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ABSTRACT

Conventional temporal action detection (TAD) methods rely on supervised learn-
ing from many labeled training videos, rendering them unscalable to new classes.
Recent approaches to solving this problem include few-shot (FS) and zero-shot
(ZS) TAD. The former can adapt a pretrained vision model to a new task repre-
sented by as few as a single video per class, whilst the latter synthesizes some
semantic description given a new class (e.g., generating the classifier using a pre-
trained vision-language (ViL) model). In this work, we further introduce a hybrid
problem setup, multi-modality few-shot (MMFS) TAD, that integrates the respec-
tive advantages of FS-TAD and ZS-TAD by accounting for both few-shot sup-
port videos (i.e., visual modality) and new class names (i.e., textual modality)
in a single formula. To tackle this MMFS-TAD problem, we introduce a novel
MUlti-modality PromPt mETa-learning (MUPPET) method. Our key idea is to
construct multi-modal prompts by mapping few-shot support videos to the textual
token space of a pretrained ViL model (e.g., CLIP) using a meta-learned adapter-
equipped visual semantics tokenizer; This facilitates a joint use of the two input
modalities for learning richer representation. To address the large intra-class vari-
ation challenge, we further design a query feature regulation scheme. Extensive
experiments on ActivityNetv1.3 and THUMOS14 demonstrate that our MUPPET
outperforms state-of-the-art FS-TAD, ZS-TAD and alternative methods under a
variety of MMFS-TAD settings, often by a large margin.

1 INTRODUCTION

The objective of temporal action detection (TAD) is to predict the temporal duration (i.e., start and
end time) and the class label of each action instance in an untrimmed video (Idrees et al., 2017;
Caba Heilbron et al., 2015). By supervised learning on many (e.g., hundreds) videos with costly
segment-level annotations, conventional TAD methods (Xu et al., 2021; 2020a; Buch et al., 2017;
Wang et al., 2017; Zhao et al., 2017; Nag et al., 2022a; 2021a) are hardly scalable in practice. To
alleviate this problem, few-shot (FS) (Yang et al., 2018; 2020; Zhang et al., 2020; Nag et al.,
2021b) and zero-shot (ZS) (Zhang et al., 2020; Ju et al., 2022; Nag et al., 2022b) learning based
TAD methods have been recently introduced. Specifically, FS-TAD aims to learn a model that can
adapt to a new task with as few as a single training video per class (Fig. 1(a)). This is achieved often
by meta-learning a TAD model over a distribution of simulated tasks on seen classes.

Instead, ZS-TAD only needs to translate the new class names into some semantic space (e.g., at-
tributes, word embeddings), without any training samples (Fig. 1(b)). Typically, visual feature has
been aligned with this semantic space during training so that the model can be directly applied.
In particular, the emergence of ever stronger Visual-Language (ViL) models (e.g., CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021)) have surged significantly the research of zero-shot trans-
fer across diverse problems. Central in this research line is a favourable ability of synthesizing the
classification weights from text (e.g., action class name or description) that are semantically aligned
with the feature space of an image encoder. For example, Ju et al. (2022) first generate action pro-
posals and then classify them with a pretrained CLIP in two stages. Whilst Nag et al. (2022b) present
a single-stage TAD model with parallel action localization and ViL infused action classification for
suppressing localization error propagation.
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Figure 1: Illustration of different problem settings. (a) Zero-shot temporal action detection (ZS-
TAD) translates new class name (i.e., textual input) into the inference process. (b) Few-shot temporal
action detection (FS-TAD) can rapidly learn a new class from a few support (training) videos (i.e.,
visual input). (c) To enjoy the advantages of ZS-TAD and FS-TAD, we introduce multimodal few-
shot temporal action detection (MMFS-TAD) where both textual and visual modality inputs can be
jointly leveraged for detecting new action classes.

In the literature, FS-TAD and ZS-TAD both are still under-studied independently, partly due to dif-
ferent nature of their key challenges. However, we instead focus on their intrinsic advantages. In
FS-TAD, support videos offer the model the most detailed and fine-grained visual details, and can
be mapped to the same embedding space as the test/query videos without cross-modal alignment
challenges. In contrast, ZS-TAD is favored by the ability of textual-visual modality alignment, only
needing to take the new class names as input whilst not considering any visual training samples. Mo-
tivated by their respective strengths, we propose a new hybrid problem setup, namely multimodal
few-shot temporal action detection (MMFS-TAD), characterized by learning from
both support videos (i.e., visual modality) and class names (i.e., textual modality) in a single for-
mula for stronger generalization.

