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ABSTRACT

The paper demonstrate that simple adjustments of the fine-tuning recipes of mul-
timodal large language models (MLLM) are sufficient to mitigate catastrophic
forgetting. On visual question answering, we design a 2×2 experimental frame-
work to assess model performance across in-distribution and out-of-distribution
image and text inputs. Our results show that appropriate regularization, such
as constraining the number of trainable parameters or adopting a low learning
rate, effectively prevents forgetting when dealing with out-of-distribution images.
However, we uncover a distinct form of forgetting in settings with in-distribution
images and out-of-distribution text. We attribute this forgetting as task-specific
overfitting and address this issue by introducing a data-hybrid training strategy
that combines datasets and tasks. Finally, we demonstrate that this approach natu-
rally extends to continual learning, outperforming existing methods with complex
auxiliary mechanisms. In general, our findings challenge the prevailing assump-
tions by highlighting the inherent robustness of MLLMs and providing practical
guidelines for adapting them while preserving their general capabilities.

1 INTRODUCTION

The remarkable success of multimodal large language models (MLLMs) in general-purpose visual
reasoning (Alayrac et al., 2022; Liu et al., 2023; Achiam et al., 2023) has spurred significant inter-
est in adapting them to specialized downstream applications. Compared to large language models
(LLMs), MLLM fine-tuning is not merely beneficial, but often necessary, as visual data presents
distinct challenges compared to text. Visual inputs are exceptionally high-dimensional, and many
specialized domains are poorly represented in the data used for pre-training. Consequently, out-of-
the-box MLLMs can struggle in critical applications, whether it is a robot not able to generalize to
unseen rooms (Shi et al., 2025), a web agent misinterpreting novel screenshot layouts (Xie et al.,
2024), or a biological application unable to identify specific cell types (Burgess et al., 2025).

However, the prevailing wisdom suggests that fine-tuning MLLMs is risky due to catastrophic for-
getting, a phenomenon in which specialization on a new task severely degrades a model’s general
capabilities (Zhai et al., 2024; Shuttleworth et al., 2024). To address this, previous work has pro-
posed a suite of complex solutions, ranging from sophisticated regularization schemes and param-
eter isolation techniques to intricate methods (Wang et al., 2023; Shuttleworth et al., 2024; Chen
et al., 2023; Li et al., 2025). These approaches often introduce significant architectural or training
overhead, reinforcing the notion that preserving general MLLM knowledge is an inherently difficult
problem (McCloskey & Cohen, 1989; Andreassen et al., 2021).

Surprisingly, our systematic study reveals that for MLLMs, catastrophic forgetting is largely not
a problem. We fine-tune state-of-the-art MLLMs, Qwen2.5-VL-3B (Bai et al., 2025), on the
ImageNet image classification task and evaluate them on a comprehensive 2x2 matrix, testing per-
formance on both in-distribution (ID) and out-of-distribution (OOD) image and text inputs (§2). Our
central finding is that with a simple and proper fine-tuning recipe, such as using a low learning rate
or employing parameter-efficient fine-tuning, MLLMs maintain their general-purpose performance,
especially when handling OOD visual inputs (§3.1, §3.2). We verify that this conclusion holds
across MLLM architectures, including LLaVA1.5-7B (Liu et al., 2023) and Qwen2.5-VL-7B,
as well as in extremely OOD fine-tuning domains, such as surgery and microscopy, challenging the
idea that a trade-off between specialization and generalization is inevitable (§3.3).
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Figure 1: Evaluation matrix. A 2×2 design crossing text and image. In this work, for both text and
images, we define in-distribution (ID) data as samples drawn from the same probability distribution
as the training set. Conversely, out-of-distribution (OOD) data originates from a distribution not
encountered during training; during evaluation, we report average accuracy within each quadrant.
This setup allows us to systematically evaluate a comprehensive range of training and evaluation
scenarios. Further details on the datasets are provided in Appendix B.1.
However, our investigation revealed one specific and important failure mode (§4.1): forgetting oc-
curs on tasks involving ID images paired with OOD text (e.g., the same ImageNet image but with
different questions about the objects than classification). We determine that this scenario reduces the
problem to a uni-modal language task; since the images are familiar, the model’s behavior is dictated
by its language component. Here, the model overfits to the linguistic patterns of the training prompts
and fails to follow new instructions at inference time, which we call task-specific overfitting (§4.2).
We demonstrate that this issue can be resolved with a simple data-hybrid training strategy, which
involves mixing a small amount of general-purpose data with the task-specific fine-tuning dataset to
prevent this narrow overfitting (§4.3).

Armed with this complete understanding of MLLM fine-tuning, we extend our findings from sin-
gle fine-tuning to the challenging continual learning setting (Luo et al., 2025; Chen et al., 2024b).
In the newly created continual learning benchmark, which requires the MLLM to learn five chal-
lenging remote sensing, medical, autonomous driving, science, and finance knowledge, we show
that our straightforward approach allows MLLMs to sequentially learn new tasks while preserving
prior knowledge (§5), outperforming all complex methods that rely on mechanisms like data re-
play buffers (Zhao et al., 2025). This result underscores that the intrinsic capacity of MLLMs for
continual learning is much greater than previously understood.

We believe our primary contribution is to reframe the community’s understanding of MLLM adap-
tation. We demonstrate that the perceived threat of catastrophic forgetting has been overstated and
that effective, robust fine-tuning can be achieved with a remarkably simple recipe. We hope these
findings encourage practitioners to move beyond unnecessarily complex solutions and adopt this
parsimonious approach to unlock the full potential of MLLMs in diverse real-world applications.

2 MLLM FINE-TUNING: EVALUATION PROTOCOLS AND TRAINING RECIPES

This section specifies how we evaluate and how we fine-tune multimodal large language models
(MLLMs). We first define a controlled protocol built around a 2×2 distribution shift matrix, then
describe the models, training setup, and prompting templates used throughout.

2.1 EVALUATION PROTOCOLS

Fine-tuning task and dataset. We establish a consistent starting point by fine-tuning a multiple-
choice visual question answering task constructed from ImageNet, which we call ImageNet-VQA.
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For each ImageNet image, we pose a single question asking for its class label with four options
(A–D): one ground-truth label and three distractors. To increase the difficulty of the fine-tuning
task, we employ CLIP (Radford et al., 2021) to select the most challenging distractors, with the
methodology detailed in Appendix B.1.

