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Abstract

Knowing which words language learners strug-
gle with is crucial for developing personalised
education technologies. In this paper, we advo-
cate for the novel task of “dictionary look-up
prediction” as a means for evaluating the com-
plexity of words in reading tasks. We release
the Dictionary Look-Up development dataset
(DLU-dev) and the Dialogue Dictionary Look-
Up dataset (D-DLU), which is based on chat-
bot dialogues. We demonstrate that dictionary
look-up is a challenging task for LLMs (results
are presented for LLaMA, Gemma, and Long-
former models). We explore finetuning with
the ROC* loss function as a more appropri-
ate loss for this task than the commonly used
Binary Cross Entropy (BCE). We show that a
feature-based model outperforms the LLMs. Fi-
nally, we investigate the transfer between DLU
and the related tasks of Complex Word Identi-
fication (CWI) and Semantic Error Prediction
(SEP), establishing new state-of-the-art results
for SEP.

1 Introduction

When a learner is reading a text, they may en-
counter unfamiliar words. When this happens,
a learner can choose to seek further information
about the word, such as definitions or examples of
use. The event of looking-up a word is an indica-
tion that the word was difficult for the learner in
its textual context. By noting the look-up events of
many learners, we can discover the relative contex-
tual lexical complexity of words for different ability
groups; and by collecting look-up data en masse,
we can build empirical models of the same. Such
models can be used to:

1. Improve readability of texts for specific
learner groups;

2. Predict reading competence of learners; or

*Now at Google DeepMind.

3. Generate proficiency calibrated test items (e.g.
cloze tests).

As a means of evaluating models of contextual
lexical complexity built from look-up data, we in-
troduce the task of dictionary look-up prediction;
that is, the task of predicting which words a learner
will look up when reading a word in context.

We also introduce the first widely available Dic-
tionary Look-Up dataset (DLU). The source of the
DLU data is the publicly accessible Read&Improve
platform,1 where second language (L2) learners en-
gage in a reading-summarisation task. This dataset
captures the words that learners looked up whilst
reading a passage of text. Look-ups are recorded
within their original context, and metadata regard-
ing the learner is also recorded (specifically, their
first language L1, and their estimated language pro-
ficiency on the CEFR2 scale).

With this paper, we release a development por-
tion of this data, DLU-dev, consisting of over
16,000 content word tokens and 630 clicks. The
full dataset consists of >260,000 content word to-
kens and >8,800 lookup events, and is expected to
be released for an open participation shared task.

To evaluate the generalisability of contextual lex-
ical complexity models built from the DLU dataset,
we present a second dataset, the Dialogue Dictio-
nary Look-Up dataset (D-DLU). This dataset is
sourced from a language learning system that al-
lows learners to look up words in generated chatbot
responses (Tyen et al., 2024).

Compared to existing complexity-oriented
datasets, such as complex word identification and
eye-tracking data (e.g. Paetzold and Specia, 2016;
Yimam et al., 2017; Shardlow, 2013; Shardlow
et al., 2020; Berzak et al., 2022), our datasets have
the following benefits:

1https://readandimprove.
englishlanguageitutoring.com/

2The Common European Framework of Reference for Lan-
guages defines levels of language competence (CoE, 2020).

mailto:david.strohmaier@cl.cam.ac.uk
https://readandimprove.englishlanguageitutoring.com/
https://readandimprove.englishlanguageitutoring.com/


1. High external validity: It provides be-
havioural patterns of L2 learners engaged in a
naturalistic language learning task.

2. Document-level context: It captures lookup
events that are interdependent across the
length of the document.

3. Learner meta-data: It provides estimated
CEFR levels for all learners and first language
(L1) for ∼33% of learners.

Dictionary Look-up Prediction poses significant
challenges for NLP models. Dictionary lookups
are sparse events that vary widely based on context
and individual knowledge, and are thus extremely
difficult to predict. In response to these challenges,
we argue that F2 and ROC-AUC are appropriate
evaluation metrics that reflect how useful a look-up
prediction model would be for personalised learn-
ing applications.

Formulating Look-up Prediction as a sequence-
to-sequence task, we evaluate fine-tuned LLaMA,
Gemma, and Longformer models (Touvron et al.,
2023; Gemma Team et al., 2024; Beltagy et al.,
2020). During fine-tuning, in addition to a standard
cross-entropy loss function, we also investigate the
ROC* loss function that more directly targets the
ROC-AUC (Yan et al., 2003). We conjecture that
this is a more appropriate metric (see Section 5),
and we find evidence that, in certain conditions,
this ROC* function increases performance.

The goal of our research is to assess the suitabil-
ity of different models for evaluating and aiding
learners of English. Our contributions are as fol-
lows:

1. We release to the research community two
datasets: a) DLU-dev, a dataset of >16,000
content word tokens and 630 clicks; and b) D-
DLU, a set of 51 chatbot dialogues containing
43,000 content word tokens and 72 clicks.

2. We propose a new NLP task, Dictionary
Look-up Prediction, and present a number of
results for a sequence-to-sequence approach
to this task.

3. We are the first to apply ROC* loss to an
NLP task, and find that for certain cases it
seems to outperform BCE loss.3

4. We argue that fine-tuned LLMs are unable
to satisfactorily capture contextual lexical
complexity. Not only do fine-tuned LLMs
fail to outperform a feature-based ensemble
model, but they also fail to generalise to other

3The performance difference is not statistically significant.

related tasks, such as Complex Word Identifi-
cation (CWI) (see Section 2).

We release our data at https://
englishlanguageitutoring.com/.

2 Related Work

The literature on word complexity includes contri-
butions from not only NLP but also psycholinguis-
tics and education (e.g. Bulté and Housen, 2012).
This section focuses on data contributions.
CWI and LCP: Complex Word Identification
(CWI) and Lexical Complexity Prediction (LCP)
are two tasks in which the complexity of a word is
predicted, either in the form of a binary label (CWI)
or a continuous value (LCP). Both CWI and LCP
have been explored in a series of shared tasks and
other publications (Paetzold and Specia, 2016; Yi-
mam et al., 2017; Shardlow, 2013; Shardlow et al.,
2020, 2021; Gooding and Kochmar, 2018; Zaharia
et al., 2022). Neural approaches are prevalent, but
contemporary LLMs (such as GPT-4o, OpenAI
et al., 2024) exhibit little to no benefit over smaller
transformer models, such as RoBERTalarge (see
Smădu et al., 2024).

Existing CWI/LCP datasets have a number of
shortcomings: They rely on annotators, which are
often proficient L1 speakers of the language (but
see Yimam et al., 2017, for the use of L2 speak-
ers). Furthermore, the datasets typically operate
on the word-in-sentence level; but a word that is
difficult at the beginning of a document might be
easy towards the end, when more context has been
established. Thus, CWI and LCP datasets are un-
likely to reflect the specific challenges L2 learners
face when engaging in natural reading exercises.

Among the CWI and LCP datasets, the one for
the 2018 shared task (Yimam et al., 2017, 2018)
is especially interesting, as one of its sources was
WikiNews (in addition to other news sources and
Wikipedia), which forms also the basis for DLU.
We use this dataset for further evaluation in Sec-
tion 8.
Eye-Tracking Datasets: Eye-tracking is another
way of approximating perceived word difficulty.
Similar to the DLU dataset, eye-tracking datasets
are often (but not always) created using reading
tasks (Cop et al., 2017; Luke and Christianson,
2018; Hollenstein et al., 2018, 2020; Schmidtke
et al., 2021; Berzak et al., 2022).

Compared to DLU, however, eye-tracking
datasets are typically less naturalistic because the
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participants are not engaged in the task for the sake
of learning, as is the case for our data, but are re-
cruited for the experiment.

Additionally, eye-tracking datasets do not cap-
ture definition-seeking behaviour, but rather, a wide
variety of cognitive processes. Definition-seeking
is a behaviour aimed distinctly at lexical informa-
tion, while the causes of eye movement are diverse
and therefore harder to interpret.