To address the proposed MMFS-TAD problem, we introduce a novel Multi-Modality Prompt Meta-
Learning (MUPPET) method. The key objective is to efficiently fuse few-shot visual examples and
high-level class semantic text information. To that end, grounded on a pre-trained vision-language
(ViL) model (e.g., CLIP), we integrate meta-learning with learning-to-prompt in a unified TAD
framework. This is made possible by introducing a multimodal prompt learning module that maps
the support videos of a novel task to the textual token space of the ViL model using a meta-learned
adapter-equipped visual semantics tokenizer. With the ViL’s text encoder, our multimodal prompt
can be then transformed to multimodal class prototypes for action detection. To tackle the large
intra-class challenge due to limited support samples, we further design a query feature regulation
strategy by meta-learning a masking representation from the support sets and attentive conditioning.

We summarize our contributions as follows. (1) We propose the multimodal few-shot temporal
action detection (MMFS-TAD) problem, with combined advantages of conventional FS-TAD and
ZS-TAD settings. (2) To solve this new problem, we introduce a novel Multi-Modality Prompt Meta-
Learning (MUPPET) method that integrates meta-learning and learning-to-prompt in a single for-
mulation. It can be easily plugged into existing TAD architectures. (3) To better relate query videos
with limited support samples, we design a query feature regulation scheme based on meta-learning
a masking representation from the support sets and attentive conditioning. (4) We conduct extensive
experiments on ActivityNet-v1.3 and THUMOS14 to validate the superiority of our MUPPET over
state-of-the-art FS-TAD and ZS-TAD methods.

2 RELATED WORKS

Temporal action detection Substantial progress has been achieved in TAD. Inspired by object de-
tection (Ren et al., 2016), R-C3D (Xu et al., 2017) uses anchor boxes in the pipeline of proposal
generation and classification. Similarly, TURN (Gao et al., 2017) aggregates local features to rep-
resent snippet features for temporal boundary regression and classification. SSN (Zhao et al., 2017)
decomposes an action instance into start:course:end and employs structured temporal pyramid pool-

2



Under review as a conference paper at ICLR 2023

ing for proposal generation. BSN (Lin et al., 2018) generates proposals with high start and end
probabilities by modeling the start, end and actionness at each time. Later, BMN (Lin et al., 2019)
improves the actionness via generating a boundary-matching confidence map. For better proposal
generation, G-TAD (Xu et al., 2020a) learns semantic and temporal context via graph convolutional
networks. CSA (Sridhar et al., 2021) enriches the proposal temporal context via attention transfer.
Unlike most previous models adopting a sequential localization and classification pipeline, TAGS
(Nag et al., 2022a) introduces a different design with parallel localization and classification based
on a notion of global segmentation masking. All the above methods are supervised with reliance on
large training data, and thus less scalable.

Few-shot temporal action detection By fast adaptation of a model to any given new class with few
training samples, few-shot learning (FSL) provides a solution for scalability (Vinyals et al., 2016;
Sung et al., 2018; Snell et al., 2017). FSL is often realized by meta-learning which simulates new
tasks with novel classes represented by only a handful of labeled samples. FSL has been introduced
to TAD. Yang et al. (2018) incorporate sliding window in the matching network (Vinyals et al.,
2016). Later on, Zhang et al. (2020) consider weak video-level annotation of untrimmed training
videos. Yang et al. (2021) performed few-shot spatio-temporal action detection with focus on a
single new class at a time. Recently, Nag et al. (2021b) used the Transformer for adapting the
support learned features to the query features in untrimmed videos.

Zero-shot temporal action detection Alternatively, zero-shot learning allows for recognizing new
classes with no labeled training data. This line of research has advanced significantly due to the
promising power of large vision-language (ViL) models, for instance, CLIP trained by 400 million
image-text pairs (Radford et al., 2021). Many follow-ups further boost the zero-shot transferable
ability, e.g., CoOp (Zhou et al., 2021), CLIP-Adapter (Gao et al., 2021), and Tip-adapter (Zhang
et al., 2021b). In video domains, similar idea has also been explored for transferable representation
learning (Miech et al., 2020), and text based action localization (Paul et al., 2021). CLIP is used
recently in action recognition (Wang et al., 2021) and TAD (Ju et al., 2022; Nag et al., 2022b).

Instead of improving FS-TAD or ZS-TAD, in this work we combine their respective advantages by
introducing a new problem setting - multimodal few-shot temporal action detection (MMFS-TAD).
We further contribute a novel MUPPET method designed particularly for this new problem.

3 METHODOLOGY

MMFS-TAD setting Given a new task with a few labeled support videos per unseen class (i.e.,
visual modality) and class names (i.e., textual modality), we aim to learn a TAD model for that task.
We have a base class set Cbase for training, and a novel class set Cnovel for test. For testing cross-
class generalization, we ensure they are disjoint: Cbase

⋂
Cnovel = ϕ. The base and novel sets

are denoted as Dbase = {(Vi, Yi) , Yi ∈ Cbase} and Dnovel = {(Vi, Yi) , Yi ∈ Cnovel} respectively.
Under the proposed setting, each training video Vi is associated with segment-level annotation Yi =
{(st, et, c), t ∈ {1, ..,M}, c ∈ C} including M segment labels each with the start and end time and
action class. In evaluation, for each task, we randomly sample a set of classes L ∼ Cnovel each
with the support set S (K videos) and the query set Q (one video) respectively. The labels of S are
accessible for few-shot learning whilst that of Q only used for performance evaluation.

