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Abstract. Imaging genetics, discovering associations between imaging
and genetic variations, has emerged as a promising avenue to advance
the understanding of neurological disorders. However, the majority of
existing studies focus on selecting disease-related features to improve
prediction accuracy using statistical analysis or learning-based methods.
Despite the data-intensive nature in medical imaging, understanding of
how genetics affect brain structures in image generation remains largely
unexplored. In this paper, we propose a novel approach that generates
brain images from genetics leveraging latent diffusion models. Specifi-
cally, attention-based diffusion models are conditioned on genetic infor-
mation, which allows us to enhance the quality and relevance of the gen-
erated images in the context of Alzheimer’s diagnosis (AD). We validated
our model on T1 MRI and single nucleotide polymorphism (SNP) in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our model yields
real-like synthetic images demonstrating AD-specific variation that helps
to increase accuracy in a downstream classification of AD. Overall, our
study highlights the potential of diffusion models in imaging genetics to
facilitate accurate diagnosis and understanding of AD.
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1 Introduction

Imaging genetics, the study of associations between genetic variations such as
single nucleotide polymorphisms (SNPs) and imaging phenotypes, explores how
genetic factors contribute to variations in brain structure, function and con-
nectivity. This interdisciplinary field offers insights into the pathology and pro-
gression of neurological disorders such as Alzheimer’s disease (AD), as under-
standing the genetic underpinnings is crucial for developing effective diagnostic
and therapeutic strategies considering the complex interplay of multiple genetic
variants implicated in the disease. Since AD is a progressive disorder where
early diagnosis is paramount, the pursuit of imaging genetics research holds par-
ticular significance in helping early detection and intervention strategies [3,16].
Most AD studies are primarily focused on identifying AD-specific symptoms and
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biomarkers through statistical analysis [20] or extracting features to enhance dis-
ease prediction with deep learning methods [14].

While such studies have significantly advanced understanding of pathology
and progression, utilizing the relationships between sequence (i.e., gene) and
structure (i.e., image) for data synthesis is heavily underexplored. In recent
years, deep learning-based generative models have shown remarkable achieve-
ment in generating realistic samples [4], however, there remains a significant
gap in the literature concerning integrating genetics into the medical image gen-
eration despite the rich source of information from genetic data. Generative
models learn the underlying probability distribution that approximates the data
distribution of a training set as accurately as possible [8]. In particular, image
generation under various conditions (e.g., labels and types), highlights the poten-
tial of integrating various data modalities to guide the image generation process
[13,15,27,30]. One notable example is Latent Diffusion Models (LDMs) [18],
which represent images as a sequence of diffused representations, where each
step in the sequence gradually transforms a latent noise vector into the desired
image. LDMs demonstrated their efficiency and performance in both uncondi-
tional and conditional tasks such as text-to-image translation for natural images,
conditioning textual descriptions on the generation process [29].

The example above presents an opportunity for novel research avenues in imag-
ing genetics to leverage genetic data to enhance the quality and relevance of gen-
erated images to AD-specific patterns and the role of genetics in articulating brain
structure. This research is particularly significant because it involves generating
medical images, a task that is inherently challenging due to the typically limited
number of available medical data. Having a limited amount of data makes the
problem ill-posed, particularly when considering the high dimensionality of med-
ical imaging such as MRI scans. To effectively learn the underlying probability
distribution of this high-dimensional data, a substantial amount of training data
isrequired. When the sample size is small, it is challenging to capture the complex-
ity and variability inherent in the data. Incorporating additional information, such
as genetic data, can mitigate this problem in that it better constrains the solution
space and improves the reliability of the generated images. Further, image gener-
ation holds promise as an effective data augmentation for data-intensive medical
image analysis. As a small sample size is a common problem in medical imaging
studies, accurate synthetic data offer an efficient means to deal with data scarcity
and address data imbalance problems and privacy issues [28].

Therefore, in this study, we propose a novel approach for generating MRI
images from SNP data by harnessing the LDMs, offering a new perspective on
bridging the genotype-phenotype gap. By integrating genetic information (i.e.,
a sequence) into LDMs via an attention mechanism, we aim to produce high-
fidelity MRI that improves the accuracy and clinical relevance of imaging-based
AD diagnosis. To our best knowledge, it is the first work in image generation
from genetics.

