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ABSTRACT

Generative adversarial networks (GANs) have received an upsurging interest since
being proposed due to the high quality of the generated data. While GANs achiev-
ing increasingly impressive results, the resource demands associated with the large
model size hinders its usage in resource-limited scenarios. For inference, the
existing model compression techniques can reduce the model complexity with
comparable performance. However, the training efficiency of GANs has less be
explored due to the fragile training process of GANs. In this paper, we for the first
time explore the possibility of directly training sparse GAN from scratch without
involving any dense or pre-training steps. Even more unconventionally, our pro-
posed method enables training sparse unbalanced GANs with an extremely sparse
generator in an end-to-end way, chasing high training and inference efficiency
gains. Instead of training full GANs, we start by training a sparse subnetwork and
periodically explore the sparse connectivity during training, while maintaining a
fixed parameter count. Extensive experiments with modern GAN architectures
validate the efficiency of our method. Our sparsified GANs, trained from scratch
in one single run, outperform the ones learned by expensive iterative pruning and
retraining. Perhaps most importantly, we find instead of inheriting parameters from
expensive pre-trained GANs, directly training sparse GANs from scratch can be
a much more efficient solution. For example, only training with a 80% sparse
generator and a 50% sparse discriminator, our method can achieve even better
performance than the dense BigGAN.

1 INTRODUCTION

The past decade has witnessed impressive results achieved by generative adversarial networks
(GANs) (Goodfellow et al., 2014; Zhu et al., 2017; Arjovsky et al., 2017; Miyato et al., 2018; Miyato
& Koyama, 2018; Brock et al., 2018; Karras et al., 2017; 2019; 2020). In concert with the improved
quality of the generated data, the training and inference costs of the state-of-the-art GANs have also
been explored, curbing the application of GANs in edge devices. Reducing computational costs and
memory requirements is of importance for many GAN-based applications.

Prior works utilize model compression techniques, such as pruning (Shu et al., 2019), distillation (Li
et al., 2020; Chen et al., 2020; Wang et al., 2020b), quantization (Wang et al., 2019), and lottery
tickets hypothesis (LTH) (Frankle & Carbin, 2018; Chen et al., 2021b;a) to produce an efficient
generator with competitive performance. While increasingly efficient, the existing techniques are
not designed to accelerate training as they either operate on fully pre-trained GANs or require the
over-parameterized dense GANS to be stored or updated during training. As the resource demands
associated with training increases quickly (Strubell et al., 2019), such highly over-parameterized
dependency may lead to financial and environmental concerns (Patterson et al., 2021). For example,
while the sparse GANs (winning tickets) learned by LTH can match the performance of the dense
model, the identification of these winning tickets involves accomplishing the costly train-prune-retrain
process many times, resulting in much greater overall FLOPs than training a dense GAN model.

Instead of inheriting knowledge from pre-trained GANs, it is more desirable to train sparse GANs
from scratch in an end-to-end way (sparse training). What’s more, training sparse unbalanced1

1We refer sparse unbalanced GANs to the scenarios where the sparsities of generators and discriminators are
not well-matched.
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Figure 1: STU-GAN directly trains sparsity-unbalanced GANs from scratch with an extremely sparse
generator and a much denser discriminator. The training instability is mitigated by periodically
explore parameters for better sparse connectivities with a prune-and-grow scheme during training.

GANs consisting of an extremely sparse generator and a much denser discriminator are arguably
more appealing, as such an unbalanced training process will yield extremely sparse generators, very
desirable for inference. However, this tantalizing perspective has never been fulfilled due to several
daunting challenges. (1) Just like most other deep neural networks (Mocanu et al., 2016; Evci et al.,
2019), naively training sparse GANs from scratch without pre-training knowledge typically leads to
unsatisfactory performance (Yu & Pool, 2020). Therefore, it remains mysterious whether we can
train extremely sparse GANs (even if balanced) to match the performance of the dense equivalents;
(2) It is well-known that dense GANs suffer from notorious training instability (Berthelot et al., 2017;
Ham et al., 2020). The large sparsity unbalance between generators and discriminators will only
make it worse. This naturally raises a question:

How can we train a sparse unbalanced GAN model from scratch without sacrificing performance?

In this paper, we attempt to close this research gap from the perspective of In-Time Over-
Parameterization (ITOP) (Liu et al., 2021). ITOP is a concept proposed to understand and im-
prove the expressibility of sparse training (Mocanu et al., 2018; Liu et al., 2020; Evci et al., 2020).
Instead of training an over-parameterized dense model, ITOP only requires training a subnet of
the dense network from scratch while periodically exploring the parameter space. The variant of
over-parameterization – “In-Time Over-Parameterization” (defined as a nearly full exploration of all
network parameters during training) along with improved performance is gradually achieved during
the course of training in the time series. This finding sheds light on the engaging prospect of ITOP on
mitigating the training instability of the sparse unbalanced GANs.