We choose ImageNet because it provides (i) large-scale, diverse, natural images with standard-
ized labels; (ii) a clean mapping to unambiguous multiple-choice questions; and (iii) a familiar
in-distribution (ID) reference point for studying shifts in either text or image domains.

Axes of variation: text and image. Our evaluation isolates two sources of distribution shift: Text
(the question form) and Image (the visual domain). ID text is the same classification question format
used for fine-tuning; OOD text uses question styles that require different reasoning skills or exter-
nal knowledge. ID images are natural photographs similar to ImageNet; OOD images come from
different object sets or visual domains (e.g., flowers or stylized drawings).

The 2×2 evaluation matrix. Crossing the two axes yields four standardized scenarios (Figure 1):

• ID Text + ID Image (IDT –IDI ): in-distribution questions on in-distribution images. Datasets:
ImageNet (Deng et al., 2009) (validation split) and ImageNetV2 (Recht et al., 2019).

• ID Text + OOD Image (IDT –OODI ): in-distribution questions on out-of-distribution images.
Datasets: Flowers102 (Nilsback & Zisserman, 2008), Caltech101 (Fei-Fei et al., 2004), Stanford
Cars (Krause et al., 2013).

• OOD Text + ID Image (OODT –IDI ): novel questions on in-distribution images. Dataset:
ImageWikiQA (Zhang et al., 2024).

• OOD Text + OOD Image (OODT –OODI ): novel questions on out-of-distribution images.
Datasets: MMMU (Yue et al., 2024), VMCBench (Zhang et al., 2025).

Unless otherwise noted, we report the accuracy averaged within each quadrant for clarity.

2.2 TRAINING RECIPES

Base models. We study two widely used MLLM families, Qwen2.5-VL (Bai et al., 2025) and
LLaVA (Liu et al., 2023). Our main ablations in §3 and §4 use Qwen2.5-VL-3B; we additionally
validate our findings on Qwen2.5-VL-7B and LLaVA-1.5-7B. For comparisons on the MLLM-
CL benchmark in §5, we adopt LLaVA-1.5-7B to align with previous work (Zhao et al., 2025).

Codebase and hyperparameters. We train with LLaMA-Factory (Zheng et al., 2024). Unless
specified, we use a batch size of 16 and ablate the learning rate of {1e−5, 1e−6}. Training runs
for one epoch on ImageNet-VQA (approximately 80,000 steps). We compare different trainable
parameters and keep other settings fixed for fair comparison; full configurations are listed in Ap-
pendix C. Since LLM Backbone Fine-tuning is redundant and not commonly used, we donate
the recipe that unfreezing all LLM backbone parameters while freezing all the vision encoder and
project parameters as Full Fine-tuning.

Prompts and templates. We use the system templates provided by LLaMA-Factory for
Qwen2.5-VL and LLaVA. All evaluations in §3 and §4 follow the multiple-choice format. To
avoid formatting confounding, the prompts explicitly instruct the model to output a single option
letter (A–D). Illustrative prompt templates are included in Appendix D.1.

3 FINE-TUNING WITHOUT FORGETTING: A SIMPLE RECIPE WITHOUT
PERFORMANCE TRADE-OFF

Can a multimodal large language model (MLLM) be specialized to a new task without erasing its
general capabilities? Using the 2×2 evaluation matrix (§2), we vary the trainable components (LLM
backbone, vision encoder, projector), optimization method (full fine-tuning vs. LoRA), and learning
rate.

Three consistent findings emerge: (I) with simple regularization (small learning rate or LoRA),
forgetting on OOD images is nearly absent as ID accuracy increases; (II) avoiding forgetting does
not reduce target-task accuracy; and (III) these patterns hold across model sizes/families, rare visual
domains, and low-data regimes.
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(a) ImageNet V2 v.s ImageNet-val (b) Flowers 102, Stanford Cars, Caltech 101 v.s ImageNet-val

(c) ImageWikiQA v.s ImageNet-val (d) MMMU-val, VMCBench-dev v.s ImageNet-val

Figure 2: Single-task fine-tuning across the evaluation matrix. Each curve traces checkpoints
during fine-tuning: x-axis = ID accuracy on ImageNet validation (the fine-tuned task), y-axis =
accuracy on an ID/OOD evaluation. Layout and colors follow Figure 1. Legends show trainable
part (method, learning rate). Performance is largely maintained in IDT –OODI and OODT –
OODI with simplest regularization on parameter updata, with a notable drop only in OODT –IDI .
Full hyperparameters are in Appendix C.1.

3.1 FINDING I: SIMPLE REGULARIZATION PREVENTS (NEARLY ALL) FORGETTING

Research question. Catastrophic forgetting is often attributed to architectural limits: specializing
on a new task is thought to overwrite broad, pre-trained knowledge. If that were the case, the gains
on the ID data should come with the losses on the OOD data.

Results. In Figure 2, high-learning-rate full fine-tuning (1e-5) increases ID accuracy but substan-
tially degrades OOD performance, consistent with catastrophic forgetting: relative to zero-shot,
LLM Backbone, Full, 1e-5 yields −16.56 pp on OODT –IDI and −33.64 pp on OODT –OODI

(Table 1). In contrast, conservative settings (small learning rate or LoRA) keep the OOD accuracy
essentially stable as the ID accuracy increases. Restricting the magnitude and scope of parameter
updates eliminates these drops: LLM Backbone, Full, 1e-6 changes are +1.06 pp (OODT –IDI )
and −1.51 pp (OODT –OODI ); LLM Backbone, LoRA, 1e-4 changes are +0.46 pp and −2.97 pp,
respectively.

Takeaway 1: Forgetting is not inevitable; it arises from over-optimization. Simple regular-
ization (small learning rate or parameter-efficient training) preserves capabilities.

3.2 FINDING II: NO TRADE-OFF BETWEEN SPECIALIZATION AND PRESERVATION

Research question. Prior reports suggest a performance gap between full fine-tuning and LoRA on
the target task. If regularization preserves OOD performance, does it cost ID accuracy?