The contributions of our work are three-fold: 1) We propose a method
to incorporate genome data into latent diffusion models, showcasing the use of
genetics for image generation. 2) We emphasize the effectiveness of the attention
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mechanism in LDMs to capture genetic influence, enhancing the relevance of
generated images to conditions. 3) We extensively validate our model on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, which yields real-like
synthetic images that potentially help training downstream prediction model.

2 Related Work

Deep Learning-Based Imaging Genetics. Several studies have employed
deep learning architectures to extract features from imaging and genetic data,
identifying disease-related biomarkers and developing predictive models for dis-
ease diagnosis. [11,23,24,31] proposed deep learning frameworks with deep neu-
ral networks or convolutional neural networks to extract features of each modal-
ity and integrate them as an input for the classifiers. [7] utilize a hierarchical
graph convolutional network to embed genetic information and combine the
latent embedding and image encoder for disease prediction.

Multivariate Statistical Technique. To maximize the correlation between
genetic data and images, several studies employed Canonical correlation analysis
(CCA) is typically employed to investigate relationships between genetics and
images. Du et al. introduced a regularization to bring structural sparsity [6]
and proposed a multi-task sparse CCA to study the relationship between the
longitudinal imaging and SNPs [5]. Similarly, [12] proposed multi-task-based
structured sparse CCA, integrating complementary multi-modal imaging data.

Medical Image Generation. While there has been no research on generating
medical images from genomic data, significant progress has been made in gener-
ating medical images using generative models. Recent studies have employed var-
ious generative adversarial networks (GANs) [8] and diffusion models to create
realistic medical images. [21] demonstrated the effectiveness of GANs in generat-
ing synthetic abnormal MRI images for data augmentation, improving the per-
formance of lesion detection algorithms. [1] applied CycleGANs for multimodal
image-to-image translation, significantly enhancing the quality of synthesized
PET or MRI data. More recently, [17] explored brain imaging generation with
latent diffusion models, showing the potential of diffusion models in producing
high-fidelity medical images.

3 Method

We first explain latent diffusion models (LDMs) based on Denoising Diffusion
Probabilistic Models (DDPMs) [10] (Sect. 3.1), then we introduce our model for
generating MRI image slices from genetic data with LDM (Sect. 3.2).

3.1 Latent Diffusion Models

Diffusion Models, inspired by non-equilibrium statistical physics, slowly
destroy the original data by successively adding random noise, converting data
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Fig. 1. The overall architecture of our model. In the autoencoder module, the encoder
& compresses the input image into a low-dimensional latent representation, and the
decoder D reconstructs the latent representation generated through the diffusion pro-
cess back into image space. The diffusion model takes the latent transformed by the
autoencoder’s encoder as input, conditioning on genotype data and diagnostic labels
to generate new latent representations through a denoising U-Net. Genotype data is
embedded using a transformer encoder and fed into a cross-attention module, while
diagnostic labels are concatenated with the input of the diffusion process.

distribution into a simple known distribution such as a Gaussian distribution
(i.e., forward process) [22]. Then, the models learn to reverse this process to
reconstruct data distribution, which allows us to learn a tractable and flexi-
ble distribution (i.e., reverse process). This iterative process allows the model
to generate high-quality images by progressively restoring information from the
noise space to the data space. For both processes, it is explicitly formulated as
a Markov chain, in which each step only depends on the previous step.

For a forward process, suppose a data distribution zy ~ ¢(zo) is gradually
destroyed into a tractable distribution from time ¢ = 0 to ¢t = T'. By the Markov
property, the joint distribution conditioned on xg, denoted as g(x1, ..., xr|xo),
can be factorized into the transition kernels.

T
q(@1, . orlro) == [ alwelzi1) (1)

When the noise added to data is pure Gaussian noise, the transition kernel
q(z¢|zi—1) at time step t is formulated as follows:

q(zelri—1) = N(xp; /1 = Bre—1, Bi1), (2)

where [3; is a variance schedule. Using Eq. (2), one can represent closed form of
q(z¢|zo) at an arbitrary time ¢t. With oy :=1— 04, & := Hizl o, and a Gaussian
vector €, we have

q(z¢|mo) = N (2; Vagzo, (1 — ap)l), z = Vagxo + V1 — are. (3)
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For the backward process, q(z:—1|z:) is also Gaussian distribution as in the
forward process if 3, is sufficiently small [22]. In practice, as it is computationally
intractable, we approximate g(z;—1|x;) by estimating the mean and variance
through a parameterized model py.