Leveraging the insights from ITOP, we aim to be the first pilot study on training a sparse GAN
with unbalanced sparsity between generators and discriminators, without involving any dense or
pre-training steps. Our main contributions are:

• We first study the sensitivity of the two most common sparsity-inducing techniques, i.e.,
pruning and fine-tuning and sparse training from scratch, to the scenario with sparsity
unbalance. We empirically find they all severely suffer from the unbalanced sparsity
allocation with extremely sparse generators, indicating challenges of sparse unbalanced
GAN Training.

• To improve the trainability of sparse unbalanced GANs, we propose an approach termed
Sparse Training Unbalanced GAN (STU-GAN). STU-GAN directly trains a sparse un-
balanced GAN with an extremely sparse generator and a much denser discriminator from
scratch without involving any expensive dense or pre-training steps. By thoroughly ex-
ploring the parameter space spanned over the sparse generator, STU-GAN improves its
expressibility, and hence stabilizes the atypical training procedure of sparse unbalanced
GANs while sticking to a fixed small parameter budget.

• Extensive experiments are conducted with BigGAN (Brock et al., 2018) on CIFAR-10 and
ImageNET, SNGAN (Miyato et al., 2018) on CIFAR-10, The consistent performance im-
provement over the existing techniques verifies the effectiveness of our proposal. Specifically,
STU-GAN outperforms dense BigGAN on CIFAR-10 only with a 80% sparse generator and
a 70% sparse discriminator, while being end-to-end trainable.
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2 RELATED WORK

GAN Compression. While enjoying success in image generation and translation tasks (Karras et al.,
2017; Chen et al., 2018; Jing et al., 2019; Gui et al., 2020), generative adversarial networks (GANs),
like other deep neural networks, also inherit the undesirable property – high computational complexity
and memory requirements. To compress GANs, Shu et al. (2019) proposed a co-evolutionary pruning
algorithm to simultaneously pruning redundant filters in both generators. QGAN was proposed by
Wang et al. (2019), which can quantize GANs to 2-bit or 1-bit still preserving comparable quality.
Distillation was also used by Li et al. (2020) to enhance the compressed discriminator with a pre-
trained GAN model. Wang et al. (2020b) moved one step further and combined the above-mentioned
three techniques into a unified framework. A trained discriminator is used by (Yu & Pool, 2020) to
supervise the training of a compressed generator, achieving compelling results. Very recently, Chen
et al. (2021b) extended LTH into GANs, verifying the existence of winning tickets in deep GANs.
The existing works on GAN compression all require training an over-parameterized GAN model in
advance, not designed for training efficiency. In contrast, our method directly trains a sparse GAN in
an end-to-end way, bringing efficiency gains to both training and inference.

In-Time Over-Parameterization. In-Time Over-Parameterization (ITOP) (Liu et al., 2021) refers
to a recently emerged topic of (dynamic) sparse training (DST). Mocanu et al. (2018) first proposed
sparse evolutionary training (SET) that uses a simple prune-and-regrow scheme to update the sparse
connectivity, demonstrating better performance than training with static connectivity (Mocanu et al.,
2016; Gale et al., 2019). Following this, weights redistribution are introduced to search for better
layer-wise sparsity ratios (Mostafa & Wang, 2019; Dettmers & Zettlemoyer, 2019). While most DST
methods use magnitude pruning to remove parameters, there is a large discrepancy between their
redistribution criteria. Gradient-based regrowth e.g., momentum (Dettmers & Zettlemoyer, 2019) and
gradient (Evci et al., 2020) shows strong results in convolutional neural networks, whereas random
regrowth outperforms the former in language modeling (Dietrich et al., 2021). Very recently, Liu et al.
(2021) pointed out that the off-the-shell DST methods, intentionally or unknowingly, all perform an
“over-parameterization” in the time series by gradually exploring the parameter space spanned over
the model. They conjecture that the expressibility of sparse training is highly correlated with the
overall number of explored parameters during training. We leverage insights from ITOP to address
the severe disequilibrium problem in sparse unbalanced GANs, for the appealing efficiency from
training to inference.

