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Abstract

Large language models (LLMs) have demon-
strated strong capabilities in encoding and ap-
plying factual knowledge, much of which fol-
lows a one-to-many (1-to-N) structure, where a
single query corresponds to multiple valid an-
swers. However, the existing metrics for eval-
uating 1-to-N knowledge suffer from inherent
limitations, such as ignoring valid alternative
answers, failing to reflect model confidence,
or neglecting probability distributions. To ad-
dress these limitations, we propose a new met-
ric, named N-Answer Kullback-Leibler Diver-
gence (NKL), which aligns the predicted proba-
bility distribution of an LLM with a given gold
distribution (e.g. a pre-training corpus). NKL
integrates both ranking and probability infor-
mation, offering a more comprehensive evalua-
tion. We also formalise 1-to-N knowledge eval-
uation with two criteria—coverage and align-
ment—under which NKL demonstrates the best
overall performance. Experiments on Counter-
fact and SNOMED CT further validate NKL’s
effectiveness in knowledge probing and editing,
providing new insights into LLMs’ ability to
represent and modify 1-to-N knowledge '.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in acquiring knowledge
across diverse domains (Plaat et al., 2024; Hu et al.,
2023; Wang et al., 2023). There has been grow-
ing interest in understanding and manipulating the
internal knowledge of LLMs. Among these ap-
proaches, knowledge probing (Meng et al., 2022b;
Sung et al., 2021) and knowledge editing (Meng
etal., 2022a; Yao et al., 2023) have received consid-
erable attention. Knowledge probing aims to evalu-
ate an LLM’s ability to recall and apply the knowl-
edge learned during pre-training, while knowledge
editing focuses on making targeted modifications to

!Code and datasets can be found in: https: //anonymous.
4open.science/r/nkl_metrics-42E4

What disease does ¢ cough indicate?. MaxACC
Dcold/ Q) flus/B lung cancer 1.0 wissing Info.
‘z @ LLM / ung \cold  flu/
% canger
IS precision@s Missing Info.
@ — vet
& n — A 1.0 256
cold flu lung gout .
cancer
\ ung, cold, flu
cancer
Z perplexit
£ ﬁ Gold F erplexity Missing Info.
8
& LTI
cold flu lung gout ung cold flu
cancer

cancer

Figure 1: Limitations of evaluation metrics for 1-to-
N knowledge: MaxAcc (top right) only considers the
top-1 answer, missing valid alternatives like “cold” and
“flu.” Precision@3 (middle right) captures multiple cor-
rect answers but ignores overconfidence in lung cancer.
Perplexity (bottom right) evaluates probability values
without considering answer identity or ranking.

the model’s internal knowledge without retraining.

However, most existing works represent knowl-
edge in a one-to-one format, where each query
is associated with a single correct answer. This
simplification often overlooks the complexity of
real-world knowledge, which often exhibits a 1-to-
N structure, where a query corresponds to multiple
valid answers (Green, 2001; Thandi et al., 2021;
Han et al., 2022). For instance, the query “What
is the treatment for hypertension?” has several
answers, including ACE inhibitors, beta-blockers,
and calcium channel blockers (Fuchs and Whelton,
2020). This 1-to-N pattern is widespread: 40% of
Counterfact (Meng et al., 2022a) and over 80% of
SNOMED CT (Donnelly et al., 2006) triples fol-
low a 1-to-N structure. While these answers are all
correct, they are actually not equally common or
likely. This is especially important in biomedicine,
where rare but technically valid answers may be
misleading. For example, given the question “What
disease does a cough indicate?”, lung cancer is
one correct answer, but far less typical than cold.
This highlights the importance of evaluating not
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only correctness of model’s prediction, but also the
distribution over multiple correct answers. Such
considerations lead to a critical question:

How can we evaluate LLMs to effectively assess
their understanding of 1-to-N knowledge?

To address this question, we first investigate ex-
isting evaluation metrics used in knowledge prob-
ing and editing that can be applied to 1-to-N knowl-
edge, including MaxAcc (Yao et al., 2023; Li et al.,
2022; Sung et al., 2021), Precision@K (Sung et al.,
2021; Jiang et al., 2020), and Perplexity (Onoe
et al., 2022). These metrics offer valuable insights
into model performance by assessing accuracy,
ranking or probability calibration. However, they
still have limitations in fully capturing the struc-
tured nature of 1-to-N knowledge. As shown in Fig-
ure 1, given the predicted answer distributions and
the gold distributions provided by experts, existing
metrics, i.e., MaxAcc, Precision @K and Perplexity,
either focus solely on the highest-ranked response
or treat top answers as equally probable, and thus
fail to capture the true alignment between predicted
and gold distributions in knowledge representation.

To this end, we propose N-Answer Kullback-
Leibler Divergence (NKL), a new evaluation metric
designed for assessing 1-to-N knowledge probing
and editing. NKL assesses the alignment between
an LLM’s predicted probability distribution and the
gold distribution reflecting the ground-truth likeli-
hood of each candidate answer. Compared to exist-
ing metrics, NKL provides a more comprehensive
assessment by considering all valid answers, inte-
grating both ranking and probability information,
and directly aligning with the gold distribution.

To validate the effectiveness of NKL in capturing
1-to-N knowledge, we further formalise the task of
1-to-N knowledge evaluation and introduce two key
evaluation criteria: coverage, which measures an
LLM’s ability to recall all valid answers, and align-
ment, which evaluates how well the predicted prob-
ability distribution matches the gold distribution of
valid answers. Our empirical results indicate that
NKL achieves the highest correlation scores with
both criteria. We further demonstrate the utility of
NKL by applying it to two key tasks: knowledge
probing and knowledge editing, on two real-world
datasets, namely Counterfact (Meng et al., 2022a)
and SNOMED CT (Donnelly et al., 2006). These
experiments allow us to gain deeper insight into
how LLMs recall and update 1-to-N knowledge.