3.1 MODEL ARCHITECTURE

We construct our MUPPET in the recent global segmentation mask based TAD architecture that
predicts mask based action instances per snippet (Nag et al., 2022a;b). An overview is depicted
in Fig. 2. Grounded on the pretrained (frozen) ViL model (e.g., CLIP (Radford et al., 2021)), our
MUPPET brings two key components: (a) Multimodal prompt learning, and (b) Query re-weighting.

3.2 MULTIMODAL PROMPT META-LEARNING

Per-task video feature adaptation Existing pretrained ViL models ((Radford et al., 2021; Wang
et al., 2021)) are not designed for TAD, with a need for domain adaptation. Given the big model
size and scarce labeled training data, we adopt the adapter (Chen et al., 2022) strategy so that only
a fraction of parameters need to be learned. This eases the training. Let θ the pretrained vision
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Figure 2: Overview of our Multi-Modality Prompt Meta-Learning (MUPPET) method. We adopt
the global mask based TAD architecture (Nag et al., 2022a;b). Key components of MUPPET include
(1) multimodal prompt meta-learning (Sec. 3.2), (2) query feature regulation (Sec. 3.3).

transformer V (part of ViL model) and ϕT i the adapter. Given a set of few-shot tasks Ti = {Si, Qi}
and the corresponding video frames fTi , we optimize the adapters in a episodic fashion. We obtain
the episodic video features from the adapter infused video encoder as:

FTi = V(θ, ϕTi , fTi) ∈ Rt×D (1)

where D is the snippet feature dimension and t is the number of temporal snippets. Following (Lin
et al., 2019; Xu et al., 2020b), for each video we uniformly sample L equidistant points over the
entire snippets t to obtain the episodic adapter features FE ∈ RL×D. To capture global context,
we further leverage self-attention (Vaswani et al., 2017). Formally, we set the input (query, key,
value) of a Transformer encoder T () as the features (FE ,FE ,FE). Positional encoding is not
applied as it is found to be detrimental. The final video snippet embedding is then obtained as

E = T (FE) ∈ RL×D, (2)

with D being the embedding dimension. We denote support features as Es ∈ RN×K×D×L and
query features as Eq ∈ RN×D×L where N is the number of classes per episode and K the number
of shots per class respectively.

Multimodal prompt meta-learning We aim to fuse visual and textual modalities for stronger
representation. Inspired by recent prompt learning for vision tasks (Zhou et al., 2021), we design
a novel multimodal prompt meta-learning strategy particularly for our MMFS-TAD problem, as
shown in Fig. 3. Specifically, we introduce a visual semantics tokenizer fθ to align the support
videos with the ViL’s text tokenizer as:

ŵc = fθ(Ê
k
s |k = 1, 2, ...K) ∈ W, (3)

where Ês denotes the action feature of support videos obtained by masking Es with the annotation,
and W the textual token space. A set Transformer (Lee et al., 2019) is used to implement fθ.

Instead of learning a common prompt embedding for all the target classes (Zhou et al., 2021), we
now learn a class-specific token embedding. This allows to generate more discriminative tokens and
class representation (Table 2). We design the multimodal prompt as p̂ = [ŵc][Tc] where Tc is the
token of action class name obtained by the text tokenzier. As such, we can leverage the ViL model’s
text encoder T() as

ẑc = T(p̂) ∈ RC×D, (4)

to obtain the multi-modal representation ẑc with both visual (support set) and textual (class name)
encoded for action class c.
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Figure 3: Multimodal prompt meta-learning. (a) We meta-learn a visual semantics tokenizer for
translating the support videos (i.e., visual modality) to the textual token space of a pretrained ViL
model. Together with the tokens of class names, this mapping facilitates the creation of multimodal
prompts using the pretrained text encoder. (b) Unlike previous class-generic visual prompts, we
consider more discriminative class-specific counterparts.

For TAD, we need a background class which however is lacking from the vocabulary of ViL model.
To solve this, we learn a specific background embedding, denoted as ẑbg ∈ RD, from random initial-
ization. We append this to ẑc, yielding a complete multimodal representation Emm ∈ R(C+1)×D.

3.3 QUERY FEATURE REGULATION

To facilitate the association of action instances across support and query videos in the same action
class with typically large differences (i.e., large intra-class variation), we design a query feature
regulation scheme based on support-conditioned representation masking. This is inspired by repre-
sentation masking for suppressing the background (Nag et al., 2022b).