Results. Table 1 shows that the regularized settings match the aggressive baseline on the ID
task while avoiding OOD forgetting. Validation accuracy differences relative to LLM Backbone,
Full, 1e-5 are ≤ 0.6pp for LLM Backbone, Full, 1e-6 (−0.19pp), LLM Backbone, LoRA, 1e-4
(−0.48pp), and Vision Encoder, Full, 1e-6 (−0.60pp). Projector-only fine-tuning is the sole excep-
tion (e.g., −4.70pp at 1e-6) and is therefore not recommended when target-task accuracy is critical.
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Final Acc. ∆ vs. zero-shot
Trainable Part Settings Validation (%) OODT –IDI (pp) OODT –OODI (pp)
LLM Backbone Full, 1e-5 91.56 -16.56 -33.64
LLM Backbone LoRA, 1e-4 91.08 (-0.48) 0.46 -2.97
LLM Backbone Full, 1e-6 91.37 (-0.19) 1.06 -1.51
Vision Encoder Full, 1e-6 90.96 (-0.60) -1.36 0.49
Vision Encoder Full, 1e-5 91.08 (-0.48) -9.90 -2.76
Projector Full, 1e-6 86.86 (-4.70) 0.26 0.05
Projector Full, 1e-5 89.68 (-1.88) -0.64 -0.26

Table 1: ID accuracy and robustness deltas across recipes. “Final Acc” is ImageNet-VQA val-
idation accuracy; in parentheses we show the difference to LLM Backbone, Full, 1e-5. “∆ vs.
zero-shot” reports percentage-point change relative to the pre-trained model on OODT –IDI and
OODT –OODI . To enhance visual clarity, we use red to highlight performance degradations >3pp
and blue for changes within a ±3pp margin. Rows corresponding to settings where all results fall
within this margin are shaded gray . This suggests that most of regularization strategies mitigate
catastrophic forgetting without compromising the model’s learning capacity.

(a) Model size and family.

Model Version Validation (%) ImageNetV2 (%) ID–OOD (%) OOD–OOD (%)
Qwen2.5-VL-3B 80.11→91.37 75.29→86.72 86.80→87.87 61.82→60.31
Qwen2.5-VL-7B 83.20→92.66 78.61→88.05 90.35→91.24 62.57→62.62
LLaVA-7B 65.53→91.43 61.55→86.76 66.44→70.05 41.45→37.73

(b) Rare domains.

Dataset Validation (%) OOD–OOD (%)
ImageNet 80.11→89.88 61.82→59.48
BSCCM 18.15→84.34 61.82→61.19
PitVis 25.61→51.33 61.82→61.56

(c) Dataset size.
Dataset fraction Validation (%)

lr=1e-6 lr=1e-5
100% 91.42 91.60
25% 90.18 89.08
2.5% 86.99 87.46
0.25% 82.03 81.82

Table 2: Generalization of the recipe. The default setting referenced in §3.2 is shaded in gray .
The results show that all findings in §3.1 are consistent across: (a) different model sizes and fami-
lies; (b) rare domains including surgery and microscopy; (c) different fine-tuning datasets size; Full
training details are in Appendix C.2.

Takeaway 2: Specialization and preservation are not at odds: Under regularized fine-
tuning, ID and OOD performance do not trade off.

3.3 FINDING III: CONSISTENCY ACROSS MODELS, DOMAINS, AND DATA REGIMES

Research question. If the recipe is principled, it should transfer across architectures, uncommon
visual domains, and data-scarce settings.

Results. Models. The trends persist across sizes and families (Table 2a): Qwen2.5-VL-3B
improves ImageNet validation 80.11 → 91.37 with OODT –OODI 61.82 → 60.31 (−1.51pp);
Qwen2.5-VL-7B improves 83.20→ 92.66 with OODT –OODI +0.05pp; LLaVA-1.5-7B im-
proves 65.53→91.43 with a modest OODT –OODI drop (−3.72pp).

Rare domains. The same recipe holds for microscopy (BSCCM (Pinkard et al., 2024)) and surgical
(PitVis (Das et al., 2025)) data (Table 2b), keeping OODT –OODI within ≤ 2.5pp while yielding
large ID gains (+66pp on BSCCM, +26pp on PitVis).

Data size. Even at 0.25% of the data, a small learning rate (1e-6) remains competitive in the ID task
(82.03 vs. 81.82 at 1e-5; Table 2c).

Takeaway 3: These findings generalize across architectures, domains, and data regimes,
implying that forgetting in MLLM fine-tuning is generally not a concern.
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Figure 3: ImageWikiQA with class-label distractors. Left: an example transformation where one
distractor is replaced by the correct class name. Right: accuracy with/without a class-name dis-
tractor, before fine-tuning and after fine-tuning, using LLM Backbone, Full, 1e-6. The substantial
decrease in accuracy and the concurrent increase in “mischoice on class name” after fine-tuning
indicate that the model ceases to follow prompt instructions, instead defaulting to outputting the
choice with class label directly. Therefore, the primary issue is task-specific overfitting rather than
catastrophic forgetting.

4 OOD TEXT MEETS ID IMAGES: DIAGNOSIS AND SIMPLE REMEDY

Our 2×2 evaluation reveals a single weak spot: OODT –IDI (novel text over familiar images),
exemplified by ImageWikiQA. In contrast to IDT –OODI and OODT –OODI , where regularization
preserves performance, Figure 2c shows a clear drop on OOD text with ID images. We (i) diagnose
this failure as task-specific overfitting in the ID image distribution and (ii) demonstrate that a simple
data-hybrid recipe prevents it with minimal impact on the target task.

4.1 FINDING IV: FORGETTING APPEARS ONLY WITH OOD TEXT OVER ID IMAGES

Research question. In OODT –IDI , the image distribution matches fine-tuning (ID), but the text
distribution shifts. The test set, ImageWikiQA (Zhang et al., 2024), asks the model to link an
ImageNet image to external knowledge (e.g., the habitat of a species or the use of an artifact) rather
than to perform the ImageNet classification task. This setup closely parallels standard LLM fine-
tuning, where inputs remain in-domain while the instruction distribution changes. Prior work on
LLMs has shown that single-task fine-tuning can impair other capabilities and encourage instruction-
ignoring (Luo et al., 2025; Ung et al., 2024; Lyu et al., 2024).