Our key contributions can be summarised as fol-
lows: (1) We propose NKL, an evaluation metric

that measures the alignment between an LLM’s
predicted distribution and a given gold one; (2) We
formally define the task of 1-to-N knowledge prob-
ing and propose its two key criteria, i.e. coverage
and alignment; (3) We conduct a comprehensive
evaluation of 1-to-N knowledge probing and edit-
ing, showing that existing editing methods improve
the retrieval performance of edited LLMs but have
limited capacity to maintain probability alignment.

2 Preliminaries

We provide a brief introduction of 1-to-N knowl-
edge and its evaluation metrics in this section. Re-
lated work on knowledge probing and editing is
discussed in Appendix A.

2.1 1-to-N Knowledge

A piece of knowledge can be considered as a
query—answer pair (g, a) that captures the associa-
tion between a query and a valid answer (Meng
et al., 2022a; Yao et al., 2023). We define 1-
to-N knowledge as a setting where a query ¢
is associated with multiple valid answers A =
{a1,as,...,a.}. Given a language model M, we
denote its predictive probability distribution over
a set of candidate answers X = {x1,...,z,} as:
P(x | q) = {Pum(x1|q),..., Pu(xn | q)}, where
x; € X denotes a complete candidate answer and
P(x;|q) is the probability that the model assigns to
x;. Similarly, we define a gold probability distribu-
tion over X: Q(zlq) = {Q(z1lq), ..., Qznlq)},
which reflects ground-truth likelihoods over candi-
date answers. These likelihoods can be derived
from domain-specific knowledge bases or real-
world prevalence statistics (see § 3.4 for details
on obtaining gold distribution). While P(z | q)
reflects the model’s learned probabilities, Q(x | ¢)
represents the gold distribution over candidate an-
swers, serving as the reference for evaluation.

2.2 Existing Evaluation Metrics for 1-to-N
Knowledge

To evaluate how well a language model M captures
factual knowledge, there are several metrics, such
as Maximum Accuracy (MaxAcc) (Yao et al.,
2023; Li et al., 2022; Sung et al., 2021), Top-K
Precision (Precision @K) (Sung et al., 2021; Jiang
et al., 2020) and Perplexity (PPL) (Onoe et al.,
2022), that are widely used for knowledge probing
and knowledge editing (Yao et al., 2023; Li et al.,
2022). Formally, they are defined as follows:
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Figure 2: An overview of how NKL is used to evaluate
1-to-N knowledge. We consider two scenarios: knowl-
edge probing, which assesses the alignment between the
model’s predictive distribution and the gold distribution;
and knowledge editing, which evaluates how this align-
ment changes after the model’s internal knowledge is
modified. NKL quantifies distributional alignment in
both settings.

(1) MaxAcc:

E I P
(@ A)~P {arg max Py(z | q) € A} :

where [(-) is an indicator function that returns 1 if
the most probable predicted answer by the model
belongs to the ground-truth set A and 0 otherwise.
The query-answer pairs (¢, .A) are sampled from
a data distribution P. MaxAcc measures if the
model’s top-1 prediction matches any answer in A.

(2) Precision@K:

Ega~p I {tOP-XK Py(x | q)NAF# 0)} ,
e

where [(-) is an indicator function that returns 1 if
at least one of the top- K predicted answers belongs
to the ground-truth set A, and O otherwise. This
metric evaluates whether the model can recall any
valid answer among its top-K ranked predictions.

(3) PPL:
1
Ega~pexp | = Z log Pa(a | q) |,
‘A| acA

where Pys(a | q) is the probability assigned to a
correct answer a. PPL assesses the average uncer-
tainty of the model over answers in A, with lower
values indicating that the model assigns higher
probabilities to correct answers.

3 The NKL Metric for Evaluating 1-to-N
Knowledge

3.1 Evaluation Criteria for 1-to-N Knowledge

To effectively evaluate the ability of LLMs to repre-
sent and update 1-to-N knowledge through probing

and editing, we propose two fundamental criteria
that define the desired properties of an ideal evalu-
ation metric.

Criterion 1 (Coverage). For I-to-N knowledge,
where a query q is associated with multiple valid
answers A, an LLM should maximise the size of
the retrieved subset A C A, where A denotes the
set of valid answers generated by the model.

Criterion 2 (Alignment). For I-to-N knowledge,
an LLM’s predicted probability distribution P(z |
q) should align with the gold distribution Q(zx | q).

In knowledge probing and editing, Criterion
1 ensures that an LLLM, whether a foundational
model or an edited one, retrieves a diverse set of
valid answers rather than overfitting to a single
dominant response, reflecting its ability to repre-
sent 1-to-N knowledge, i.e. the breadth of coverage.
Meanwhile, Criterion 2 ensures that a well-trained
model allocates probability mass in proportion to
the gold distribution of valid answers, preventing
overconfidence in rare responses or underestimat-
ing frequent ones, i.e. the distribution alignment.

3.2 N-Answer Kullback-Leibler Divergence

Intuitively, a well-trained model should handle 1-
to-N knowledge by allocating its probability mass
over multiple valid answers in accordance with a
specified gold distribution. This gold distribution
may reflect real-world prevalence or be deliberately
designed to support specific evaluation objectives.
The proposed N-Answer Kullback-Leibler Diver-
gence (NKL) metric quantifies the divergence be-
tween the predicted distribution of the model and
the expected gold distribution, ensuring that cover-
age and alignment with real-world knowledge are
taken into account.