3 THE DIFFICULTY OF SPARSE UNBALANCED GAN TRAINING

Preliminary and Setups. Generative Adversarial Networks (GANs) consist of a Generator G(z,θG)
and a DiscriminatorD(x,θD). The goal ofG(z,θG) is to map a sample z from a random distribution
p(z) to the data distribution qdata(x) whereas the goal of D(x,θD) is to determine whether a sample
x belongs to the data distribution. Formally, the original dense GANs objective from Goodfellow
et al. (2014) is given as follows:

min
θG

max
θD

Ex∼qdata(x)[logD(x,θD)] + Ez∼p(z)[log(1−D(G(z,θG)))] (1)

where z ∈ Rdz is a latent variable drawn from a random distribution p(z). Consequently, the
objective of sparse GANs can be formaltated as:

min
θsG

max
θsD

Ex∼qdata(x)[logD(x,θsD )]+Ez∼p(z)[log(1−D(G(z,θsG)))] (2)

where the sparse generator G(z,θsG) and sparse discriminator D(x,θsD ) is parameterized by a
fraction of parameters (subnetworks) θsG and θsD , respectively. We define sparsity (i.e., fraction of
zeros) of θsG and θsD as sG = 1− ‖θsG‖0‖θG‖0 and sD = 1− ‖θsD‖0‖θD‖0 , individually, where ‖ · ‖0 is the
`0-norm. We consider unstructured sparsity (individual weights are removed from a network) in this
paper, not only due to its promising ability to preserve performance even at extreme sparsities (Frankle
& Carbin, 2018; Evci et al., 2020) but also the increasing support for sparse operations on the practical
hardware (Gale et al., 2020; Liu et al., 2020; Nvidia, 2020; Zhou et al., 2021).

We first study the effect of sparsity unbalance on two sparsity-inducing techniques applied to GANs,
(i) pruning and fine-tuning, and (ii) sparse training from scratch. More specifically, we report Fréchet
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Figure 2: Effect of sparsity unbalance on pruning and fine-tuning. Experiments are conducted with
BigGAN on CIFAR-10. Higher sG refers to fewer parameters remaining in generators. Global
pruning refers to pruning weights across layers and uniform pruning refers to pruning layer-wisely.

Inception Distance (FID) achieved by these two methods under two scenarios: (1) only G(z,θG) is
sparsified; (2) both G(z,θG) and D(x,θD) are sparsified. The latter has barely been studied due to
that existing methods mainly focus on accelerating inference, no need to prune D(x,θD).
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Figure 3: Effect of sparsity unbalance on GAN training. Higher sG and sD refer to fewer parameters
remaining in the corresponding networks. Global pruning refers to pruning weights across layers and
uniform pruning refers to pruning layer-wisely.

Pruning and Fine-tuning. Pruning and fine-tuning, as the most common pruning technique, prunes
the pre-trained model to the target sparsity first and then trains it for further t epochs. In this paper, we
choose one-shot magnitude pruning (Han et al., 2015b; Frankle & Carbin, 2018), which removes the
weights with the smallest magnitude in one iteration of pruning. Doing so makes a fair comparison to
sparse training, which does not involve any iterative retraining. Magnitude pruning is performed both
uniformly (i.e., weights are removed layer by layer) and globally (i.e., weights are removed across
layers). After pruning, the pruned models are further fine-tuned for the same number of epochs as the
dense GANs. Intuitively, we should prune and fine-tune the generator together with the discriminator
due to the instability of GAN training and hence fine-tuning. Figure 2 shows that pruning and
fine-tuning is indeed sensitive to sparsity unbalance. As expected, pruning and fine-tuning G(z,θG)
and D(x,θD) together achieve lower FID than only pruning G(z,θG), indicating the vital role of
the balanced sparsity in pruning and fine-tuning.

Sparse Training from Scratch. To largely trim down both the training and inference complexity,
we prefer training an unbalanced sparse GAN in which sG > sD. However, balancing the training
of dense GANs is already a challenge (Berthelot et al., 2017). Training a sparse unbalanced GAN
is even more daunting. To comprehensively understand the effect of sparsity unbalance on GAN
training, we directly train sparse GANs without any parameter exploration (static sparse GAN) at
various combinations of sD and sG. Concretely, we fix sD ∈ [0%, 50%, 90%] and vary sG from 10%
to 95%. As shown in Figure 3, the balance of sparsity is essential for GAN training. The low-sparsity
discriminator (blue lines) is too strong for the high-sparsity generator whereas the high-sparsity
discriminator (green lines) does not have enough capacity to match the results of the dense model.
Specifically, GAN training with an extremely sparse generator (i.e., sG = 95%, 90%) is a daunting
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Algorithm 1 Sparse Training Unbalanced GAN (STU-GAN)
Inputs: Discriminator D(x,θD), Generator G(z,θG) , Sparsity of generator sG, Sparsity of discriminator sD ,
initial pruning rate p, update interval ∆T .
Output: Sparse Generator G(z,θsG), Sparse discriminator D(x,θsD )