Support-conditioned representation masking Concretely, given per-class temporal features of a
query video Eq ∈ RD×L, we obtain a transformed feature Qact ∈ R1×D using a MLP layer. We
then repeat Qact for Nq times to obtain the action query Qact ∈ RNq×D. Together with the support
video features Es ∈ RK×D×L, we use a mask-attention based Transformer decoder (Cheng et al.,
2022) to generate Nq latent embeddings, followed by a masking projection layer to obtain a mask
embedding for each segment as Bq ∈ RK×q×D where q indexes a query. A binary mask prediction
w.r.t each query can be then calculated as:

Lq = σ(Bq ∗ Es) ∈ RK×q×L, (5)

where σ is sigmoid activation. As such, each snippet location of support videos is associated with q
queries. To choose the optimal query per location, we deploy a tiny MLP to weigh these queries in
a location specific manner. This is realized by learning a weight vector Wq ∈ RK×q as:

L̂ = σ(Wq ∗ Lq + bq) ∈ RK×L. (6)

where bq is a bias term. We then binarize this support video mask at a threshold θbin and select the
foreground mask L̂bin. The support masked representation Efg

s is obtained by using L̂bin to retrieve
the snippet embedding Es.

Query feature regulation Next, we use the support masked feature for regularizing the query
feature by cross-attention. Specifically, for a transformer encoder C, we set the query video feature
as its query Q, and the support masked feature as its key K and value V. As the number of support
videos per class varies, we aggregate K and V by averaging over the number of shots to match a
query video. We then concatenate K/V with the query feature to form an enhanced version as:

Kagg = (Q,
1

K

K∑
i=1

Efg
s ) ∈ R2L×D, Vagg = (V,

1

K

K∑
i=1

Efg
s ) ∈ R2L×D. (7)

The query feature is finally regulated via Eq = C(Eq,Kagg,Vagg).
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3.4 TAD DECODER (HEAD)

We adopt the TAD head of (Nag et al., 2022b;a) with parallel classification and mask prediction.

Multimodal classifier We exploit Êmm ∈ R(C+1)×D as a multimodal classifier and apply to the
regulated query video features Eq ∈ RL×D as:

P = (Êmm ∗ (Eq)
T )/τ ∈ R(K+1)×L, (8)

where each column of P is the classification result pl ∈ R(K+1)×1 of each snippet t ∈ L, and
τ = 0.7 is a temperature coefficient.

Action mask localizer In parallel to classification, this stream predicts 1-D binary masks of action
instances over the whole video. We use stacks of 1D dynamic-convolution layers to form the mask
classifier H. Specifically, given t-th snippet Eq(t), it outputs a 1-D mask mt = [q1, ..., qL] ∈ RL×1

with each qi ∈ [0, 1](i ∈ [1, L]) giving action probability at i-th snippet. We write formally:

M = ρ(H(Eq)) (9)

where ρ is a sigmoid activation and t-th column of M is the mask prediction by t-th snippet.

3.5 MODEL TRAINING AND INFERENCE

Learning objective Following (Nag et al., 2022b), we adopt cross-entropy loss Lc for classifica-
tion, binary dice loss Lm and binary mask loss Lcomp for masking. We further impose a contrastive
criterion (Chen et al., 2020) to optimize the visual semantics tokenizer. Given the multimodal repre-
sentation ẑc, original prompt embedding zc, and video embedding zc for each class c, the contrastive
loss is defined as:

Ltok = −log
exp(cos(zc, ẑc))

exp(cos(zc, ẑc)) + 2 exp(cos(zc, ẑc))
, (10)

where cos(.) is cosine similarity and the factor 2 is for contrasting zc with both visual and textual
embedding. To contrast the background (zbg) from foreground (ẑc), we minimize:

Lbg = argmin

C∑
j=1

(cos(zbg, z
j
c)− δbg)

2, (11)

where δbg is the margin hyper-parameter.

Training Our MUPPET is trained in two stages. In stage-1 for supervised training, we deploy the
objective Lbase = Lc + Lm + Lcomp + Ltok + Lbg + Lconst; In stage-2 for meta-training, Lm and
Lc are removed from the objective, due to no access to the ground-truth of query videos. Our model
is trained end-to-end in each stage, with the pretrained text encoder frozen.

Inference At test time, we generate action instance predictions for each query video by the classifi-
cation P and mask M predictions following (Nag et al., 2022b). We aggregate the class scores in P
by taking the average over all the K-shots. For each such top scoring action snippet in P , we then
obtain the temporal masks by thresholding ti-th column of M using a set of thresholds Θ = {θi}.
We apply SoftNMS (Bodla et al., 2017) to obtain top scoring outputs.

4 EXPERIMENTS

Datasets We evaluate two popular TAD benchmarks. (1) ActivityNet-v1.3 (Caba Heilbron et al.,
2015) has 19,994 videos from 200 action classes. We follow the standard split setting of 2:1:1 for
train/val/test. (2) THUMOS14 (Idrees et al., 2017) has 200 validation videos and 213 testing videos
from 20 categories with labeled temporal boundary and action class.