Specifically, given a query g, Pys(z | ¢) defines
the probability that model M assigns to a candidate
answer x € X. For an answer z;, the predictive
distribution is given by the following formula:

PM(a:i|q):PM(t1,t2,...,tk | q), (1)
k
= H PM(tj ‘ q, tl, tg, v ,tj_l), (2)
j=1
k

=exp | Y log Py(t; | q.t<;) |, 3
j=1

where t; represents the j-th token in the tok-
enized form of the answer x; and k denotes the



token length of x;. Now, suppose that query ¢ has
N possible outputs and C' correct answers. The
probability distribution of these N possible outputs
predicted by the model can be formulated as:

P(z | q) = {Pu(z1]q),-.., Pulzn | @)} @)

Given Q(z | q) as the gold probability distribu-
tion under the given query ¢. Then we have:

Qx| g ={Q(x1|q),..-,Qxn @)} (5)

We then compute the KL divergence of Q and PP.

Q(]q)

ZQ zilg)log - s (©)

Dx(Q||P) =

—ZQ(xirqﬂogPM(xi\q). (7)

i=1

= entropy(Q

Given that entropy(Q) is a constant. N K L can
then be formulated as:

NKL=-) Qx; | q)log Px(zi | q), (8
=1
=— > Q=i | 9)log Pu(wi| a), (9)

;€A

where we transition from summing over all n can-
didate answers to summing over the set of valid an-
swers A, under the assumption that the probability
mass of incorrect answers in the gold distribution
Q(z|q) is negligible. By combining Equations (3)
and (9), and incorporating length normalisation for
multi-token cases to ensure fair comparison across
answer sequences of varying lengths [add citation],
we derive the NKL formulation for the multi-token
scenario:

NKL = — Z Qz

;€A

Iz\

ZIOgP tj | Q7t<j)
7j=1

& zl
(10)

where |x;| is the token length of the answer x;.

3.3 Properties and Discussion

NKL integrates ranking and probability in-
formation. NKL simultaneously captures both
ranking and probability information, making it
a comprehensive measure for 1-to-N knowledge.
As shown in Equation (9), by weighting the log-
likelihood with Q(z), it ensures that predicted prob-
abilities align with real-world relevance, enforcing
a probability-sensitive ranking. Higher-probability

answers in Q(z) contribute more to the evaluation,
making NKL sensitive to both correctness and con-
fidence. This allows NKL to provide a fine-grained
assessment of the model’s ability to capture the
knowledge distribution in 1-to-N scenarios.
Comparison between NKL and Standard KL
Divergence. NKL is derived from the standard
Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951), a fundamental measure of distribu-
tional difference widely used in NLP (Lang et al.,
2024), but is specifically tailored for evaluating 1-
to-N knowledge. The primary differences between
NKL and standard KL divergence lie in two key as-
pects. First, as shown in Equation (9), we omit the
entropy of the gold distribution, as its estimation
requires computing the probability of all candidate
answers for a given query, which is computation-
ally expensive. Additionally, since this entropy is
constant and irrelevant to model ranking, remov-
ing it simplifies computation without affecting the
evaluation outcome. Second, compared to standard
KL divergence, which considers the entire output
space, NKL focuses explicitly on correct answers.
As shown in Equation (9), we assume that in an
ideal distribution Q(x | ¢), the probability of incor-
rect responses is negligible and can be discarded.
NKL for 1-to-1 Knowledge. While NKL is de-
signed for evaluating 1-to-N knowledge, it remains
applicable in 1-to-1 scenarios. In a 1-to-1 setting,
where a query ¢ has a single correct answer a*, the
gold distribution Q(z | ¢) becomes a Dirac delta
distribution concentrated entirely on a*, i.e.,

1, z;=a*
Q($i|Q):{’ = (11)

0, otherwise.
Substituting this into the equation (9), we obtain:

NKL = —-Q(a" | q)log Py (a
= —log Py(a™ | q),

(12)
(13)

*1q),

which degenerates to the standard negative log-
likelihood (NLL) commonly used for model evalu-
ation in 1-to-1 knowledge. This confirms that NKL
generalises NLL as a special case, extending its ap-
plicability from 1-to-1 to 1-to-N knowledge while
maintaining consistency with traditional metrics.

3.4 Accessing the Gold Distribution

To compute NKL, we require a gold distribution
Q(z|q) that captures the real-world prevalence of
different correct answers. Inspired by previous
works (Mallen et al., 2023; Kandpal et al., 2023),



we construct Q(x|q) from corpus statistics, esti-
mating the probability of each answer based on
the co-occurrence number of subject-object pairs.
Specifically, we represent knowledge as a collec-
tion of factual triples (s, 7, 0), where s is the sub-
ject, r is the relation, and o is the object. In our
framework, the query g corresponds to the 7 (s, ),
where 7 is the manual template, while the correct
answers A = {a1,az, ..., a4} correspond to the
valid objects o for that relation. To estimate the
gold distribution Q(z|q), we count how frequently
each pair (s, 0) appears in the corpus. These raw
counts are then normalised to relative frequencies
over the correct answers, so that Q(z|q) reflects
their empirical distribution in the corpus.

4 Experiments

We conduct three main experiments to evaluate our
proposed NKL. First, we perform a simulation
experiment (§4.2) to examine whether NKL satis-
fies the two core criteria under controlled settings.
Second, we conduct benchmarking of probing
and editing (§4.3) on real-world datasets to eval-
uate how effectively LLMs capture and update 1-
to-N knowledge. Third, we conduct a probability
alignment analysis (§4.4) to examine how knowl-
edge editing affects probability alignment in 1-to-N
knowledge, as demonstrated by a case study.