po(xi—1]me) = N(2e—1; po(ae, t), Bo (a4, t)). (4)

To train the parameter 6 so that py closely approximates the target distri-
bution ¢, the learning objective L is set to minimize the Kullback-Leibler (KL)
divergence between two distributions. Simplifying the learning objective to be
computable, it is expressed in closed form as

L(0) ~ D (q(@e—1]ze, zo)llpo(we—1]z2))- (5)
Using Bayes’ rule, one can compute the mean and variance of g(x:—1|x¢, zg),
q(ze—1|ze, m0) = N (2413 fir (2, T0), B I), (6)
~ 1 1-— Qg ~ 1-— O_ét_l
h _ _ d = ——0. 7
where  fiz (2, o) = (x4 met) and £ —a Be.  (7)

If 3¢ is not trained, Eq. (5) is transformed to minimizing the difference of the
mean, [; and pg. Further, by Eq. (7), this is converted to the objective with
noise matching and can be simplified to

L(6) ~ E[lle — ep (1, t)I3]. (8)

Latent Diffusion Models are probabilistic generative models that leverage
the concept of diffusion processes to efficiently generate high-quality images.
They operate diffusion processes not in the image space but on the encoded
latent representation. Therefore, the LDMs consist of an autoencoder for image
compression and retrieval and a diffusion model for generation.

First, the encoder of the autoencoder, £, compresses input data = to a low
dimensional latent variable z = £(x), where latent representations are trained
to follow a Gaussian distribution. With the noise sample computed by the mean
and variance resulting from encoding, the decoder, D, produces new data similar
to the input. With the trained autoencoder, the compressed latent z is fed into
a diffusion model, which is trained to learn the distribution of z. The objective
Eq. (8) is modified accordingly as

L(0) ~ E[lle — eo (2, ) [3]- 9)

At last, the diffusion model generates samples from the latent distribution by
the reverse process, and the trained decoder transforms the latent samples back
into the image space and reconstructs the desired output image.

3.2 Gene-To-Image Translation via Attention

Figure 1 presents an overview of our methods. MRI slices are transformed into
latent representations through an autoencoder, compressing them into low-
dimensional features. The latent representations undergo a diffusion process to
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generate new representations, conditioned on diagnostic labels and genotype
data. Diagnostic labels are concatenated with the latent representations, while
genotype data is encoded by a transformer encoder and incorporated through a
cross-attention module. Finally, the generated representations are reconstructed
back into MR images.

The essence of our work is to incorporate genetic data into the diffusion model
so that the model effectively reflects genetic factors governing the generative pro-
cess on the generated images. To condition LDMs on genetic data, we preprocess
genetic data with a transformer encoder and apply a cross-attention mechanism
in U-Net [19]. Given genetic data y € Rfs, where F,; denotes the dimension of
genetic features (e.g. SNP features), the transformer encoder converts y to an
intermediate representation 7y (y) € RFs*Fe with the embedding dimension F,.
It is then fed into the intermediate layers of the U-Net through a cross-attention

layer, implementing Attention (Q, K, V) = softmaz (Qf/(;) -V, where

Q=Wq I(z), K=Wk -Toly), V=Wy Ty.  (0)

Z(z;) is an intermediate output of the latent representation of the image from the
U-Net and Wy, Wg, and Wk are learnable weight matrix. Finally, we define the
overall learning objective for the diffusion model with the conditions as follows:

L(0) ~ E[lle — eg (21,1, To(y)) |3]- (11)

From Eq. (11), the model jointly learns both 7y and €y to estimate the pure
noise €, which allows us to estimate the mean of the backward trajectory (i.e.,
Eq. (4)), ultimately generating synthetic images conditioned on genetic data.

4 Experiments

4.1 Dataset and Preprocessing

Dataset. We evaluated the performance of the proposed model on the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) dataset. We selected 911 samples
from the ADNI-1 and ADNIGO/2 phases, and each sample contains MRI images,
genotype data, and corresponding diagnostic labels. The dataset consists of 291
control (CN), 438 mild cognitive impairment (MCT), and 182 AD subjects.

