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Distributionally Robust Graph-based Recommendation System
Anonymous Author(s)

ABSTRACT
With the capacity to capture high-order collaborative signals, Graph

Neural Networks (GNNs) have emerged as powerful methods in

Recommender Systems (RS). However, their efficacy often hinges

on the assumption that training and testing data share the same dis-

tribution (a.k.a. IID assumption), and exhibits significant declines

under distribution shifts. Distribution shifts commonly arises in RS,

often attributed to the dynamic nature of user preferences or ubiq-

uitous biases during data collection in RS. Despite its significance,

researches on GNN-based recommendation against distribution

shift are still sparse.

To bridge this gap, we propose DR-GNN that incorporates Dis-

tributional Robust Optimization (DRO) into the GNN-based recom-

mendation. DR-GNN addresses two core challenges: 1) To enable

DRO to cater to graph data intertwined with GNN, we reinterpret

GNN as a graph smoothing regularizer, thereby facilitating the nu-

anced application of DRO; 2) Given the typically sparse nature of

recommendation data, which might impede robust optimization,

we introduce slight perturbations in the training distribution to

expand its support. Notably, while DR-GNN involves complex opti-

mization, it can be implemented easily and efficiently. Our extensive

experiments validate the effectiveness of DR-GNN against three

typical distribution shifts.
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1 INTRODUCTION
In recent years, Graph Neural Networks (GNNs) have attracted

considerable attention in field of recommendation systems (RS)

[1, 4, 7, 10, 20, 49]. GNN-based recommendation methods often

follow this typical pipeline: 1) constructing a graph based on users’

historical interactions in training data; 2) utilizing multi-layered

GNNs on the constructed graph to derive user and item embed-

dings; (3) generating recommendations based on the embedding

similarities. Owing to their capability to capture high-order collab-

orative signals, GNN-based methods have achieved state-of-the-art

performance in collaborative recommendation.
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However, a pervasive assumption underpinning many GNN-

based methods is that testing data holds the same distribution as

training data (a.k.a. IID assumption). Unfortunately, this assump-

tion often fails in practical, as distribution shifts are ubiquitous

in real-world scenarios[13, 14, 39]. Such shifts can arise from: 1)

the evolving nature of user preferences[36] — e.g., users may in-

creasingly favor luxury goods as their income increases, sidelining

economical alternatives; 2) intrinsic biases within RS[5] — e.g., pop-
ular items are often over-represented in the training data due to

their elevated visibility. These distributional shifts compromise the

effectiveness of the constructed graph, thereby undermining the

efficacy of recommendations. As illustrated in Figure 1, although

GNN applications demonstrate significant advancements under

IID testing scenarios (40.12% and 6.97% improvements across two

datasets), these gains drop dramatically when faced with distribu-

tion shift (40.12%→ 13.57% and 6.97%→ 2.76%). This inspires an

important question: Can GNN-based recommendation methods be
refined to better manage distribution shift?

Despite urgency, existing literature on this problem remains

sparse. The majority of relevant research can be broadly classified

into two categories:

• Recommendation Methods against distribution shift:
Some recent efforts have employed invariant learning[39,

47, 50] or causal inference [13, 36] to boost themodel robust-

ness against distribution shift. Nonetheless, these methods

are not tailored for GNN-based methods. As a result, dis-

tributional biases remain entrenched in the constructed

graphs, distorting the learned embeddings and recommen-

dations accordingly.

• Robust GNN-based Recommendation Methods: Some

researchers focus on the robustness of GNN-based recom-

mendation methods, employing graph augmentation[3, 41,

43], graph reconstruction[8], or edgeweight adjustments[52].

Nevertheless, these methods primarily address interaction

noise or popularity bias, rather than universal distribution

shifts. Furthermore, most of these methods are heuristic,

e.g., leaning on manual-designed augmentations[8] or edge

weights[52]. Such reliance on human intuition not only

lacks solid theoretical guarantees but also hinders their

real-world applicability, especially when distribution shifts

are multifaceted and unpredictable. This leaves practition-

ers in a quagmire, forced to experimentally tweak strategies

without clear guidance.

Given these limitations, there is an imperative need for the de-

sign of theoretically-grounded GNN-based methods tailored for

against distribution shifts. Inspired by the efficacy of Distribution-
ally Robust Optimization (DRO), we are inclined to incorporate DRO
into this task. DRO offers a theoretical framework that optimizes

a model across not just the observable training distribution, but

also across a broader family of distributions, effectively accounting

for distribution shift. The pipeline of DRO can be delineated as: 1)

identifying the hardest distribution over a given distribution family

1
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Figure 1: The performance comparison of MF [17] and
LightGCN [10] under both in-distribution (IID) and out-of-
distribution (OOD) testing scenarios. For the OOD testing,
here we introduce popularity shift in Yelp2018 and temporal
shift in Movielens-1M. More details about experimental set-
ting refer to section 4.

according to the current optimization context; and 2) optimizing the

model based on this identified distribution. However, transferring

this appealing technique to GNN-based recommendation poses two

primary challenges:

Challenge 1: Current DRO methods are mainly applied in data

with Euclidean structures (e.g., images[23, 25, 34, 35], sentences[21]).

Adapting them tomanage graph-structured data remains an an open

problem.More critically, the effect of graph structure is tangled with

the complex graph neural networks, complicating the derivation of

the hardest distribution within DRO.

Challenge 2: Another challenge arises from the typically sparse

nature of recommendation data[12]. With nodes often having lim-

ited neighbors, the feasible distribution family for DRO is inher-

ently constrained, which might dampen its robustness and overall

performance[28].

To bridge these gaps, we propose DR-GNN, a novel method that

seamlessly integrates DRO into GNN-based recommendation. To

address the first challenge, we harness insights from graph filtering

theories[18], recasting the GNN into an equivalent graph smooth-

ing regularizer that penalizes the distance between adjacent nodes’

embeddings. Through this perspective, we incorporate DRO into

this regularizer, enhancing the GNN’s robustness against shifts

existing in neighbor distributions. For the second challenge, we

propose a strategy to augment the observed neighbor distribution

with slight perturbations. Notably, while DR-GNN does introduce

intricate nested optimization, meticulous simplification ensures its

implementation remains easy and efficient — primarily drawing

from similar nodes as new neighbors and adjusting edge weights

according to embedding distances. Our rigorous theoretical analysis

proves that if the divergence between training and testing distribu-

tions is bounded, the robustness of DR-GNN can be guaranteed.

Our contributions are summarized as follows:

• Exploring the less-explored task of GNN-based recommenda-

tion with distribution shift, and revealing the limitations and

inadequacies of existing methods.

• Proposing a new GNN-based method DR-GNN for OOD rec-

ommendation, which seamlessly integrate DRO in GNN-based

methods.

