

BERT (Devlin et al., 2019) and RoBERTa (Liu 888

et al., 2019) encode substantial factual knowledge. 889

Subsequent work expanded upon LAMA in mul- 890

tiple directions. For example, T-REX (Elsahar 891

et al., 2018) and Google-RE (Levy et al., 2017) 892

datasets introduced broader and more diverse rela- 893

tion types. PET (Schick and Schütze, 2021) and 894

AutoPrompt (Shin et al., 2020) explored more flexi- 895

ble or learned prompt templates to improve probing 896

accuracy. These approaches highlighted the sensi- 897

tivity of probing performance to prompt phrasing. 898

Recent research has proposed advanced methods 899

to enhance LLMs’ factual capabilities. Instruction- 900

Aware Prompt Tuning (IAPT) (Zhu et al., 2024) 901

introduces a parameter-efficient mechanism using 902

only four soft tokens per layer to generate input- 903

specific prompts, improving performance across 904

tasks. Ghosal et al. (2024) show that fine-tuning on 905

obscure or less prominent facts can impair factual 906

accuracy, even if those facts were seen during pre- 907

training, stressing the need to consider how knowl- 908

edge is encoded. To improve robustness, Zhou 909

et al. (2024) propose Robust Prompt Optimization 910

(RPO), which defends against jailbreaking attacks 911

by optimizing a small, transferable prompt suffix 912

to resist adversarial inputs. Unlike prior work, our 913

study focuses on evaluating 1-to-N knowledge with 914

an emphasis on probability alignment. 915

A.2 Knowledge Editing 916

Recent advancements in knowledge editing for 917

large language models (LLMs) can be categorized 918

into three primary strategies: memory augmen- 919

tation, meta-learning, and the locate-and-modify 920

paradigm (Yao et al., 2023). 921

Memory-augmented techniques integrate ex- 922

ternal memory components to enable knowledge 923

updates without altering the core model parameters. 924

A representative method, IKE (Zheng et al., 2023), 925

retrieves relevant content from an attached memory 926

bank and leverages tailored prompt demonstrations 927

to steer the model’s output accordingly. This ap- 928

proach emphasizes modularity and avoids direct 929

intervention in the model’s internal weights. 930

Meta-learning-based methods take a different 931

route by dynamically generating weight adjust- 932

ments. For instance, Knowledge Editor (KE) (Cao 933

et al., 2021) employs a hypernetwork to synthe- 934

size updated weights in response to new knowl- 935
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edge. MEND (Mitchell et al., 2022) enhances this936