Word Lists: Researchers and education specialists
have created various word lists graded for diffi-
culty (Negishi et al., 2013; Capel, 2015; Volodina
et al., 2016; Flor et al., 2024). For example, the
English Vocabulary Profile (Capel, 2015) provides
CEFR levels for many definitions (CoE, 2020).

Compared to complexity-graded word lists, our
data is specific to words in context.4 Such contextu-
alisation is useful when selecting e.g. reading tasks
at an appropriate level for a learner.

Word lists cover only a limited vocabulary and
struggle when new senses for a word are introduced.
Furthermore, existing word lists describe a generic
level of difficulty, and do not reflect e.g. how differ-
ent L1s influence how challenging words in an L2
are. As our dataset provides L1 information when
available, it helps address this gap.

Semantic Error Prediction: Since it is based on
a reading and summarisation task, our dataset is
specifically focused on complexity in comprehen-
sion. A comparable production-side dataset is the
Semantic Error Prediction dataset by Strohmaier
and Buttery (2024), which provides information
on which content words learners fail to produce
when writing essays. Like DLU, the SEP dataset is
also based upon behavioural data from L2 learners
engaged in a naturalistic learning task. That being
said, we can expect differences to exist between
production and comprehension, because in the case
of production, learners have a (rough) meaning in
their mind and have to retrieve correct word forms,
while in the case of comprehension, the form is
given by the text and learners have to access the
correct meaning for it (cf. Jiang, 2000). We use the
SEP dataset for evaluation in Section 8.

3 Description of the DLU Dataset

This section describes DLU’s main features.

4For an application of word lists to contextualised uses,
see Aleksandrova and Pouliot (2023).

3.1 Data Source
We use the Read&Improve (R&I) platform as our
data source. This platform allows L2 learners to
engage in the task of reading and summarising an
article to improve their English (see Figure 2 in
Appendix A for a screenshot of the platform in-
terface). Upon submission of the summary, they
receive automated feedback. During reading, learn-
ers can click on words to retrieve definitions and
examples.

The texts used for this task are taken from
WikiNews (available under a Creative Commons
license). Different users might be presented with
the same article to summarise.

3.2 Scope of DLU
Our data shows which content words in a seen doc-
ument have been clicked on to retrieve dictionary
information. That is, for each content word token
of a document, the data specifies whether it has
been clicked on or not by the user. Tokens are con-
sidered content words if they have been tagged as
adjectives, adverbs, nouns, or verbs by the RASP
pipeline used by R&I (Briscoe et al., 2006).

To ensure that the learner has seen all tokens,
only documents for which they have successfully
submitted a summary are included. We also ex-
clude data from users who have clicked less than
five times in total, as this might indicate that they
are unfamiliar with the functionality of clicking
words to look up their dictionary information, or
that they are so proficient as to never require dictio-
nary information.

3.3 Data Selection
Overall, our dataset includes more than 260,000
seen content word tokens, with more than 8,800
clicks on these tokens. We split the DLU dataset
into three parts by document: a train split, a dev
split, and a test split, where the dev and test splits
contain slightly more than 10% of unique docu-
ments. More information on the size of the dataset
and its splits can be found in Table 1.

The dev-split (DLU-dev) is released with this
paper, while the train and test splits are reserved
for a future shared task open to public participation.
All data will be released upon completion of the
shared task.

3.4 User Information
Users likely differ in their look-up patterns both
idiosyncratically and systematically based on their:



split tot. docs uniq. docs users clicks con. tokens

all 1327 221 663 8858 266011
train 1143 176 616 7822 235786
dev 101 21 90 630 16084
test 83 24 68 406 14141

Table 1: Description of data and splits, including the
number of content tokens. Multiple users might see
the same document, therefore the number of total docu-
ments can diverge from that of unique documents.

A2 B1 B2 C1 C2 UNK sum

all 135 198 126 34 1 169 663
train 123 185 117 33 1 157 616
dev 21 32 17 6 0 14 90
test 13 22 15 5 0 13 68

Table 2: Essay-based estimation of user CEFR levels.

• first language (L1)
• language ability as estimated CEFR level
For the wide range of L1s in DLU-dev, see Ta-

ble 10 in the appendix. The language with most
users is Spanish (93) followed by Italian and Turk-
ish (both 17). For some languages (e.g. Serbian,
Hindi), data is only available for a single user.

Our datasets include two estimates of the learner
CEFR level. One estimate is based on submis-
sions to the associated essay writing platform
Write&Improve (W&I)5 and described in Table 2,
while the other relies on self-reports. While the
self-reports have full coverage (see Table 6), the
essay data are more comparable across users, as it
is based on the same automatic grading system. We
therefore only use essay-based estimates of CEFR-
levels in our experiments, even though both are
included in our data release.

While the automatic scores are likely imperfect,
we believe that they provide a reasonable approxi-
mation of the learner proficiency because they cor-
relate with look-up propensity (see Figure 1). With
only one exception, learners at higher levels tend
to look up a smaller proportion of word tokens.

3.5 Noise and Uncertainty

Look-up events are affected by many idiosyncratic
features, not all of which are captured by our
dataset. Notably, how often a learner has previously
encountered a word will strongly affect whether
they look it up.6 As a result, our dataset leads to

5https://writeandimprove.com/. For W&I essay data,
see Nicholls et al. (2024).

6Research on language acquisition suggests that many en-
counters are needed for even passive knowledge of vocabulary.
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Figure 1: Proportion of content words that were looked
up, for each CEFR-level as estimated using W&I essays.

high aleatoric uncertainty for the models trained on
it (Hüllermeier and Waegeman, 2021).

For many applications, however, perfect predic-
tion of look-ups are not required. Rather, the main
goal is to separate words that are difficult enough
to require a definition, from words that are eas-
ier. With this separation, text readability can be
improved and vocabulary test items can be created.

4 Description of Chatbot Dataset

The chatbot dialogue dataset (D-DLU) is derived
from an earlier experiment by Tyen et al. (2024) us-
ing BlenderBot v1 (Roller et al., 2021). It consists
of two types of dialogue data:

1. A reading condition (D-read), where partici-
pants read self-chats between only the bot.

2. A chat condition (D-chat), in which partici-
pants chat with the bot.

We filtered this dataset manually to remove chats
containing unsafe texts such as insults or inappro-
priate topics, and instances in which the chatbot
behaved erratically, e.g. when the chatbot defined
similar words repeatedly. As a result, we ended up
with a set of 51 chats from the original 80.

A closer look at the data distribution (Table 13)
reveals that the remaining 25 dialogues in D-chat
only contained 5 look-up events. This number is
too low for informative evaluation. While we re-
lease both portions of the dataset, we recommend
only using the D-read split for lookup-prediction.

See Hargis et al. (1988) for some estimates of required repeti-
tions. See Peters and Webb (2018) for how encounters during
TV consumption lead to vocabulary acquisition.

https://writeandimprove.com/


5 Evaluation Metrics for DLU

Considering data sparsity, noise, and intended ap-
plication areas, we argue that F2 and ROC-AUC
are most appropriate evaluation metrics for DLU.

5.1 F2 and adaptive F2 Metric

Unlike F1, F2 prioritises recall over precision:

Fβ = (1 + β2) · Precision·Recall
β2·Precision+Recall , β = 2

That is, we accept more false positives to avoid
false negatives. In our case, false positives are
predictions of look-up events where no such event
has occurred. However, we expect that learners
do not click on every difficult word, as browsing
dictionary information disrupts the flow of reading.

Furthermore, for many use cases it is acceptable
to wrongly predict that a few words are difficult.
For example, if the goal is to select words for a
cloze test, then adding a small portion of compara-
tively easy gap words to the test will not create a
problem.

Look-up events (and therefore positive labels)
are rare, which might render a decision threshold
of 0.5 too strict. We are instead looking for a met-
ric that is robust to the high sparsity of DLU and
provides more general information about whether
the models are able to separate words that are likely
to be looked up from those that are unlikely to be
looked up.