• Conducting extensive experiments to validate the superiority

of the proposed method against three types of distribution shift

(i.e., popularity shift, temporal shift and exposure shift).

2 PRELIMINARY
In this section, we present the background of Graph-based Recom-

mender System and Distributionally Robust Optimization.

2.1 GNN-based Recommender Systems
Given a data of user-item interactionsD =

{
𝑢, 𝑖, 𝑟𝑢,𝑖 | 𝑢 ∈ U, 𝑖 ∈ I

}
,

whereU denotes the set of users, I denotes the set of items, and

𝑟𝑢,𝑖 = {0, 1} indicates whether user 𝑢 has interacted with item 𝑖 . We

can represent user-item interaction data in the form of a bipartite

graph G = (V, E) whereV = U ∪ I denotes the user/item nodes

and E denotes the edge set representing the interactions between

users and items. Let 𝐴 ∈ R( |U |+|I | )×( |U |+|I | ) denote the adja-

cency matrix of graph G, where A𝑢,𝑖 = 1 if 𝑟𝑢𝑖 = 1, and A𝑢,𝑖 = 0

otherwise. LetN(𝑢) = {𝑖 ∈ I|A𝑢,𝑖 = 1} represents the item set that

the user 𝑢 has interacted with. We also define 𝑃𝑢 as the distribution

of the neighbors of 𝑢, a uniform distribution over neighbors. Let

𝑑𝑢 represent the degree of user 𝑢. The goal of GNN-based RS is to

learn high-quality embeddings from the graph G and accordingly

make accurate recommendations.

LightGCN. As a representative GNN-based recommendation

methods, LightGCN learns user/item representations following the

general message passing of GNNs. Nevertheless, it removes feature

transformation and non-linear activations, as they tend to increase

overfitting risks without enhancing performance. let denote the

embeddings of users and items as E ∈ R( |U |+|I | )×𝑐 ( 𝑐 is the

dimension of representations). In LightGCN, the final embeddings

were obtained via 𝐾-th propagation layers, which can be abstracted

as:

E
(𝑘 ) = ÃE

(𝑘−1) , (1)

where E
(𝑘 )

denotes the embeddings after 𝑘-th propagation layers

and 𝐴 =

(
𝐷−

1

2𝐴𝐷−
1

2

)
denotes as the normalized adjacency matrix.

𝐷 is the diagonal node degree matrix. The notation L denote the

Laplacian matrix of graph G, i.e., L = 𝐼 −𝐴.
To facilitate understanding, considering the prominence and

widespread application of LightGCN, we simply take it as the back-

bone for analysis.

2.2 Distributionally Robust Optimization
The machine learning model’s success is based on the IID assump-

tion, i.e., training data and testing data are drawn from the same dis-

tribution. However, the assumption fails to hold in many real-world

applications, leading a sharp drop in performance. Distributionally

Robust Optimization (DRO) addresses the issue by considering the

uncertainty of the distribution. Specifically, instead of focusing on

performance under a single observed data distribution, DRO aims

to ensure that the model performs well across a range of poten-

tial data distributions. It first identifies the worst distribution(i.e.,
2
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Figure 2: Illustration of howDR-GNN augments LightGCN: it
gives edge weights during graph aggregation and introduces
new nodes as neighbors.

the loss function is maximized under the expectation of the worst-

case distribution) in the family of distributions within a predefined

range around the empirical data distribution, and then optimizes

the objective function under that distribution, thereby ensuring the

robustness of the model under unfavorable conditions. Formally,

DRO is solved in a bi-level optimization via playing the min-max

game on the objective function L(𝑥 ;𝜃 ), in which 𝑥 represents the

data variable and 𝜃 represents the model parameter to be optimized.

The optimization objective of DRO is as follows:

ˆ𝜃 = argmin

𝜃

{
max

𝑃∈P
E𝑥∼𝑃 [L(𝑥 ;𝜃 )]

}
P = {𝑃 ∈ D : 𝐷 (𝑃, 𝑃𝑜 ) ≤ 𝜂}

(2)

where D denotes the set of all distributions, 𝜂 denotes robust radius.

The uncertainty set P is composed of all distributions within the

robust radius distance from 𝑃𝑜 , and DRO tried to identify the worst-
case distribution 𝑃∗ from a family of eligible distributions P by

maximization. The function 𝐷 (., .) measures the distance between

two distributions e.g., KL-divergence.

3 METHODS
In this section, we detail the proposed DR-GNN (subsection 3.1&3.2),

followed by the theoretical analyses to demonstrate its robustness

(subsection 3.3). Finally, we discuss the connections our DR-GNN

with existing methods (subsection 3.4). The schematic diagram of

DR-GNN is depicted in Figure 4.

3.1 Distributionally Robust GNN
It is highly challenging to directly apply DRO in GNN-based rec-

ommendation methods, as the graph structure is tangled with the

complex GNN procedure. To tackle this problem, we draw inspira-

tion from graph filtering theories[18] and recast the GNN into an

equivalent graph smoothing regularizer.

LightGCN as a Graph Smoothness Regularizer. By analyzing
LightGCN from the graph signal filtering perspective, we have the

following important lemma:

Lemma 1. Performing graph aggregation in LightGCN is equiva-
lent to optimizing the following graph smoothness regularizer using

gradient descent with appropriate learning rate:

L𝑠𝑚𝑜𝑜𝑡ℎ =
1

2

∑︁
𝑢

E𝑣∼𝑃𝑢 [𝑑𝑢𝑔(𝑢, 𝑣 ;𝜃 )] (3)

𝑔(𝑢, 𝑣 ;𝜃 ) =
 E𝑢√
𝑑𝑢
− E𝑣√

𝑑𝑣

2
𝐹

(4)

Here, 𝑔(𝑢, 𝑣 ;𝜃 ) signifies the Fibonacci norm between the normalized
embeddings, with 𝜃 representing the model parameters. 𝑃𝑢 denotes
the distribution of the neighbor nodes of 𝑢.

The proof can be found in Appendix A.1. This lemma clearly

elucidates the effect of the graph neural network — graph aggre-

gation tend to draw the embeddings of neighbors closer. More-

over, the impact of distribution shifts on GNNs are highlighted.

Taking the popularity shift (a.k.a. popularity bias) as an exam-

ple, user representations may become excessively aligned with

popular items, thereby exacerbating the Matthew effect, as demon-

strated in[9]. For the convenience of subsequent analysis, we denote

L𝑠𝑚𝑜𝑜𝑡ℎ (𝑢) = E𝑣∼𝑃𝑢 [𝑑𝑢𝑔(𝑢, 𝑣 ;𝜃 )] as the smoothness regularizer

on the specific node 𝑢.