concept with low-rank gradient adaptations, offer-937

ing improved efficiency. Nonetheless, these ap-938

proaches often remain resource-intensive and risk939

modifying unrelated internal representations.940

Locate-then-edit frameworks concentrate on941

precisely identifying and editing specific model942

components tied to factual knowledge. KN (Dai943

et al., 2022) applies attribution techniques to pin-944

point influential neurons, though it struggles with945

fine-grained weight modification. ROME (Meng946

et al., 2022a) addresses this by using causal tracing947

to locate critical Feed Forward Network (FFN) lay-948

ers—regarded as key-value storage units in trans-949

formers (Geva et al., 2021, 2023)—and directly950

alters their weights. MEMIT (Meng et al., 2023)951

scales this approach to support editing of multiple952

facts in parallel.953

Compared to these work, we introduce a novel954

evaluation metric designed for the 1-to-N knowl-955

edge editing setting, which remains underexplored956

in existing research.957

B Discussion958

This section discusses the potential applications of959

the proposed N-Answer Kullback-Leibler Diver-960

gence (NKL) metric. We highlight its utility both in961

knowledge editing scenarios and in domains such962

as clinical and biomedical reasoning, where model-963

ing and evaluating probabilistic distributions over964

multiple valid answers is essential.965

The proposed N-Answer Kullback-Leibler Di-966

vergence (NKL) metric is particularly well-suited967

to the evaluation of 1-to-N knowledge representa-968

tions in large language models (LLMs). A prin-969

cipal application of this metric lies in the domain970

of knowledge editing, wherein a model’s inter-971

nal distribution over semantically related factual972

statements must be revised in a controlled and prin-973

cipled manner. For instance, editing the statement974

“COVID-19 is caused by coronavirus” requires not975

only the correction of the explicit phrasing, but also976

a meaningful redistribution of probability across977

related variants, such as “COVID-19 is caused by978

SARS-CoV-2.” The NKL metric affords a nuanced979

measure of the degree to which the post-edit distri-980

bution conforms to a reference distribution, thereby981

supporting interpretable and fine-grained evalua-982

tion. Furthermore, NKL may be employed as an983

optimisation objective in the formulation of edit-984

ing procedures—such as constrained fine-tuning or985

distributionally-regularised updates—facilitating 986

the deliberate and coherent modification of mod- 987

elled knowledge. 988

A second critical application of NKL lies in 989

the clinical and biomedical domain, where many 990

queries naturally admit multiple valid answers, 991

each corresponding to distinct but plausible inter- 992

pretations of clinical data or medical context. In 993

such high-stakes settings, it is insufficient for a 994

model to merely retrieve the most likely diagnosis 995

or treatment; rather, it must accurately represent the 996

full distribution over possible alternatives. For ex- 997

ample, when interpreting ambiguous symptoms or 998

test results, the difference between assigning 90% 999

versus 60% probability to a life-threatening condi- 1000

tion can have significant consequences for down- 1001

stream decision-making. NKL provides a princi- 1002

pled framework for evaluating whether a model’s 1003

probabilistic beliefs over multiple medically valid 1004

answers reflect expert-curated reference distribu- 1005

tions, thereby enabling robust benchmarking of 1006

clinical reasoning fidelity and uncertainty calibra- 1007

tion in LLMs. 1008

C Dataset Details 1009

We adopt a systematic strategy to partition 1010

both datasets—COUNTERFACT and SNOMED 1011

CT—into training, development, and test subsets. 1012

Each dataset is divided at the record level using 1013

a fixed ratio of 8:1:1. To ensure robust and fair 1014

evaluation while preventing relation-specific data 1015

leakage, we enforce the constraint that all three 1016

subsets must contain at least one instance of ev- 1017

ery relation present in the full dataset. To this end, 1018

we employ stratified random sampling based on 1019

relation type: for each relation, the corresponding 1020

triples are randomly permuted and then proportion- 1021

ally allocated to the three subsets in accordance 1022

with the predefined split ratio. 1023

For COUNTERFACT, we identify one-to-many 1024

instances by extracting subject–relation pairs and 1025

retrieving corresponding object sets from Wikidata, 1026

revealing that roughly 40% of queries have multiple 1027

valid answers. To estimate their empirical preva- 1028

lence, we follow Kandpal et al. (2023) by mapping 1029

each query–answer pair to the Wikipedia pretrain- 1030

ing corpus and computing co-occurrence frequen- 1031

cies. Triples without observed co-occurrence are 1032

treated as less reliable and may be excluded from 1033

certain analyses. For dataset partitioning, we fol- 1034

low the original splits from Meng et al. (2022a) for 1035
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Figure 6: Illustration of two controlled strategies for simulation experiment. Answer Masking progressively
removes probability mass from correct answers to generate increasingly degraded predictive distributions. Linear
Interpolation constructs intermediate distributions by linearly interpolating between the gold and model-predicted
distributions using decreasing λ values. Interp. is an abbreviation for Interpolation.

consistency, and apply stratified sampling where1036

relation-level coverage is essential, ensuring each1037

split includes all relation types.1038

For SNOMED CT, we begin by extracting over1039

200,000 knowledge triples from the biomedical1040

ontology. One-to-many relations are identified by1041

selecting subjects that are connected to multiple1042

distinct objects through the same relation type. To1043

assess the empirical validity of these triples, we1044

annotate PubMed (Roberts, 2001) abstracts using1045

PubTator (Wei et al., 2013) and apply entity link-1046

ing via SapBERT (Liu et al., 2021) to compute1047

subject–object co-occurrence frequencies. Triples1048

lacking any observed co-occurrence in the corpus1049

are discarded, as they are unlikely to reflect mean-1050

ingful real-world associations. The filtered set is1051

then divided into training, development, and test1052

splits using an 8:1:1 ratio, ensuring that each split1053

retains full coverage of the relation set.1054

D Experimental Details1055

D.1 Editing Procedures1056

ROME (Meng et al., 2022a): We applied ROME1057

to Llama 3, using causal tracing to identify the1058

optimal editing location. Layer 18 was selected as1059

the primary target based on maximum intervention1060

impact. We retained the default learning rate and1061

number of editing steps from the original ROME1062

implementation. The main tunable parameter was1063

the scaling factor on the MLP update term within 1064

the selected layer. Edits were applied directly to 1065

test instances using these settings. 1066

MEMIT (Meng et al., 2023): For MEMIT, we fol- 1067

lowed a similar setup to ROME, fixing the learning 1068

rate and step size as per the original paper. Based 1069

on activation analysis in Llama 3, we selected Lay- 1070

ers 15 to 20 as editing targets. We tuned the per- 1071

layer contribution weights to balance edit success 1072

and locality, ensuring the edited facts were cor- 1073

rectly updated without affecting unrelated outputs. 1074

MEND (Mitchell et al., 2022): MEND was adapted 1075

to Llama 3 using default training configurations for 1076

learning rate, batch size, and epochs. We tuned 1077

the projection weights within the MEND networks, 1078

which generate low-rank updates from standard 1079

fine-tuning gradients. This enabled precise, effi- 1080

cient edits while minimizing interference with ex- 1081

isting model knowledge. 1082

Fine-Tuning (FT): For full-model fine-tuning, we 1083

used a fixed learning rate of 5e-5 across all experi- 1084

ments. No hyperparameter tuning was conducted 1085

beyond this, as FT was intended primarily as a 1086

performance baseline to contrast against parameter- 1087

efficient editing methods. 1088
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D.2 One-to-Many Knowledge Editing1089

Strategy1090

To support one-to-many knowledge editing, we1091

reformulate the editing objective to account for1092

all valid answers associated with a given subject-1093

relation pair. Specifically, we treat the full set of1094

correct object values as editing targets, aiming to1095

inject them into the model’s internal representation.1096

For editing methods that do not support batch up-1097

dates—such as ROME (Meng et al., 2022a)—we1098

apply edits sequentially, updating one object at a1099

time in the order of their appearance. Each edit1100

is performed independently, without overwriting1101

previous modifications, allowing the model to ac-1102

cumulate multiple correct associations across suc-1103

cessive interventions. In contrast, batch-editable1104

methods like MEMIT (Meng et al., 2023) allow1105

simultaneous updates. For these, we construct a1106

unified batch containing all subject-relation-object1107

triples corresponding to valid answers and perform1108

a single joint edit. This approach ensures that all1109

correct variants are explicitly encoded within the1110

model’s memory in a single pass, preserving inter-1111

dependencies among them.1112

This editing protocol enables a consistent and1113

controlled injection of 1-to-N knowledge across1114

different methods. Moreover, it facilitates a fair1115

comparison of post-edit generalisation, as evalu-1116

ated by our NKL metric, which captures how well1117

the edited model represents the full distribution1118

over valid answers.1119
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