Statistic COUNTERFACT SNOMED CT
Records 21,919 43,242
Subjects 20,391 22,753
Objects 6,482 8,232
Relations 34 24
1-to-N Instances 8,768 36,755

Table 1: Statistics of COUNTERFACT and SNOMED
CT datasets. We report the number of records, subjects,
objects, relations, and 1-to-N instances.

4.1 Experimental Setup

Datasets. We conduct experiments on two
datasets: COUNTERFACT (Meng et al., 2022a)
and SNOMED CT (Donnelly et al., 2006). To
identify 1-to-N knowledge in COUNTERFACT,
we follow Elazar et al. (2021) to extract subject-
relation pairs from queries within COUNTER-
FACT and retrieve corresponding objects from
Wikidata (Vrandeci¢ and Krotzsch, 2014), reveal-
ing that approximately 40% of queries have mul-
tiple valid answers. We further estimate the
real-world prevalence of these answers by follow-
ing Kandpal et al. (2023), mapping query-answer

pairs to pretraining documents and computing their
co-occurrence number. For dataset splitting, we
strictly adhere to the original splits provided by
Meng et al. (2022a) to ensure consistency in evalu-
ation. For SNOMED CT, we extract over 200,000
triples and identify 1-to-N knowledge by detecting
subjects linked to multiple objects via the same
relation. We annotate PubMed (Roberts, 2001) us-
ing PubTator (Wei et al., 2013) and perform entity
linking with SapBERT (Liu et al., 2021) to com-
pute co-occurrence number, excluding triples with
zero co-occurrence due to lack of textual support.
Dataset statistics are shown in Table 1, and the data
splitting procedure is described in Appendix C.
Large Language Models. Following previous
work (Meng et al., 2022a; Yao et al.,, 2023;
Wang et al., 2024), we select three widely used
LLMs in knowledge probing and editing: Llama3-
8B (Dubey et al., 2024), Mistral-7B (Jiang et al.,
2023), and GPT-J-6B (Wang and Komatsuzaki,
2021).

Knowledge Editing Methods. For knowledge edit-
ing, we evaluate the following methods using our
NKL and the compared evaluation metrics. Editing
details are provided in Appendix D.

* ROME (Meng et al., 2022a): ROME modi-
fies an MLP layer by treating it as a key-value
memory, allowing new information to be inte-
grated. It utilises causal mediation analysis to
precisely identify the optimal editing location.

* MEMIT (Meng et al., 2023): Building on
ROME’s localisation strategies, MEMIT intro-
duces explicit parameter updates across mul-
tiple layers to embed new knowledge more
effectively.

* MEND (Mitchell et al., 2022): MEND en-
ables rapid, targeted updates by applying low-
rank gradient transformations. It facilitates
quick and localised model modifications us-
ing a single input-output example while miti-
gating overfitting.

* FT (Yaoetal., 2023): FT refines model param-

eters via gradient descent, focusing updates
on a single MLP layer identified by ROME.

Compared Evaluation Metrics. To comprehen-
sively evaluate 1-to-N knowledge within LLMs,
we compare our proposed N-Answer Kullback-
Leibler Divergence (NKL) with several existing
metrics that have been widely adopted in prior
work (Yao et al., 2023; Li et al., 2022; Sung et al.,



Metric Criterion 1 Criterion 2
Max ACC 0.4030 0.1776
Precision@K 0.4537 0.2084
Perplexity 0.3780 0.4285
NKL 0.7352 0.7624

Table 2: Pearson correlations of evaluation metrics
with Criterion 1 and Criterion 2. Higher values indi-
cate stronger alignment with coverage (Criterion 1) and
probability alignment (Criterion 2) in assessing 1-to-N
knowledge in LLMs.

2021; Jiang et al., 2020; Onoe et al., 2022). Specif-
ically, we include: Maximum Accuracy (Max-
Acc), which captures whether the model’s top-
1 prediction is correct; Top-K Precision (Preci-
sion@K), which considers whether any correct
answer appears among the top-K predictions; and
Perplexity (PPL), which reflects the model’s over-
all uncertainty over the answer space. Formal def-
initions and formulations of these metrics can be
found in § 2.2.

4.2 Simulation Experiment

(RQ1) : Does NKL more effectively meet both
evaluation criteria for measuring 1-to-N knowl-
edge than the compared metrics?

To evaluate the effectiveness of NKL in measur-

ing Criterion 1 (coverage of valid answers) and
Criterion 2 (alignment with real-world probabil-
ity distributions), we follow Li et al. (2020) and
conduct a simulation experiment by simulating lan-
guage model predictions on 1-to-N knowledge us-
ing a controlled distribution.
Simulation Setup. As illustrated in Figure 6, we
design two controlled strategies to evaluate whether
evaluation metrics meet two desired criteria: sensi-
tivity to answer coverage (Criterion 1) and sensitiv-
ity to probability alignment (Criterion 2). To isolate
these factors, we construct synthetic distributions
sampled from a standard Gaussian. The predictive
distribution simulates a language model’s output by
normalising scores over the full vocabulary, while
the gold distribution retains the scores assigned to
correct answers, normalised to reflect an ideal 1-
to-N distribution. Based on these two distributions,
we introduce the following strategies:

(1) Answer Masking (For Criterion 1): To sim-
ulate reduced answer coverage, we progressively
remove high-probability correct answers from the
predictive distribution. This yields a series of in-
creasingly degraded distributions—from full cover-
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Figure 3: Pearson correlations of evaluation metrics
with Criterion 1 (a) and Criterion 2 (b) across different
answer quantities in the simulation experiment. Higher
values indicate stronger alignment with the respective
criterion.

age (all correct answers present) to low coverage
(all correct answers removed). As shown in Fig-
ure 6, this mimics real-world cases where a model
only recalls a subset of correct answers. We then
compute Pearson correlation coefficients between
each metric and this degradation sequence to assess
how well the metric captures coverage sensitivity.