Leveraging DRO in the Regularizer. Holding the view of

GNN as a regularizer, we further introduce DR-GNN, a model that

incorporates DRO to enhance its robustness against distribution

shifts. Following the definition of DRO Eq.(2), the objective function

of the proposed DR-GNN can be formulated as:

min

𝜃
L𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢) = min

𝜃
max

𝑃
E𝑣∼𝑃 [𝑑𝑢𝑔(𝑢, 𝑣 ;𝜃 )]

s.t. 𝐷𝐾𝐿 (𝑃, 𝑃𝑢 ) ≤ 𝜂
(5)

DR-GNN engages in a min-max optimization: 1) it identifies the

most difficult distribution over a set of potential distributions. It is

defined in the vicinity of the observed neighbor distribution subject

to the constraint 𝐷𝐾𝐿 (𝑃, 𝑃𝑢 ) ≤ 𝜂; 2) Subsequently, the model’s

optimization is performed on this identified hardest distribution

instead of original observed distribution. This strategy intrinsically

incorporates potential distribution shifts during training, thereby

naturally exhibits better robustness against distribution shifts. We

will further validate this point in both theoretical analyses (Section

3.3) and empirical experiments (Section 4).

Efficient Implementation. Despite the promise, the objective

of DR-GNN involves the complex nested optimization, which may

incur heavily computational overhead. Fortunately, it can be largely

simplified with the following lemma:

Lemma 2. The bi-level optimization problem of Eq.(5) can be trans-
formed into optimizing:

min

𝜃
L𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢) = min

𝜃
E𝑣∼𝑃∗𝑢 [𝑑𝑢𝑔(𝑢, 𝑣 ;𝜃 )] (6)

where 𝛼 represents the optimal Lagrange coefficient of the constraint
𝐷𝐾𝐿 (𝑄, 𝑃𝑢 ) ≤ 𝜂, which can be regarded as a surrogate parameter of
𝜂. The worst-case distribution 𝑃∗𝑢 can be calculated as following

𝑃∗𝑢 (𝑣) = 𝑃𝑢 (𝑣)
exp (𝑔(𝑢, 𝑣 ;𝜃 )/𝛼)

E𝑤∼Pu [exp(𝑔(𝑢,𝑤 ;𝜃 )/𝛼)] (7)

The proof is placed in the appendix A.2. This lemma provides a

close-formed expression of the most difficult distribution, greatly

simplifying the implementation of DR-GNN. Specifically, modifica-

tions to the distribution of neighboring nodes can be simply realized

3
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through the alteration of edge weights within the graph. Formally,

the normalized adjacency matrix of the graph Ã is transformed into

Ã
′
and

Ã
′
𝑖 𝑗 =

exp (𝑔(𝑖, 𝑗 ;𝜃 )/𝛼)∑
𝑘∈N(𝑖 ) exp(𝑔(𝑖, 𝑘 ;𝜃 )/𝛼)

Ã𝑖 𝑗 (8)

The adjusted normalized adjacency matrix Ã
′
, characterized by

modified weights, is subsequently utilized to execute the aggre-

gation operation pertaining to the graph. Given the equivalence

between the GNN and the regularizer, this can be integrated dur-

ing graph aggregation, necessitating only minor adjustments to

the edge weights. In practice, we may suffer numerical instability

due to the introduce of exp(.) in weights. To counteract this, we

suggest to introduce the embedding normalization via 𝐿2 norm in

calculating the weights, empirically yielding more stable results.

3.2 Graph Edge-Addition Strategy
Applying DRO in GNN-based recommendation incurs another chal-

lenge: Particularly, in DRO, all potential distributions 𝑃 should

share the same support as the original distribution 𝑃𝑢 , otherwise

the KL-divergence would become infinite. This inherently implies

that the support of 𝑃 would be restricted to the neighboring nodes,

excluding the vast pool of non-neighboring nodes. The situation

exacerbates given the typically sparse nature of recommendation

data — most users may only have interactions with a handful of

items. This significantly limits the flexibility and scope of potential

distributions, increasing the risk of missing testing distribution and

thereby undermining model robustness.

To address aforementioned issue, we propose a strategy called

Graph Edge-Addition(GEA) that introduces slight perturbations

𝑃𝑎𝑑𝑑𝑢 in 𝑃𝑢 to expand its support. 𝑃𝑎𝑑𝑑𝑢 is defined over the support of

all item set such that those non-neighboring nodes can be utilized

for training better and robust embeddings. Formally, The objective

of DR-GNN is improved as:

L𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢) = max

𝑃
min

𝑃𝑛𝑒𝑤𝑢

E𝑣∼𝑃 [𝑑𝑢𝑔(𝑢, 𝑣 ;𝜃 )]

s.t. 𝐷𝐾𝐿 (𝑃, 𝑃𝑛𝑒𝑤𝑢 ) ≤ 𝜂
(9)

where the new distribution 𝑃𝑛𝑒𝑤𝑢 is defined as 𝑃𝑛𝑒𝑤𝑢 = 𝛾𝑃𝑢 + (1 −
𝛾)𝑃𝑎𝑑𝑑𝑢 , with 𝛾 serving as a hyperparameter that controls the mag-

nitude of the perturbations. Remarkably, we adjust 𝑃𝑢 towards min-

imization of regularizer rather than maximization. This is premised

on the belief that a non-neighboring item, which exhibits greater

similarity to user 𝑢, is more likely to be favored by the user. Such

items are potentially useful in refining user embeddings.

The introduce of 𝑝𝑎𝑑𝑑𝑢 mitigates the inherent shortcomings of

DRO in sparse recommendation datasets. It extends the range of

potential distributions and harnesses the abundant information

from non-neighboring nodes. Practically, the minimization opti-

mization on 𝑃𝑛𝑒𝑤𝑢 can be formulated into finding the items min-

imizing 𝑔(𝑢, 𝑣 ;𝜃 ). However, it can be computationally expensive,

as it requires traversing over all nodes. To mitigate computational

complexity, we employ a strategy of random sampling. Specifically,

we select a subset of nodes randomly to form a candidate set, and

then confine the traversal operation solely to this subset.

3.3 Theoretical Analyses
In this subsection, we provide a theoretical analysis to demonstrate

the robustness of DR-GNN to distribution shift. For any user 𝑢,

let 𝑃𝑖𝑑𝑒𝑎𝑙𝑢 denotes 𝑢’s ideal neighbor distribution used for model

testing and the corresponding smoothness regularizer for node 𝑢

can be written as L𝑖𝑑𝑒𝑎𝑙 (𝑢;𝜃 ) = E𝑣∼𝑃𝑖𝑑𝑒𝑎𝑙𝑢
[𝑑𝑢𝑔(𝑢, 𝑣 ;𝜃 )].