1: D(x,θsD )← ERK(D(x,θ), sD) . Sparse initialization of D(x,θD)
2: G(z,θsG)← ERK(G(z,θ), sG) . Sparse initialization of G(z,θG)
3: for t = 1, 2, · · · do
4: θsD,t+1 = Adam

(
∇θsD

LGAN (θsD,t,θsG,t)
)

. Weight optimization of D(x,θsD )

5: θsG,t+1 = Adam
(
∇θsG

LGAN (θsD,t+1,θsG,t)
)

. Weight optimization of G(z,θsG)
6: if (t mod ∆T ) == 0 then
7: θsG,t+ 1

2
= TopK(|θsG,t|, 1− p) . Weight exploration of G(z,θsG)

8: θsG,t+1 = θsG,t+ 1
2

+ Φ(θi/∈θ
sG,t+1

2

, p)

9: end if
10: end for

task whose FID raises fastest due to the poor expressibility of the sparse generator. In the rest of
paper, we mainly focus on improving the trainability of this daunting but tantalizing setting.

4 SPARSE TRAINING UNBALANCED GAN (STU-GAN)

We have already known the challenge of training sparse GANs from scratch with the unbalanced
sparsity distribution between the generator and discriminator. Inspired by the mechanism behind
In-Time Over-Parameterization (Liu et al., 2021), we propose Sparse Training Unbalanced GAN
(STU-GAN) to close this research gap. The pseudocode of STU-GAN is detailed in Algorithm 1.
Instead of training the generator with a static sparse connectivity, STU-GAN dynamically explores
the parameter space spanned over the generator throughout training, enhancing the capacity of the
highly sparse generator progressively. With the upgraded generator, STU-GAN mitigates the training
instability of unbalanced GANs. The parameter exploration is achieved by a prune-and-regrow
scheme, which enables STU-GAN to increase the effective weight space of the generator without
increasing its parameter count.

Compared with the existing GAN compression techniques, the novelty of STU-GAN is located in:
(1) STU-GAN directly trains a sparse GAN from scratch, and thus doesn’t require any expensive
pre-training steps; (2) STU-GAN starts from a sparse model and maintains the sparsity throughout
training, making the approach more suited for edge devices. Specifically, the training process of
STU-GAN comprises three main components: sparse initialization, sparse connectivity exploration,
and sparse weight optimization, as explained below.

4.1 SPARSE INITIALIZATION

The choice of the layer-wise sparsity ratios (sparsity of each layer) plays an crucial role for sparse
training (Evci et al., 2020). Given that the most the state-of-the-art GANs are constructed based
on convolutional neural networks (CNNs), we initialize both G(z) and D(x) with the Erdős-Rényi-
Kernel (ERK) graph topology (Evci et al., 2020), which automatically allocates higher sparsity to
larger layers and lower sparsity to smaller ones. Precisely, the sparsity of each CNN layer l is scaled
with 1− nl−1+nl+wl+hl

nl−1×nl×wl×hl , where nl refers to the number of neurons/channels of layer l; wl and hl are
the width and the height of the convolutional kernel in layer l. For non-CNN layers, the sparsity is
allocated with Erdős-Rényi (ER) (Mocanu et al., 2018) with 1 − nl−1+nl

nl−1×nl . ER and ERK typically
achieve better performance on CNNs than the naive uniform distribution, i.e., allocating the same
sparsity to all layers (Gale et al., 2019).

4.2 SPARSE PARAMETER EXPLORATION

STU-GAN differs from the static sparse GAN training mainly in sparse parameter exploration. Sparse
parameter exploration performs prune-and-regrow to searching for better sparse connectivity in
generators, which in turn promotes benign competition of the minimax game by improving the
quality of counterfeits. Concretely, after every ∆T iteration of training, we eliminate p percentage of
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parameters with the smallest magnitude from the current sparse subnetwork:

θs,t+ 1
2

= TopK(|θs,t|, (1− p) ·N), (3)

where TopK(v, k) returns the weight tensor retaining the top-k elements from v; θs,t refers to
the sparse subnetwork at t training step; N is the total number of parameters in sparse networks.
θs,t+ 1

2
is the set of parameters remaining after pruning. While magnitude pruning is simple, we

empirically find that it performs better than other more complex pruning criteria such as connectivity
sensitivity (Lee et al., 2018), gradient flow (Wang et al., 2020a), and taylor expansion (Molchanov
et al., 2016), in the context of sparse training.