Therefore, we explore using an adaptive thresh-
old for the F2 metric. That is, we estimate which
value in the inclusive range 0.01 – 0.99 (step size
0.01) leads to the highest F2 score on the train-
ing data and then use the same threshold on the
evaluation data to calculate an adaptive F2 (aF2).

5.2 ROC-AUC Metric

Compared to the F2 metric, the ROC-AUC provides
more direct information on whether the models dis-
tinguish easy from difficult words. The area under
the curve provides this information, because it can
be interpreted as the probability that the model
ranks a randomly chosen positive example higher
than a randomly chosen negative example (Fawcett,
2006, p. 868).

For many applications, using the raw scores
rather than the binary classification is useful. Con-
sider the case of creating a number of test items for
the most difficult words in a text. In such a case,
we are not committed to any particular threshold
at which a score indicates that the token would

be looked up in a dictionary. In contrast to the F-
metrics, the AUC does not rely on any such thresh-
old. Thus, we believe that the AUC metric is well
suited for our purposes. In Section 6.2, we describe
the ROC* loss function, which targets the AUC.

6 DLU Models

This section describes 3 types of DLU models.

6.1 Feature-based Baselines

Frequency Baseline First, we provide a baseline
based on word frequencies using the wordfreq
package (Speer, 2022).7 We use the Zipf frequency
estimate provided by wordfreq, which consists of
a value within the 0 to 10 range.8 We rescale this
value to be between 0 and 1. All together, the score
for a token is calculated as follows:

score(word) = 1− log10(proportion(word))+9
10

Ensemble Baseline We also explore a more com-
plicated feature-based ensemble model using scikit-
learn (Pedregosa et al., 2011), consisting of six
classifiers combined in a soft voting ensemble. The
features of this model include the frequency base-
line and a variety of features pertaining to the word
lemma and the word token’s position in the text.
The exact features are listed in the appendix Ap-
pendix E. Due to reliance on the W&I-estimated
CEFR-level of the learner, we do not report results
of this baseline on D-read, which does not have
this feature.

6.2 Finetuned Models

We fine-tune two models on the DLU train split,
both from Huggingface transformers (Wolf et al.
2020; see also Appendix F):

1. Longformer (Beltagy et al., 2020), which we
choose over other BERT-like models because
we operate on the document-level;

2. LLaMA 3.2 (Touvron et al., 2023), for which
we choose the 1B parameter version due to
compute considerations.

Loss Functions We explore two loss functions. As
is common for binary classification tasks, we use
the Binary Cross Entropy (BCE) loss as the basis

7https://github.com/rspeer/wordfreq, which is
based on the ExquisiteCorpus (https://github.com/
LuminosoInsight/exquisite-corpus).

8While this calculation can reach 10, due to the distribution
of words, the effective range tends to be between 0 and 8. The
package also uses 0 as the default value of words not found
in the word list, even though 0 does not correspond to zero
occurrences due to the Zipfian transformation.

https://github.com/rspeer/wordfreq
https://github.com/LuminosoInsight/exquisite-corpus
https://github.com/LuminosoInsight/exquisite-corpus


for our first loss function. To adjust for the label
imbalance, we use a weight for positive cases (wp).
Thus our BCE loss takes the following form:

lBCE = − (wpy log (σ(x)) + (1− y) log (1− σ(x)))

We treat the weight as a hyperparameter to be
decided through search, but the search space is
biased towards higher values as positive cases are
under-represented (see Section F.1).

The second loss function, called ROC*, targets
the ROC-AUC directly. This function was devel-
oped by Yan et al. (2003) and is based on the equiv-
alence between the ROC and the Wilcoxon-Mann-
Whitney statistic. We explore this loss-function
because we take the correct ranking of words as
measured by ROC-AUC to be an excellent metric
reflecting probable use-cases (see Section 5.2).

Let N be the set of scores for non-clicked con-
tent word tokens and C the set of scores for clicked
content word tokens. As the loss function com-
pares between pairs of these two sets, it is useful to
introduce their product: P = N × C

The loss takes the following form (batching is
ignored here for illustration):

lROC* = 1
|P|

∑
(x,y)∈P

{
(x− y + γ)2 : x+ γ > y

0 : otherwise
where γ > 0 is a hyperparameter ensuring that

a sufficiently large distance exists between clicked
and non-clicked cases.9 Thus, we allow for mini-
batch training by storing previously seen scores for
content word tokens and sampling them for com-
parison against scores calculated in the mini-batch.
The size of the samples is treated as a hyperparam-
eter.
Hyperparameter Search We perform a 20-trial
hyperparameter search using Optuna (Akiba et al.,
2019) maximizing ROC-AUC, training on the train
split and evaluating on the dev split. The selected
hyperparameters are in Section F.1.
Data Processing To account for L1 and CEFR
level, we add special tokens for them to the model
and append them at the start of each document.
While the model will see the same document mul-
tiple times with different look-up patterns during
training, these will often differ in either indicated
L1 or CEFR level. For adding the special token, we
merge CEFR levels such that B1 and B2 are rep-
resented as B, and so forth (see Table 7). This ad-
dresses the problem of having relatively few cases

9Our implementation follows the public ROC* repository
(https://github.com/iridiumblue/ROC*). However, sim-
ilar to Yan et al. (2003), we keep γ as a hyperparameter,
instead of deriving it.

for some CEFR levels. Under-represented L1s are
merged into the “unknown” category.

We evaluate also on the chatbot dataset split D-
read. However, the length of 7 chats in particular
pose a problem as the Longformer model we use is
limited to 4096 subtokens. To circumvent this, we
split longer dialogues after reaching this threshold,
which might affect performance on D-read.

Significance Tests We perform permutation signif-
icance tests to see if ROC* trained models achieve
higher AUC compared to BCE trained models.
With 0.05 as the starting p-value, the Bonferroni-
corrected threshold for this paper is 0.0027. To
avoid further lowering of the threshold, we only
perform tests for the aggregated DLU test split.

6.3 Prompting Models

For comparison, we also prompted LLMs on the
dictionary look-up task, specifically the instruction-
tuned versions of Gemma and LLaMA (Gemma
Team et al., 2024; Touvron et al., 2023) (Ap-
pendix F). We use both zeroshot and fewshot
prompting, as described in Appendix G, except
for D-read where we only use zeroshot prompting
due to the challenging document length.

Our prompts return complex words from the text.
To address cases in which word types occur more
than once in the text, we explored two approaches:
1) Predicting only the first occurrence to be looked-
up and 2) predicting look-ups for all occurrences.
We focus on the first option, as learners usually
only need to look up a word once, and we report
the results of the second approach in the appendix.
The overall picture is not affected by this choice.

As our prompting models output binary results,
there is no changeable threshold for an adaptive F2.
Similarly, the AUC is less useful as the score for
each word token is 0 or 1.

7 DLU Results

The results of the baselines as well as the trans-
former models on the DLU test split can be found
in Table 3. We report the results for the coarse-
grained CEFR-levels (A, B, C, and unknown) sep-
arately. Because we release only the dev split of
DLU with this paper, we also report the results on
this split in the appendix (see Table 22).