Setting We consider two major settings. Few-shot setting: To facilitate fair comparison, we
adopt the same dataset and class split as (Nag et al., 2021b). For both the datasets, we divide all the
classes into three non-overlapping subsets for training (80%), validation (10%) and testing (10%),
respectively. The validation set is used for model parameter tuning and best model selection. We
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Modality ActivityNetv1.3 THUMOS14Method N-way Visual Text 0.5 0.75 0.95 Avg 0.3 0.5 0.7 Avg
Feat-RW 30.7 16.6 2.9 17.1 35.3 19.6 6.8 20.1

Meta-DETR 32.9 20.3 4.6 19.4 37.5 20.7 7.5 21.9
FSVOD

5
34.5 18.9 5.1 21.6 37.9 23.8 7.3 22.8

FS-Trans 42.2 24.8 5.2 25.6 42.6 25.7 8.2 25.5
FS

QAT 1

✗ ✗

44.6 26.4 4.9 26.9 38.7 24.4 7.5 24.3
PromptDet 45.0 28.2 6.1 29.0 40.9 24.8 9.5 30.8

Owl-Vit 43.7 27.0 6.0 27.2 38.3 21.9 9.0 30.2
EffDet 45.9 27.9 5.2 29.4 47.2 30.4 9.8 31.1
STALE

✗

47.7 29.3 7.6 30.3 48.9 32.1 10.3 32.0
Baseline-I 46.9 28.6 6.9 29.7 47.3 30.5 9.2 31.8
MUPPET

1

✓ 49.7 32.9 9.2 32.7 50.6 33.5 11.2 33.8
PromptDet 39.8 22.3 5.4 23.1 40.4 23.9 7.5 24.0

Owl-Vit 37.9 20.3 5.6 21.9 38.3 21.9 7.7 22.6
EffDet 41.1 21.6 5.4 23.8 39.5 23.5 7.6 24.8
STALE

✗

42.3 22.9 6.8 24.5 40.7 24.9 7.1 25.4
Baseline-I 42.1 22.7 6.0 24.0 40.2 24.7 7.0 25.0

MMFS

MUPPET

5

✓

✓

45.3 25.6 6.3 26.2 42.3 27.2 7.8 27.5
EffPrompt ✗ 32.0 19.3 2.9 19.6 37.2 21.6 7.2 21.9

STALE ✗ 32.1 20.7 5.9 20.5 38.3 21.2 7.0 22.2
Baseline-I ✓ 30.6 18.0 4.1 18.7 35.8 20.5 7.1 20.8ZS

MUPPET

All

✗

✓

33.5 21.9 6.7 22.0 40.1 22.8 8.1 24.8

Table 1: Comparing our MUPPET with prior art few-shot (FS), zero-shot (ZS) and alternative
methods. Setting: 5-shot; the CLIP model for multimodal few-shot (MMFS) methods; 50%/50%
train/test class split for all ZS methods.

consider 1-way/class and 5-way settings. We consider naturally untrimmed support videos. For each
N-way K-shot experiment, we divide the base and novel class video into few-shot episodes where
each episode consists of N × (K+1) tasks. We train with 1000 episodes and test with 250 episodes
with random tasks and report their average result. Zero-shot setting: In this setting, similar
to few-shot, we ensure that Dval

⋂
Dtest = ϕ. We follow the setting and dataset splits used by

Nag et al. (2022b) for fair comparison. For both ActivityNet and THUMOS, we train with 50%
categories and test on 50% categories. To ensure statistical significance, we conduct 10 random
samplings to split categories for each setting, following Ju et al. (2022). More details on splits are
provided in Appendix.

Implementation details For fair comparison, we use CLIP (Radford et al., 2021) initialized weights
for both the datasets. For comparing with CLIP based TAD baselines, we use the image and text
encoders from pre-trained CLIP (ViT-B/16+Transformer) (Radford et al., 2021). We also used Ki-
netics (Kay et al., 2017) pre-trained initialization for showing the robustness of our approach. Video
frames are pre-processed to 112 × 112 spatial resolution, and the maximum number of textual to-
kens is 77, following CLIP. Given a variable-length video, we firstly sample every 6 consecutive
frames as a snippet. Then we feed the snippet into our vision encoder module, and extract the
features before the fully connected layer. Thus, we obtain a set of snippet-level feature for the
untrimmed video. After this, each video’s feature sequence F is rescaled to T = 100/256 snippets
for AcitivtyNet/THUMOS using linear interpolation. Our model is trained on 6 NVIDIA 3090RTX
GPUs with 1000/250 episodes using Adam optimizer with learning rate of 10−4/10−5 for Activi-
tyNet/THUMOS respectively during base and meta-training. More implementation details are pro-
vided in Appendix