Theorem 3.1. Let L̃𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢;𝜃 ) serve as the estimation for
L𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢;𝜃 ). If 𝐷𝐾𝐿 (𝑃𝑖𝑑𝑒𝑎𝑙𝑢 , 𝑃𝑢 ) ≤ 𝜂, then we have that with
probability at least 1 − 𝛿 :

L𝑖𝑑𝑒𝑎𝑙 (𝑢;𝜃 ) ≤ L̃𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢;𝜃 ) + B(𝑞, 𝑑𝑢 , 𝛿) (10)

where B(𝑞, 𝑑𝑢 , 𝛿) =
√︂

8𝑞 log( 2𝑒𝑑𝑢
𝑞
)+8 log 4

𝛿

𝑑𝑢
and 𝑞 is the Vapnik Cher-

vonenkis dimension of the hypothesis space of parameter 𝜃 .

The proof is presented in appendix A.3. Theorem 3.1 exhibits that

the ideal loss is upper bound by empirical DRO loss if a sufficiently

large data size is employed. At this point, we provide the theoretical

guarantee for the resistance to distribution shift capability of DR-

GNN.

3.4 Discussions
The connection with APDA[52]. Interestingly, the edge weights
introduced in our DR-GNN is highly similar with APDA. The key

distinction lies in our choice to use initial embeddings for weight

calculation, while APDA uses embeddings with multi-layer aggre-

gation. This seemingly minor difference leads to a pronounced

performance disparity in favor of DR-GNN over APDA in our ex-

periments. The reason behind this is the theoretical grounding of

our approach. Specifically, DR-GNN is derived from the theoretical-

sound DRO framework, while APDA’s design is predominantly

heuristic and lacks a solid theoretical base.

Furthermore, our framework offers theoretical insights into sev-

eral heuristic settings found in APDA:

Our framework also gives a theoretical explanations of many

heretical settings used in APDA: 1) Operations such as the expo-

nential function and symmetric normalization, which are adopted

heuristically in APDA, can be indeed derived to the DRO objective.

2) APDA also heuristically employs a hyperparamter 𝛼 to modulate

the magnitude of the value in exp() 1. In the context of DR-GNN,

this 𝛼 finds its theoretical counterpart — 𝛼 serves as a Lagrange mul-

tiplier, acting as a surrogate hyperparameter to control the robust

radius. We will discuss in depth the role of 𝛼 and its relationship

with the degree of distribution shift in section4.3.

The connection with Attention Mechanism[32]. The at-

tention mechanism has been adopted by recent work like Graph

Attention Network (GAT) [33] to determine the edge weights. These

weights in GAT, similar to ours, are predicated on node embeddings.

However, there’s a stark difference: while GAT employs a learn-

able non-linear layer to ascertain the weights, the weights in our

DR-GNN are derived directly from DRO.

Despite the success of the attention mechanism across various

domains, it underperforms in GNN-based recommendation. The

primary reason lies in the sparsity and the lack of rich features of

1
It’s worth noting that this was not explicitly mentioned in their paper but was clearly

implemented in their codes.
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recommendation data. It heavily hinders the effective training of the

attention function. This limitation is evident in our experimental

results: GAT demonstrates suboptimal performance, while our DR-

GNN exhibits effectiveness.

The connection with GraphDA[8] GraphDA is a method that

enhances the adjacency matrix of a graph. This method initially

pretrains a graph encoder to obtain the user/item embeddings fol-

lowing several iterations of graph convolution. Subsequently, the

graph is reconstructed based on the similarity between these em-

beddings. This process facilitates denoising for active users and aug-

mentating for inactive users. With the enhanced graph adjacency

matrix, GraphDA retrains a randomly initialized graph encoder.

Contrasting with GraphDA, the edge-adding operation in DR-GNN

also reconstructs a new adjacency matrix, but with different moti-

vations. The primary objective of GraphDA’s graph enhancement is

to equalize the number of neighbors for each node. This is achieved

by denoising users with an excess of neighbors in the original data

and augmenting users with a paucity of neighbors. Furthermore,

GraphDA preemptively introduces edges between user-to-user and

item-to-item to enable long-distance message passing. However,

the integration of the GAE module aims to broaden the support of

neighbor distribution. This expansion subsequently expand the un-

certainty set of DRO, thereby endowing the model with enhanced

generalization capabilities.

4 EXPERIMENTS
We aim to answer the following research questions:

• RQ1: How does DR-GNN perform compared with existing meth-

ods under various distribution shifts?

• RQ2: What are the impacts of the components (e.g., DRO on

neighbour nodes, GEA) on DR-GNN?

• RQ3: How does the parameter 𝛼 impacts DR-GNN?

Datasets. The experiments are conducted under three prevalent

distribution shift scenarios: popularity shift, temporal shift, and

exposure shift. Thus, eight datasets are employed for testing, namely

Gowalla, Douban, AmazonBook, Yelp2018, Movielens-1M, Food,

Coat, and Yahoo. For the popularity shift setting, we re-divide the

train and test set of the dataset based on item popularity. The test

set was designed in such a way that the popularity of all items

approximated a uniform distribution, while a long-tail distribution

was preserved within the training set. For the datasets under the

temporal shift setting, we took the most recent 20% of interaction

data from each user as the test set, and the earliest 60% of interaction

data as the training set. Table 5 in appendix A.3 shows the statistics

of each processed dataset.

Baselines. We use the conventional LightGCN as backbone and

BPR loss for all the baselines. The methods compared in the study

fall into several categories:

• Methods against distribution shifts in Recommendation
System(InvCF[47], BOD[38]) InvCF is the SOTA method on

addressing the popularity shift through invariant learning. BOD

achieves data denoising through bi-level optimization. Mean-

while, we acknowledge that there are some other methods to

address the OOD problem, including CausPref[14], COR[36],

HIRL[50], and InvPref[39]. However, these methods require addi-

tional information that is not available in our dataset and hence

Figure 3: t-SNE Visualization on Douban. DR-GNN ensures
that the representations of hot items and cold items are al-
most distributed in the same space.

cannot be tested. Certain methods among these necessitate pre-

partitioned environmental datasets[50], others demand prior

semantic information about users and items[14, 36], and some

necessitate the assignment of environmental variables for each

interaction, thereby rendering the strategy of random negative

sampling inapplicable[39].

• Graph contrastive learningmethods(LightGCL[3], SGL[41]).
The methods use the contrastive learning on the graph and has

been proven to alleviate the prevalent popularity bias.

• Reconstructing the adjacency matrix methods(APDA[52],
GAT[33], GraphDA[8]) Such methods reconstruct the adja-

cency matrix of the graph by adjusting edge weights or recon-

structing the edges between nodes according to certain rules.

Moreover, APDA and GAT can experience memory overflow

issues on datasets with a large number of interactions. This is

because GAT needs to calculate weights for each edge and per-

form backpropagation, while APDA needs to calculate weights

for each layer of aggregation operations.