(2) Linear Interpolation (For Criterion 2): To
examine whether a metric is sensitive to probabil-
ity alignment, we linearly interpolate between the
gold distribution () and the predictive distribu-
tion Pys(z), forming a continuum of intermediate
distributions:

Py(z]q) = AQ(z[q) +

Varying A from 1 to O transitions the distribution
from perfect alignment (A = 1) to the model’s orig-
inal prediction (A = 0). We again compute Pearson
correlations to evaluate how well each metric re-
sponds to increasing misalignment.

(1= A)Py(zlq).

Results and Analysis. Table 2 presents the correla-
tion of each metric with Criterion 1 and Criterion
2, while Figure 3 further examines how perfor-
mance varies with the number of correct answers.
As shown in Table 2, NKL exhibits the highest cor-
relation with Criterion 1, substantially exceeding
MaxAcc and Precision@K. This suggests that NKL
more effectively captures the extent to which an
LLM retrieves a diverse set of valid answers, rather
than overfitting to a single dominant response. In
contrast, Perplexity shows a weaker correlation,
indicating that it does not sufficiently emphasise
coverage. Figure 3 (a) further examines the effect
of varying the number of correct answers. NKL
consistently demonstrates the strongest correlation
with Criterion 1 across all settings, while the cor-
relations of MaxAcc and Precision@K remain rel-
atively low.



COUNTERFACT

Model

NKL () MaxAcc (1) Prec@K (1) PPL ())
Llama3 5.03 0.28 (-) 0.34 (-) 17245 (-)
Mistral 6.38 0.24 (-) 0.27 () 256.32 (-)
GPT-J 7.13 0.13 () 0.15(-) 325.67 (-)
Model SNOMED CT

NKL () MaxAcc (1) Prec@K (1) PPL ())
Llama3 6.41 0.24 (®1) 0.38 (1)  145.23 (d1)
Mistral 5.38 0.23 (e1) 0.35(1)  238.57 (01)
GPT-J 7.10 0.11 () 0.16 () 402.78 (-)

Table 3: Ranking comparison of LLM baselines on
COUNTERFACT and SNOMED CT. Each column re-
ports a metric score, with NKL as the reference. For
MaxAcc, Prec@K, and PPL, we indicate whether a
model’s ranking on that metric differs from its NKL-
based ranking: & / & indicate higher/lower rankings,
with the number showing the change magnitude, and “-”
denotes no change.

For Criterion 2, NKL again achieves the highest
correlation, indicating its ability to assess whether
a model appropriately distributes probability mass
among correct answers in accordance with their
real-world prevalence. Perplexity also exhibits a
moderate correlation, as it captures probability dis-
tributions but lacks sensitivity to ranking. In con-
trast, MaxAcc and Precision@K show only weak
correlations, reinforcing their insensitivity to prob-
ability calibration. Figure 3 (b) further supports
these findings, illustrating that NKL maintains the
highest correlation with Criterion 2 as the number
of valid answers increases, while the performance
of other metrics remains relatively stagnant. No-
tably, NKL’s correlation continues to rise with in-
creasing answer count, whereas Perplexity plateaus.
This indicates that NKL effectively captures addi-
tional structural information in 1-to-N knowledge,
leveraging both probability alignment and ranking
sensitivity. As valid answers increase, NKL. more
effectively captures nuanced distributions, outper-
forming Perplexity in modeling real-world knowl-
edge prevalence.

4.3 Benchmarking 1-to-N Knowledge

(RQ2) : How well do existing LLMs perform in
benchmarking 1-to-N knowledge probing?

To evaluate how well LLMs capture 1-to-N
knowledge, we benchmark their performance on
Counterfact and SNOMED CT using multiple eval-
uation metrics. Table 3 presents the probing perfor-
mance of different LLMs. We observe that Llama3
achieves the highest MaxAcc and Precision@K

s LLaMA3 Mistral m GPT-)
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Figure 4: An evaluation of NKL on Llama3, Mistral,
and GPT-J under various knowledge editing methods.
NKL measures the divergence between the model’s pre-
dictions and the gold distribution. The figure shows that
all editing methods increase NKL relative to the original
models, with ROME generally introducing larger shifts
than others.

on both datasets, suggesting that it retrieves more
correct answers compared to Mistral and GPT-J.
However, on SNOMED CT, Mistral achieves a
lower NKL, indicating that while Llama3 retrieves
more correct answers, Mistral’s probability dis-
tribution aligns better with real-world knowledge.
Meanwhile, GPT-J exhibits the highest NKL and
PPL values across both datasets, suggesting that its
predictive probabilities deviate the most from the
expected answer distribution, making it the least
aligned with real-world knowledge.

(RQ3) : How well do existing editing methods
adapt to 1-to-N knowledge?

