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ABSTRACT

Language models (LMs) have yielded impressive results on many language reason-
ing tasks, but their unexpected errors raise doubts about their reasoning abilities.
In light of this, there is growing interest in finetuning/prompting LMs with both
task instances and their associated free-text rationales (FTRs), which explain the
correct reasoning process for predicting the correct task output (i.e., how to be
“right for the right reasons”). However, existing finetuning methods fail to improve
LM performance, while prompting needs prohibitively large (i.e., >50B) LMs to
work well. We propose KNIFE, which shows that reasoning knowledge can be
effectively distilled from FTRs into a small (i.e., <1B) LM and improve the LM’s
performance. First, KNIFE finetunes a teacher LM (given task input and FTR)
to predict the task output, transferring reasoning knowledge from the FTRs to the
teacher’s hidden states. Second, KNIFE finetunes a student LM (given task input
only) such that its hidden states are aligned with the teacher’s. Thus, the student is
endowed with reasoning knowledge but can be used for inference without direct
FTR input. On two question-answering benchmarks, KNIFE outperforms various
finetuning and prompting baselines in fully-supervised and low-resource settings.
Also, we observe that FTR quality is a crucial factor in KNIFE’s performance.1

1 INTRODUCTION

Whereas conventional supervised learning only gives feedback on a language model’s (LM’s) task
output correctness, explanation tuning aims to teach LMs to be “right for the right reasons” (Ross
et al., 2017) by also providing them with explanations of the correct reasoning process behind a given
correct output (Narang et al., 2020; Hase & Bansal, 2021; Joshi et al., 2022). In particular, there is
growing interest in learning from free-text rationales (FTRs) — a.k.a. natural language rationales —
which use natural language to verbally explain the correct reasoning process for solving a given task
instance (Camburu et al., 2018; Rajani et al., 2019; Narang et al., 2020; Wei et al., 2022b).

Among explanation tuning methods (§A.1), the self-rationalization paradigm has been most successful
in improving LMs’ performance on reasoning tasks (Hase & Bansal, 2021; Wei et al., 2022b;
Lampinen et al., 2022). Here, the LM is prompted or finetuned to jointly generate the task output
and FTR (Liu et al., 2018; Narang et al., 2020; Marasović et al., 2022; Brahman et al., 2021; Wei
et al., 2022b; Zelikman et al., 2022). Although prompted self-rationalization can improve task
performance in certain situations (Wei et al., 2022b; Lampinen et al., 2022; Zelikman et al., 2022),
prompting typically requires prohibitively large-scale (i.e., >10B) LMs to work well (Wei et al.,
2022a). Meanwhile, small-scale (i.e., <1B) LMs are suitable for finetuning, but finetuned self-
rationalization is mostly used in the context of explainability and fails to consistently improve task
performance (Hase & Bansal, 2021; Zhang et al., 2023). Since few AI researchers or practitioners
have the computational resources to freely experiment with their own large-scale LMs (Zhao et al.,
2023), how can we use FTRs to improve the performance of small-scale LMs on reasoning tasks?

LMs learn copious latent information during pretraining, but pretrained LMs may not always know
how to properly utilize this information to solve reasoning tasks. We refer to knowing how to sensibly
synthesize this latent information to solve tasks as reasoning knowledge. We hypothesize that the
LM often already possesses the latent information needed to solve reasoning tasks, but just lacks the

1Code and data have been submitted and will be publicly released after the review process has concluded.
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reasoning knowledge to organize this information as a meaningful path between the task input and
the correct output. Fortunately, FTRs can provide good examples of such reasoning paths. Because
an individual FTR explains the reasoning process for solving a single task instance, it only provides
instance-level reasoning knowledge. Thus, given a set of task instances that sufficiently characterizes
the task, it follows that a set of FTRs for these instances can collectively capture task-level reasoning
knowledge that generalizes to unseen task instances. With this in mind, our goal is to finetune a
small-scale LM by extracting general reasoning knowledge from a set of FTRs, then injecting this
knowledge into the LM to guide its reasoning and improve its inference performance (Fig. 1). Since
FTRs can be feasibly annotated for thousands of instances, which is the typical size of a downstream
NLP training set (Mihaylov et al., 2018; Geva et al., 2021), we can reasonably assume that annotated
FTRs are available for all finetuning instances. Since we consider human-annotated FTRs, we also
assume that all FTRs convey a correct reasoning process and are inaccessible to the LM during
inference, as producing the correct FTR requires already knowing the correct task output.

Figure 1: Reasoning knowledge via FTRs. Free-
text rationales (FTRs) explain the correct reasoning
process for solving a given task instance. Mean-
while, a set of FTR-augmented task instances (i.e.,
[Input, Output, FTR] batches) can collectively pro-
vide latent reasoning knowledge for solving the
task in general. Nonetheless, it remains unclear
how to effectively inject this knowledge into LMs
to improve their generalization performance.

We propose KNowledge DIstillation From Free-
Text RationalEs ( KNIFE), showing that rea-
soning knowledge can be effectively distilled
from FTRs into a small LM and improve the
LM’s task performance. Unlike prior explana-
tion tuning methods, KNIFE compresses FTR
reasoning knowledge from its natural language
form into a set of LM hidden states, making it
easier to control how this knowledge is trans-
ferred. First, KNIFE finetunes a teacher LM to
predict the task output, given both the task input
and an FTR input. This finetuning process aggre-
gates reasoning knowledge across all finetuning
instances’ FTRs, then stores it in the teacher’s
hidden states. Since the teacher requires FTR
inputs, it cannot be used for inference, during
which FTRs are unavailable. Second, KNIFE
finetunes a student LM, given only the task in-
put, to align its hidden states with the teacher’s.
By treating the teacher’s hidden states as soft
labels, KNIFE distills reasoning knowledge via such soft labels from the teacher to the student. Then,
only the student is used for inference, without FTR input or generation. During inference, instead of
the student’s output being explicitly conditioned on any specific FTRs, it is implicitly conditioned on
the reasoning knowledge that was distilled into the student’s parameters.

Traditionally, knowledge distillation (KD) has been studied in the context of model compression,
where the teacher’s advantage is simply that it is larger than the student (Hinton et al., 2015; Sanh
et al., 2019). On the other hand, KNIFE is based on a less common yet still well-studied form of KD
called privileged KD (Lopez-Paz et al., 2015; Vapnik et al., 2015), where the teacher’s advantage is
that it has special access to “privileged information” (e.g., additional input features) while the student
does not (§A.1). FTR inputs can be considered as privileged information because correct FTRs can
be feasibly annotated for thousands of training instances, but are unrealistic to obtain for arbitrary
test instances. Therefore, it makes sense to investigate explanation tuning using the privileged KD
framework (i.e., teacher gets FTR access, but student does not), as we do with KNIFE.