Preprocessing. For the image data, the baseline T1-weighted MRI scans were
extracted and we used the MNI ICBM 152 template to perform spatial nor-
malization and correct intensity non-uniformity, following the CIVET pipeline.
Then, we obtained slices of size 217 x 181 in the axial view of the images and
resized them to 256 x 256 in the experiments. For genotype data, ADNI provides
the SNP genotype data using the Illumina method with PLINK format, which
contains 620,901 SNPs for ADNI-1 and 730,525 SNPs for ADNIGO/2. To select
SNP markers statistically significant and relevant to AD, two procedures were
conducted. Quality control (QC) was initially performed using PLINK software
to filter out samples or SNPs based on the summary statistic measures. The
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SNP data was screened out with the following conditions: missing genotype rate
> 5%, minor allele frequency < 1%, and Hardy-Weinberg exact test < 107°.
After the QC, 553,789 and 672,256 SNPs were retained for each phase. To fur-
ther identify SNPs relevant to AD, we used SNPs belonging to the AD gene
candidates listed in the AlzGene database [2] and finally selected 49 SNP mark-
ers. Each SNP value was encoded in three categories: normal (0), heterogeneous
variant (1), and homogeneous variant (2). On the other hand, the e4 allele of
APOE is the strongest known genetic factor for AD, but it is not included in
the ADNI sequencing data. Instead, ADNI provides the genotyped data of the
two SNPs (rs429368, rs7412) that define €2, 3, and 4 of APOE, and we extracted
information only for e4. It is also encoded into three categories, 0, 1, and 2.

4.2 Experimental Settings

Baselines. We validate the performance of generating MRI images with our
proposed genotype-conditioned LDM, conditional generative adversarial network
(CGAN) [15], two text-to-image GANs (StackGAN and AttnGAN) [27,30], and
label-conditioned LDM on the ADNI dataset. In detail, we employed CGAN and
label-conditioned LDM with MRI images and diagnostic labels, where the labels
are concatenated to images. StackGAN and AttnGAN are text-conditioned two-
stage and multi-stage GAN models based on the given text, which we replaced
with genotype data. Our model includes three LDM-based models: one that uses
only genotype data (G2I), one that uses both genotype data and labels without
attention (G2I-1), and one that uses both genotype data and labels with attention
applied (G2I-14-Att.).

Evaluation. To evaluate the quality and validity of the synthesized images, we
use various metrics to 1) measure sample quality and 2) perform a downstream 3-
way classification for AD diagnosis. On the image quality evaluation, we compare
the Peak Signal-to-Noise Ratio (PSNR), the Fréchet Inception Distance (FID)
[9], the Structural Similarity Metric (SSIM) [26], and the Multiscale Structural
Similarity Metric (MS-SSIM) [25]. PSNR measures the reconstruction quality
of the generated image, FID measures the distance between real and generated
data distributions using features extracted from Inception-V3, and MS-SSIM
and SSIM measure the similarity between samples with luminance, contrast and
structure. For the classification, we used a simple 2-layered Convolution Neural
Network. We use 85 % of the dataset for training and select 27 images of the
remaining data as a test set for fair evaluation for each class. We augment our
training dataset by combining the original images with generated images to
ensure a total of 500 images per class. Additionally, we augment our training
dataset by combining the original images with generated images to ensure a total
of 500 images per class. We compare all models with accuracy, Macro-precision,
Macro-recall, and Macro-F1-score.
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Fig. 2. Real images and the samples of brain MRI generated from baselines and our
models for three diagnostic groups.

5 Experimental Results

Sample Quality Evaluation. Figure 2 shows images generated from our mod-
els alongside real images and other baseline models across three different groups.
Notably, only our genotype-conditioned LDM and label-conditioned LDM
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Table 1. Quantitative evaluations of samples from our models and baseline models.
This is the average calculated over a total of 3960 samples.