To explore new parameters while maintaining the parameter count fixed, we redistribute the same
number of pruned parameters back after pruning by:

θs,t+1 = θs,t+ 1
2

+ Φ(θi/∈θ
s,t+1

2

, p ·N) (4)

where function Φ(v, k) refers to growing k weights picked from v based on some certain criterion.
θi/∈θ

s,t+1
2

are the zero elements located in θs,t+ 1
2

. The redistribution criteria we consider is the
gradient redistribution (Evci et al., 2020). Gradient redistribution chooses the parameters with the
largest absolute gradient values, indicating the fastest loss reduction in the next iteration. The newly
activated weights are initialized as zero to eliminate the historical bias.

This prune-and-regrow scheme performs every ∆T training steps of the generator until a variant of
over-parameterization is accomplished at end of the training process, corresponding to the situation
where nearly all the parameters of the dense network have been activated. Similar to the synaptic
pruning phenomenon (Chechik et al., 1998b;a; Craik & Bialystok, 2006) in biological brains where
some connections are strengthened while others are eliminated to learn new experiences, the prune-
and-regrow scheme allows the sparse connectivity pattern evolving during training to enhance the
sparse generators.

4.3 SPARSE WEIGHT OPTIMIZATION

Sparse Exponential Moving Averages (SEMA) While exponential moving averages (EMA) has
shown promising results in prior work (Karras et al., 2017; Yazıcı et al., 2019; Gidel et al., 2019;
Mescheder et al., 2018), it becomes less suited for STU-GAN. Since the newly activated weight
has no historical information, the original update of EMA θEMA

t = βθEMA
t−1 + (1 − β)θt ends up

with θEMA
t = (1 − β)θt. The large decay factor β = 0.999 brings the newly activated weights

immediately close to zero. To address this problem, we proposed the sparse variant of EMA, SEMA,
as following:

θSEMA
s,t =

 0 if T = 0,
θt if T = 1,
βθSEMA

s,t−1 + (1− β)θt if T > 1.
(5)

where T refers to the total number of iterations where the weight θ has most recently been activated.
In short, SEMA initializes the new activated weights as its original value θt instead of (1 − β)θt.
Except for this, the activated parameters are optimized with Adam as Goodfellow et al. (2014) in the
same way as training dense GANs. The non-activated parameters are forced to be zero before the
forward pass and after the backward pass to eliminate their contributions to the loss function.

5 EXPERIMENTAL RESULTS

Experimental Setup. In this section, we conduct experiments to evaluate STU-GAN. Following
(Chen et al., 2021b), we choose the widely-used SNGAN (Miyato et al., 2018) on CIFAR-10 for
the image generation task. Moreover, to draw a more solid conclusion with large scale GANs, we
also evaluate our method with BigGAN (Brock et al., 2018) trained on CIFAR-10 and ImageNet.
To enable comparison among different methods, we follow Chen et al. (2021b) and employ two
widely-used metrics Fréchet Inception Distance (FID) and Inception Score (IS) as the approximate
measure of model performance.

We set the exploration frequency as ∆T = 500 for BigGAN and ∆T = 1000 for SNGAN based
on a small random search. The initial pruning rate of weight exploration is p = 0.5 for all models,
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following (Evci et al., 2020; Liu et al., 2021). The original hyperparameters (training epochs, batch
size, etc.) and training configurations of GANs are the same as the ones used to train dense GANs2.
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Figure 4: Comparisons between static sparse GAN and STU-GAN with various combinations between
sG and sD. The sparsity balanced setting with sD = sG is indicated with dashed red lines.

5.1 PERFORMANCE IMPROVEMENT OF STU-GAN OVER STATIC SPARSE GAN

The most direct baseline of STU-GAN is static sparse GAN, i.e., training a sparse GAN from scratch
without any parameter exploration. We implement this baseline in the way that the only difference
between STU-GAN and static sparse GAN is the sparse parameter exploration. The comparison is
conducted at four settings with different sparsity levels in the discriminator sD ∈ [0.0, 0.5, 0.7, 0.9].
We do so in the hope of providing insights into GAN training from the perspective of different size
of G(z) and D(x) in terms of sparsity. The results are shown in Figure 4. We see that STU-GAN
consistently outperforms static sparse GAN with different settings, especially when trained with
extremely sparse generators (i.e., higher sG). Besides this, we further have the following observations:

1 Possibility of improving GAN performance, rather than compromising it. Applying STU-
GAN on BigGAN with a sufficient sparse D(x,θsD ) (i.e., sD = 50%, 70%) can easily yield sparse
generators with 20% ∼ 90% weights remained while achieving equal or even lower FID compared
with the dense GANs (we call such subnetworks matching). Impressively, the combination of a 80%
sparse generator and a 70% sparse discriminator is good enough to surpass the performance of the
dense GANs. This observation uncovers a very promising finding, that is, instead of training a dense
GAN and then compressing it, directly training sparse GANs from scratch can be a better solution
when the source budget is not extremely strict, i.e., allowing around 20% ∼ 50% weights remaining.