4.1 COMPARISON WITH STATE-OF-THE-ART

Competitors We consider extensively three sets of previous possible methods: (1) Few-shot learn-
ing based methods: Two action detection methods (FS-Trans (Yang et al., 2021) and QAT (Nag
et al., 2021b)). Note, FS-Trans is originally designed for spatiotemporal action detection, and we
discarded the spatial detection part. Due to limited FS-TAD models, we adapt 2 object detection
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baselines (Feat-RW (Kang et al., 2019), Meta-DETR (Zhang et al., 2021a)). We replaced their back-
bones with pre-trained frozen CLIP ViT encoders and the object decoders with TAD decoders. We
similarly adapted a video based object detection method (FSVOD (Fan et al., 2021)) where temporal
action proposals and temporal matching network are applied with TAD decoder. (2) Multi-modal
Few-shot learning based methods: As this is a new problem, we need to benchmark from scratch.
We adapted object detection methods (PromptDet (Feng et al., 2022), OWL-ViT (Minderer et al.,
2022)). For them, we replaced the RPN by a start/end regressor as BMN (Lin et al., 2019), and the
encoder and decoder as above. We also considered two state of the art TAD methods (EffPrompt
(Ju et al., 2022) and STALE (Nag et al., 2022b)) by finetuning all modules with support set during
inference. We further adapted CoCOOP (Zhou et al., 2022) (denoted as Baseline-I) based on
STALE and adding the meta-network from visual branch to learn the textual tokens. This is the
closest competitor of our proposed MUPPET. (3) Zero-shot learning based methods: EffPrompt
(Ju et al., 2022) and STALE (Nag et al., 2022b) and Baseline-I. We deploy our MUPPET in ZS
setting by discarding the few-shot specific components (e.g., visual-semantics tokenizer and query
regularizer). All the above methods use the same frozen CLIP for fair comparison.

Results We make several observations from the results in Table 1. (1) FS setting: Even with 1-
shot support sets, FS-TAD methods (FS-Trans (Yang et al., 2021), QAT (Nag et al., 2021b)) still
outperform clearly 5-shot object detection based counterparts ((Feat-RW (Kang et al., 2019), Meta-
DETR (Zhang et al., 2021a)), FSVOD (Fan et al., 2021)). This indicates the importance of modeling
temporal dynamics and task specific design. (2) MMFS setting: However, object detection methods
(PromptDet (Feng et al., 2022), OWL-ViT (Minderer et al., 2022)) perform similarly as FS-TAD
(EffPrompt (Ju et al., 2022), STALE (Nag et al., 2022b)) ones thanks to using text modality. Our
Baseline-I yields competitive performance. Notably, MUPPET surpasses the best FS-TAD model
(QAT) by a margin of 5.8%, validating the superiority of our model design and our motivation
of introducing MMFS-TAD setting. Similar observation can be drawn in the 5-way case. (3) ZS
setting: Our MUPPET is superior over recent art models (EffPrompt (Ju et al., 2022), STALE (Nag
et al., 2022b)) and Baseline-I (an integrated model even using training videos). This verifies the
flexibility of our method in deployment, in addition to promising performance.

4.2 ABLATION STUDIES

Prompt learning design We evaluate our multimodal prompt meta-learning that meta-learns the se-
mantic information from few-shot support videos. We compare with three alternatives: (i) Learnable
Prompt from Scratch (LPS): Learning the prompt from random vectors without the text encoder of
ViL model (CLIP (Radford et al., 2021) in this case). (ii) Learnable Textual Prompt (LTP): Learning
the prompt from randomly initialized vectors with the text encoder of ViL model. (iii) Learnable Vi-
sual Prompt (LVP): Learning the prompt from vectors initialized by visual features from the visual
encoder of ViL model, as Baseline-I. We observe from Table 2 that: (1) Leveraging the pre-
trained text encoder is critical due to its rich knowledge learned from vast training data, otherwise
a huge result drop will occur as performed by LPS. (2) Learning from only few-shot support set
(i.e., LVP), we observe a clear mAP gap below ours, verifying the usefulness of text modality (i.e.,
class name) and the motivation of MMFS-TAD setting. (3) However, using only text modality for
prompt learning (i.e., LTP) is even inferior than visual modality only (i.e., LVP). This is not surpris-
ing as videos provide more comprehensive and finer information about new classes. This effect is
illustrated in Fig 5(a,b) in Appendix where the visual information helps in better class-clustering.
(4) Also, the inferiority of LTP and LVP to ours suggests that learning class-specific tokens as we
design is more suitable than learning a set of global prompts shared for all classes in MMFS-TAD.

We further examine the network choices (1D CNN and set-Transformer (Lee et al., 2019)) for visual
semantics tokenizer, and the necessary of class-specific prompt. As shown in Table 3, we see that:
(1) A permutation invariant Set-Transformer is a better choice than 1-D CNN. (2) Using a single
token per class is enough by our prompting method. This is different from previous prompting
methods (Zhou et al., 2021) that instead learn multiple (e.g., 20) global tokens shared by all classes.

Episodic adapters in video encoder We exploit episodic adapters for the video encoder of ViL
model. Alternative methods include (i) Freezing video encoder without any task adaptation as
STALE (Nag et al., 2022b), (ii) Fine-tuning the video encoder. We also compare with adapted
STALE for MMFS-TAD. We observe from Table 5 that: (1) Fine-tuning is indeed useful as ex-
pected, as compared to the case of frozen encoder. However, it tends to overfit due to limited
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Table 2: Design of prompt learning on ActivityNet.
Setting: 5-way.