Our experiments demonstrate KNIFE’s ability to improve LM generalization using KD-based
explanation tuning. Across two question-answering (QA) benchmarks (OpenBookQA, StrategyQA)
and two small-scale LM architectures (T5-Base, T5-Large), we show that KNIFE outperforms
various finetuning and prompting baselines on both fully-supervised and low-resource settings, using
either human-annotated or model-generated FTRs (§4.4). Also, we validate KNIFE design choices
via extensive ablation studies (§4.5). Finally, we analyze KNIFE’s failure modes on two additional
datasets (ECQA, QuaRTz), identifying FTR quality as critical for KNIFE’s performance (§4.6).
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Figure 2: KNIFE framework. KNIFE distills reasoning knowledge from an FTR-augmented teacher
LM (given task input and FTR) to a student LM (given task input) that is used for inference. The
teacher has a bottleneck, which masks out all FTR states during cross-attention. As a result, the
teacher’s decoder must use only its task input (hidden) states to compute its task output (hidden)
states, thus routing FTR knowledge to the task input/output states. Finally, FTR knowledge is distilled
to the student by training the student so its task input/output states to align with the teacher’s.

2 BACKGROUND

Problem Definition Since reasoning knowledge is latent in the LM’s black-box parameters, it is
difficult to extract and analyze directly. Thus, for evaluation, our paper follows the established practice
of assessing the LM’s ability to answer questions designed to require specific reasoning skills (e.g.,
logical reasoning, commonsense reasoning) (Mihaylov et al., 2018; Geva et al., 2021; Aggarwal et al.,
2021; Tafjord et al., 2019). This QA-based classification problem is defined as follows. Given a task
input x (i.e., question) and a set of class labels Y = {yi} (i.e., answer choices), the model’s goal is to
predict a score ρ(x,yi) for each (x,yi) pair, so that the predicted label ŷ = argmaxyi∈Y ρ(x,yi)
matches the gold (i.e., correct) label y∗ ∈ Y . We consider both multi-choice (Y varies across task
instances) and closed-set (Y is fixed for all task instances) text classification.
Free-Text Rationales A free-text rationale (FTR) r for a pair (x,yi) is a natural language text
that explains the reasoning process for predicting label yi (Camburu et al., 2018; Rajani et al., 2019).
FTRs could be more intuitive to humans, reference things beyond the task input, and support high
flexibility in content, style, and length (Wiegreffe et al., 2021; Chan et al., 2022). Recent works have
explored generating FTRs to explain LM behavior (Camburu et al., 2018; Narang et al., 2020; Wei
et al., 2022b) and utilizing FTRs to improve LMs (Sun et al., 2022; Wang et al., 2022; Li et al., 2022).
We assume each training instance x is accompanied by an annotated FTR r for y∗, while FTRs are
unavailable for inference instances, as FTR explains the reasoning process and thus indicates the gold
label. In this setting, we aim to improve F’s performance by these annotated FTRs.

3 KNIFE

We propose KNIFE, an approach to extract reasoning knowledge from FTRs of training instances
and inject it into an LM (Fig. 2) using KD. First, KNIFE finetunes a teacher LM to predict the task
output, taking as input the concatenation of task input and the FTR. Then, KNIFE finetunes a student
LM given only the task input, so that its task encoder/decoder hidden states are aligned with the
teacher’s. As the teacher and student have different structures of encoder hidden states, the teacher
LM has a bottleneck design, where the encoder hidden states upon the FTR tokens are masked out in
the cross-attention. We are going to elaborate on the method design.

3.1 LM DESIGNS

KNIFE consists of a student LM and a teacher LM. They share the same encoder-decoder Transformer
architecture and the basic design, with differences in the input and cross-attention mechanism. We are
going to first present the basic design, followed by the student and teacher LM designs respectively.
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3.1.1 BASIC DESIGN

We use the encoder-decoder Transformer (Vaswani et al., 2017) architecture for both teacher and
student LMs (Raffel et al., 2020; Narang et al., 2020). Building upon §2, we feed the input to the LM’s
encoder and separately feed each label yi to the decoder. For each label yi, we get the conditional
probabilities of all its tokens and then take the average log probability as its score ρ(x,yi). This
practice is also adopted by Shwartz et al. (2020) and Wang et al. (2022).

Formally speaking, each label is denoted as nyi
-token sequence yi = [y

(1)
i , y

(2)
i , . . . , y

(nyi
)

i ] ∈
Y . By separately teacher-forcing each yi to the decoder, we get a conditional probability
P (y

(j)
i |y(1)i , . . . , y

(j−1)
i ,x) for each token y

(j)
i in yi. We compute ρi = ρ(x,yi) as the score

for yi, by aggregating these token probabilities as:

ρi =
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nyi

nyi∑
j=1

logP (y
(j)
i |y(1)i , . . . , y

(j−1)
i ,x).

The predicted probability is calculated by the softmax function, i.e., P (yi |x) = eρi/
∑|Y |

j=1 eρj .

3.1.2 STUDENT LM DESIGN

The input to the student is always the raw task input, and the student is used for inference. Instead
of training the student LM by the cross-entropy loss, we train it to align its encoder/decoder hidden
states with those of the teacher LM (§3.2), which is trained before the training of the student. We only
consider the hidden states at the top layer in this work. As the token prediction logits are calculated by
the LM head taking decoder hidden states as input, we adopt the teacher’s LM head for the student.

3.1.3 TEACHER LM DESIGN

Main Design We aim to first obtain a teacher LM that does reasoning following the FTRs so that
its reasoning is guided by reasoning knowledge. To achieve this, we feed the FTRs to the teacher LM.
When training the teacher on training instances by task loss Ltask = − logP (y∗ |x), we take as its
input the concatenation of the task input and the corresponding FTR. Intuitively, feeding the FTR
along with the task input to the teacher LM forces the teacher to reason in a way following the FTR.

Even though the teacher LM’s reasoning on training instances is guided by FTRs and thus the
reasoning knowledge, we are unable to use it for inference as the FTRs are unavailable for inference
instances. However, considering the calculation of its hidden states on a training instance is guided
by the corresponding FTR, the hidden states store the FTR knowledge. Following the intuition that
a set of FTRs collectively conveys reasoning knowledge, the set of hidden states also collectively
conveys reasoning knowledge. Inspired by the works on knowledge distillation (Hinton et al., 2015;
Sanh et al., 2019; Jiao et al., 2020, etc), the hidden states of the teacher are also soft labels, on which
the student could be trained. By aligning the student’s hidden states on training instances with those
of the teacher, the knowledge across all FTRs or hidden states is synthesized into the reasoning
knowledge conveyed collectively by them, which is finally distilled into the student LM.

FTR Bottleneck In the Transformer architecture, there is a one-to-one correspondence between
each token fed to the encoder/decoder and each encoder/decoder hidden state. Each token corresponds
to the state upon it. For a specific training instance, the token sequence fed to the student’s decoder
is identical to that fed to the teacher’s decoder. Thus, the student and the teacher share the same
structure of the decoder hidden states. We train the student to align each decoder hidden state with
the teacher’s one upon the same token.