Due to the sparsity of look-up events and be-
cause the hyperparameter search targets the AUC,
some model settings lead to F1 and F2 values of
0. The aF2 consistently takes a value above 0, but

https://github.com/iridiumblue/ROC*


A B C unk All D-read

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 10.2 14.3 - 55.9 14.2 17.2 - 57.1 15.0 22.3 - 64.4 11.1 16.1 - 58.3 12.8 16.8 - 57.5 2.2 4.6 - 57.4
fewshot 9.7 14.3 - 55.9 13.4 17.2 - 57.1 13.8 22.3 - 65.8 12.3 18.2 - 60.0 12.4 17.1 - 57.8 - - - -

LLaMA-Inst. zeroshot 10.1 17.8 - 59.6 8.3 12.4 - 53.4 6.5 11.6 - 57.8 9.5 16.5 - 60.1 8.8 14.2 - 55.8 1.0 2.4 - 56.1
fewshot 10.3 16.7 - 58.0 9.0 12.5 - 53.8 6.5 11.7 - 57.9 6.0 10.0 - 53.6 8.5 12.9 - 54.8 - - - -

LLaMA ROC* 0.0 0.0 7.2 75.7 0.0 0.0 8.2 65.9 0.0 0.0 0.0 62.1 0.0 0.0 11.2 68.1 0.0 0.0 7.9 67.8 0.0 0.0 3.0 76.7
BCE 11.0 22.2 21.9 72.7 12.4 21.8 19.4 64.9 5.6 11.8 5.8 63.0 8.0 16.7 19.7 69.4 10.4 20.0 18.9 66.2 2.7 5.6 5.2 77.1

Longformer ROC* 14.4 25.6 18.6 78.5 16.0 25.5 21.7 72.4 5.7 11.0 13.4 64.9 12.1 20.7 18.7 77.6 14.0 23.6 20.0 73.9 2.7 5.8 2.8 83.4
BCE 0.0 0.0 12.3 70.9 0.0 0.0 13.2 70.7 0.0 0.0 3.4 60.5 0.0 0.0 8.4 76.6 0.0 0.0 11.6 71.1 0.0 0.0 3.9 74.6

Baseline freq. 8.7 18.9 24.7 75.8 9.6 20.6 23.1 71.4 4.2 9.9 10.8 72.3 5.7 12.9 16.6 72.2 8.1 17.7 21.0 72.5 0.9 2.2 3.3 84.9
ens. 22.2 32.8 31.6 85.9 17.3 26.1 28.0 76.2 12.3 18.8 19.6 81.9 14.2 24.3 23.6 80.4 17.3 26.5 27.4 79.2 - - - -

Table 3: Results on the DLU test split. “aF2” stands for F2 with a adaptive threshold, as discussed in Section 5.

because the threshold is estimated only on the train-
ing data and only for the entire dataset (i.e. not
separately for each CEFR level), the aF2 is some-
times lower than the F2. The impact of the adaptive
threshold is discussed in Appendix J and does not
bear on the general conclusions.

The best finetuned models outperformed the
prompt-based models with the exception of the C
split of data. This split contains data from learners
at the C1 and C2 CEFR-levels, who rarely look up
words (24 in the test split, see Table 9).

The results show that the frequency baseline is
strong, often outperforming other models. The en-
semble baseline is even stronger, outperforming all
other models convincingly with only minor excep-
tion on the C split. Some of the differences are
substantial, e.g. the ensemble baseline achieves an
79.2% AUC on the overall DLU test split, with the
next best model reaching only 73.9%.

Among the transformer models, the Longformer
ROC* model performs best on the test split. We
note, however, that these results do not directly
translate to the dev split of DLU (see Table 22),
suggesting some overfitting. No difference in AUC
scores between ROC* and BCE model is statisti-
cally significant, although the ROC* versions con-
sistently perform better.

The results on the D-read split in D-DLU de-
scribed in Section 4 are also included in Table 3.
As is to be expected for a different data source with
a different distribution, performance is lower. The
highest F2 (5.8%) and aF2 (5.2%) are achieved by
the ROC*-Longformer and BCE-LLaMA model
respectively. The frequency baseline achieves
the highest AUC (84.9%), follow by the ROC*-
Longformer (83.4%).

As described in Section 3, multiple users might
interact with the same document, leading to differ-
ent look-up events. To account for any effects this

might have, we also evaluated on a filtered version
of our dataset so that each document was unique.
See Appendix K, Table 25, and Table 24 for the
results, which show the same overall picture.

8 Evaluation on CWI/SEP

To investigate the degree to which our DLU dataset
captures word difficulty information that is specific
to the dataset’s construction, including the under-
lying reading task, we ask the following question:
Can models transfer DLU knowledge to other tasks
that also attempt to track word complexity? We
address this question by performing additional ex-
periments using the CWI and SEP datasets.

We chose the CWI task because it is the most
widely explored binary task targeting word com-
plexity. However, CWI datasets are usually not
as sparse, often do not provide information on the
document-level, and frequently rely on annotators
proficient in the language, rather than learners.

We also evaluate on the SEP dataset because
it not only targets word complexity, but provides
highly sparse binary learner behaviour data for
longer contexts10; as is the case for DLU prediction.
Furthermore, investigating the transfer to SEP ad-
dresses the question of whether learners struggle to
produce the words that they find difficult enough to
look up during a reading task. We can thus provide
evidence for how similar comprehension difficulty
and production difficulty are.

8.1 Experimental Setup

We train all DLU-finetuned models an additional
time on the CWI and SEP datasets by Yimam et al.
(2017) and Strohmaier and Buttery (2024). For
comparison, we finetune the base models on the

10The SEP dataset is standardly formatted to chunks of one
or more paragraphs.



CWI and the SEP task without using DLU data, and
provide the frequency baseline. The experimental
procedure follows the same pattern as described
in Section 6, i.e. an initial hyperparameter search
followed by evaluation on the dataset.

Significance Tests We use permutation signifi-
cance tests to see if the models finetuned on both
DLU and CWI or SEP perform better than models
only finetuned on the latter. We perform these tests
for the F1 and AUC metrics because the F1 was
used in previous work and the AUC was targeted
by the hyperparameter search.11

8.2 CWI/SEP Results

We present the CWI results split by data source
(News, Wikipedia, and WikiNews) and in aggre-
gate. For the SEP dataset, we offer the same split
by CEFR level as for DLU.

The CWI results (see Table 4) suggest that the
BCE-Longformer architecture is best suited for
this task when considering F-scores and AUC. The
DLU-finetuned version of the BCE-Longformer
model produces the highest AUC (85.6%) and the
base model the highest F1 (78.5%), but only the
comparison of the F1 is statistically significant. The
only other result significant at the 0.0027 thresh-
old was the difference between the F1 of the base
ROC*-LLaMA (74.3%) and the DLU-finetuned
model (71.1%), which favours the base model.

The SEP results (reported in Table 5) clearly
suggest a strongest model on the F-score metrics:
the BCE-Longformer model finetuned only on SEP.
Among the 6 significant results (see Table 20), only
the difference between the F1-scores of the DLU-
finetuned BCE-LLaMA (7.3%) and the CWI-only
version (4.2%) points towards positive transfer, the
rest pointing in the opposite direction. The overall
best F1 (11.9%) and AUC (71.0%) slightly out-
perform the numbers (11% and 69.8%) previously
reported (Strohmaier and Buttery, 2024).

9 Discussion

Our results show that look-up prediction is a chal-
lenging, but addressable task. Finetuned trans-
former models outperform a frequency baseline,
but fail to beat a feature-based ensemble model.

Similar to the CWI results reported by Smădu
et al. (2024), we find that model size is not the

11We do not run tests for other metrics as this would increase
the number of significance tests, decreasing the Bonferroni-
corrected threshold further.

decisive variable: among the finetuned models,
the ROC*-Longformer model outperformed the
LLaMA models, even though the latter has consid-
erably more parameters (∼149M vs 1B). Similarly,
the prompting models were considerably larger
than the finetuned models and yet performed worse.

The ROC* loss which we explored following
Yan et al. (2003) performed well on DLU for its
target metric, the ROC-AUC. Among the finetuned
neural models, the highest AUC is always produced
by a model using ROC* loss. Thus, we suggest
that the ROC* loss function is of value for tasks
in which the AUC is the correct metric. That
being said, neither on the DLU-dev split nor the
aggregated CWI data is the highest AUC achieved
by a ROC* model. The improvements, thus, appear
dependent on the specific data distribution.

The simple frequency baseline proved competi-
tive on all considered tasks. Even more impressive
was the performance of the feature-based ensemble
model on DLU, which showed a leading perfor-
mance. Even compared to LLMs, feature-based
baselines remain very competitive in the field of
word complexity. On the combined data of DLU,
the highest scores on all four considered metrics
were achieved by the ensemble baseline. In the case
of the English Wikipedia split of the CWI data (Yi-
mam et al., 2017), the F1 of the simple frequency
baseline (73.9%) outperformed every one of the
14 few-shot prompting models reported by Smădu
et al. (2024), where the best one only achieved
70.6%.