We used the source code provided in the original papers and searched

for optimal hyperparameters for all comparison methods according

to the instructions in the original papers.

EvaluationMetrics. Three commonly usedmetrics—Precision@𝐾 ,

Recall@𝐾 , andNormalizedDiscounted Cumulative Gain(NDCG@𝐾 )

— are used to assess the quality of the recommendations, with 𝐾

being set by default at 20.

Further experimental details are presented in the appendixA.5.

4.1 Performance Comparison (RQ1 and RQ2)
In this section, we analyze the superior of DR-GNN under different

distribution shift setting as compared with other baselines.

4.1.1 Evaluations on Popularity Shift Setting. Table 1 reports the
comparison of performance on all the baselines under popularity

shift. The majority of comparative methodologies fail to consis-

tently yield satisfactory results across a variety of datasets, includ-

ing algorithms specifically designed for popularity shift, such as

APDA and InvCF. The improvement of APDA compared to Light-

GCN is quite limited, indicating that its heuristic dynamic edge

weight adjustment algorithm cannot handle popularity shift well.
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Table 1: The performance comparison on popularity shift datasets using LightGCN backbone. The best result is bolded and the
runner-up is underlined. OOM stands for out of memory.

Gowalla Douban Amazon-Book Yelp2018

NDCG Precision Recall NDCG Precision Recall NDCG Precision Recall NDCG Precision Recall

LightGCN(SIGIR20) 0.0369 0.0170 0.0563 0.0792 0.0510 0.0723 0.0227 0.0129 0.0278 0.0136 0.0060 0.0221

LightGCL(ICLR23) 0.0380 0.0177 0.0593 0.0746 0.0464 0.0721 0.0243 0.0137 0.0305 0.0136 0.0061 0.0227

SGL(SIGIR21) 0.0381 0.0173 0.0595 0.0773 0.0493 0.0716 0.0232 0.0131 0.0296 0.0143 0.0063 0.0242

InvCF(WWW23) 0.0399 0.0181 0.0636 0.0740 0.0459 0.0725 0.0210 0.0118 0.0268 0.0144 0.0062 0.0243

BOD(KDD23) 0.0361 0.0169 0.0556 0.0815 0.0559 0.0686 0.0253 0.0141 0.0315 0.0145 0.0061 0.0253

APDA(SIGIR23) 0.0367 0.0168 0.0579 OOM OOM OOM 0.0229 0.0133 0.0286 0.0141 0.0062 0.0228

GAT(ICLR18) 0.0227 0.0104 0.0334 OOM OOM OOM OOM OOM OOM OOM OOM OOM

GraphDA(SIGIR23) 0.0341 0.0166 0.0570 0.0892 0.0596 0.0808 0.0199 0.0113 0.0262 0.0140 0.0059 0.0243

DR-GNN 0.0517 0.0238 0.0774 0.1044 0.0704 0.0905 0.0327 0.0183 0.0402 0.0193 0.0086 0.0322

Table 2: The performance comparison on temporal shift
datasets using LightGCN backbone. The best result is bolded
and the runner-up is underlined.

MovieLens-1M Food

NDCG Precision Recall NDCG Precision Recall

LightGCN 0.2041 0.1741 0.1310 0.0429 0.0168 0.0585

LightGCL 0.2055 0.1750 0.1335 0.0421 0.0165 0.0574

SGL 0.2177 0.1830 0.1407 0.0401 0.0159 0.0553

InvCF 0.2138 0.1759 0.1354 0.0411 0.0161 0.0557

BOD 0.2116 0.1729 0.1343 0.0436 0.0170 0.0592

APDA 0.2362 0.1954 0.1518 0.0400 0.0161 0.0554

GAT 0.1942 0.1713 0.1325 0.0316 0.0131 0.0464

GraphDA 0.2213 0.1866 0.1482 0.0411 0.0161 0.0580

DR-GNN 0.2330 0.1924 0.1452 0.0440 0.0172 0.0592

Meanwhile, GAT, which also dynamically adjusts edge weights, per-

forms much worse than LightGCN, suggesting that the attention

mechanism may inadvertently intensify the impact of distribution

shift. Our proposedmethod, DR-GNN, consistently and significantly

surpasses the state-of-the-art benchmarks across all popularity shift

datasets. The robustness of DR-GNN is ascribed to the incorpora-

tion of uncertainty inherent in observed data distributions by DRO.

This feature enables the model to perform optimally under various

environments, rather than solely relying on training data.

Visualization Results. As shown in Figure 3, to better under-

stand how DR-GNN handles distribution shift, we perform t-SNE

visualization[31] of the item embeddings on the Douban dataset.

According to the ranking results of item popularity, the top 5%most

popular items are selected as hot items and the bottom 5% as cold

items. It can be observed that in the representations learned by

LightGCN, there is a clear gap between hot items and cold items,

while both are distributed in the same space in the representations

learned by DR-GNN. This suggests that DR-GNN eliminate the

impact of distribution shift caused by popularity shift.

4.1.2 Evaluations on Temporal Shift Setting. Temporal bias takes

into account changes in user interests over time. It is more complex

Table 3: The performance comparison on exposure shift
datasets using LightGCN backbone. The best result is bolded
and the runner-up is underlined.

Coat Yahoo

NDCG Precision Recall NDCG Precision Recall

LightGCN 0.0802 0.0243 0.1576 0.0736 0.0118 0.1504

LightGCL 0.0839 0.0243 0.1577 0.0734 0.0118 0.1476

SGL 0.0839 0.0245 0.1631 0.0740 0.0122 0.1548

InvCF 0.0842 0.0241 0.1668 0.0742 0.0122 0.1539

BOD 0.0817 0.0219 0.1542 0.0816 0.0115 0.1481

APDA 0.0821 0.0243 0.1706 0.0756 0.0124 0.1588

GAT 0.0836 0.0243 0.1633 0.0722 0.0119 0.1500

GraphDA 0.0847 0.0245 0.1641 0.0748 0.0117 0.1528

DR-GNN 0.0874 0.0255 0.1744 0.0774 0.0126 0.1624

than the distribution shift caused by popularity, as it encompasses

factors beyond popularity alone. We simulate temporal bias by

dividing training and test sets for each user according to the times-

tamp of the interaction. Dataset Food and Movielens-1M are used

in this setting.

In the context of the temporal shift setting, we noticed that on the

Movielens-1M dataset, although APDA performed better than DR-

GNN, the improvement is not significant, and its performance was

relatively unstable, evidenced by its inferior performance compared

to LightGCN on the Food dataset. Similar observations were made

for GraphDA. Compared to most other benchmark methods, DR-

GNN continues to consistently deliver good performance.