However, the token sequence fed to the student’ encoder (the raw task input) is a proper prefix of
that fed to the teacher’s encoder (the task input concatenated with the FTR). We call the hidden
states upon the task input tokens task input states and call those upon the FTR tokens FTR states.
The student and the teacher share the same structure of the task input states but the student doesn’t
have FTR states as the teacher does. If we just directly ignored the teacher’s FTR states in KD, the
information stored in the FTR states would be lost. If we fed only raw task input to the teacher in
KD, the teacher itself would not work due to the input distribution shift because the FTR is always
appended to the input during the training of the teacher.
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To address this, the teacher LM has a bottleneck design in the cross-attention connecting its decoder
to the encoder. Here, the teacher’s FTR states are masked out in cross-attention so that the decoder
only has access to the task input states. In this way, the training of the teacher funnels the FTR
knowledge stored in the FTR token sequence to the task input states by self-attention in the encoder.

As cross-attention is the only path introducing information from the encoder to the decoder, the
teacher’s FTR states are completely useless now owing to the bottleneck design. Therefore, we can
ignore the teacher’s FTR states in knowledge distillation as if there had only existed task input states.

3.2 KNOWLEDGE DISTILLATION

As both encoder hidden states (task input states) and decoder hidden states store the reasoning
knowledge, KD is done by training the student LM so that its encoder and/or decoder hidden states
are aligned with the teacher’s. We now formally define the learning objectives. Supposing x is nx-
token sequence, the teacher’s and student’s task input states are denoted as [e(1)Tx , e

(2)
Tx , . . . , e

(nx)
Tx ] and

[e
(1)
Sx , e

(2)
Sx , . . . , e

(nx)
Sx ] respectively. Let dist denote the mean squared error (MSE), a distance function.

Let LKD-In denote KNIFE’s encoder hidden states based KD loss, which pushes the student’s task
input states (e(j)Sx ) to be closer to the teacher’s (e(j)Tx ):

LKD-In =
1

nx

nx∑
j=1

dist(e(j)Sx , e
(j)
Tx )

Similarly, for each label yi (fed to the decoder separately), the teacher’s and student’s decoder hidden
states are denoted as [d(1)
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denote KNIFE’s decoder hidden states (task output states) based KD loss, which pushes the student’s
decoder hidden states (d(j)

Syi
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,d
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)

Finally, let L denote the total loss defined as L = λKD-InLKD-In + λKD-OutLKD-Out, with loss weights
λKD-In ∈ {0, 1} and λKD-Out ∈ {0, 1}.

4 EXPERIMENTS

This section presents experiments.2 First, in both fully-supervised and low-resource settings, KNIFE
outperforms various baselines, using either human-annotated FTRs or model-generated FTRs (§4.4).
Second, we validate our KNIFE design choices via extensive ablation studies (§4.5). Third, we
analyze KNIFE’s failure modes and identify FTR quality as critical to KNIFE performance (§4.6).
Finally, for more experiments, please refer to the appendix for extended ablation studies (§A.4), a
case study of FTR quality (§A.6), and an FTR rephrasing study (§A.7).

4.1 DATASETS

Evaluating LMs’ reasoning abilities is still an open problem. Since LMs’ internal decision processes
are notoriously difficult to interpret, existing benchmarks are generally limited to testing how the
LM’s outputs vary with different inputs. Thus, our paper follows the established practice of assessing
how accurately the LM answers questions that are designed to require specific reasoning skills. We
focus on two popular QA datasets: OpenBookQA (OBQA) and StrategyQA.3 OBQA (Mihaylov
et al., 2018) is a four-choice QA dataset that simulates science exams. StrategyQA (Geva et al., 2021)
is a boolean QA dataset that requires multi-hop reasoning.

2We report the mean and standard deviation (std) accuracy over three random seeds for all results, using the
format mean ± std. For each table, we use horizontal lines to partition the table into various sub-tables. Each
sub-table contains results for methods that have comparable settings (e.g., architecture). That is, Result1 should
only be compared to Result2 if there is no horizontal line separating them in the table. In each sub-table, we
highlight the best-performing method in red and the second-best performing method in blue .

3Since StrategyQA does not provide public test set labels, we use the data split from Wang et al. (2022).
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4.2 KNIFE DETAILS

KNIFE Variants We consider three KNIFE variants, each with a different combination of weights
λKD-In and λKD-Out (§3.2). KNIFE (In) trains the student LM with LKD-In = 1 and LKD-Out = 0.
KNIFE (Out) trains the student LM with LKD-Out = 1 and LKD-In = 0. KNIFE (In+Out) trains the
student LM with LKD-In = LKD-Out = 1. By default, we use KNIFE (In+Out).

Implementation Details Following prior works (Narang et al., 2020; Sun et al., 2022; Wiegreffe
et al., 2021), we use T5-Base and T5-Large (Raffel et al., 2020) as the backbone model for KNIFE
and all baselines. For KD-based methods, T5-Base→T5-Base means teacher and student use T5-
Base, T5-Large→T5-Large means teacher and student use T5-Large, and T5-Large→T5-Base
means T5-Large teacher and T5-Base student.4 For non-KD methods used for comparison with
the three ones, they use T5-Base, T5-Large, and T5-Base, respectively. In our implementation
of KNIFE, if the student and teacher have the backbone model (i.e., both T5-Base or both T5-Large),
the student’s parameters are initialized as the teacher’s. Keeping the model architecture, we also
experiment with Flan-T5-Base (Chung et al., 2022), whose initialization parameters are different
from those of T5-Base. §A.3 lists the hyperparameters.

4.3 BASELINES

We consider a wide range of baselines, spanning various existing paradigms.

Standard Finetuning does not involve FTRs or KD. Without any use of FTRs, FT (I→O) finetunes
a T5 on the task dataset by the cross-entropy loss.

Finetuned Self-Rationalization inserts an FTR to the LM’s target output during training. FT
(I→OR) finetunes a T5 to generate the task output followed by the FTR. FT (I→RO) finetunes a T5
to generate the FTR followed by the task output. They both take as input the raw task input.5

Input Augmentation appends an FTR to the LM’s input during training. FT (IR→O) finetunes
a T5 to predict the output taking as input the task input concatenated with the corresponding FTR.
This is equivalent to training KNIFE’s teacher LM without the bottleneck design. As the inference
instances do not have FTRs, the input during inference is just the raw task input. The global patterns
that FTR is appended to the training input are absent during inference, which causes the issue of
input distribution shift. FT Dropout (IR→O) randomly drops out the appended FTR during training,
in order to mitigate input distribution shift by also training the model to deal with the raw task input.

Prompted Self-Rationalization uses chain-of-thought (CoT) prompting (Wei et al., 2022b). CoT
(I→RO) prompts GPT-NeoX and GPT-3 (text-davinci-003) to generate the FTR followed by the task
output by CoT prompting.6

Pipeline Rationalization finetunes two LMs as a pipeline. For FT (I→R→O), the first T5 is
finetuned to generate the FTR given the task input, while the second T5 is finetuned to generate the
task output given the first T5’s generated FTR.7 FT (I→R, IR’→O) also utilizes the FTR generated
by the first T5, and the difference is that the second T5 is finetuned to generate the task output given
both the task input and the generated FTR.