2 STU-GAN substantially stabilizes sparse GAN training, even in the most unbalanced case.
Naively training with an extremely sparse generator and an dense discriminator is nearly impossible
due to the notorious training instability of GANs. The generator is too weak to generate high-quality
fake data. For instance, under scenarios with extremely sparse generators (i.e., sG = 95%, first point
of every line), performance achieved by static sparse GAN degrades significantly as discriminators
get stronger from sD = 70% to sD = 50%, and to sD = 0%. In contrast, STU-GAN substantially
improves the trainability of extremely unbalanced GANs with all sD. Without using any pre-trained
knowledge, STU-GAN decreases FID of BigGAN in the worst case (sD = 0% and sG = 95%) from
22.5 to 12.5, while producing an extremely efficient generator with only 5% parameters.

3 SNGAN is more sensitive to unbalance sparsity than BigGAN. SNGAN suffers more from
performance loss compared with BigGAN. As discriminators gets sparser, SNGAN has a sharp
performance drop. With highly sparse discriminator (sD = 90%, 70%), SNGAN can not find any

2The training configurations and hyperparameters of BigGAN and SNGAN are obtained from the
open-source implementations https://github.com/ajbrock/BigGAN-PyTorch and https://
github.com/VITA-Group/GAN-LTH, respectively.
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matching subnetworks. This is likely due to the unbalanced architecture design of SNGAN, where
the model width (number of filters) of generators is twice the one of discriminators. Over-sparsifying
discriminators would further amplify such parameter unbalance, leading to inferior performance.
We further confirm this in Appendix A by showing that we can improve the performance under this
scenario by applying parameter exploration only to discriminators rather than generators.

5.2 ABLATION STUDY

Which Components Should We Explore? We have learned that parameter exploration in sparse
generators improves the expressibility of generators and stabilizes the training of sparse unbalanced
GANs. Since parameter exploration is a universal technique that can potentially improve the ex-
pressibility of all sparse networks, we expect that its application on discriminators would cause
counter-productive results. We evaluate our expectation in Figure 5. The results are on par with our
expectations. Simultaneously exploring parameters in G(z,θsG) and D(x,θsD ) achieves worse (i.e.,
BigGAN) or equal (i.e., SNGAN) performance than solely exploring G(z,θsG). However, solely
exploring parameters of D(x,θsD ) leads to much higher FID.

95 90 80 70 60 50 40 30 20 10
Sparsity of Generator sG (%)

8

10

12

14

16

18

FI
D

BigGAN

95 90 80 70 60 50 40 30 20 10
Sparsity of Generator sG (%)

14
16
18
20
22
24
26

FI
D

SNGAN

Dense Explore G Explore D Explore G & D

Figure 5: Effect of parameter exploration on different components. “Explore G”, “Explore D”, and
“Explore G & D” refers to applying parameter exploration only to generators, discriminators, and
both, respectively. Experiments are conducted with 50% sparse discriminators, i.e., sD = 50%.

Effect of Exploration Frequency. The exploration frequency ∆T (i.e., the number of training steps
between two iterations of parameter exploration) directly controls the trade-off between the quality
and quantity of the parameter exploration in STU-GAN. Smaller ∆T means more iterations of
exploration, which ends up with a larger range of activated parameters. On the contrary, larger ∆T
allows the subnetworks between two exploration to be well-trained, improving the correctness of
the parameter exploration. We report the trade-off in Figure 6. We see that the best performance is
obtained when ∆T is set around 1000. BigGAN seems to be more robust to the exploration frequency
compared with SNGAN.
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Figure 6: FID of sparse unbalanced BigGAN and SNGAN on CIFAR-10 with various ∆T . The
results of BigGAN in trained with 95% sparse D(x,θsD ) and 95% sparse G(z,θsG). The results of
SNGAN in trained with 50% sparse D(x,θsD ) and 95% sparse G(z,θsG).

Comparison with Stronger Baselines. We compare STU-GAN with various baselines including
static sparse GAN, pruning and fine-tuning (PF (Han et al., 2015a)), and GAN Tickets (Chen et al.,
2021b). Static sparse GAN refers to naively training sparse unbalanced GAN with the fixed sparse
pattern, whereas PF and GAN Tickets are two post-training pruning methods that operate on a
pre-trained model. GAN Tickets is the recently proposed strong baseline, which discovers performing
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Table 1: (FID (↓), IS (↑)) of sparse BigGAN and SNGAN on CIFAR-10. We divide sparse methods
into two groups, post-training pruning (PF and GAN Tickets) and sparse training (Static Sparse GAN
and STU-GAN). “sD(%)” and “sG(%)” refers to the sparsity of the discriminator and the generator
used to train GANs, respectively. Results of GAN Tickets are obtained from Chen et al. (2021b). The
exact sparsity of GAN Tickets at sG = 90% is 87%. The best sparse results are bolded.