We evaluate the effectiveness of existing knowl-
edge editing methods in handling 1-to-N knowl-
edge. Table 4 presents the performance of var-
ious editing techniques across three base mod-
els (Llama3, Mistral, and GPT-J) on COUNTER-
FACT. We observe that all editing methods signifi-
cantly improve MaxAcc and Precision@K, demon-
strating their ability to make newly injected knowl-
edge more retrievable. Among them, ROME
achieves the highest improvements in both metrics,
suggesting that its key-value intervention mecha-
nism effectively strengthens the recall of edited
knowledge. MEMIT also performs well, though
slightly below ROME, while MEND and FT show
relatively moderate improvements. Across all edit-
ing methods, Llama3 achieves the highest post-
editing retrieval performance, demonstrating strong
capacity for integrating new knowledge. Although
GPT-J attains lower absolute scores compared to
Llama3 and Mistral, it exhibits the most substan-
tial relative improvement post-editing, indicating a
high degree of responsiveness to knowledge editing
despite its weaker baseline. These results highlight



Method NKL | MaxAcc T  Prec@K T PPL |

Llama3 5.03 0.28 0.34 172.45

ROME  6.28 (11.25) 0.68 (10.40) 0.75 (10.41) 324.87 (1152.42)
MEMIT 6.94 (11.91) 0.59 (10.31) 0.64 (10.30) 355.23 (1182.78)
MEND  5.86(10.83) 0.56 (10.28) 0.60 (10.26)  231.14 (158.69)
FT 5.52(10.49) 0.38 (10.10) 0.47 (10.13) 297.52 (1125.07)
Mistral 6.38 0.24 0.27 256.32

ROME  7.02 (10.64) 0.62 (10.39) 0.70 (10.44) 372.14 (1115.82)
MEMIT 7.48 (11.10) 0.56 (10.33) 0.62 (10.35) 398.76 (1142.44)
MEND  6.24 (|/0.14) 0.52(10.29) 0.57 (10.31)  275.34 (119.02)
FT 6.53 (10.15)  0.35(10.12)  0.46 (10.19)  312.47 (156.15)
GPT-J 7.13 0.13 0.15 325.67

ROME  8.10(10.97) 0.58 (10.46) 0.68 (10.52) 448.29 (1122.62)
MEMIT 7.33 (10.20) 0.53 (10.40) 0.60 (10.45) 384.58 (158.91)
MEND  7.64 (10.51) 0.50 (10.37) 0.56 (10.41) 391.74 (166.07)
FT 7.96 (10.83) 0.30 (10.17) 0.41 (10.26)  420.13 (194.46)

Table 4: Knowledge editing performance on COUN-
TERFACT. Lower NKL and PPL indicate better per-
formance, while higher MaxAcc and Precision @K are
desirable.

the effectiveness of existing editing approaches in
enhancing the retrieval of injected knowledge for
1-to-N settings.

4.4 Analysing Probability Alignment in
1-to-N Knowledge

(RQ4) : Do existing editing methods maintain
probability alignment in 1-to-N knowledge?
Although existing methods improve retrieval,
they fail to preserve probability alignment. As
shown in Table 4, NKL consistently increases post-
editing, indicating that the predictive distributions
diverge from the expected gold distribution. This
suggests that while edited facts become more re-
trievable, their probability assignments no longer
reflect real-world prevalence. Figure 4 further
shows that ROME achieves the highest retrieval
performance but also yields the largest NKL in
most cases, suggesting excessive probability re-
distribution that overemphasises edited facts. In
contrast, FT produces the lowest NKL, indicating
better preservation of the probability landscape,
though at the cost of weaker retrieval gains.

(RQS5) : Why does knowledge editing degrade
NKL performance on 1-to-N knowledge?

As reported in Table 4 and Figure 4, NKL con-
sistently increases, indicating greater divergence
between the predicted and gold distributions after
knowledge editing. To better understand this effect,
we present a case study in Figure 5. The question
“Which disease can cause chest pain?” has multiple
correct answers with varying frequencies. After
editing, the probability of the target answer (e.g.,

Which disease can cause chest pain?
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Figure 5: Case study on the question “Which disease can
cause chest pain?” The gold distribution is compared
with the outputs of the base LLaMA 3 and the edited
Llama 3 by MEMIT. Editing improves alignment with
the gold distribution, particularly for frequent answers.

Myocardial infarction) increases, improving its re-
trievability and thereby boosting retrieval-based
metrics such as MaxAcc and Precision@K. How-
ever, this improvement comes at the cost of re-
duced probabilities for other correct answers (e.g.,
Pulmonary embolism), leading to a less faithful
alignment with the full gold distribution. This sug-
gests that editing 1-to-N knowledge may introduce
unintended interference among correct answers,
which partially explains the observed degradation
in NKL. These findings highlight a challenge in
1-to-N knowledge editing: existing methods priori-
tise recall but fail to maintain probability alignment.
The NKL increase underscores the need for future
approaches that not only enhance retrieval but also
ensure probability distributions remain consistent
with real-world knowledge.

5 Conclusion

We introduce N-Answer Kullback-Leibler Diver-
gence (NKL) as a novel metric for evaluating 1-to-
N knowledge in LLMs by integrating both ranking
and probability alignment. Theoretical analysis
confirms that NKL better satisfies key evaluation
criteria for multi-answer evaluation, while knowl-
edge probing reveals that existing LLMs tend to
overfit to dominant answers. Knowledge editing
experiments show that while current methods im-
prove retrieval accuracy, they often distort proba-
bility distributions, leading to increased NKL. We
also explore broader applications of NKL beyond
editing, in Appendix B. We hope that NKL can
serve as a faithful and comprehensive metric for
evaluating LLMs’ ability to represent diverse and
probabilistically coherent 1-to-N knowledge.