These strong baseline results and irrelevance of
model size suggests to us that modelling difficulty
in L2 vocabulary acquisition is not solved by
existing NLP methods. We believe that further
personalisation is required to move forward, and
we see DLU as a major step in this direction.

Furthermore, models will have to be more specif-
ically adapted to the high variance between learners.
Providing information about proficiency level and
first language as special tokens proved insufficient.
To account for the variance between learners, it
might be necessary to adapt the training procedure
or architecture details of the model even further to
information about the learner. With more person-
alised DLU data, it might, for example, be possible
to train layers specialised for certain L1s, CEFR
levels, or other background data.

Looking at the CWI and SEP experiments, the
significant results do not support that knowledge
from finetuning on DLU is transferred to other



N W WN All

Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC

f.-LLaMA ROC* 76.7 73.7 72.4 81.7 84.2 68.8 69.1 64.2 75.0 78.7 72.0 68.2 65.9 76.7 79.4 73.7 71.1 68.6 78.7 81.7
BCE 73.6 75.4 83.1 82.9 82.3 69.7 75.4 78.9 76.5 73.2 68.8 70.5 75.7 74.6 74.9 71.4 74.0 80.0 79.0 78.2

f.-Longformer ROC* 79.7 78.7 80.8 86.6 87.7 72.4 74.9 73.4 84.6 80.7 76.4 74.9 75.3 82.0 84.0 77.2 76.8 77.5 84.8 85.3
BCE 72.3 76.2 87.6 88.2 87.9 68.8 77.8 87.7 87.2 81.0 67.3 73.0 84.5 84.1 84.3 70.1 75.6 86.7 86.8 85.6

LLaMA ROC* 77.4 77.0 80.4 81.9 84.2 69.4 71.8 69.9 73.3 76.5 72.4 71.7 73.6 75.0 78.3 74.3 74.3 76.0 77.9 81.0
BCE 73.9 76.3 85.0 78.6 83.5 68.9 76.3 82.9 70.1 74.3 66.9 70.9 79.3 68.4 76.9 70.8 74.7 82.9 73.7 79.9

Longformer ROC* 79.4 79.1 82.8 85.9 87.3 73.2 75.8 74.6 84.2 81.5 77.2 76.2 77.4 83.1 84.4 77.4 77.5 79.3 84.7 85.3
BCE 77.8 79.1 86.7 85.4 87.6 74.6 79.4 83.3 78.0 81.1 74.9 76.6 83.0 80.3 83.6 76.3 78.5 84.8 82.2 85.1

Baseline freq. 62.2 65.6 73.0 80.7 67.5 66.1 73.9 80.0 86.8 67.3 61.7 67.8 77.7 81.4 66.9 62.9 68.2 76.0 82.3 67.6

Table 4: Prediction results on the 2018 CWI dataset (Yimam et al., 2017). Models with the prefix “f.-” for “finetuned”
have first been finetuned on DLU. “aF2” stands for F2 with a adaptive threshold, see Section 5.

A B C N All

Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC Acc. F1 F2 aF2 AUC

f.-LLaMA ROC* 96.3 0.7 0.4 15.3 58.1 97.1 0.0 0.0 15.6 63.9 98.2 1.2 0.8 9.2 59.1 99.4 0.0 0.0 2.9 53.7 97.8 0.5 0.3 11.3 59.4
BCE 88.7 9.2 12.5 13.3 62.2 90.8 10.5 14.6 16.0 65.7 91.9 5.7 9.2 8.7 63.8 93.6 1.2 2.5 2.0 53.4 91.4 7.3 11.1 11.5 63.8

f.-Longformer ROC* 96.5 0.0 0.0 7.4 71.1 97.2 0.0 0.0 8.9 73.4 98.4 0.0 0.0 7.7 69.7 99.4 0.0 0.0 0.0 58.5 98.0 0.0 0.0 7.4 71.0
BCE 96.5 0.0 0.0 15.2 51.1 97.2 0.0 0.0 12.4 54.2 98.4 0.0 0.0 7.5 53.0 99.4 0.0 0.0 2.7 54.9 98.0 0.0 0.0 9.4 52.0

LLaMA ROC* 92.0 8.4 9.6 9.7 59.8 93.4 10.4 12.3 12.1 65.7 95.1 5.6 7.3 6.8 63.1 96.5 1.1 1.9 2.0 53.4 94.4 7.4 9.2 9.1 63.4
BCE 95.3 3.2 2.5 1.8 63.3 96.3 7.4 6.0 3.4 66.2 97.7 1.9 1.6 0.8 63.0 98.9 0.0 0.0 0.0 52.6 97.1 4.2 3.4 2.1 64.7

Longformer ROC* 93.3 11.6 12.3 2.2 67.8 95.2 16.3 16.6 7.2 72.0 96.4 11.0 12.6 2.5 67.8 97.7 2.6 3.7 0.0 61.0 95.8 11.8 13.0 3.9 70.1
BCE 90.0 13.9 18.4 19.8 67.8 92.8 14.2 17.9 19.6 71.1 95.0 9.4 12.5 14.9 68.4 97.6 0.8 1.2 1.7 55.6 94.1 11.9 15.6 17.0 70.5

Baseline freq. 61.3 7.6 15.2 14.4 54.1 59.6 6.5 13.6 12.9 56.3 55.6 3.7 8.3 8.5 54.5 50.4 1.2 2.9 3.2 54.7 56.5 4.4 9.7 9.5 53.3

Table 5: Results on the Semantic Error Prediction (SEP) dataset (Strohmaier and Buttery, 2024). Models with the
prefix “f.-” have first been finetuned on DLU. “aF2” stands for F2 with a adaptive threshold, see Section 5.

tasks. Based on this observation, we conjecture
that different approaches that all ostensibly con-
cern word complexity, in fact track different
phenomena. In particular, for the CWI task the
significant results point in the direction of negative
transfer between DLU and CWI. We take this to
show that the data distribution diverge too strongly.

Part of the distributional differences are, without
doubt, the sparse nature of DLU and the shorter
length of the CWI texts. Another difference, how-
ever, is that the CWI data we used was derived from
proficient speakers of English rather than learners.
Because DLU directly records dictionary usage dur-
ing a naturalistic learning task, it has higher exter-
nal validity. Hence, we speculate that the CWI data
do not sufficiently reflect which words L2 learners
of English struggle with.

In contrast to CWI, we found at least one signifi-
cant result on the aggregated SEP dataset pointing
in the direction of improvement, although with five
other significant result pointing in the opposite di-
rection. Like DLU, SEP is derived from learner
behaviour in a naturalistic task. However, DLU
targets difficulties in comprehending words, while
SEP targets production difficulties, which may ex-

plain the differences.

10 Conclusion

We introduce the dictionary look-up task, which
provides insight into word complexity for the pur-
pose of supporting personalised learning technolo-
gies. We release the Dictionary Look-Up develop-
ment (DLU-dev) dataset. Additionally, we release
a look-up dataset of chatbot dialogues (D-DLU)
for evaluation. We provide results from zero- and
few-shot prompting as well as fine-tuning.

Investigating the transfer from DLU to other
tasks such as complex word identification (CWI)
and semantic error prediction (SEP), we find that
DLU and CWI appear to track different phenom-
ena. For SEP, we set new state-of-the-art results,
but find mixed to negative results on transfer.

The leading performance of a feature-based
model on DLU strongly suggests that further re-
search is required to adequately incorporate infor-
mation about individual learners and their lexical
acquisition into neural models of word complex-
ity. The release of DLU-dev is a major step to-
ward achieving this goal. We release our data at
https://englishlanguageitutoring.com/.

https://englishlanguageitutoring.com/
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A Platform

The Read&Improve (R&I) platform and its sis-
ter platform Write&Improve are available free of
charge. Users agree to the sharing of their input
for research purposes. For a screenshot of the R&I
user interface, see Figure 2.