FT Teacher Init. finetunes a T5 as FT (I→O) does, with initializing the LM with the KNIFE
teacher’s parameters. Intuitively, the teacher’s parameters store reasoning knowledge, so it is natural
to view parameter initialization as a way of transferring such knowledge.

4For T5-Large→T5-Base, the teacher and student have different representation spaces of hidden states. Thus,
in KD we jointly train two linear projection layers to transform the student LM’s encoder and decoder hidden
states to be in the same representation space as the teacher LM’s.

5As labels other than the gold label don’t have FTRs, FT (I→OR) and FT (I→RO) cannot use the basic
design in §3.1. Instead, we train the LM by teacher-forcing the target output to the decoder. During inference,
we use greedy decoding to generate the prediction.

6All CoT (I→RO) results were obtained from Wang et al. (2022), except GPT-3 on OBQA, which was
obtained from Huang et al. (2022).

7Since this method is known to not perform well (Wiegreffe et al., 2021; Wang et al., 2022), we only consider
FT (I→R→O) in a limited set of settings. In these settings, we present the results reported in Wang et al. (2022).
Note that only the mean performance is available.
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4.4 MAIN RESULTS
Table 1: KNIFE main results

Architecture Method Accuracy (↑)

OBQA StrategyQA

T5-Base→T5-Base

FT (I→O) 57.93 (±1.15) 59.05 (±0.23)
FT (I→OR) 53.93 (±1.33) 51.84 (±1.45)
FT (I→RO) 55.53 (±0.46) 58.65 (±1.53)

FT (I→R→O) 56.65 57.11
FT (IR→O) 53.73 (±2.31) 49.97 (±2.92)

FT Dropout (IR→O) 58.27 (±1.33) 55.85 (±2.09)
FT (I→R, IR’→O) 58.40 (±0.92) 57.52 (±4.53)

FT Teacher Init. 58.33 (±0.90) 57.25 (±2.22)
KNIFE (In+Out) 61.53 (±0.76) 60.45 (±0.31)

T5-Large→T5-Large

FT (I→O) 65.60 (±0.40) 57.58 (±0.70)
FT (I→OR) 61.93 (±1.97) 57.58 (±0.12)
FT (I→RO) 61.87 (±2.12) 63.66 (±1.14)
FT (IR→O) 61.27 (±2.16) 53.24 (±2.54)

FT Dropout (IR→O) 65.73 (±1.36) 59.25 (±4.59)
FT (I→R, IR’→O) 63.53 (±0.83) 61.46 (±1.82)

FT Teacher Init. 65.67 (±2.25) 61.72 (±2.36)
KNIFE (In+Out) 68.73 (±1.36) 63.79 (±0.64)

T5-Large→T5-Base Best T5-Base→T5-Base 58.40 (±0.92) 58.65 (±1.53)
KNIFE (In+Out) 60.93 (±0.12) 61.12 (±2.03)

GPT-NeoX CoT (I→RO) 33.80 55.31

GPT-3 (text-davinci-003) CoT (I→RO) 86.40 66.53

Table 1 presents our main results.
Here, LMs are finetuned on the en-
tire training set. Methods requir-
ing FTRs use the human-annotated
FTRs (called gold FTRs in the fol-
lowing paragraphs) provided by the
public datasets. We observe that
KNIFE (In+Out) consistently out-
performs all baselines, suggesting
KNIFE effectively extracts reason-
ing knowledge from FTRs of train-
ing instances and utilizes such knowl-
edge for performance improvement.
Besides, KNIFE is the only FTR-
requiring method that consistently out-
performs FT (I→O), which shows the
difficulty of improving small models’
task performance by FTRs.

We observe that FT (I→OR) and FT (I→RO) often bring performance drop compared to FT (I→O),
which is consistent with observations from prior works (Hase & Bansal, 2021; Zhang et al., 2023).
Our explanation is that task and FTR generation objectives could conflict with each other, meaning
that jointly optimizing them may hurt task performance. Besides, the generated FTRs could contain
hallucinated information misleading the answer prediction (Zhang et al., 2023), which could also
account for FT (I→R, IR’→O) being consistently beaten by KNIFE .

FT (IR→O) is significantly worse than FT (I→O), which is expected due to the input distribution
shift issue (§4.3). FT Dropout (IR→O) mitigates the issue to some extent but still fails to bring
consistent improvement. The results also support the argument that we cannot directly use KNIFE’s
teacher LM during inference (§3.1), which is basically FT (IR→O) with bottleneck design.

FT (I→R→O) is also worse than FT (I→O). It is because the generated FTR could be poor, omitting
critical information from the task input or introducing irrelevant and even incorrect information,
which can hurt task performance (Huang et al., 2022; Magister et al., 2022; Li et al., 2022).

FT Teacher Init. outperforms FT (I→O) in most cases, but its improvement is much smaller than that
of KNIFE (In+Out). Thus, parameter initialization is a potential way to transfer reasoning knowledge
from the teacher to the student, but it is much less effective than knowledge distillation.

Also, we report CoT (I→RO) results for GPT-NeoX (20B) (Black et al., 2022) and GPT-3 (text-
davinci-003, 175B) (Brown et al., 2020). Since GPT-NeoX and GPT-3 are much larger than T5-Base
(220M) and T5-Large (770M), it is unfair to expect other methods to perform as well as CoT (I→RO).
Even so, we find that KNIFE (In+Out) greatly outperforms GPT-NeoX on all settings, while KNIFE
(In+Out) with T5-Large achieves similar performance to GPT-3 on StrategyQA.

In Table 4, we repeat these experiments for GPT-NeoX generated FTRs (Wang et al., 2022) and find
that KNIFE (In+Out) still consistently outperforms all baselines. It shows KNIFE’s robustness to
different sources of FTRs. Interestingly, KNIFE with GPT-NeoX FTRs still considerably outperforms
CoT (I→RO) with GPT-NeoX, despite KNIFE using much smaller LMs.

In Table 5, we consider a low-resource setting where available is only 10% of the training data, using
T5-Base→T5-Base on OBQA. We find KNIFE beats all baselines, showing that KNIFE effectively
extracts and injects reasoning knowledge also in the low-resource setting.

In Table 11, we show the results of FLAN-T5-Base. We find that KNIFE still outperforms all
baselines on OBQA, but to a lesser degree than for T5-Base and T5-Large. Meanwhile, for FLAN-
T5-Base, KNIFE does not yield improvements on StrategyQA. This is expected for two reasons. First,
FLAN-T5 is already a very strong model due to its extensive instruction-tuning across 1836 tasks.
Second, FLAN-T5 is already instruction-tuned on StrategyQA CoT data in particular. Consequently,
there is more limited room for improvement in finetuning FLAN-T5 on individual datasets’ FTRs.
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We conducted the Wilcoxon rank-sum test between KNIFE and the best baseline for each
OBQA/StrategyQA setting. Based on this test, KNIFE achieves statistically significant (p < 0.05)
improvement over the best baseline in all settings, except T5-Large→T5-Large on StrategyQA.