Limitations

One limitation of our approach lies in the construc-
tion of the gold probability distribution used to
compute NKL. Specifically, we approximate the
gold distribution based on the co-occurrence fre-
quencies of answers within the dataset. While this
provides a practical and scalable proxy for real-
world answer prevalence, it may not accurately
reflect ground truth probabilities, especially in do-
mains where frequency does not directly corre-
spond to importance, correctness, Or expert consen-
sus. This introduces a potential source of bias in the
evaluation, as models aligned with frequency-based
distributions may not necessarily reflect true knowl-
edge fidelity. Moreover, in datasets with limited
coverage or long-tail distributions, co-occurrence
counts may be sparse or noisy, further affecting
the robustness of NKL. Future work could explore
leveraging human annotations, curated ontologies,
or probabilistic knowledge graphs to build more
reliable gold distributions for evaluating 1-to-N
knowledge representations.
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Appendix

In the Appendix, we introduce more details along
with related works, discussions on applications,
dataset details and experimental details:

¢ Appendix A: Related Works.

* Appendix B: Discussion

* Appendix C: Dataset Details.

* Appendix D: Experimental Details.

A Related Work
A.1 Knowledge Probing

Knowledge probing aims to assess the factual
knowledge stored within LLMs. A foundational
method in this area is LAMA (Petroni et al., 2019),
which uses cloze-style prompts to test whether

LLMs can recover factual triples from a knowl-
edge base. LAMA (Petroni et al., 2019) demon-
strated that even without fine-tuning, models like
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) encode substantial factual knowledge.
Subsequent work expanded upon LAMA in mul-
tiple directions. For example, T-REX (Elsahar
et al., 2018) and Google-RE (Levy et al., 2017)
datasets introduced broader and more diverse rela-
tion types. PET (Schick and Schiitze, 2021) and
AutoPrompt (Shin et al., 2020) explored more flexi-
ble or learned prompt templates to improve probing
accuracy. These approaches highlighted the sensi-
tivity of probing performance to prompt phrasing.

Recent research has proposed advanced methods
to enhance LLMs’ factual capabilities. Instruction-
Aware Prompt Tuning (IAPT) (Zhu et al., 2024)
introduces a parameter-efficient mechanism using
only four soft tokens per layer to generate input-
specific prompts, improving performance across
tasks. Ghosal et al. (2024) show that fine-tuning on
obscure or less prominent facts can impair factual
accuracy, even if those facts were seen during pre-
training, stressing the need to consider how knowl-
edge is encoded. To improve robustness, Zhou
et al. (2024) propose Robust Prompt Optimization
(RPO), which defends against jailbreaking attacks
by optimizing a small, transferable prompt suffix
to resist adversarial inputs. Unlike prior work, our
study focuses on evaluating 1-to-N knowledge with
an emphasis on probability alignment.

A.2 Knowledge Editing

Recent advancements in knowledge editing for
large language models (LLMs) can be categorized
into three primary strategies: memory augmen-
tation, meta-learning, and the locate-and-modify
paradigm (Yao et al., 2023).
Memory-augmented techniques integrate ex-
ternal memory components to enable knowledge
updates without altering the core model parameters.
A representative method, IKE (Zheng et al., 2023),
retrieves relevant content from an attached memory
bank and leverages tailored prompt demonstrations
to steer the model’s output accordingly. This ap-
proach emphasizes modularity and avoids direct
intervention in the model’s internal weights.
Meta-learning-based methods take a different
route by dynamically generating weight adjust-
ments. For instance, Knowledge Editor (KE) (Cao
et al., 2021) employs a hypernetwork to synthe-
size updated weights in response to new knowl-



edge. MEND (Mitchell et al., 2022) enhances this
concept with low-rank gradient adaptations, offer-
ing improved efficiency. Nonetheless, these ap-
proaches often remain resource-intensive and risk
modifying unrelated internal representations.

Locate-then-edit frameworks concentrate on
precisely identifying and editing specific model
components tied to factual knowledge. KN (Dai
et al., 2022) applies attribution techniques to pin-
point influential neurons, though it struggles with
fine-grained weight modification. ROME (Meng
et al., 2022a) addresses this by using causal tracing
to locate critical Feed Forward Network (FFN) lay-
ers—regarded as key-value storage units in trans-
formers (Geva et al., 2021, 2023)—and directly
alters their weights. MEMIT (Meng et al., 2023)
scales this approach to support editing of multiple
facts in parallel.

Compared to these work, we introduce a novel
evaluation metric designed for the /-fo-N knowl-
edge editing setting, which remains underexplored
in existing research.

B Discussion

This section discusses the potential applications of
the proposed N-Answer Kullback-Leibler Diver-
gence (NKL) metric. We highlight its utility both in
knowledge editing scenarios and in domains such
as clinical and biomedical reasoning, where model-
ing and evaluating probabilistic distributions over
multiple valid answers is essential.

The proposed N-Answer Kullback-Leibler Di-
vergence (NKL) metric is particularly well-suited
to the evaluation of /-fo-N knowledge representa-
tions in large language models (LLMs). A prin-
cipal application of this metric lies in the domain
of knowledge editing, wherein a model’s inter-
nal distribution over semantically related factual
statements must be revised in a controlled and prin-
cipled manner. For instance, editing the statement
“COVID-19 is caused by coronavirus” requires not
only the correction of the explicit phrasing, but also
a meaningful redistribution of probability across
related variants, such as “COVID-19 is caused by
SARS-CoV-2.” The NKL metric affords a nuanced
measure of the degree to which the post-edit distri-
bution conforms to a reference distribution, thereby
supporting interpretable and fine-grained evalua-
tion. Furthermore, NKL may be employed as an
optimisation objective in the formulation of edit-
ing procedures—such as constrained fine-tuning or

12

distributionally-regularised updates—facilitating
the deliberate and coherent modification of mod-
elled knowledge.