Results. Even with regularized fine-tuning (e.g., small learning rates or LoRA), ImageWikiQA per-
formance drops relative to zero-shot (Figure 2c). For example, the LLM Backbone, Full, 1e-6
configuration falls from 53.35% to 42.95% (−10.40pp) after fine-tuning on ImageNet. This con-
trasts sharply with IDT –OODI and OODT –OODI , where performance remains stable under the
same settings.

Takeaway 4: The sole exception in our study is the ID-image/OOD-text setting, where for-
getting persists and is not remedied by standard regularized fine-tuning, mirroring findings
from LLM fine-tuning.

4.2 FINDING V: OODT –IDI FORGETTING ARISES FROM TASK-SPECIFIC OVERFITTING

Research question. We hypothesize that the model becomes over-attuned to the “classify-this-
image” template when trained on ID images. To test this, we construct ImageWikiQA with class-
label distractors by replacing one standard distractor with the correct class label (Figure 3, left). If
the model has memorized the task, it should over-select the class label rather than the correct answer.

Results. Using the LLM Backbone, Full, 1e-6 model, we observe severe task-specific overfitting:
before fine-tuning, accuracy drops moderately when the class-name distractor is present (53.25% →
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Figure 4: Ablations for data-hybrid training. (a) Mixing ImageNet-VQA with Flowers102, OCR-
VQA, or LLaVA-665K (each at 50% of training instances). (b) Varying the LLaVA-665K mix from
0% to 70%; larger, darker markers denote higher ratios. Augmenting the training data with diverse
textual inputs helps to alleviate task-specific overfitting. Consequently, this data-hybrid method
improves model robustness in the OODT –IDI setting with minimal trade-offs for ID performance.
Training details are in Appendix C.3.

42.05%, −11.2 pp); after fine-tuning, the drop is drastic (42.95% → 5.55%, −37.4 pp) (Figure 3,
right). The much larger change after fine-tuning indicates a learned bias to “pick the class label,”,
that is, prompt-ignoring rather than knowledge deletion.

Takeaway 5: Forgetting in the ID-image/OOD-text case stems from task-specific overfit-
ting: the model memorizes the image-specific classification template during fine-tuning and
ignores the prompt.

4.3 FINDING VI: DATA-HYBRID TRAINING PREVENTS TASK OVERFITTING

Research question. If overfitting arises from repeatedly pairing ID images with a single classifica-
tion template, mixing in diverse tasks should force the model to attend to the prompt and avoid the
shortcut. We therefore ablate both dataset type and mixing ratio.

Results. Dataset type (50% mix). Figure 4a compares mixing ImageNet-VQA with: (i) Flow-
ers102 (ID-style text on OOD images), (ii) OCR-VQA (OOD text), and (iii) LLaVA-665K (broad
OOD instructions). Hybrid training consistently improves OODT –IDI while keeping ImageNet-
VQA strong. Flowers102 yields only marginal gains on ImageWikiQA (another classification-style
dataset, hence weak against task overfitting). OCR-VQA helps more by requiring text-based rea-
soning. LLaVA-665K performs best, likely due to its breadth of instructions and reasoning styles.

Mixing ratio (with LLaVA-665K). Figure 4b shows that increasing the proportion of LLaVA-665K to
50% keeps ImageNet-VQA within ∼1 pp of the pure-ImageNet condition while markedly improving
ImageWikiQA; at 70%, we see no further OODT –IDI gains. This suggests that the effect is not just
“more data,” but specifically task diversity mitigating overfitting.

Finally, the effectiveness of co-training with OCR-VQA and LLaVA-665K indicates that, although
overfitting manifests on ID images, the remedy does not require additional ID images. Greater task
diversity alone is sufficient to counteract the bias, regardless of the image distribution. In addition,
we have also shown that the synthetic data (LLaVA-665K) is effective, which furthermore provides
a positive result on the robustness of hybrid training.

Takeaway 6: Data-hybrid fine-tuning—mixing diverse instruction data (without requiring
ID images)—preserves ID-task accuracy while overcoming ID-image/OOD-text forgetting.
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Method RS (%) Med (%) AD (%) Sci (%) Fin (%)
Last Average Last Average Last Average Last Average Last Average

Zero-shot 32.29 - 28.28 - 15.59 - 35.55 - 62.56 -

w/ replay buffer
LoRA 29.57 80.87 29.19 58.60 7.09 38.95 19.55 36.41 63.60 36.78
MoELoRA 40.23 80.00 23.58 56.91 5.19 34.69 18.35 31.70 74.89 31.36
O-LoRA 76.21 80.13 51.34 70.23 36.50 61.35 42.64 53.34 90.20 59.38
L2P 75.21 80.09 38.50 68.64 32.31 54.79 41.05 48.68 88.05 55.02
ModalPrompt 64.77 80.11 38.60 60.99 20.61 50.67 29.98 41.97 88.22 48.44
HiDe-LLaVA 75.36 81.51 39.23 62.37 37.17 49.37 45.02 50.61 81.89 55.73
MR-LoRA 79.87 80.82 62.71 72.19 51.89 65.41 52.48 62.52 89.69 67.31
IncLoRA (Ours) 77.43 78.30 62.57 71.93 52.00 65.38 52.48 62.12 90.41 66.98
SeqFull (Ours) 78.94 75.62 62.45 72.16 51.50 65.77 52.08 62.32 91.21 67.24

w/o replay buffer
LoRA 26.75 80.72 25.76 59.68 0.79 40.51 18.69 18.64 70.44 28.49
MoELoRA 21.42 80.05 25.29 57.26 0.79 37.03 17.01 19.65 60.34 24.97
O-LoRA 62.68 80.22 35.17 67.56 16.93 51.51 34.44 44.28 92.16 48.28
L2P 63.82 80.02 34.63 68.86 22.96 51.57 38.58 45.12 92.98 50.59
ModalPrompt 65.99 80.11 37.35 59.66 23.27 46.86 37.61 42.97 87.60 50.36
HiDe-LLaVA 41.17 80.91 30.33 65.47 18.73 39.78 37.08 32.92 92.21 43.90
IncLoRA (Ours) 77.20 77.59 58.97 71.59 51.43 64.40 47.44 60.22 90.24 65.06
SeqFull (Ours) 79.10 77.06 61.22 72.75 52.36 66.09 50.52 62.49 91.29 67.44

Table 3: Continual learning on the MLLM-CL benchmark. We highlight best and second best
separately for with and without replay. Our simple methods (IncLoRA, SeqFull) are competitive
with specialized approaches under replay, and dominate most columns without replay.