4.1.3 Evaluations on Exposure Shift Setting. In practical contexts,

users are typically exposed to a limited subset of items, thereby

neglecting a significant majority. This phenomenon named "ex-

posure bias" suggests that the absence of user interaction with

specific items does not unequivocally signify their disinterest. Con-

sequently, in real-world datasets, the patterns of missing user in-

teraction records are not randomly distributed, but rather, they are

"missing-not-at-random". Here we conduct experiments on widely

used missing-complete-at-random datasets: Yahoo and Coat.
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Table 4: Ablation Study on Gowalla and Yelp2018

Dataset Method NDCG Precision Recall

Gowalla

LightGCN 0.0369 0.0170 0.0563

DR-GNN w/o DRO 0.0391 0.0174 0.0583

DR-GNN w/o GEA 0.0494 0.0231 0.0761

DR-GNN 0.0517 0.0238 0.0774

Yelp2018

LightGCN 0.0136 0.0060 0.0221

DR-GNN w/o DRO 0.0161 0.0070 0.0265

DR-GNN w/o GEA 0.0182 0.0081 0.0305

DR-GNN 0.0193 0.0086 0.0322

According to table 3, DR-GNN can also handle distribution shift

caused by exposure bias well. Besides, we noticed that on the Yahoo

dataset, BOD’s NDCG metric surpasses other comparison methods,

but it is weaker than LightGCN in terms of Precision and Recall

metrics. We believe this might be due to BOD’s weight adjustment

strategy overfitting to certain interactions, causing them to rank

higher, which leads the recommendation model to concentrate too

much on a few highly relevant results. Furthermore, BOD’s perfor-

mance on the coat dataset is only slightly better than LightGCN,

indicating that its performance is not stable.

The experiments under the aforementioned three settings demon-

strate that our method can handle different types of distribution

shifts.

4.2 Ablation Study (RQ3)
We conducted an ablation study to investigate the effects of differ-

ent modules in DR-GNN, including the DRO and GEA modules. We

compared the DR-GNN with its two variants "DR-GNN w/o DRO"

and "DR-GNN w/o GEA" based on whether the DRO and GEA mod-

ules were enabled. The results in Table 4 demonstrate that the use

of DRO for graph aggregation operations can significantly enhance

the model’s performance, and GEA further improves the model’s

effectiveness. Surprisingly, we also found that the simple use of

GEA could also yield some gains. This may be attributed to the

additional edges introduced by GEA, which have accelerated the

convergence of smoothness regularization. The ablation study high-

lights the fact that all modules in DR-GNN can boost the model’s

learning.

4.3 Role of the parameter 𝛼 (RQ4)
The parameter 𝛼 in Eq.(7) plays an important role in the DRO. Based

on the previous derivation, the role of 𝛼 is to control the size of

uncertainty set. A smaller 𝛼 indicates a larger uncertainty set for op-

timizing. However, an excessively large search space can easily lead

to model overfitting. As 𝛼 tends towards zero, DRO will excessively

amplify the weight of the node with the maximum smooth regular-

ization loss, which can easily lead to overfitting to the meaningless

distribution. When 𝛼 is infinitely large, the worst-case distribution

tends towards a uniform distribution. At this point, DR-GNN with-

out GEA is equivalent to LightGCN. Therefore, 𝛼 is an important

hyperparameter that needs to be carefully tuned. Different values

Figure 4: Analysis of the role of 𝛼 . (a) Left: The performance
of DR-GNN in terms of NDCG across different 𝛼 on three
datasets with varying degrees of distribution shift. (b) Right:
The relationship between the degree of distribution shift and
the optimal 𝛼 .

need to be set depending on the degree of distribution shift in the

dataset. Empirically, we search for 𝛼 within the range of [0, 1].
Besides, we empirically verified the relationship between the

optimal 𝛼 and the degree of distribution shift on the popularity shift

dataset. We utilize the KL-divergence between item frequencies

as a metric to measure the degree of distribution shift between

the training and testing sets, and then tried to train the model

by tuning different 𝛼 parameters. Figure 4(a) shows the NDCG

performance of DR-GNN with different 𝛼 under varying degrees

of popularity shift in different datasets. It can be observed that

either excessively large or small 𝛼 can impact the performance, and

the optimal value varies across different datasets. In Figure 4(b),

we further quantified the distribution shift using KL divergence.

It was found that datasets with a larger degree of shift require a

smaller optimal 𝛼 , as they necessitate a larger uncertainty set. This

corresponds to our previous explanation.

5 RELATEDWORK
5.1 GNN-based Recommender System
In recent years, graph-based recommendation systems have at-

tracted extensive attention and research. Such systems leverage

the structure of graphs to discover and infer user preferences and

interests, thereby providing more personalized and accurate rec-

ommendations. Compared to the traditional collaborative filtering

method that only use first order information of node, the GNN

can capture higher order signal in the interactions by aggregating

the information from neighboring nodes. LightGCN[10] simplify

the original stucture of GCN[16] by dropping the feature trans-

formation nonlinear activation and self-connection. NIA-GCN[29]

improves the aggregation way in the GCN. They use PNA aggrega-

tor to model more complex interactions in the graph data.

Contrastive learning has also been extensively applied in graph-

based recommendation models. SGL[41] applies data augmentation

to graph-structured data through node dropout, edge dropout and

random walk, and constructs the positive and negative pairs us-

ing the different views of the nodes’ embedding. Other CL-based

recommenders mainly improve the way of augmenting the graph.
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LightGCL[3] uses SVD to generate new graph structures, which em-

phasizes the important signal in the user/item interations. SimGCL[44]

and XSimGCL[43] uses the random noise-based data augmentation

on embeddings avoiding the popularity bias by making features

more uniformly distributed.

Some methods are designed to target the OOD problem on GNN-

based recommendation models. APDA[52] dynamically adjusts the

edge weights of the graph, reducing the impact of popular items

while amplifying the influence of unpopular items. GraphDA[8] re-

constructs the adjacency matrix of the graph through a pre-trained

encoder, thereby achieving signal augmentation and denoising

within the graph. RGCF[30] improves graph structure learning

by identifying more reliable message-passing interactions, while

simultaneously maintaining the diversity of the enhanced data.

Despite these efforts, the aforementioned methods can only ad-

dress specific types of OOD problems, that is, they only focus on

the distribution shift resulting from certain specific factors, such as

noise and popularity bias, hence are not generic. Moreover, these

methods are mostly based on heuristic rule design and lack theo-

retical guarantees.

5.2 OOD in Recommender System
When training models, it is a common assumption that test data

originates from the same distribution as the training data. How-

ever, in real-world scenarios, models may encounter test data that

deviates from the distribution of the training data - a phenomenon

known as Out-of-Distribution. The presence of OOD data can poten-

tially precipitate a degradation in the model’s performance. There

are many methods used to solve the OOD problem in recommender

systems.