B Limitations

Dictionary look-up events are rare, sparse, and
noisy. While DLU includes more than 8,800 look-
up events among 260,000 content word tokens,
these features of look-up events inherently limit
model performance and some applications. The
additionally released chatbot-dialogue dataset is
smaller, and therefore its usefulness is limited to
evaluation.

Our data is exclusive to English language texts
and the first languages of the learners who per-
formed click actions are unevenly distributed (see
Table 10). The same is true for CEFR levels. Fur-
ther personalisation would require more even data
distribution.

Due to compute restrictions, we focused on mod-
els with comparatively few parameters, although
we do include evaluation on LLMs such as LLaMA-
3.2-1B. Since we and others (Smădu et al., 2024)
found that model size does not appear to predict
model performance well, we believe that this re-
striction poses no major problems. Our focus is on
using publicly available models, ensuring replica-
bility.

C Safety and Privacy Considerations

The information in the DLU data poses few risks.
While we release information about learner L1 and
estimated CEFR-level, personal identification is
practically impossible since this information is very
broad and the lookup patterns themselves are spe-
cific to the platform.

The additional chatbot-dialogue data we release
should be handled with greater care, because it in-
cludes user input and the chatbot model was not
filtered for sensitive content (Tyen et al., 2024). As
described above (see Section 4), we have manually
filtered the dataset and removed critical personal in-
formation about the chat participants, e.g. changing
first names.

D Dataset Description

For the overall description of the DLU dataset,
see Section 3. Further description of CEFR lev-

els and first languages (L1s) across the dataset can
be found in tables 6 to 8 and 10 to 12.

B2 B1 A2 C1 C2 C2+ sum

all 228 242 112 55 17 9 663
train 208 227 108 52 15 6 616
dev 29 44 11 4 1 1 90
test 26 10 11 14 4 3 68

Table 6: Self-reported CEFR levels of users.

A B C UNK sum

all 135 324 35 169 663
train 123 302 34 157 616
dev 21 49 6 14 90
test 13 37 5 13 68

Table 7: CEFR levels for users as estimated by essays
from W&I.

A B C UNK sum

all 270 669 116 272 1327
train 229 577 97 240 1143
dev 23 53 8 17 101
test 18 39 11 15 83

Table 8: CEFR levels as estimated by essays from
W&I across documents by users (i.e. some users and
WikiNews articles appear more than once in this table).

D.1 Format of the Data
The data is formatted as a document-level token-
classification task. Tokenisation follows the RASP
pipeline used by R&I (Briscoe et al., 2006) For
each token a label is provided, with the default
label -100 used for non-content word tokens.

Example
Text Taco Bell restaurants decided Wednesday to remove . . .
Labels 0 0 0 0 0 -100 1 . . .

A 0 label indicates no click, a 1 a click. -100 indicates non-content
word POS. A text is a document, i.e. an entire WikiNews article.

E Ensemble Baseline

The classifiers used for the ensemble model are
(using sklearn class names):

1. RandomForestClassifier
2. GradientBoostingClassifier
3. HistGradientBoostingClassifier
4. MLPClassifier
5. LogisticRegression
6. BaggingClassifier



Figure 2: Screenshot of Read&Improve platform with information provided by lookup of the word “export”.



A2 B1 B2 C1 C2 unk sum

all 2102 2540 1638 522 6 2050 8858
train 1882 2295 1424 343 6 1872 7822
dev 143 139 71 155 0 122 630
test 77 106 143 24 0 56 406

Table 9: Look-up events across CEFR levels as esti-
mated by essays from W&I.

ar bg ca cs de en es fa fr hi hu id it ja jv ka ml my ne pt ro ru sr ta te tr ur vi zh unk sum

all 5 1 2 3 2 12 93 2 4 1 1 2 27 1 1 1 1 1 1 14 1 4 1 2 1 27 1 6 7 438 663
train 4 0 2 3 0 10 83 2 4 1 1 2 24 1 0 1 1 1 1 13 1 4 1 1 1 23 1 6 7 417 616
dev 1 0 0 0 1 1 15 0 1 0 0 0 6 1 1 0 0 1 0 2 0 0 0 0 0 4 0 1 3 52 90
test 2 1 0 0 1 3 16 1 0 0 1 0 2 0 0 0 0 1 0 4 0 0 0 1 0 3 0 0 0 32 68

Table 10: Users per L1. For experiments, less frequent
languages are merged into the unknown category (unk).

They were combined using the sklearn
VotingClassifier class, which was set to soft
voting. No systematic hyperparameter tuning was
required, instead we compared a variety of settings
and combinations manually on the dev-set (to
avoid over-fitting) and then applied the best to the
test set.

The used features were:

• The frequency baseline score as described in
Section 6.

• Relative position of the token in the text, de-
fined as the proportion of seen tokens for the
first 1000 tokens.

• Proportion of look-up events by user, calcu-
lated from the training split.

• Length of word in characters.
• CEFR-level as estimated by essays submitted

by the user.
• Count of definitions for the word in the Cam-

bridge Advanced Learner’s Dictionary.
• Proportion of people who did not know the

word type as retrieved from the ratings by
Brysbaert et al. (2014).

For missing values, the average was used. To ad-
dress label imbalance, we upsampled positive cases
to achieve a proportion of 1-to-1. For the addition-
ally added positively labelled data, we added small

ar en es it pt tr vi zh unk sum

all 12 19 169 70 29 48 10 15 955 1327
train 8 14 135 62 23 40 9 12 840 1143
dev 1 2 16 6 2 5 1 3 65 101
test 3 3 18 2 4 3 0 0 50 83

Table 11: L1s across documents seen by users (i.e. some
users and articles appear multiple times in this table).

ar en es it pt tr vi zh unk sum

all 5 12 93 27 14 27 6 7 472 663
train 4 10 83 24 13 23 6 7 446 616
dev 1 1 15 6 2 4 1 3 57 90
test 2 3 16 2 4 3 0 0 38 68

Table 12: L1s across users – less frequent languages
merged into unknown (unk). This merging process is
used for our transformer models.

split chats clicks con. tokens

D-chat 25 5 10027
D-read 26 67 33130

Table 13: Description of data and splits, including the
number of content tokens for chatbot dialogues.

Gaussian noise to the frequency score, proportion
of look-up event by user, the relative position.

F Neural Models

The models used are described in Table 14. We
used the LLaMA 3.1-8B, rather than a LLaMA 3.2
version, because it was closer to the size of the
Gemma model.

model hf-name approach

Longformer allenai/longformer-base-4096 finetuning
LLaMA 3.2 meta-llama/Llama-3.2-1B finetuning
LLaMA Instruct unsloth/Meta-Llama-3.1-8B-Instruct prompting
Gemma unsloth/gemma-2-9b-it prompting

Table 14: Details of models used, including name on
huggingface hub and experimental approach.

F.1 Hyperparameters

The datasets for the different tasks strongly differ
in input length. Both the SEP and DLU dataset
operate on data longer than sentences, but while
DLU consists of WikiNews texts, the SEP consists
of student essays split into chunks of one or more
paragraphs. The 2018 CWI dataset (Yimam et al.,
2017) is on the sentence level, i.e. the inputs are
much shorter than for the other datasets. To work
with these different datasets, we found it necessary
to change the hyperparameter space, in particular
the space for the training batch size.

The hyperparameter spaces as well as the se-
lected hyperparameters are described in tables 15
to 17. For each combination of model and loss
function, we run 20 trials without pruning, where
the searches were performed with Optuna. Addi-
tional settings for Optuna, such as using the log



space, are noted in the table. The target metric for
maximization was the AUC.

G Prompting

We use two prompt templates, one for zero-shot
and one for few-shot inference. Both prompts in-
struct the LLM to consider a paragraph of text
and the learner’s English CEFR level. The mod-
els are asked to predict which words the learner
is likely unfamiliar with, and return these words
in a JSON format. The zero-shot prompt directly
provides the task instructions and desired output
format, while the few-shot prompt includes three
illustrative examples of different learners’ word
choices in different paragraphs of text.