5 FROM SINGLE TO MULTIPLE: SIMPLE STRATEGIES RIVAL SOTA

Our single-task study shows that catastrophic forgetting can be substantially reduced with regular-
ization (§3) and data hybrid training (§4). The natural question is whether these observations carry
over from one task to a sequence of tasks. We therefore turn to continual learning, where a model
learns tasks one after another while preserving performance on earlier tasks. Perhaps unexpectedly,
we find that very simple updates, either LoRA or a small learning rate, match or outperform prior
methods purpose-built for continual learning, both with and without a replay buffer.

5.1 BENCHMARK AND EVALUATION

Benchmark. We use the MLLM continual learning benchmark introduced by MLLM-CL (Zhao
et al., 2025), spanning five domains in a fixed order: Remote Sensing → Medicine → Autonomous
Driving → Science → Finance. See §B.3 for more details.

Evaluation. Continual learning reframes forgetting from “does fine-tuning erase zero-shot skills?”
to “does learning the next task erase the previous one?”. We therefore report two standard metrics:
Last (performance on each task after training on the full sequence) and Average (mean performance
across tasks at the time each task is learned). Details appear in §D.4.

Experimental setup. For comparability, we follow the MLLM-CL recipe exactly (optimizer,
prompts, and models), adopt their evaluation protocol, and use the same dataset splits. The zero-shot
row in Table 3 provides the pre-training baseline before any fine-tuning.

5.2 FINDING VII: SIMPLE STRATEGIES COMPETE WITH SOTA IN CONTINUAL LEARNING

Method. We evaluate two simple continual learning strategies: incremental LoRA (IncLoRA) and
sequential full fine-tuning (SeqFull). For IncLoRA, we train a new LoRA adapter for each task
and, after training, merge the adapter weights into the base model, which then initializes the next
task. SeqFull simply fine-tunes all model parameters for each task in sequence, without additional
mechanisms.

We refer our IncLoRA and SeqFull as simple because all the other method shown in Table 3 either
use a router to select an appropriate LoRA instead of merging, or add additional regularization
during fine-tuning the new LoRA. Our framework is essentially a simplified version of them.
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Results. With a replay buffer (a bounded memory that retains a small sample of past tasks’
examples and replays them alongside the current task’s data to reduce catastrophic forgetting),
many prior methods introduce sophisticated components to control forgetting, yet our simple ap-
proaches achieve performance comparable to state-of-the-art techniques. For example, SeqFull
attains 78.94% on RS under the Last metric, closely matching MR-LoRA (79.87%) while outper-
forming it in Fin.

The gap widens in the more restrictive no-replay setting, which is important for privacy-sensitive
applications (e.g., medicine) where replay is infeasible. Except for the Average metric in the first task
(RS) and the Last metric on the final task (Fin)—both of which do not reflect forgetting—IncLoRA
and SeqFull outperform all competing methods in the remaining eight comparisons, establishing
new state-of-the-art results in most domains.

Takeaway 7: Simple update policies rival or exceed specialized continual-learning meth-
ods, work in privacy-sensitive no-replay settings, and avoid additional complexity.

6 RELATED WORK

Vision language models. Multimodal large language models (MLLMs) such as Flamingo (Alayrac
et al., 2022), LLaVA (Liu et al., 2023), and GPT-4V (Achiam et al., 2023) demonstrate strong
visual–linguistic understanding and reasoning (Xu et al., 2024). A typical MLLM couples a vision
encoder with a language backbone—through a projector or cross-attention module—is trained in
large image-text corpora and is subsequently adjusted to instruction (Liu et al., 2023). Recent work
has emphasized scaling, architectural refinements, and training strategies to improve zero-/few-shot
generalization Tong et al. (2024); Chen et al. (2024c); Bai et al. (2025). In this work, we study how
to adapt strong base MLLMs to diverse downstream tasks while preserving zero-shot performance,
a problem that is arguably more acute for MLLMs than for LLMs, yet comparatively underexplored.

Catastrophic forgetting. Catastrophic forgetting is the loss of previously acquired knowledge when
a model is trained on new tasks (Kemker et al., 2018; Chen & Liu, 2022; Goodfellow et al., 2013).
In LLMs, catastrophic forgetting has been extensively studied—empirically (Kalajdzievski, 2024;
Scialom et al., 2022), theoretically (Shuttleworth et al., 2024), methodologically (Chen et al., 2023;
Li et al., 2025), and from an evaluation point of view (Ung et al., 2024). In contrast, catastrophic
forgetting in MLLMs has received less attention (Zhai et al., 2024). Previous work always shows a
result of learning less and forgetting less, while we are presenting the phenomenon of learning the
same amount without forgetting.

Continual learning. Continual learning aims to acquire new capabilities without erasing prior
knowledge (Wang et al., 2024; Chen & Liu, 2022; Hadsell et al., 2020). It is critical in real-world
settings where data distributions and taxonomies evolve, centralized retraining may be impractical
due to cost or privacy, and preserving generalist abilities (e.g., zero-shot performance) is important
for safety and robustness. To mitigate forgetting, previous work explores replay, regularization, and
parameter isolation approaches, but these often add considerable compute, memory, and engineering
complexity (Zhao et al., 2025; Van de Ven & Tolias, 2019). Although continual learning for MLLMs
has begun to be explored (Chen et al., 2024a; Huang et al., 2024), we show that—with appropriate
training recipes—forgetting can be largely mitigated, yielding state-of-the-art results with simple
and compute-efficient methods.