One category of methodologies endeavors to alleviate the impact

of distribution shift through the identification of invariant compo-

nents within embeddings. InvCF[47] effectively mitigates the im-

pact of popularity shifts by incorporating an auxiliary classifier that

formulates recommendations predicated on popularity. InvPref[39]

and HIRL[50] seperate the dataset into multiple environments by

attributing an environment variable to each interaction and then

leverage invariant learning to automatically identify elements that

remain constant irrespective of the environment. Some of the works

employ causal learning in addressing the OOD problem. COR[36]

uses causal graphmodeling and counterfactual reasoning to address

the effect of out-of-date interactions. CausPref[14] utilizes a dif-

ferentiable causal graph learning approach to obtain the invariant

user preferences. Other works, such as BOD[38] applies bi-level

optimization to ascertain the weight for each interaction to negate

the effects of noisy interactions.

However, the kind of works are not specifically designed for

GNN-based recommender system and thus fail to address the im-

pact of distribution shifts on the structure of the graph models

themselves.

5.3 Distributionally Robust Optimization
Distributionally Robust Optimization is a method for addressing

OOD problems. The primary goal of DRO is to find a solution

that is not only optimal for the given data distribution but also

robust against variations in the data distribution, i.e. the family

of distributions consisting of all distributions within a certain dis-

tance from the current data distribution. Many measures of dis-

tribution distance are used in DRO, including KL-divergence[15],

Wasserstein-distance[26], MMD distance[28]. It has been found that

DRO tends to induce model overfitting to the noisy samples[46]

and GroupDRO[23] was introduced to address this issue.

DRO has also been applied in the field of RS. S-DRO[40] cate-

gorizes users into different groups based on the popularity of the

items they interact with, and then employs group DRO to improve

long-term fairness for disadvantaged subgroups. DROS[42] applies

DRO to sequential recommendation tasks to address the OOD prob-

lem in the streaming of recommendation data. These methods are

not used on GNN-based RS.

Some research has explored the application of DRO on GNN[6,

22, 48]. On one hand, these methods fundamentally aim to address

distributional shifts caused by noise in node embeddings, which

is distinct from our approach that considers distributional shifts

within the graph’s topological structure. On the other hand, these

methods are not applied in recommendation systems and do not

take into account the challenges posed by the unique characteristics

of recommendation datasets when applying DRO.

6 CONCLUSION
This paper proposes an method DR-GNN, which introduces DRO

into the aggregation operation of GNN, to solve the problem of ex-

isting graph-based recommendation systems being easily affected

by distribution shift. Based on comparative experiments under mul-

tiple datasets and settings, as well as visualization studies on real

datasets, DR-GNN has been proven to effectively solve the distribu-

tion shift problem, enhancing the robustness of graph models.

A direction worthy of exploration in future work is the applica-

tion of DRO based on other distance metrics, such as the Wasser-

stein distance, MMD distance, etc., to address some of the shortcom-

ings of the KL divergence-based DRO discussed in this paper. We

believe that DR-GNN could provide a new perspective for future

work aimed at enhancing graph-based RS robustness.
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A APPENDICES
A.1 The proof of Lemma 1

Proof. Eq(.3) can be written as follows,

L𝑠𝑚𝑜𝑜𝑡ℎ =
1

2

∑︁
𝑢

∑︁
𝑣∈N(𝑢 )

 E𝑢√
𝑑𝑢
− E𝑣√

𝑑𝑣

2
𝐹

= tr

(
E
⊤
LE

)
(11)

We first compute the derivative of the Eq(.11)

𝜕L
𝜕E

= 2𝑐LE = 2𝑐E − 2𝑐ÃE (12)

In order to minimize Eq(.11) we take multi-step gradient descent.

The 𝑘-th step is as follows:

E
(𝑘 ) ← E

(𝑘−1) − 𝑏 · 𝜕L
𝜕E

����
𝐸=𝐸 (𝑘−1)

= (1 − 2𝑏𝑐)𝐸 (𝑘−1) + 2𝑏𝑐ÃE(𝑘−1) (13)

When we set the learning rate 𝑏 as
1

2𝑐 , we have the following

iterative steps:

E
(𝑘 ) ← ÃE

(𝑘−1)
(14)

which is equivalent to one-step aggregation operation in LightGCN.

Thus the multilayer aggregation operation is equivalent to mini-

mizing the smoothness regularization with a multi-step gradient

descent algorithm. □

A.2 The proof of Lemma 2
In this section we show the derivation of a multi-layer optimization

problem in DRO converted to a single-layer optimization problem.

The original DRO question is as follows,

min

𝜃
L𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢) = min

𝜃
max

𝑃
E𝑣∼𝑃 [𝑑𝑢𝑔(𝑢, 𝑣 ;𝜃 )]

s.t. 𝐷𝐾𝐿 (𝑃, 𝑃𝑢 ) ≤ 𝜂
(15)

Given that the presence of 𝑑𝑢 as a constant does not affect opti-

mization, we will omit it in our discussion, leading to the following

form of optimization problem,

max

𝑃
E𝑣∼𝑃 [𝑔(𝑢, 𝑣 ;𝜃 )]

s.t. 𝐷𝐾𝐿 (𝑃, 𝑃𝑢 ) ≤ 𝜂
(16)

We focus on how to eliminate the inner maximisation optimisation

problem and the distributional constraint term. Assume 𝐿( 𝑗) =
𝑄 ( 𝑗)/𝑃𝑢 ( 𝑗) and define a convex function 𝜙 (𝑥) = 𝑥 log𝑥 − 𝑥 + 1.
Then the divergence 𝐷𝐾𝐿 (𝑄, 𝑃𝑢 ) can be written as E𝑃𝑢 [𝜙 (𝐿)]. The
inner layer maximization optimization problem can be reformulated

as follow:

max

𝐿
E𝑣∼𝑃𝑢 [𝑔(𝑢, 𝑣 ;𝜃 )𝐿]

s.t. E𝑃𝑢 [𝜙 (𝐿)] ≤ 𝜂,E𝑃𝑢 [𝐿] = 1

(17)

As a convex optimization problem, we use the Lagrangian function

to solve it:

min

𝛼≥0,𝛽
max

𝐿
E𝑣∼𝑃𝑢 [𝑔(𝑢, 𝑣 ;𝜃 )𝐿] − 𝛼 (E𝑃𝑢 [𝜙 (𝐿)] − 𝜂) + 𝛽 (E𝑃𝑢 [𝐿] − 1)

= min

𝛼≥0,𝛽

{
𝛼𝜂 − 𝛽 + 𝛼 max

𝐿
E𝑣∼𝑃𝑢

[
𝑔(𝑢, 𝑣 ;𝜃 ) + 𝛽

𝛼
𝐿 − 𝜙 (𝐿)

]}
= min

𝛼≥0,𝛽

{
𝛼𝜂 − 𝛽 + 𝛼E𝑣∼𝑃𝑢

[
max

𝐿

(
𝑔(𝑢, 𝑣 ;𝜃 ) + 𝛽

𝛼
𝐿 − 𝜙 (𝐿)

)]}

Notice thatmax𝐿

(
𝑔 (𝑢,𝑣;𝜃 )+𝛽

𝛼 𝐿 − 𝜙 (𝐿)
)
= 𝜙∗ ( 𝑔 (𝑢,𝑣;𝜃 )+𝛽𝛼 ) is the con-

vex conjugate function of 𝜙 (𝑥) and we have 𝜙∗ (𝑥) = 𝑒𝑥 − 1.