G.1 Prompts
CLICK_DATA_APPROXIMATION_PROMPT = {’system’: """
# Task Introduction You are an AI assistant now
doing a language test. You will receive a paragraph
of text. you will need to predict based on your
user’s English level what words the user might
click on(The user will click on the words he or
she is not familiar with.

—
# About the user’s english level A1: Can write

personal information (e.g. likes and dislikes,
family, pets) using simple words, phrases and
sentences.

A2: Can write a series of simple phrases and
sentences, linked with words like ’and’, ’but’ and
’because’.

B1: Can write straightforward texts about
familiar topics or simple information and ideas.
Can link sentences into a connected text.

B2: Can write clear, detailed texts on different
subjects. Can use information and arguments from
other sources in their writing.

C1: Can write clear, well-structured, detailed
texts on complex subjects, showing the important
issues, giving examples and writing a conclusion
if appropriate. Can use the correct style of
writing relevant to the target reader.

C2: Can write clear, smoothly flowing, complex
texts in an appropriate and effective style. Can
use a logical structure which helps the reader
find the main points.

—
# Expected Output Your answers should be

formatted in JSON format with following keys and
values: 1. output_tokens: a list of tokens that
you predict the user will click on, each token
should appear only once 2. reason: a short string
explaining your prediction of the tokens

NOTE: please make sure the output tokens are
unique. each token in the list should appear only
once """, ’user’: """

# task detail
The user’s english level is:
{cefr_level}
The paragraph you need to predict on:
{paragraph_text}
The tokens in the paragraph:
{tokens}

Respond only with valid JSON.

—

""" }

CLICK_DATA_APPROXIMATION_FEWSHOT_PROMPT =
{’system’: """ # Task Introduction You are an AI
assistant now doing a language test. You will
receive a paragraph of text. you will need to
predict based on your user’s English level what
words the user might click on(The user will click
on the words he or she is not familiar with.

—

# About the user’s english level

A1: Can write personal information (e.g. likes
and dislikes, family, pets) using simple words,
phrases and sentences.

A2: Can write a series of simple phrases and
sentences, linked with words like ’and’, ’but’ and
’because’.

B1: Can write straightforward texts about
familiar topics or simple information and ideas.
Can link sentences into a connected text.

B2: Can write clear, detailed texts on different
subjects. Can use information and arguments from
other sources in their writing.

C1: Can write clear, well-structured, detailed
texts on complex subjects, showing the important
issues, giving examples and writing a conclusion
if appropriate. Can use the correct style of
writing relevant to the target reader.

C2: Can write clear, smoothly flowing, complex
texts in an appropriate and effective style. Can
use a logical structure which helps the reader
find the main points.

—

# Expected Output Your answers should be
formatted in JSON format with following keys and
values: 1. output_tokens: a list of tokens that
you predict the user will click on, each token
should appear only once

2. reason: a short string explaining your
prediction of the tokens

NOTE: please make sure the output tokens are
unique. each token in the list should appear only
once

—

# Examples Here are some examples from user of
the same english level as the one you are goingto
mimic.

## Example1:

{example1}

## Example2:

{example2}

## Example3:

{example3}

""", ’user’: """

# task detail

The user’s english level is:

{cefr_level}

The paragraph you need to predict on:

{paragraph_text}

The tokens in the paragraph:

{tokens}

Respond only with valid JSON.

—

""" }



Space Info Longformer (ROC*) Longformer (BCE) LLaMA (ROC*) LLaMA (BCE)

Epochs [1, 30] 25 14 30 14
Learning Rate [10−9, 10−2] log space 3.6 × 10−6 6.7 × 10−5 3.7 × 10−5 2.4 × 10−4

Pos. Weight [0.8, 30] BCE only - 0.81 - 29
γ [0.05, 0.75] ROC* only 0.59 - 0.05 -
Sample Size [300, 10000] ROC*, step size=100 6600 - 300 -
Batch Size (p.D.) [4, 14] step size = 2 12 8 4 12

Table 15: Hyperparameter space and selected hyperparameters for DLU prediction models. We report the per device
batch size. The number of devices was always set to 4.

Space Info Longformer (ROC*) Longformer (BCE) LLaMA (ROC*) LLaMA (BCE)

Models finetuned only on CWI
Epochs [1, 30] 8 11 22 11
Learning Rate [10−9, 10−2] log space 7.0 × 10−5 4.6 × 10−5 1.1 × 10−4 2.3 × 10−5

Pos. Weight [0.8, 30] BCE only - 29.9 - 26.5
γ [0.05, 0.75] ROC* only 0.69 - 0.45 -
Sample size [300, 10000] ROC*, step size=100 3400 - 4200 -
Batch size (p.D.) [8, 80] step size = 2 48 10 50 72

Models finetuned on DLU and then on CWI
Epochs [1, 30] 27 10 26 25
Learning Rate [10−9, 10−2] log space 3.6 × 10−6 5.4 × 10−5 7.2 × 10−5 5.2 × 10−5

Pos. Weight [0.8, 30] BCE only - 23.78 - 15.46
γ [0.05, 0.75] ROC* only 0.66 - 0.23 -
Sample size [300, 10000] ROC*, step size=100 3300 - 3800 -
Batch size (p.D) [8, 80] step size = 2 8 42 16 30

Table 16: Hyperparameter space and selected hyperparameters for CWI prediction models. We report the per device
batch size. The number of devices was always set to 4.

Space Info Longformer (ROC*) Longformer (BCE) LLaMA (ROC*) LLaMA (BCE)

Models finetuned only on SEP task
Epochs [1, 30] 24 10 10 6
Learning Rate [10−9, 10−2] log space 3.1 × 10−5 1.0 × 10−5 8.6 × 10−6 2.3 × 10−5

Pos. Weight [0.8, 30] BCE only - 15.08 - 16.90
γ [0.05, 0.75] ROC* only 0.34 - 0.65 -
Sample size [300, 10000] ROC*, step size=100 2600 - 9100 -
Batch size (p.D.) [4, 44] step size = 2 36 34 38 18

Models finetuned on DLU and then on SEP task
Epochs [1, 30] 17 2 8 3
Learning Rate [10−9, 10−2] log space 9.0 × 10−5 1.8 × 10−4 3.1 × 10−6 2.9 × 10−4

Pos. Weight [0.8, 30] BCE only - 17.99 - 12.33
γ [0.05, 0.75] ROC* only 0.05 - 0.55 -
Sample size [300, 10000] ROC*, step size=100 300 - 4200 -
Batch size (p.D) [4, 44] step size = 2 16 30 40 20

Table 17: Hyperparameter space and selected hyperparameters for SEP prediction models. We report the per device
batch size. The number of devices was always set to 4.

H Significance Tests

We perform a two-sided permutation test
using SciPy (Virtanen et al., 2020). We
set permutation_type=’samples’ and
random_state=’1848’. The number of per-
mutations is left at the default 9999. The test
statistics and associated p-values can be found in
tables tables 18 to 20.

The Bonferroni-correct p-value is 0.0027. We
rounded the digits of the threshold using the floor,
as this makes the significance test more restrictive.

I Processing of CWI

The CWI dataset we used (Yimam et al., 2017,
2018) provides one data row for each labelled word,

Metric Statistic p-Value

Longformer AUC compare 2.8 × 10−2 2.6 × 10−1

LLaMA AUC compare 1.5 × 10−2 5.2 × 10−1

Table 18: Significance tests for DLU. The tests concern
whether using the ROC* vs. the BEC loss changes the
AUC.

even if these words occur in the same sentences. To
reduce training time and make the processing more
similar to DLU, we treated these words as occuring
together during training. For evaluation, we again
made one prediction per input, as in the original
CWI dataset for comparability. This might have
affected our performance negatively, explaining
some of the difference to the results reported by



Metric Loss Statistic p-Value

Longformer AUC roc 7.8 × 10−5 9.6 × 10−1

Longformer F1 roc 7.5 × 10−3 6.0 × 10−2

Longformer AUC bce 4.9 × 10−3 1.8 × 10−1

Longformer F1 bce 2.8 × 10−2 2.0 × 10−4

LLaMA AUC roc 7.2 × 10−3 1.5 × 10−1

LLaMA F1 roc 3.2 × 10−2 2.0 × 10−4

LLaMA AUC bce 1.6 × 10−2 8.0 × 10−3

LLaMA F1 bce 6.4 × 10−3 2.1 × 10−1

Table 19: Significance tests for CWI task, testing
whether models finetuned on DLU first perform dif-
ferently on F1 or AUC.