Methods SNGAN BigGAN

Sparsity sD(%) sG = 95% sG = 90% sG = 80% sD(%) sG = 95% sG = 90% sG = 80%

Dense GAN 0 (14.01, 8.26) (14.01, 8.26) (14.01, 8.26) 0 (8.62, 8.90) (8.62, 8.90) (8.62, 8.90)

PF (global) 0 (26.34, 7.31) (17.97, 7.85) (16.99, 8.03) 0 (18.48, 8.04) (13.01, 8.51) (10.52, 8.66)
PF (uniform) 0 (27.35, 7.27) (18.23, 7.76) (16.93, 8.04) 0 (16.32, 8.23) (12.27, 8.50) (9.43, 8.73)
GAN Tickets 0 n/a (19.29, 8.07) (16.79, 8.16) 0 n/a (9.87, 8.75) (9.06, 8.87)

Static Sparse GAN 50 (25.43, 7.58) (19.97, 7.78) (16.71, 8.01) 50 (18.70, 7.82) (15.37, 8.12) (10.98, 8.47)
Static Sparse GAN 70 (23.52, 7.56) (19.73, 7.69) (18.11, 7.93) 70 (15.46, 8.13) (13.20, 8.32) (10.03, 8.64)
STU-GAN (ours) 50 (22.34, 7.71) (18.78, 7.94) (16.32, 8.01) 50 (13.47, 8.19) (10.42, 8.57) (10.34, 8.61)
STU-GAN (ours) 70 (20.67, 7.77) (17.60, 8.07) (16.04, 8.18) 70 (13.27, 8.37) (9.75, 8.80) (8.57, 8.91)

subnetworks by adopting iterative pruning on a fully trained a dense GAN. We set the number of
training epochs of STU-GAN and Static Sparse GAN the same as the dense GANs. As shown in
Table 1, STU-GAN consistently achieves the best performance with only 30% parameters remaining
in the discriminators. Even though trained from scratch, STU-GAN outperforms those methods that
require expensive iterative pruning and retraining, highlighting the superiority of our method in the
trade-off between performance and efficiency.

Boosting STU-GAN with Full In-Time Over-Parameterization. Following (Liu et al., 2021), we
test if achieving the full “In-Time Over-Parameterization”, i.e., extending the training time to explore
almost all parameters of the generators, can lead to better performance. We extend training steps by 5
times same as Evci et al. (2020) and report the best FID in Table 2. We see that extending training
steps consistently brings performance gains to sparse unbalanced GAN.

Table 2: (FID (↓), IS (↑)) of sparse BigGAN and SNGAN on CIFAR-10 with 5× training steps.

Methods SNGAN BigGAN

Sparsity sD(%) sG = 95% sG = 90% sG = 80% sD(%) sG = 95% sG = 90% sG = 80%

STU-GAN 50 (22.34, 7.71) (18.78, 7.94) (16.32, 8.01) 50 (13.47, 8.19) (10.42, 8.57) (10.34, 8.61)
STU-GAN5× 50 (18.44, 7.97) (16.96, 7.98) (15.68, 8.04) 50 (12.92, 8.44) (10.01, 8.62) (9.84, 8.71)

Table 3: FID (↓) and IS (↑) of sparse BigGAN
on ImageNet 128×128 without the truncation
trick.

Methods sD(%) sG(%) FID (↓) IS (↑)

Small Dense 50 50 13.56 58.90

STU-GAN 50 95 13.94 60.49
STU-GAN 50 80 11.20 70.28
STU-GAN 50 60 10.83 74.14

Performance on ImageNet. To draw more solid
conclusions, we evaluate STU-GAN with BigGAN
on ImageNet, a complex dataset with high-resolution
128 × 128 and diverse samples. We compare STU-
GAN with densely trained BigGAN with half of fil-
ters in the generator and the discriminator (Small
Dense). We train sparse BigGAN with STU-GAN
at sparsity of sG ∈ [95%, 80%, 60%] and sD = 50%
for comparison. The results are shown in Table 3.
We see that our method improves the corresponding
dense equivalent by 2.73 FID and 15.24 IS score with
a similar parameter count. Very impressively, STU-GAN can still match the performance when only
5% parameters are remained in the generator, suggesting its substantial parameter efficiency.