𝐿(𝑣) = 𝑒
𝑔 (𝑢,𝑣;𝜃 )+𝛽

𝛼 when the maximum value is obtained.

min

𝛼≥0,𝛽

{
𝛼𝜂 − 𝛽 + 𝛼E𝑣∼𝑃𝑢

[
max

𝐿

(
𝑔(𝑢, 𝑣 ;𝜃 ) + 𝛽

𝛼
𝐿 − 𝜙 (𝐿)

)]}
= min

𝛼≥0,𝛽

{
𝛼𝜂 − 𝛽 + 𝛼E𝑣∼𝑃𝑢

[
𝑒
𝑔 (𝑢,𝑣;𝜃 )+𝛽

𝛼 − 1
]}

= min

𝛼≥0

{
𝛼𝜂 + 𝛼 logE𝑣∼𝑃𝑢

[
𝑒
𝑔 (𝑢,𝑣;𝜃 )

𝛼

]}
where 𝛽 = −𝛼 logE𝑣∼𝑃𝑢

[
𝑒
𝑔 (𝑢,𝑣;𝜃 )

𝛼

]
and 𝐿(𝑣) = 𝑒

𝑔 (𝑢,𝑣;𝜃 )
𝛼

E𝑤∼𝑃𝑢

[
𝑒
𝑔 (𝑢,𝑤;𝜃 )

𝛼

]
when the minimum value is obtained. We consider the Lagrange

multiplier 𝛼 as a hyperparameter related to the robustness radius to

obtain the final unconstrained single-layer optimization problem.

min

𝜃
L𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢) = min

𝜃

{
𝛼𝜂 + 𝛼 logE𝑣∼Puexp

(
𝑔(𝑢, 𝑣 ;𝜃 )

𝛼

)}
(18)

where the worst-case distribution

𝑃∗𝑢 (𝑣) = 𝑃𝑢 (𝑣)
exp (𝑔(𝑢, 𝑣 ;𝜃 )/𝛼)

E𝑤∼Pu [exp(𝑔(𝑢,𝑤 ;𝜃 )/𝛼)]
.

A.3 The proof of Theorem 3.1
Proof.

L𝑖𝑑𝑒𝑎𝑙 (𝑢;𝜃 ) = E𝑣∼𝑃𝑖𝑑𝑒𝑎𝑙𝑢
[𝑑𝑢𝑔(𝑢, 𝑣 ;𝜃 )]

≤ L𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢;𝜃 )

≤ L̃𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢;𝜃 ) + B(𝑞, 𝑑𝑢 , 𝛿)
(19)

It is obvious that the first inequality holds, because as long as 𝑃𝑖𝑑𝑒𝑎𝑙𝑢

exists in the uncertainty set, theL𝐷𝑅𝑂_𝑠𝑚𝑜𝑜𝑡ℎ (𝑢;𝜃 )must be greater

than the ideal loss L𝑖𝑑𝑒𝑎𝑙 (𝑢;𝜃 ). The second inequality follows from
the relationship between empirical error and expected error[2]. □

A.4 Dataset statistics
The statistics of each dataset used in the experiment are shown in

Table 5, which lists the number of users, items, interactions, and

sparsity of the dataset. The brief introductions of all datasets are as

follows:

• Gowalla[11]. Gowalla is the check-in dataset obtained from

Gowalla
2
.

• Douban[27]. This dataset is collected from a popular review

website Douban
3
in China. We transform explicit data into im-

plicit using the same method as applied in Movielens.

• Amazon-Book[37]. The Amazon-Book dataset is a comprehen-

sive collection of data that primarily focuses on book reviews

from the Amazon platform
4
. This dataset is often used in re-

search, particularly in the field of recommendation systems.

• Yelp2018[10]. Yelp20185 is from the 2018 edition of the Yelp

challenge, containing Yelp’s bussiness reviews and user data.

2
https://www.gowalla.com/

3
https://www.douban.com/

4
https://www.amazon.com/

5
https://www.yelp.com/dataset
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1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218
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1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 5: Dataset statistics.

Setting Dataset #Users #Items #Interactions Density

Popularity Shift

Gowalla 29858 40705 1024507 0.0008

Douban 61788 7768 10449897 0.0218

Amazon-Book 52643 89807 2964807 0.0006

Yelp2018 77277 41978 2062568 0.0006

Temproal Shift

Movielens-1M 6040 3653 880999 0.0399

Food 7450 10977 251038 0.0031

Exposure Shift

Coat 290 284 2745 0.0333

Yahoo 14382 1000 129748 0.0090

• Movielens-1M[45]. Movielens is the widely used dataset from[]

and is collected from MovieLens
6
. We use the version of 1M. We

transform explicit data to implicit feedback by treating all user-

item ratings as positive interactions.

• Food[51]. Food datasets contain recipe details and reviews from

Food.com(formerly GeniusKitchen)
7
. Data includes cooking recipes

and review texts.

• Coat[19] & Yahoo[24]. These two datasets are obtained from

the Yahoo music and Coat shopping recommendation service,

respectively. Both datasets contain a training set of biased rating

data collecting from the normal user interactions and a test set

of unbiased rating data containing user ratings on randomly

selected items. The rating data are translated to implicit feed-

back,i.e., , the rating larger than 3 is regarded as positive.

A.5 Parameter Settings.
For a fair comparison, the embedding size is fixed to 32 and layer

num is set as 3 for all comparisonmethods. TPE-based Bayesian opti-

miser is used to search for the optimal hyperparameters. Specifically,

as for DR-GNN, the learning rate is tuned from {0.1, 0.01} and the co-
efficient of𝐿2 regularization term 𝜆 is tuned from {0, 0.1, 0.01, ..., 1𝑒−
6}. The 𝜏 in BPR loss is searched from {0.1, 0.2, ..., 1.0}. The 𝛼 in

DRO is search from (0, 1). The coefficient 𝛾 in GEA is search from

{0.1, 0.2, 0.3, 0.4, 0.5}.
We utilize the all-ranking strategy, in which all items, excluding

the positive ones from the training set, are ranked by the recom-

mendation model for each user.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

6
https://movielens.org/

7
https://cseweb.ucsd.edu/ jmcauley/datasets.html#foodcom
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