4.5 ABLATION STUDIES Table 2: KNIFE variants

Architecture Method Accuracy (↑)

OBQA StrategyQA

T5-Base→T5-Base

KNIFE (In) + Gold 60.00 (±0.40) 61.39 (±1.90)
KNIFE (Out) + Gold 62.27 (±1.01) 59.05 (±1.22)

KNIFE (In+Out) + Gold 61.53 (±0.76) 60.45 (±0.31)

KNIFE (In) + GPT-NeoX 61.07 (±0.12) 61.92 (±1.74)
KNIFE (Out) + GPT-NeoX 61.60 (±0.53) 60.72 (±0.20)

KNIFE (In+Out) + GPT-NeoX 61.53 (±0.76) 61.92 (±1.04)

T5-Large→T5-Large

KNIFE (In) + Gold 66.20 (±0.53) 62.66 (±3.38)
KNIFE (Out) + Gold 68.07 (±1.50) 64.40 (±1.22)

KNIFE (In+Out) + Gold 68.73 (±1.36) 63.79 (±0.64)

KNIFE (In) + GPT-NeoX 67.20 (±0.40) 62.32 (±1.84)
KNIFE (Out) + GPT-NeoX 68.53 (±1.89) 62.26 (±0.64)

KNIFE (In+Out) + GPT-NeoX 68.73 (±1.55) 63.99 (±0.81)

T5-Large→T5-Base

KNIFE (In) + Gold 31.13 (±2.87) 53.77 (±0.46)
KNIFE (Out) + Gold 55.60 (±2.42) 61.12 (±0.53)

KNIFE (In+Out) + Gold 60.93 (±0.12) 61.12 (±2.03)

KNIFE (In) + GPT-NeoX 30.07 (±2.97) 53.91 (±0.69)
KNIFE (Out) + GPT-NeoX 55.60 (±2.03) 60.59 (±0.61)

KNIFE (In+Out) + GPT-NeoX 60.47 (±0.81) 62.39 (±0.42)

To justify design choices of KNIFE
and understand why it works, we
present ablation studies, analyzing the
impacts of KD objective, FTR usage,
FTR perturbation, teacher bottleneck,
and student task loss.

KD Objectives Table 2 com-
pares the performance of KNIFE
(In), KNIFE (Out), and KNIFE
(In+Out). For both gold (human-
annotated) and GPT-NeoX (model-
generated) FTRs, we find that KNIFE
(In+Out) generally achieves the high-
est performance with a few exceptions.
This suggests useful FTR knowledge can be distilled via both encode and decoder hidden states, so it
is recommended to use both by default. Furthermore, KNIFE (In) and KNIFE (Out) are also able to
outperform all baselines in almost all cases.

KNIFE (In) performs much worse for T5-Large→T5-Base than the two others and many baselines.
Since KNIFE (In) only performs KD via the encoder hidden states, the student’s decoder is not
trained. Here, the student cannot be initialized with the teacher’s parameters as their backbone models
are different, leaving the student’s decoder with T5-Base’s pretrained parameters. Thus, in such
cases, KNIFE (In) is problematic and KD is necessary via the decoder hidden states.

(a) FTR Usage (b) FTR Perturbation (c) Teacher Bottleneck (d) Student Task Loss

Figure 3: KNIFE ablation studies

FTR Usage KD has been widely used to transfer knowledge from a larger teacher to a smaller
student (Hinton et al., 2015; Sanh et al., 2019, etc), so the larger teacher’s capacity could be one source
of performance gain for T5-Large→T5-Base. To verify FTR usage’s importance for the performance
gain, we compare KNIFE to non-FTR KD methods, where the teacher is FT (I→O). Non-FTR KD
(Logit) trains the student to align its logit distribution with the teacher’s. Non-FTR KD (In+Out)
trains the student to align its encoder and decoder hidden states with the teacher’s. In Fig. 3a,
both KNIFE (In+Out) + Gold and KNIFE (In+Out) + GPT-NeoX outperform the non-FTR KD
baselines, showing that KNIFE actually benefits from FTRs and thus the reasoning knowledge. Plus,
Non-FTR KD (Logit) performs much worse than Non-FTR KD (In+Out), which validates KNIFE’s
use of representation-based KD. We also experiment with the self-distillation baseline, where both
the student and the teacher are T5-Base and the FTR is not used, i.e., Non-FTR KD between two
T5-Base. The results are in Table 13. We find that KNIFE significantly outperforms the Non-FTR
KD, which revalidates KNIFE’s performance gain is from the FTRs.
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FTR Perturbation To prove the performance gain of KNIFE is not from any unexpected noise,
e.g., more computation of the teacher LM due to longer input, we perturb the FTRs and observe how
it influences the performance of KNIFE. Replace replaces each FTR token with a random token
from the token vocabulary. Shuffle shuffles FTRs across all training instances in the dataset. In Fig.
3b, KNIFE (In+Out)’s performance with Replace and Shuffle is much lower than with Gold and
GPT-NeoX, which shows the performance gain actually comes from the FTR knowledge.

Teacher Bottleneck We empirically validate the bottleneck’s necessity for KD via encoder hidden
states by training a teacher without the bottleneck. In Fig. 3c and Table 8, we show that removing
bottleneck brings significant performance drop to KNIFE (In+Out) and KNIFE (In), but it is not as
critical for KNIFE (Out). It is expected because the bottleneck of KNIFE’s teacher is designed to
address the issue that the student and teacher have different structures of encoder hidden states, and
KD via only decoder hidden states doesn’t meet the issue.

Student Task Loss By default, KNIFE trains the student with only KD losses. We justify it by com-
paring it to KNIFE variants where the task loss is also involved in the total loss. Specifically, KNIFE
with task loss trains the student by the loss L = λKD-InLKD-In +λKD-OutLKD-Out +Ltask. In Fig. 3d and
Table 9, we see omitting the task loss consistently yields higher performance. Intuitively, KD loss is
guided by the supervision signal of reasoning knowledge, while task loss is guided by the supervision
signal of task labels, which could be sub-optimal for learning reasoning knowledge. Thus, the KD
and task losses could conflict during optimization, which hurts the performance.

Teacher Performance We evaluate the teacher’s test performance both with and without FTR input
in Table 12. As expected, the teacher’s performance with FTR input is unrealistically high because
the FTR is essentially leaking the answer to the teacher. Meanwhile, the teacher’s performance
without FTR input is much lower due to input distribution shift, as the teacher was trained to take
both task inputs and FTRs as input. Actually, its performance is quite similar to that of FT (IR→O)
as the teacher model is basically the FT (IR→O) model with the bottleneck design. It also shows that
we cannot directly use the teacher for inference, where we assume the FTRs are not available.

4.6 FAILURE ANALYSIS

Although KNIFE performs well on OBQA and StrategyQA, it yields negative results on other QA
datasets like ECQA (Aggarwal et al., 2021) and QuaRTz (Tafjord et al., 2019). Using T5-Base→T5-
Base, we compare the performance of KNIFE and the main baselines considered in the main results.
In Table 3, we see that KNIFE generally outperforms all FTR-based baselines, sometimes by a
very large margin. Still, none of the FTR-based methods (including all KNIFE variants) are able to
significantly outperform FT (I→O).