6 CONCLUSION

In this paper, we study GAN training from the perspective of sparsity. We demonstrate that the
well-matched sparsity between generators and discriminators is essential to GAN training, whereas
the sparsity unbalance scenarios significantly degrades the trainability of sparse GNA. We further
explore the possibility of training sparsity-unbalanced GAN with an extremely sparse generator and a
much denser discriminator by proposing Sparse Training Unbalanced GAN (STU-GAN). Training
and maintaining only a small fraction of parameters without involving any pre-training, STU-GAN
can outperform several strong after-training pruning techniques, shedding light on the appealing
prospect of sparsity to stabilize GAN training.

9



Under review as a conference paper at ICLR 2022

7 ETHICS STATEMENT

In this paper, we propose STU-GAN to enable training sparse GANs from scratch. Since our method
significantly reduces the number of parameters required to train GANs, we do not see any negative
effects on our society. Perhaps one limitation of our method is that our sparsity-oriented algorithm
has not been fully supported by the current hardware. Still, our method provides good motivation
for future hardware to enable efficient sparse operations. Once this great potential is supported by
future hardware, it can provide a significant positive impact on our planet by saving a huge amount of
energy and reducing overall total carbon emissions.

8 REPRODUCIBILITY

We use the BigGAN and SNGAN implementation from the BigGAN-PyTorch repository (https://
github.com/ajbrock/BigGAN-PyTorch) and GAN-LTH repository (https://github.
com/VITA-Group/GAN-LTH), respectively. We directly trained our models with the default
hyperparameters and configurations in the repository. For hyperparameters induced by our methods,
we have reported them at the beginning of Section 5. The FID and IS of CIFAR-10 are calculated
with the TensorFlow Inception code. The FID and IS of ImageNet are obtained with the PyTorch.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

David Berthelot, Thomas Schumm, and Luke Metz. Began: Boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Neuronal regulation: A mechanism for synaptic
pruning during brain maturation. Neural Computation, 11:11–8, 1998a.

Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Synaptic pruning in development: A computational
account. Neural Comput, 10:2418–2427, 1998b.

Hanting Chen, Yunhe Wang, Han Shu, Changyuan Wen, Chunjing Xu, Boxin Shi, Chao Xu, and
Chang Xu. Distilling portable generative adversarial networks for image translation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3585–3592, 2020.

Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, and Zhangyang Wang. Ultra-data-efficient gan
training: Drawing a lottery ticket first, then training it toughly. arXiv preprint arXiv:2103.00397,
2021a.

Xuxi Chen, Zhenyu Zhang, Yongduo Sui, and Tianlong Chen. Gans can play lottery tickets too.
arXiv preprint arXiv:2106.00134, 2021b.

Yang Chen, Yu-Kun Lai, and Yong-Jin Liu. Cartoongan: Generative adversarial networks for photo
cartoonization. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 9465–9474, 2018.

Fergus I. M. Craik and Ellen Bialystok. Cognition through the lifespan: Mechanisms of change. In
Trends in Cognitive Sciences, pp. 131–138, 2006.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Anastasia Dietrich, Frithjof Gressmann, Douglas Orr, Ivan Chelombiev, Daniel Justus, and Carlo
Luschi. Towards structured dynamic sparse pre-training of bert. arXiv preprint arXiv:2108.06277,
2021.

10

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/VITA-Group/GAN-LTH
https://github.com/VITA-Group/GAN-LTH


Under review as a conference paper at ICLR 2022

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The difficulty of training sparse neural
networks. arXiv preprint arXiv:1906.10732, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.
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A POOR TRAINABILITY OF SNGAN WITH EXTREMELY SPARSE
DISCRIMINATOR

As we showed in Section 5.1, sparse SNGAN with an extremely sparse discriminator severely suffers
from poor trainability. Here, we conjecture that this is likely due to the unbalanced architecture
design of SNGAN, where the model width (number of filters) of generators is twice of discriminators.
Over-sparsifying discriminators would further amplify such parameter unbalance. We evaluate our
conjecture by only exploring the parameters of discriminators. Doing so improves the expressibility
of the extremely sparse discriminators, and hence improves the performance. As shown in Figure 7,
only exploring discriminators leads to lower FID than only exploring generators, in line with our
conjecture. Yet, the expressibility improvement caused by parameter exploration can not fully address
the over-pruning issue caused by the original unbalanced architecture design.
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Figure 7: FID of sparse SNGAN trained with extremely sparse discriminator, i.e., sD = 90%.
“Explore G” refers to only applying parameter exploration to the generators. “Explore D” refers to
only applying parameter exploration to the discriminators.
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B EXAMPLE IMAGES GENERATED BY STU-GAN ON IMAGENET

𝑠𝐺 = 60% 𝑠𝐺 = 80% 𝑠𝐺 = 95%

Figure 8: Example Images Generated by STU-GAN on ImageNet 128 × 128. Each row of images
are generated via STU-GAN models with various sG and sD = 50%.
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