A second critical application of NKL lies in
the clinical and biomedical domain, where many
queries naturally admit multiple valid answers,
each corresponding to distinct but plausible inter-
pretations of clinical data or medical context. In
such high-stakes settings, it is insufficient for a
model to merely retrieve the most likely diagnosis
or treatment; rather, it must accurately represent the
full distribution over possible alternatives. For ex-
ample, when interpreting ambiguous symptoms or
test results, the difference between assigning 90%
versus 60% probability to a life-threatening condi-
tion can have significant consequences for down-
stream decision-making. NKL provides a princi-
pled framework for evaluating whether a model’s
probabilistic beliefs over multiple medically valid
answers reflect expert-curated reference distribu-
tions, thereby enabling robust benchmarking of
clinical reasoning fidelity and uncertainty calibra-
tion in LL.Ms.

C Dataset Details

We adopt a systematic strategy to partition
both datasets—COUNTERFACT and SNOMED
CT—into training, development, and test subsets.
Each dataset is divided at the record level using
a fixed ratio of 8:1:1. To ensure robust and fair
evaluation while preventing relation-specific data
leakage, we enforce the constraint that all three
subsets must contain at least one instance of ev-
ery relation present in the full dataset. To this end,
we employ stratified random sampling based on
relation type: for each relation, the corresponding
triples are randomly permuted and then proportion-
ally allocated to the three subsets in accordance
with the predefined split ratio.

For COUNTERFACT, we identify one-to-many
instances by extracting subject-relation pairs and
retrieving corresponding object sets from Wikidata,
revealing that roughly 40% of queries have multiple
valid answers. To estimate their empirical preva-
lence, we follow Kandpal et al. (2023) by mapping
each query—answer pair to the Wikipedia pretrain-
ing corpus and computing co-occurrence frequen-
cies. Triples without observed co-occurrence are
treated as less reliable and may be excluded from
certain analyses. For dataset partitioning, we fol-
low the original splits from Meng et al. (2022a) for
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Figure 6: Illustration of two controlled strategies for simulation experiment. Answer Masking progressively
removes probability mass from correct answers to generate increasingly degraded predictive distributions. Linear
Interpolation constructs intermediate distributions by linearly interpolating between the gold and model-predicted
distributions using decreasing A values. Interp. is an abbreviation for Interpolation.

consistency, and apply stratified sampling where
relation-level coverage is essential, ensuring each
split includes all relation types.

For SNOMED CT, we begin by extracting over
200,000 knowledge triples from the biomedical
ontology. One-to-many relations are identified by
selecting subjects that are connected to multiple
distinct objects through the same relation type. To
assess the empirical validity of these triples, we
annotate PubMed (Roberts, 2001) abstracts using
PubTator (Wei et al., 2013) and apply entity link-
ing via SapBERT (Liu et al., 2021) to compute
subject—object co-occurrence frequencies. Triples
lacking any observed co-occurrence in the corpus
are discarded, as they are unlikely to reflect mean-
ingful real-world associations. The filtered set is
then divided into training, development, and test
splits using an 8:1:1 ratio, ensuring that each split
retains full coverage of the relation set.

D Experimental Details

D.1 Editing Procedures

ROME (Meng et al., 2022a): We applied ROME
to Llama 3, using causal tracing to identify the
optimal editing location. Layer 18 was selected as
the primary target based on maximum intervention
impact. We retained the default learning rate and
number of editing steps from the original ROME
implementation. The main tunable parameter was
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the scaling factor on the MLP update term within
the selected layer. Edits were applied directly to
test instances using these settings.

MEMIT (Meng et al., 2023): For MEMIT, we fol-
lowed a similar setup to ROME, fixing the learning
rate and step size as per the original paper. Based
on activation analysis in Llama 3, we selected Lay-
ers 15 to 20 as editing targets. We tuned the per-
layer contribution weights to balance edit success
and locality, ensuring the edited facts were cor-
rectly updated without affecting unrelated outputs.

MEND (Mitchell et al., 2022): MEND was adapted
to Llama 3 using default training configurations for
learning rate, batch size, and epochs. We tuned
the projection weights within the MEND networks,
which generate low-rank updates from standard
fine-tuning gradients. This enabled precise, effi-
cient edits while minimizing interference with ex-
isting model knowledge.

Fine-Tuning (FT): For full-model fine-tuning, we
used a fixed learning rate of Se-5 across all experi-
ments. No hyperparameter tuning was conducted
beyond this, as FT was intended primarily as a
performance baseline to contrast against parameter-
efficient editing methods.



D.2 One-to-Many Knowledge Editing
Strategy

To support one-to-many knowledge editing, we
reformulate the editing objective to account for
all valid answers associated with a given subject-
relation pair. Specifically, we treat the full set of
correct object values as editing targets, aiming to
inject them into the model’s internal representation.
For editing methods that do not support batch up-
dates—such as ROME (Meng et al., 2022a)—we
apply edits sequentially, updating one object at a
time in the order of their appearance. Each edit
is performed independently, without overwriting
previous modifications, allowing the model to ac-
cumulate multiple correct associations across suc-
cessive interventions. In contrast, batch-editable
methods like MEMIT (Meng et al., 2023) allow
simultaneous updates. For these, we construct a
unified batch containing all subject-relation-object
triples corresponding to valid answers and perform
a single joint edit. This approach ensures that all
correct variants are explicitly encoded within the
model’s memory in a single pass, preserving inter-
dependencies among them.

This editing protocol enables a consistent and
controlled injection of 1-to-N knowledge across
different methods. Moreover, it facilitates a fair
comparison of post-edit generalisation, as evalu-
ated by our NKL metric, which captures how well
the edited model represents the full distribution
over valid answers.
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