Table 3: Failure analysis

Architecture Method Accuracy (↑)

ECQA QuaRTz

T5-Base→T5-Base

FT (I→O) 62.02 (±0.48) 68.20 (±0.52)
FT (I→OR) 56.09 (±0.47) 57.19 (±0.58)
FT (I→RO) 54.60 (±0.66) 56.76 (±2.74)
FT (IR→O) 41.02 (±1.57) 66.41 (±0.90)
KNIFE (In) 55.12 (±2.19) 68.45 (±0.83)

KNIFE (Out) 57.26 (±2.68) 68.45 (±0.52)
KNIFE (In+Out) 56.12 (±1.91) 68.41 (±0.99)

Since KNIFE distills FTR knowledge to
the student LM, the student’s performance
is expected to depend on the amount and
quality of reasoning knowledge stored in
the FTRs. Thus, to investigate these nega-
tive results, we conduct a case study to qual-
itatively analyze the gold FTRs in OBQA,
StrategyQA, ECQA, and QuaRTz. Overall,
we find that FTRs in OBQA and Strate-
gyQA are much more informative than those in ECQA and QuaRTz. For OBQA and StrategyQA,
we find that their gold FTRs tend to have the following properties. First, they describe a logically
sufficient reasoning process for getting from the question (input) to the answer (output). Second, they
provide general and self-contained knowledge that goes beyond the information given in the question
and answer. Meanwhile, FTRs from ECQA and QuaRTz tend to exhibit opposite properties. They
usually simply rephrase the question and answer. To illustrate our case study, we give some examples
in §A.6. To further illustrate how common is simple rephrasing among bad FTRs, we conduct an
experiment to quantitatively show it in §A.7. Consequently, KNIFE’s failure on ECQA and QuaRTz
is owing to the uninformative nature of their human-annotated FTRs. Given that, we hope future
work could annotate datasets with FTRs informative enough, which would collectively convey useful
and sufficient reasoning knowledge and thus contribute to performance improvement.
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A APPENDIX

A.1 RELATED WORK

Explanation Tuning There are three main existing paradigms for FTR-based explanation tuning:
self-rationalization, input augmentation, and pipeline rationalization (Fig. 4). In self-rationalization,
the LM is finetuned or prompted to generate both the task output and FTR (Liu et al., 2018; Narang
et al., 2020; Brahman et al., 2021; Marasović et al., 2022; Li et al., 2022; Wei et al., 2022b; Zelikman
et al., 2022; Lampinen et al., 2022; Majumder et al., 2022). However, finetuning struggles to improve
LM performance (Hase & Bansal, 2021) and prior works on it focus on explainability or FTR
generation capability. Prompting requires large and often prohibitively large LMs to work well.
Besides self-rationalization, the other two paradigms struggle to improve task performance due
to some intrinsic issues. Methods under the input augmentation paradigm use FTRs as additional
inputs (Rajani et al., 2019; Hase et al., 2020; Kumar & Talukdar, 2020; Wiegreffe et al., 2021).
They need to resolve the input distribution shift issue, which occurs when incorporating FTRs into
inputs during training but not during inference, and thus struggle to improve task performance.
Some other works explored the pipeline rationalization paradigm, where a finetuned rationalizing
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Figure 4: Explanation tuning paradigms

LM first generates the FTR and then a finetuned reasoning LM predicts the task output given the
generated FTR (Rajani et al., 2019; Kumar & Talukdar, 2020; Hase et al., 2020; Wiegreffe et al.,
2021). However, the generated FTR could be poor, omitting critical information from the task input
or introducing irrelevant and even incorrect information, which can hurt task performance (Huang
et al., 2022; Magister et al., 2022; Li et al., 2022). Plus, the generated FTR forms a non-differentiable
path, which complicates end-to-end training.

On the other hand, KNIFE is based on knowledge distillation, which addresses the key limitations of
existing paradigms. Unlike finetuned self-rationalization, KNIFE does not involve jointly optimizing
task and FTR generation losses (which may conflict), since the student is only trained with KNIFE’s
distillation losses. Unlike prompted self-rationalization, KNIFE does not require large LMs, since the
teacher and student are finetuned instead of relying only on their pretrained knowledge. Unlike input
augmentation, KNIFE does not need FTRs for inference or cause an input distribution shift, since the
student is given only the task input during both training and inference. Unlike pipeline rationalization,
KNIFE does not require multiple inference LMs or create a non-differentiable path between them,
since only the student is used for inference. Plus, KNIFE generally has lower inference-time costs,
since the student does not process additional FTR inputs or generate additional FTR tokens.

Knowledge Distillation Knowledge distillation has been widely used to transfer knowledge from
a larger teacher to a smaller student model (Hinton et al., 2015; Sanh et al., 2019; Jiao et al., 2020;
Mirzadeh et al., 2020, etc). Instead of aiming for this typical goal, KNIFE distills the FTR knowledge
through the hidden states of a teacher model to a student model, which has no direct access to FTRs.
Similar to the line of work that incorporates knowledge distillation with privileged information
(Lopez-Paz et al., 2015; Vapnik et al., 2015; Fukuda et al., 2017; Wang et al., 2018), where student
models benefit from privilege information, the student model in KNIFE essentially gains additional
knowledge from FTRs rather than relying on the larger teacher model capacity. Snell et al. (2022)
propose to internalize the in-context learning ability such that the performance gains can keep without
context tokens. It does not directly distill the knowledge from FTRs and requires dedicated prompt
designs. Shridhar et al. (2022); Magister et al. (2022); Ho et al. (2022) propose to distill reasoning
abilities from larger language models to smaller models. They require large-scale language models
with such abilities, while KNIFE can work well with small models.

A.2 DATASETS

In this paper, we consider four datasets: OBQA, StrategyQA, ECQA, and QuaRTz. Each dataset tests
different kinds of reasoning abilities. OBQA tests the LM’s ability to synthesize both science facts
(e.g., “metal is a thermal conductor”) and common facts (e.g., “steel is made of metal”) to answer
science exam questions (Mihaylov et al., 2018). StrategyQA tests the LM’s ability to decompose a
question into multiple steps and use various implicit facts (e.g., “Osiris was the Egyptian god of the
underworld”) and reasoning skills (e.g., number comparison, set inclusion) to combine the steps into
a sensible answer (Geva et al., 2021). ECQA test the LM’s ability to recall commonsense knowledge
and reason about this knowledge (Aggarwal et al., 2021). QuaRTz tests the LM’s ability to understand
and answer questions about a wide range of qualitative relationships (e.g., differing comparatives,
discrete property values) (Tafjord et al., 2019).
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Table 4: KNIFE main results (GPT-NeoX FTRs)

Architecture Method Accuracy (↑)