Design Shots Prompt style mAP

Learnable Context 0.5 Avg

LPS - ✗ - 9.2 13.5

LVP 5 ✓ Visual 42.1 24.0

LTP 5 ✓ Text 40.3 21.5
Ours 1 ✓ Visual 43.7 25.1
Ours 5 ✓ Visual 45.3 26.2

Table 3: Design of visual semantics tok-
enizer on ActivityNet. Setting: 5-way 5-shot.
#T/C: Tokens per Class.

Network Meta-Learn #T/C mAP
0.5 Avg

1D-CNN
✗ 20 37.4 21.3
✓ 20 40.8 23.0
✓ 1 39.7 22.5

SetTrans
✗ 1 43.8 24.7
✓ 1 45.3 26.2
✓ 20 44.7 25.6

Table 5: Video encoder (VC) on ActivityNet.
Setting: 5-way 5-shot.

Method VC mAP

0.5 Avg

MUPPET
Freeze 41.1 25.3

Full-tuning 45.0 26.1
Adapters 45.3 26.2

Table 6: Query feature regulation on ActivityNet.
Setting: 5-way.

K-shot Query Masking mAP
0.5 Avg

- ✗ 41.1 24.8
1 ✓ 43.7 25.1
5 ✓ 45.3 26.2

training samples. (2) Using our adapters is the best which alleviates the overfit risk by only learning
a fraction of parameters.

Table 4: Representation masking on support video
features on ActivityNet. Setting: 5-way 5-shot.

Masking decoder Initialization mAP
0.5 Avg

1-D CNN - 31.7 21.3
Maskformer Random 38.2 24.9

Mask2Former
Random 39.5 25.2
Support 43.7 25.8
Query 45.3 26.2

Query feature regulation MMFS-TAD
often presents large intra-class variation due
to limited training video data. Our query
feature regulation is designed for overcom-
ing this challenge. As shown in Table 6,
this scheme is effective with the gain in-
creasing along with the shots of training set.
This validates the usefulness of our design.
For more in-depth examination, we further
test the effect of representation masking on
support video features. This is inspired by
the benefits of recent Mask2Former (Cheng
et al., 2022) over its previous variant Mask-
Former (Cheng et al., 2021). In Table 4 we
observe a gain of 1.3% in mAP@0.5. We also show that randomly initialization leads to inferior
foreground prediction (see Fig. 5(c)). Support video features based initialization can improve but
still not as strong as query video features (our design).

5 CONCLUSIONS

We have presented a multi-modality few-shot temporal action detection (MMFS-TAD) problem
to integrate the advantages of FS-TAD and ZS-TAD. To tackle MMFS-TAD, we propose a
novel MUlti-modality PromPt mETa-learning (MUPPET) method, characterized by prompt meta-
learning from multimodal inputs, adapters based ViL model adaptation, and query feature regulation
for solving large intra-class challenge. Extensive experiments on two benchmarks show that our
MUPPET surpasses both strong baselines and state-of-the-art methods under a variety of settings.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

Label Assignment To train MUPPET , we follow the same label assignment as (Nag et al., 2022b;a),
where the ground-truth needs to be arranged into the designed format. Concretely, given a training
video with temporal intervals and class labels (Fig. 4(a)), we label all the snippets (orange or blue
squares) of a single action instance with the same action class. All the snippets off from action
intervals are labeled as background. For an action snippet of a particular instance, its global action
mask is defined as the video-length binary mask of that action instance. Each mask is action instance
specific. All snippets of a specific action instance share the same mask. For instance, all orange
snippets (Fig. 4(a)) are assigned with a T -length mask (eg. m24 to m38) with one in the interval of
[q24, q38].

Figure 4: Example of label assignment and model inference (see text for details).

Inference Our model inference is similar as existing temporal action detection methods (Lin et al.,
2019; Xu et al., 2020a; Nag et al., 2021a;b; 2022a;c). Given a test video, at each temporal scale
s the action instance predictions are first generated separately based on the classification P s and
mask M s predictions and combined for the following post-processing. Starting with the top scoring
snippets from P (Fig 4(b)), we obtain their segmentation mask predictions (Fig 4(c)) by thresholding
the corresponding columns of M (Fig 4(d)). To generate sufficient candidates, we apply multiple
thresholds Θ = {θi} to yield action candidates with varying lengths and confidences. For each
candidate, we compute its confidence score scfinal by multiplying the classification score (obtained
from the corresponding top-scoring snippet in P ) and the segmentation mask score (i.e., the mean
predicted foreground segment in M ). Finally, we apply SoftNMS (Bodla et al., 2017) on top scoring
candidates to obtain the final predictions.