7 CONCLUSION

By rethinking and re-evaluating the design space of multimodal adaptation, this paper reframes how
to fine-tune multimodal large language models. We find that concerns about catastrophic forgetting
are often overstated. In practice, a simple recipe—using small learning rates or parameter-efficient
updates—yields specialized models that remain strong generalists. Our analysis isolates a single
failure mode: overfitting to linguistic patterns rather than visual content. We address this with a
straightforward hybrid-data mix. On a challenging continual learning benchmark, this recipe per-
forms on par with or better than more complex alternatives, suggesting that vision language models
are more intrinsically robust than commonly assumed. We hope these results encourage simpler,
more transparent adaptation methods and provide a stable foundation for future work.
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Hyperparameters: Appendix C.
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A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, the authors utilized a Large Language Model (LLM) as a
general-purpose writing assistance tool. The LLM’s role was strictly limited to improving the clarity,
grammar, and readability of the text. Specific tasks included rephrasing sentences for better flow,
correcting grammatical errors, and ensuring consistent terminology.

B DATASETS DETAILS

B.1 2X2 EVALUATION MATRIX DETAILS

Classification Datasets (Deng et al., 2009; Nilsback & Zisserman, 2008; Fei-Fei et al., 2004;
Krause et al., 2013). For all classification datasets in the evaluation matrix, we follow the same
protocol to turn them into multiple-choice questions. The question text are fixed to What is the class
of this image? Please answer with a single letter (A, B, C, or D)., where the formatting instructions
are concatenated to ensure the evaluation result will not be greatly influenced by output format of
the model.

To increase the difficulty of the task and test the model’s fine-grained discrimination ability, distrac-
tors are strategically selected. We use CLIP (Radford et al., 2021) to identify the five incorrect class
labels with the highest semantic similarity scores to the image. From this pool of five candidates,
we randomly sample three to serve as distractors. This methodology ensures that incorrect options
are semantically plausible, requiring the model to perform a more precise identification. By fine-
tuning on ImageNet-VQA, the model is trained to perform a standard, in-distribution (ID) image
classification task.

ImageWikiQA (Zhang et al., 2024). Since the ImageWikiQA dataset is already in a format of
multple-choice question, we directly use adapt it.

MMMU and VMCBench (Yue et al., 2024; Zhang et al., 2025). Since the MMMU and VM-
CBench datasets are already in a format of multple-choice question, we directly use adapt them. For
all the numbers reported in this paper, we use the MMMU-val split for the evaluation.

B.2 RARE DATASETS DETAILS

BSCCM. We use the original BSCCM (Pinkard et al., 2024) dataset and follow the
official guide at https://github.com/Waller-Lab/BSCCM/blob/main/Getting_
started.ipynb to create a classification question-answering dataset. We collect images from
all 23 available channels, including:

• Brightfield
• DF 50, DF 50 Bottom, DF 50 Right,
• DF 55,
• DF 60, DF 60 Bottom, DF 60 Right,
• DF 65,
• DF 70, DF 70 Bottom, DF 70 Right,
• DF 75,
• DF 80, DF 80 Bottom, DF 80 Right,
• DF 85,
• DF 90,
• DPC Bottom, DPC Left, DPC Right, DPC Top,
• LED119

There are 10 classes in total, and for each question we ask the model to choose from 6 possible
choices. The 5 distractors are randomly sampled from all possible choices and we provide the list
of classes as follows:

13

https://github.com/Waller-Lab/BSCCM/blob/main/Getting_started.ipynb
https://github.com/Waller-Lab/BSCCM/blob/main/Getting_started.ipynb


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

1. neutrophil
2. nk lymphocyte
3. eosinophil
4. lymphocyte

5. basophil
6. monocyte
7. plasma cell
8. blast cell

9. b lymphocyte
10. t lymphocyte

To increase the type of questions, we provide multiple choices of prompt while all of them are
sharing the same semantic meaning.

• What type of white blood cell is shown in this {channel type} microscopy image?
• Based on the morphological features visible in this {channel type} image, what is the cell type?
• What is the most likely classification of this blood cell captured with {channel type} illumina-

tion?
• Which white blood cell type does this {channel type} image represent?
• What type of immune cell is depicted in this {channel type} microscopy image?
• Looking at the cell morphology in this {channel type} image, which cell type is this?
• What is the identity of this cell captured using {channel type} in LED array microscopy?

We provide the following samples in Table 4 from curated dataset. During training and inference, a
prompt of ”Please answer with a single letter (A, B, C, D, E or F)” is appended at the end to avoid
the influence from model response formatting.

Table 4: VQA Dataset Curated from BSCCM

Image Question Choices
What is the identity of this cell captured us-
ing brightfield in LED array microscopy?

A. eosinophil
B. neutrophil
C. t lymphocyte
D. plasma cell
E. debris or artifact
F. unclassified cell

What type of white blood cell is shown
in this dark field (50 illumination) mi-
croscopy image?

A. plasma cell
B. nk lymphocyte
C. b lymphocyte
D. neutrophil
E. unclassified cell
F. debris or artifact

Based on the morphological features visi-
ble in this differential phase contrast (left
illumination) image, what is the cell type?

A. basophil
B. unclassified cell
C. debris or artifact
D. t lymphocyte
E. blast cell
F. lymphocyte

PitVis. We use the PitVis Challenge (Das et al., 2025) to create a classification dataset aiming to
categorize the frame sampled from video according to the surgical instrument appeared. We fix the
sample rate to be 1 out of every 6 frames. The total 21 instrument classes are as follows.

Fixed choices:

1. no secondary instrument
2. out of patient
3. no visible instrument/occluded image inside patient

Other choices:
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1. bipolar forceps
2. cottle
3. cup forceps
4. dural scissors
5. freer elevator
6. haemostatic foam

7. irrigation syringe
8. kerrisons
9. micro doppler

10. nasal cutting forceps
11. pituitary rongeurs
12. retractable knife

13. ring curette
14. spatula dissector
15. stealth pointer
16. suction
17. surgical drill
18. tissue glue

We still ask the model to choose from 6 possible choices. For every question, there will be 3 fixed
choices to be no secondary instrument, out of patient, no visible instrument and we will randomly
sample 2 or 3 distractors from all other classes (2 if the ground truth is not one of the 3 fixed classes).