OBQA StrategyQA

T5-Base→T5-Base

FT (I→O) 57.93 (±1.15) 59.05 (±0.23)
FT (I→OR) 50.60 (±1.25) 53.04 (±1.36)
FT (I→RO) 49.93 (±3.20) 56.18 (±2.58)
FT (IR→O) 48.40 (±1.71) 49.37 (±2.52)

FT Dropout (IR→O) 58.53 (±1.14) 60.39 (±1.17)
FT (I→R, IR’→O) 53.27 (±2.80) 55.64 (±2.21)

FT Teacher Init. 59.80 (±1.64) 59.25 (±0.42)
KNIFE (In+Out) 61.53 (±0.76) 61.92 (±1.04)

T5-Large→T5-Large

FT (I→O) 65.60 (±0.40) 57.58 (±0.70)
FT (I→OR) 59.20 (±1.56) 59.79 (±2.20)
FT (I→RO) 59.40 (±0.72) 55.58 (±1.10)
FT (IR→O) 53.13 (±1.94) 49.70 (±3.03)

FT Dropout (IR→O) 66.87 (±0.31) 59.85 (±1.80)
FT (I→R, IR’→O) 60.47 (±1.03) 55.58 (±0.64)

FT Teacher Init. 66.87 (±1.10) 59.99 (±1.01)
KNIFE (In+Out) 68.73 (±1.55) 63.99 (±0.81)

T5-Large→T5-Base Best T5-Base→T5-Base 59.80 (±1.64) 60.39 (±1.17)
KNIFE (In+Out) 60.47 (±0.81) 62.39 (±0.42)

GPT-NeoX CoT (I→RO) 33.80 55.31

GPT-3 (text-davinci-003) CoT (I→RO) 86.40 66.53

Table 5: KNIFE low-resource learning results

Method OBQA Acc. (↑)

FT (I→O) 44.87 (±0.23)
FT (I→OR) 38.07 (±1.14)
FT (I→RO) 38.47 (±2.72)
FT (IR→O) 44.80 (±2.23)

FT Dropout (IR→O) 47.00 (±1.00)
FT Teacher Init. 44.20 (±2.95)

KNIFE (In) 47.20 (±1.40)
KNIFE (Out) 48.13 (±2.12)

KNIFE (In+Out) 47.47 (±1.96)

A.3 HYPERPARAMETERS

We always take AdamW as the optimizer. We stop training when the model performance on the
development set has not improved for five epochs. The maximum epoch is 10.

For OBQA with T5-Base and Flan-T5-Base, we train the teacher model with learning rate of 1e−4
and batch size of 64. We train the student model (by KD) with batch size of 64. For OBQA with
T5-Large, we train the teacher model with learning rate of 5e−5 and batch size of 64. We train
the student model with batch size of 48. For the KD training student model, we always search the
learning rate in {1e−4, 2e−4, 3e−4, 4e−4, 5e−4}.

For StrategyQA, we always set the warmup rate as 0.06. For T5-Base and Flan-T5-Base, we train the
teacher model with learning rate of 3e−4 and batch size of 16. For T5-Large, we train the teacher
model with learning rate of 5e−5 and batch size of 16. For the KD training student model, the batch
size is always 16, and we always search the learning rate in {1e−4, 2e−4, 3e−4, 4e−4, 5e−4}.

FT (I→O), FT (I→OR), FT (I→RO), and FT (IR→O) use the same hyperparameters as the teacher
models in the same settings do, except that we always search the learning rate in {1e−5, 2e−5,
5e−5 1e−4, 2e−4, 3e−4, 4e−4, 5e−4}. FT Dropout (IR→O) uses the same hyperparameters as
FT (IR→O) does, and we search the dropout rate in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. FT
Teacher Init. uses the same hyperparameters as FT (I→O) does.
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Table 6: Ablation study of FTR usage

Method Accuracy (↑)

OBQA StrategyQA

Non-FTR KD (Logit) 48.53 (±4.06) 57.72 (±2.12)

Non-FTR KD (In) 31.87 (±2.10) 53.77 (±0.46)
KNIFE (In) + Gold 31.13 (±2.87) 53.77 (±0.46)

KNIFE (In) + GPT-NeoX 30.07 (±2.97) 53.91 (±0.69)

Non-FTR KD (Out) 55.60 (±2.99) 59.99 (±3.53)
KNIFE (Out) + Gold 55.60 (±2.42) 61.12 (±0.53)

KNIFE (Out) + GPT-NeoX 55.60 (±2.03) 60.59 (±0.61)

Non-FTR KD (In+Out) 58.27 (±1.01) 60.12 (±1.40)
KNIFE (In+Out) + Gold 60.93 (±0.12) 61.12 (±2.03)

KNIFE (In+Out) + GPT-NeoX 60.47 (±0.81) 62.39 (±0.42)

Table 7: Ablation study of FTR quality

FTR Type KNIFE Variant Accuracy (↑)

OBQA StrategyQA

Replace KNIFE (In) 57.47 (±0.42) 56.65 (±1.75)
Shuffle KNIFE (In) 57.73 (±1.01) 56.65 (±2.71)
Gold KNIFE (In) 60.00 (±0.40) 61.39 (±1.90)

GPT-NeoX KNIFE (In) 61.07 (±0.12) 61.92 (±1.74)

Replace KNIFE (Out) 58.67 (±1.10) 54.31 (±2.84)
Shuffle KNIFE (Out) 58.87 (±1.50) 57.11 (±1.64)
Gold KNIFE (Out) 62.27 (±1.01) 59.05 (±1.22)

GPT-NeoX KNIFE (Out) 61.60 (±0.53) 60.72 (±0.20)

Replace KNIFE (In+Out) 58.87 (±1.30) 55.44 (±4.43)
Shuffle KNIFE (In+Out) 59.07 (±0.31) 56.91 (±1.59)
Gold KNIFE (In+Out) 61.53 (±0.76) 60.45 (±0.31)

GPT-NeoX KNIFE (In+Out) 61.53 (±0.76) 61.92 (±1.04)

Replace KNIFE Teacher 57.73 (±0.61) 55.31 (±3.03)
Shuffle KNIFE Teacher 56.40 (±1.20) 56.05 (±2.93)
Gold KNIFE Teacher 73.80 (±0.60) 66.20 (±1.10)

GPT-NeoX KNIFE Teacher 74.33 (±0.46) 64.93 (±1.40)

A.4 ABLATION STUDIES (EXTENDED)

We present the full results of ablation studies in the Appendix. Table 6 shows the full results of
ablation studies on FTR usage. Table 7 shows the full results of ablation studies on FTR perturbation.
Table 8 shows the full results of ablation studies on teacher bottleneck. Table 9 shows the full results
of ablation studies on student task loss. The details of ablation studies are in 4.5. In the last three
tables, we always use T5-Base→T5-Base.