Model PSNR 1| FID | [MS-SSIM |/SSIM |
CGAN [15] 14.900 [141.300 0.506 | 0.407
AttnGAN [27] |18.227/161.976 0.873 | 0.887
StackGAN [30] | 15.707 192.704  0.835 | 0.804
LDM [18] 16.491 |73.260  0.654 | 0.608
G21 16.889 71.551  0.704 | 0.648
G2I-1 w/o Att. 16.968 80.711  0.733 | 0.675
G2I-1 w/ Att. 16.825 71.237 0.688 | 0.645

produced complete images, showcasing the ability of LDM to generate visually
sound MRI. The LDM-based models (LDM and G2I models) generally reflected
the increased ventricle and cortical atrophy as AD progressed, generating images
that closely resemble real ones. In contrast, text-to-GAN models (AttnGAN and
StackGAN) exhibited consistent results across groups, with no significant differ-
ence observed. CGAN yielded images that varied by group but highlighted the
challenges in generating realistic MRI images.

As seen in Table 1, Our models achieved a high PSNR score after AttnGAN,
G2I-1 with attention exhibited the lowest FID score, and CGAN exhibited the
lowest MS-SSIM and SSIM scores. Although AttnGAN achieved the highest
PSNR value, this metric can be misleading due to the blurriness in its generated
images as depicted in Fig. 2. For FID scores, both G2I and G2I-1 with attention
exhibited low values. Specifically, G2I-1 with attention showed an improvement in
FID compared to using only one of the modalities. However, the FID deteriorated
when the attention mechanism was not applied. Regarding MS-SSIM and SSIM,
CGAN showed notably low scores due to its ability to generate different images
based on diagnostic stages but inability to produce complete images, resulting in
significant differences between samples (Fig. 2). Conversely, text-to-image GANs
consistently displayed high SSIM and FID scores indicating that they failed to
capture the underlying data distribution and generate similar images across dif-
ferent conditions, i.e., mode-collapse. In our models, incorporating genetic data
with attention (G2I and G2I-1 with attention) resulted in high PSNR and low
FID. Although they exhibited a slightly higher MS-SSIM and SSIM compared to
LDM, the difference was not significant. Thus, considering multiple metrics col-
lectively, utilizing genetic data with attention effectively produces high-quality
images, aligning well with the given conditions.

The effectiveness of the G2I-1 with attention model in generating images
that accurately reflect group-specific conditions is also shown in Fig.3. This
figure shows the group differences in mean images generated by LDM-based
models. The LDM model using only labels produces significant differences within
the ventricle due to generated images that appear blurred or disconnected. In
contrast, the G2I-1 with attention model shows differences only at the ventricle
boundaries. This indicates that incorporating genetic data with an attention
mechanism produces images that better represent diagnostic states.
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Fig. 3. Group differences in the mean images generated by LDM-based models.

Downstream Classification with Augmentation. Table 2 shows the classi-
fication performance between our models and baseline models. As shown in the
table, G2I-1 with attention consistently outperformed all other models across all
metrics. Using only labels (LDM) to generate images resulted in an approximate
4%p improvement in accuracy while using only genetic data (G2I) did not show
any difference. When both types of information were utilized with attention,
accuracy improved, nearly 8%p higher compared to the original images. How-
ever, without the attention mechanism, the accuracy was lower compared to
using labels alone. This underscores the effectiveness of leveraging genetic data,

Table 2. AD-stage classification performance comparisons.

Model Accuracy (%)|PrecisionRecall|F1-score
Original images 53.13 45.59 |54.79| 41.96
CGAN [15] 56.25 50.46 |55.31| 40.03
AttnGAN [27] 57.29 52.38 |58.60| 42.49
StackGAN [30] 55.21 44.31 |54.92) 37.73
LDM [18] 57.29 48.81 |58.38  39.71
G2I 53.13 50.97 |52.75 40.28
G2I-1 w/o Att. 55.21 52.71 |56.71| 41.57
G2I-1 w/ Att. 61.46 53.45 (63.25 44.28
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especially when combined with attention mechanisms for image generation, in
image-based AD diagnosis. Also, the observed performance improvement, com-
pared to using only original images, suggests that employing our model for image
generation is an effective image augmentation technique, resolving class imbal-
ances caused by the small number of AD patients and enhancing diagnostic
accuracy.

6 Conclusion

We introduced a novel approach, the Gene-to-Image (G2I) model, leveraging
LDMs to generate MRI slices from genotype data. G2I incorporates genotype
into the diffusion model with an attention mechanism, enhancing image fidelity
and relevance to Alzheimer’s disease (AD) conditions. Through comprehensive
validation, including assessment of image quality and AD classification accu-
racy, our model consistently demonstrated superior performance, affirming its
effectiveness and potential use for imaging genetics.
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