A.2 MORE DETAILED ABLATION

Analysis of meta-learning In unimodal few-shot learning, we fine-tune only some task specific
modules using meta-learning. However, for multi-modal few-shot setup, the natural question that
can come to the mind is : What to meta-learn ?. To find this out, we conducted a experiment
using ActivityNet dataset in a 5-way 5-shot setting. We found out that while base-training the class-
agnostic localization branch generalizes well to unseen classes as seen from last Row of Table 1.
However, consistent with previous finding Nag et al. (2022b), these one-stage networks are domi-
nated by classifier performance. Hence, we meta-learn only the classifier specific modules as seen
from Table A.2. We observe that, meta-learning Video Encoder , Temporal Embedding, Context
Tokenizer and Mask Decoder gives the maximum performance boost. However, not meta-learning
the encoder backbone and visual semantics tokenizer leads to inferior performance suggesting the
importance of the individual modules towards our model design.

Ablation of temporal modeling Recall that we use a multi-head Transformer (w/o positional en-
coding) for temporal modeling in MUPPET. We evaluate this design choice by comparing (I) a 1D
CNN with 3 dilation rates (1, 3, 5) each with 2 layers, and (II) a multi-scale Temporal Convolutional
Network MS-TCN Farha & Gall (2019). Each CNN design substitutes the default Transformer while
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captionAnalysis of meta-learning different blocks in 5-Way 5-Shot on ActivityNet; E: Video
Encoder, T: Temporal Enc., S: Visual Semantics Tokenizer, M: Mask Decoder

E T S M mAP
0.5 Avg

✓ ✓ ✓ ✓ 45.3 26.2
✓ ✗ ✗ ✓ 42.2 23.5
✓ ✓ ✗ ✓ 43.8 24.7
✓ ✗ ✓ ✓ 44.7 25.3
✗ ✓ ✓ ✓ 40.8 22.9

Table 7: Analysis of temporal model design on ActivityNet in 5-shot 5-way setting. ViT-F indicates
frozen ViT backbone and ViT-L indicates learnable adapter based ViT backbone

Temporal Model Backbone mAP
0.5 Avg

1D CNN ViT-F 31.3 20.2
MST-CNN ViT-F 35.5 22.6

Transformer ViT-F 42.3 24.5
ViT-L 45.3 26.2

remaining all the others. We use this transformer on top of CLIP pretrained ViT backbone encoder.
Table 7 shows that the Transformer is clearly superior to both CNN alternatives. It also shows that
this gain is consistent if we learn the encoder backbone with the support samples. This suggests
that our default design captures stronger contextual learning capability even in low-data setting like
MMFS-TAD.

Ablation with different pretraining We experiment our MUPPET with a Kinetics-400 pretraining
From Table 8 we observe similar findings as that of CLIP Radford et al. (2021) pretrained features
(Table 1). Our MUPPET outperforms the existing baselines by almost similar margin and better
than CLIP pretraining by 4% in avg mAP, confirming that the superiority of our method is feature
agnostic and succesfull in reducing the domain gap which existed between the downstream task.

Table 8: Analysis of MUPPETwith different pre-training feature on ActivityNet in 5-way 5-shot
setting.

Method Feature mAP
0.5 0.75 0.95 Avg

EffPrompt CLIP 41.1 21.6 5.4 23.8
STALE CLIP 42.3 22.9 6.8 24.5

MUPPET CLIP 45.3 25.6 6.3 26.2
MUPPET K-400 48.1 29.4 10.0 30.2

A.3 EXPERIMENTATION DETAILS

A.3.1 MORE IMPLEMENTATION DETAILS

For the vision backbones of ViL in our experiments, we use only use RGB stream unlike two-stream
features like in TSN(Simonyan & Zisserman, 2014)/I3D(Carreira & Zisserman, 2017) features. The
trainable parts of MUPPET are adapters in vision encoders, visual semantics tokenizer, temporal em-
bedding module, temporal masking modules,cross-modal decoder and TAD decoder heads, whilst
the text encoder is frozen. During meta-training, we freeze TAD decoder heads.

A.3.2 FEW-SHOT SETTING

We follow the same dataset-split settings for 1-way and 5-way setting as provided by (Nag et al.,
2021b).
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Figure 5: Illustration of the impact of MUPPETon a random video (a) PCA plot of our model
with textual prompts (b) PCA plot of our model after incorporating visual semantics (c) Impact of
various action query initialization method on actionness of representation mask.

A.3.3 ZERO-SHOT SETTING

Here, we initiate one evaluation settings on THUMOS14 and ActivityNet1.3 in this work: train
on 50% categories and test on the remaining 50% categories. The number of training and testing
categories is 10 for THUMOS14 and on ActivityNet1.3, the number of both training and testing
categories is 100. We follow the class splits as provided by (Nag et al., 2022b). Under each setting,
we conduct 10 random samplings to split categories for training and testing. Note that, as untrimmed
videos in localization are normally minutes long, splitting datasets based on action categories may
incur some situations, where the same video contains both training and testing categories. For this
multi-label video, we simply divide it into two videos, one containing only training categories and
the other containing only testing categories.
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