Table 8: Ablation study of teacher bottleneck

Bottleneck KNIFE Variant Accuracy (↑)

OBQA StrategyQA

No KNIFE (In) 58.67 (±0.70) 49.77 (±2.91)
Yes KNIFE (In) 60.00 (±0.40) 61.39 (±1.90)

No KNIFE (Out) 62.20 (±0.72) 59.92 (±0.87)
Yes KNIFE (Out) 62.27 (±1.01) 59.05 (±1.22)

No KNIFE (In+Out) 58.47 (±0.83) 56.91 (±2.31)
Yes KNIFE (In+Out) 61.53 (±0.76) 60.45 (±0.31)

No KNIFE Teacher 73.40 (±1.51) 67.47 (±0.42)
Yes KNIFE Teacher 73.80 (±0.60) 66.20 (±1.10)
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Table 9: Ablation study of student task loss

Task Loss KNIFE Variant Accuracy (↑)

OBQA StrategyQA

Yes KNIFE (In) 59.73 (±1.10) 56.31 (±1.00)
No KNIFE (In) 60.00 (±0.40) 61.39 (±1.90)

Yes KNIFE (Out) 58.53 (±1.47) 58.65 (±2.02)
No KNIFE (Out) 62.27 (±1.01) 59.05 (±1.22)

Yes KNIFE (In+Out) 60.40 (±1.04) 59.32 (±0.35)
No KNIFE (In+Out) 61.53 (±0.76) 60.45 (±0.31)

A.5 IMPLEMENTATION DETAILS

For T5-Base, the parameter number of a single backbone model is around 220M. As we have two
backbone models for the teacher and student model, the total number is around 440M. For T5-Large,
the parameter number of a single backbone model is around 770M, and the total number is around
1.5B. GPT-NeoX has 20B parameters. We use NVIDIA Quadro RTX8000 for all experiments, which
take around 700 GPU hours. We implement the models by HuggingFace Transformers. We also
heavily use PyTorch and PyTorch Lightning.

A.6 CASE STUDY OF FTR QUALITY

We give a representative example of a good OBQA FTR: “Question: There is most likely going to be
fog around: Answer Choices: (A) a marsh, (B) a tundra, (C) the plains (D) a desert. Gold FTR: fog
is formed by water vapor condensing in the air.” The FTR explains the condition for fog formation.
To answer this question with the FTR, one can identify as the answer a place where the condition
(water vapor) is strong. The FTR describes the reasoning for answering the question.

We give a representative example of a bad ECQA FTR: “Question: What might a person see at the
scene of a brutal killing? Answer Choices: (A) bloody mess, (B) pleasure, (C) being imprisoned,
(D) feeling of guilt, (E) cake. Gold FTR: Bloody mess is covered or stained with blood. A person
might see a bloody mess at the scene of a brutal killing.” The first sentence of FTR just describes
“bloody mess” from its literal meaning. The second sentence just fills in the answer to the question
and rephrases the result into a declarative sentence. Overall, the FTR uninformatively states “bloody
mess” is correct without explaining why.

We give a representative example of a bad QuaRTz FTR: “Question: If a moving object slows down,
it will have () kinetic energy. Answer Choices: (A) more, (B) less. Gold FTR: Anything that is
moving has kinetic energy, and the faster it is moving, the more kinetic energy it has.” The FTR states
the outcome of an object speeding up without explanation or reasoning, and the answer is just the
opposite of the outcome as the question asks the outcome of an object slowing down.

A.7 FTR REPHRASING STUDY

Bad FTRs tend to simply rephrase the question and answer in an uninformative way (§4.6 and §A.6).
Interestingly, for such FTRs, humans often can easily get the correct answer given only the FTR
without the question. Based on this observation, we train a T5-Base to do FT (R→O), i.e., to predict
the answer taking only the FTR as the input on OBQA and ECQA. We also conduct this experiment on
e-SNLI (Camburu et al., 2018), a dataset that has been proven to have very uninformative FTRs (Chen
et al., 2022). We omitted StrategyQA and QuaRTz (where an instance has two opposite labels) in this
analysis because their FTRs could be used to explain both the correct answer and the opposite label.
The result is shown in Table 10.8 We find that ECQA and e-SNLI tend to do simple rephrasing much
more than OBQA does, which further proves the bad quality of ECQA and e-SNLI.9

8The accuracy of Random Guessing is the inverse of the number of labels.
9Note that this experiment is not a comprehensive quantitative analysis as dataset analysis is not our focus.
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Table 10: FTR rephrasing study

Method Accuracy (↑)

OBQA ECQA e-SNLI

Random Guessing 25.00 20.00 33.33
FT (R→O) 58.53 (±1.03) 97.69 (±0.32) 96.03 (±0.42)

Table 11: KNIFE results for FLAN-T5-Base

Architecture Method Accuracy (↑)

OBQA StrategyQA

T5-Base→T5-Base

FT (I→O) 63.80 (±0.53) 63.66 (±0.70)
FT (I→OR) 62.87 (±1.01) 57.25 (±1.86)
FT (I→RO) 62.27 (±0.12) 62.79 (±3.41)
FT (IR→O) 59.07 (±0.42) 55.58 (±3.20)

FT Dropout (IR→O) 63.27 (±0.64) 60.92 (±2.03)
FT (I→R, IR’→O) 61.93 (±1.14) 53.64 (±4.37)

FT Teacher Init. 64.07 (±0.46) 61.00 (±1.91)
KNIFE (In) 64.80 (±0.40) 62.59 (±1.56)

KNIFE (Out) 65.53 (±2.04) 62.26 (±2.23)
KNIFE (In+Out) 64.27 (±1.51) 62.26 (±1.42)

A.8 ETHICS STATEMENT

Regarding ethical concerns, all datasets used in this work are publicly available. Besides using gold
rationales, our method can make use of large language models to generate free-text rationales. We
are aware that the resulting rationales may contain social biases and that such biases may be further
inherited by the student model.
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Table 12: KNIFE teacher results (T5-Base)

Model Using FTRs during inference Accuracy (↑)

OBQA StrategyQA

FT (I→O) % 57.93 (±1.15) 59.05 (±0.23)
FT (IR→O) % 53.73 (±2.31) 49.97 (±2.92)

KNIFE Teacher % 51.27 (±1.86) 50.37 (±2.03)
! 73.80 (±0.60) 66.20 (±1.10)

Table 13: Ablation study of FTR usage (T5-Base)

Method Accuracy (↑)

OBQA StrategyQA

FT (I→O) 57.93 (±1.15) 59.05 (±0.23)
Non-FTR KD (Logit) 58.87 (±2.14) 59.25 (±1.70)

Non-FTR KD (In + Out) 59.47 (±0.12) 58.98 (±0.83)
KNIFE (In+Out) + Gold 60.93 (±0.12) 61.12 (±2.03)

KNIFE (In+Out) + GPT-NeoX 60.47 (±0.81) 62.39 (±0.42)

18


	Introduction
	Background
	KNIFE
	LM Designs
	Basic Design
	Student LM Design
	Teacher LM Design

	Knowledge Distillation

	Experiments
	Datasets
	KNIFE Details
	Baselines
	Main Results
	Ablation Studies
	Failure Analysis

	Appendix
	Related Work
	Datasets
	Hyperparameters
	Ablation Studies (Extended)
	Implementation Details
	Case Study of FTR Quality
	FTR Rephrasing Study
	Ethics Statement