We provide the following samples in Table 5 from curated dataset. During training and inference, a
prompt of ”Please answer with a single letter (A, B, C, D, E or F)” is appended at the end to avoid
the influence from model response formatting.

Table 5: VQA Dataset Curated from BSCCM

Image Question Choices
What is the
major surgical
instrument
being used in
this frame?

A. tissue glue
B. retractable knife
C. haemostatic foam
D. no secondary instrument
E. out of patient
F. no visible instrument/occluded image inside patient

What is the
major surgical
instrument
being used in
this frame?

A. plasma cell
B. nk lymphocyte
C. b lymphocyte
D. neutrophil
E. unclassified cell
F. debris or artifact

What is the
major surgical
instrument
being used in
this frame?

A. out of patient
B. ring curette
C. no visible instrument/occluded image inside patient
D. freer elevator
E. micro doppler
F. no secondary instrument

B.3 MLLM-CL DETAILS

This sequential learning benchmark MLLM-CL contains:

• RS: Remote Sensing Data RSVQA (60k Training Data)
• Med:Medical Data PathVQA (23k Training Data)
• AD:Auto-Driving Data DriveLM (60k Training Data)
• Sci:Science Data AI2D, SciVerse, MapQA, TQA (33k Training Data)
• Fin:Financial Data StockQA (60k Training Data).

More details about the dataset can be found in MLLM-CL paper (Zhao et al., 2025). We adapt
the number reported in original MLLM-CL paper, including LoRA Hu et al. (2022), MoELoRA
Chen et al. (2024a), O-LoRA Wang et al. (2023), L2P Wang et al. (2022), ModalPrompt Zeng et al.
(2024), HiDe-LLaVA* Guo et al. (2025), MR-LoRA Zhao et al. (2025)
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C TRAINING HYPER-PARAMETERS AND DETAILS

C.1 TRAINING HYPER-PARAMETERS FOR FIGURE 2

In this section, we align the table caption with Figure 2.

Config Value
Optimizer AdamW
Batch Size 32
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−4

Training Steps 40000
LoRA Rank 8
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(a) LLM Backbone (LoRA, 1e-4)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−5

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(b) LLM Backbone (Full, 1e-5)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(c) LLM Backbone (Full, 1e-6)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−5

Training Steps 80000
Freeze Vision Tower False
Freeze Multi Modal Projector True
Freeze Language Model True

(d) Vision Encoder (Full, 1e-5)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower False
Freeze Multi Modal Projector True
Freeze Language Model True

(e) Vision Encoder (Full, 1e-6)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−5

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector False
Freeze Language Model True

(f) Projector (Full, 1e-5)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector False
Freeze Language Model True

(g) Projector (Full, 1e-6)
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C.2 TRAINING HYPER-PARAMETERS FOR TABLE 2

In the ablation across different setting, we study the fine-tuning recipt of full fine-tuning LLM back-
bone (learning rate 1e-6) since this is the most surprising result in our paper. Since LoRA fine-tuning
or fine-tuning other parts (vision encoder or projector) is more regularized, doing validation study
on the simplest fine-tuning LLM backbone is the most convincible choice.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(a) Configuration for ablation study across model size
and model family, all the 3 models share the above
hyper-parameters.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 20000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(b) Configuration for ablation study across rare
datasets, all the 3 datasets share the above hyper-
parameters.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule linear
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 2000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(c) Ablation study across dataset size, 2000 train-
ing steps corresponding to 2.5% dataset, the warmup
steps is 2000*0.1=200. This configuration produce
the results of 0.25% and 2.5%.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule linear
Warmup Ratio 0.0025
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(d) Ablation study across dataset size, 80000 training
steps corresponding to the 100% dataset, the warmup
steps is 80000*0.0025=200. This configuration pro-
duce the results of 25% and 100%.

C.3 TRAINING HYPER-PARAMETERS FOR FIGURE 4

In this part, we still use full fine-tuning LLM backbone (learning rate 1e-6) as the default setting for
the same reason with Appendix C.2. For hybriding different datasets, we use a fixed hybriding ratio
of 0.5. The datasets will be oversampling if all the samples has been used at least once.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(a) Configuration for ablation study across hybriding different datasets and different hybrid ratio, all experi-
ments share the above hyper-parameters.
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C.4 TRAINING HYPER-PARAMETERS FOR TABLE 3

We follow the configuration from MLLM-CL(Zhao et al., 2025) to achiece a fair comparison with
their results.

Config Value
Optimizer AdamW
Batch Size 64
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 8× 10−5

Epoch for RS 1
Epoch for Med 3
Epoch for AD 1
Epoch for Sci 2
Epoch for Fin 1
LoRA rank 8

(a) Hyperparameters of IncLoRA in MLLM-CL
Benchmark w/o replay buffer.

Config Value
Optimizer AdamW
Batch Size 64
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 8× 10−5

Epoch for RS 1
Epoch for Med 3
Epoch for AD 1
Epoch for Sci 2
Epoch for Fin 1
LoRA rank 16

(b) Hyperparameters of IncLoRA in MLLM-CL
Benchmark w/ replay buffer.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Epoch for RS 1
Epoch for Med 3
Epoch for AD 1
Epoch for Sci 2
Epoch for Fin 1

(c) Hyperparameters of SeqFull in MLLM-CL
Benchmark w/o replay buffer.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Epoch for RS 1
Epoch for Med 3
Epoch for AD 1
Epoch for Sci 2
Epoch for Fin 1

(d) Hyperparameters of SeqFull in MLLM-CL
Benchmark w/ replay buffer.

C.5 REPLAY BUFFER IMPLEMENTATION

We exactly follow the setting in MLLM-CL (Zhao et al., 2025), specifically, for each task of RS,
Med, AD, Sci, Fin, we collect a replay data buffer of size 20 samples. Then, for every downstream
sequential fine-tuning, we directly hybrid all the replay data of previous tasks into the current training
data. No over-sampling mechanism is adapted.

D EVALUATION PROTOCOLS

D.1 PROMPT TEMPLATES

Qwen2.5-VL. We use the default LLaMA-Factory prompt, which is also the official prompt
from Qwen2.5-VL repository.

System Prompt

user
You are a helpful assistant. {User’s prompt}
assistant
{Model’s response}
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LLaVA-1.5. We use the default LLaMA-Factory prompt, which is also the official prompt from
LLaVA-1.5 repository.

System Prompt

A chat between a curious user and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions.
USER: {User’s prompt}
ASSISTANT: {Model’s response}

D.2 EVALUATION OF 2X2 EVALUATION MATRIX

Result Matcher. We use a result matcher.py file to evaluate the answer accuracy of pre-
dictions. All the questions in this part are multiple-choice questions and the answer is a single letter.
All predictions are stored in a json file f, each entry has a predict key containing the model’s
output to the question and a label key containing a single letter as the ground truth. The logic is
as follows:

1 correct_predictions = 0
2 total_predictions = len(f)
3 for entry in f:
4 predict = str(entry[’predict’]).strip()
5 label = str(entry[’label’]).strip()
6

7 if ":" in predict:
8 predict = predict.split(":")[-1].strip()
9

10 predict = predict.upper()
11 label = label.upper()
12

13 if predict == label or predict.startswith(f"{label}."):
14 correct_predictions += 1
15

16 accuracy = correct_predictions / total_predictions

Listing 1: Pseudo code snippet for result matcher.py.

This above script is adapted for evaluations curated from ImageNet, Flowers 102, Caltech 101,
Stanford Cars, ImageWikiQA.

VLMEvalKit. For evaluation of MMMU and VMCBench, we directly use the code in
VLMEvalKit (Duan et al., 2024) to get the results.

D.3 EVALUATION OF RARE DATASETS

Since the questions we curated from BSCCM and PitVis are all multiple-choice questions, we use
the same protocols as Appendix D.2, adapting the Result Matcher code in Listing 1.

D.4 EVALUATION OF MLLM-CL

Last and Average. Last is the accuracy of all seen tasks after learning the last task. Average is the
average accuracy of each task during the training process, i.e., Average =

∑t
i=1 acci, where t is the

task that the model is learning, acci is the accuracy of the i-th previous learned task.

Result Matching. For turning the generation result, we directly adapt the script from MLLM-CL
to ensure the fair comparison. The only change is in the Sci script. The original script use the
image storage path to distinguish different kind of types of questions, we find that this is detecting
the multiple-choice question with one single choice letter as the ground truth. Thus, we replace the
judge condition of image.split(’/’)[-1].split(’ ’)[0]=="AI2D"orimage.spli
t(’/’)[-1].split(’ ’)[0]=="TQA"orimage.split(’/’)[-1].split(’ ’)[0]
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=="VQA"orimage.split(’/’)[-1].split(’ ’)[0]=="SciVerse" with len(gt)
== 1.

Evaluation code snippet for evaluating RS and AD. All the namings follows Appendix D.2.

1 right = 0
2 total = len(f)
3 for entry in f:
4 ground_truth = entry[’label’]
5 if ’Unanswerable’ in entry[’predict’] :
6 continue
7

8 pred: str = entry[’predict’].lower()
9 gt: str = ground_truth.lower()

10

11 score = 0
12 if ’ ’ in gt:
13 if gt in pred:
14 right += 1
15 else:
16 gt = gt.replace(’.’, ’’)
17 if ’ ’ in pred:
18 if (’ ’+gt) in pred or (gt+’ ’) in pred or (gt+’.’) in pred

or (gt+’,’) in pred:
19 right += 1
20 else:
21 if gt in pred:
22 right += 1
23

24 accuracy = right / total

Listing 2: Pseudo code snippet for evaluating RS and AD.

Evaluation code snippet for evaluating Med. All the namings follows Appendix D.2.

1 right = 0
2 total = len(f)
3 for entry in f:
4 ground_truth = entry[’label’].lower()
5 pred = entry[’predict’].lower()
6 if ’Unanswerable’ in entry[’predict’] :
7 continue
8

9 if ground_truth in pred:
10 right += 1
11

12 accuracy = right / total

Listing 3: Pseudo code snippet for evaluating Med.

Evaluation code snippet for evaluating Sci. All the namings follows Appendix D.2, the prompt
key containing the question description.

1 right = 0
2 total = len(f)
3 for entry in f:
4 ground_truth = entry[’label’].strip()
5 problem = entry[’prompt’]
6

7 pred: str = entry[’predict’].strip().lower().replace(’.’, ’’).replace
(’,’, ’’).replace(’neither’, ’no’)

8 gt: str = ground_truth.strip().lower().replace(’.’, ’’).replace(’,’,
’’).replace(’neither’, ’no’)

9
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10 if len(gt) == 1:
11 if gt == pred:
12 right += 1
13 else:
14 if ’Which states’ in problem:
15 gt_list = gt.split(’,’)
16 len_gt = len(gt_list)
17 pred_map_list = pred.split(’,’)
18

19 count = 0
20 for gt in gt_list:
21 if gt in pred_map_list:
22 count += 1
23 right += count / len_gt
24 elif gt in pred or pred in gt:
25 right += 1
26

27 accuracy = right / total

Listing 4: Pseudo code snippet for evaluating Sci.

Evaluation code snippet for evaluating Fin. All the namings follows Appendix D.2.

1 right = 0
2 total = len(f)
3 for entry in f:
4 ground_truth = entry[’label’]
5

6 pred: str = entry[’predict’].lower().replace(’ ’, ’’).replace(’.’, ’’
)

7 gt: str = ground_truth.lower()
8 score = 0
9 if gt == pred:

10 right += 1
11

12 accuracy = right / total

Listing 5: Pseudo code snippet for evaluating Fin.

E FINE-TUNING ON PATH VQA

Experiment for full fine-tuning Qwen-3B-Instruct for 80,000 steps on the PathVQA dataset,
which is an open-ended pathology question answering dataset. Since the fine-tuning process is
independent of the ImageNet dataset, we think the only reasonable evaluation is the OODT -OODI

case, and the results are as follows:

MMMU-dev (%) MMMU-val (%) VMCBench (%)
Before Fine-tuning 48.00% 48.44% 75.20%
After Fine-tuning 48.67% 45.00% 74.20%
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