Metric Loss Statistic p-Value

Longformer AUC roc 9.2 × 10−3 2.7 × 10−1

Longformer F1 roc 1.1 × 10−1 2.0 × 10−4

Longformer AUC bce 1.8 × 10−1 2.0 × 10−4

Longformer F1 bce 1.1 × 10−1 2.0 × 10−4

LLaMA AUC roc 3.9 × 10−2 4.0 × 10−4

LLaMA F1 roc 6.8 × 10−2 2.0 × 10−4

LLaMA AUC bce 8.1 × 10−3 6.3 × 10−1

LLaMA F1 bce 3.1 × 10−2 2.2 × 10−3

Table 20: Significance tests for SEP task, testing
whether models finetuned on DLU first perform dif-
ferently on F1 or AUC.

Smădu et al. (2024).

J Further Discussion of Results

Using an adaptive threshold for the F2 (aF2) con-
sistently improves the performance of the base-
line further, which is not always the case for the
transformer models. This suggests that the deci-
sion threshold for transformer models is context
dependent and cannot be transferred between splits.
Furthermore, it shows that the simple frequency
baseline can be further improved with simple.

As a result of the different effect of the adap-
tive threshold, the highest F2 value (23.4%) by a
transformer model (Longformer ROC*) is higher
than the aF2 (21%) of the frequency baseline, even
though the baseline achieves the highest aF2.

K Additional Results

In Section 7 we report results on the DLU train
split, but as we release only the dev split with this
paper, we report the results on this split in Table 22.
The training method was the same as for the results
on the test split.

The results might be affected by the same doc-
uments being repeated in the evaluation split (dev
or test) because more than one user interacted with
it. To investigate this effect, we also evaluated on
these splits after removing all but one randomly
selected version of each document, i.e. the look-up

data for one random user per document. The re-
sults are shown in tables 24 and 25. The adaptive
threshold for the aF2 is the same as for the original
evaluation.



A B C unk All D-read

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 10.3 15.1 - 56.5 14.1 18.0 - 57.6 13.4 20.9 - 64.1 9.1 14.3 - 57.3 12.2 17.0 - 57.7 2.2 4.6 - 57.4
fewshot 10.2 16.1 - 57.4 12.5 17.8 - 57.5 12.8 21.9 - 67.2 10.4 16.4 - 59.1 11.7 17.6 - 58.4 - - - -

LLaMA-Inst. zeroshot 8.7 16.4 - 58.6 7.8 12.8 - 53.0 5.3 10.0 - 56.6 6.9 13.0 - 57.2 7.6 13.5 - 55.0 1.0 2.4 - 56.1
fewshot 8.3 15.1 - 56.7 7.6 12.4 - 52.7 4.5 8.9 - 55.5 3.8 7.1 - 49.7 6.7 11.7 - 53.2 - - - -

LLaMA ROC* 0.0 0.0 7.2 75.7 0.0 0.0 8.2 65.9 0.0 0.0 0.0 62.1 0.0 0.0 11.2 68.1 0.0 0.0 7.9 67.8 0.0 0.0 3.0 76.7
BCE 11.0 22.2 21.9 72.7 12.4 21.8 19.4 64.9 5.6 11.8 5.8 63.0 8.0 16.7 19.7 69.4 10.4 20.0 18.9 66.2 2.7 5.6 5.2 77.1

Longformer ROC* 14.4 25.6 18.6 78.5 16.0 25.5 21.7 72.4 5.7 11.0 13.4 64.9 12.1 20.7 18.7 77.6 14.0 23.6 20.0 73.9 2.7 5.8 2.8 83.4
BCE 0.0 0.0 12.3 70.9 0.0 0.0 13.2 70.7 0.0 0.0 3.4 60.5 0.0 0.0 8.4 76.6 0.0 0.0 11.6 71.1 0.0 0.0 3.9 74.6

Baseline freq. 8.7 18.9 24.7 75.8 9.6 20.6 23.1 71.4 4.2 9.9 10.8 72.3 5.7 12.9 16.6 72.2 8.1 17.7 21.0 72.5 0.9 2.2 3.3 84.9
ens. 22.2 32.8 31.6 85.9 17.3 26.1 28.0 76.2 12.3 18.8 19.6 81.9 14.2 24.3 23.6 80.4 17.3 26.5 27.4 79.2 - - - -

Table 21: Prediction results on the DLU test split, but for the prompting model, we take all occurrences of a word
listed by the prompted model to be looked-up. (Results on non-prompting models are unchanged.)

A B C unk All

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 11.7 14.0 - 54.7 9.9 13.3 - 55.7 12.0 9.5 - 52.2 13.0 15.2 - 55.2 11.2 13.1 - 54.4
fewshot 10.8 12.5 - 53.9 9.4 12.4 - 55.1 9.7 7.5 - 51.5 12.9 18.0 - 56.3 10.6 12.8 - 54.1

LLaMA-Inst. zeroshot 8.9 9.4 - 52.6 9.0 14.3 - 56.6 15.1 16.1 - 51.7 6.1 8.5 - 49.7 9.4 12.6 - 53.4
fewshot 11.2 15.6 - 55.1 6.1 10.4 - 53.1 12.9 12.9 - 51.0 9.1 13.2 - 52.6 8.4 12.4 - 52.7

LLaMA ROC* 0.0 0.0 13.2 71.6 0.0 0.0 7.1 64.8 0.0 0.0 1.6 51.2 0.0 0.0 9.9 68.5 0.0 0.0 7.9 63.3
BCE 15.4 25.4 20.9 69.0 7.8 13.4 10.1 58.2 15.3 14.6 10.9 62.2 13.8 24.2 21.7 67.4 11.8 18.9 15.5 62.1

Longformer ROC* 17.0 25.4 18.0 71.8 10.2 19.1 16.6 69.5 15.0 17.9 10.0 51.5 15.3 23.8 19.9 71.7 12.8 21.0 16.2 65.6
BCE 0.0 0.0 22.0 73.3 0.0 0.0 16.1 71.1 0.0 0.0 9.3 56.8 0.0 0.0 17.8 72.9 0.0 0.0 16.3 68.3

Baseline freq. 9.8 20.6 22.4 63.2 6.5 14.6 17.0 68.3 22.9 39.7 37.7 62.1 11.4 23.8 27.2 69.8 9.7 20.6 22.7 65.7
ens. 14.6 23.3 24.0 69.0 11.3 20.1 19.3 69.3 22.2 23.9 31.0 64.9 21.6 32.9 31.3 76.7 15.0 23.8 24.2 69.0

Table 22: Prediction results on the DLU dev split. “aF2” stands for F2 with a adaptive threshold, as discussed in
Section 5.

A B C unk All

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 11.9 14.7 - 55.0 8.8 12.1 - 54.9 15.0 12.3 - 53.3 13.5 17.3 - 56.1 11.3 13.8 - 54.6
fewshot 11.2 14.8 - 54.8 8.5 11.9 - 54.7 12.7 10.2 - 52.4 12.4 19.8 - 57.3 10.7 14.3 - 54.6

LLaMA-Inst. zeroshot 10.1 12.4 - 53.6 6.9 12.5 - 55.1 21.4 26.8 - 55.4 6.9 11.1 - 49.5 9.4 14.8 - 54.1
fewshot 10.3 16.0 - 54.9 4.9 9.3 - 51.1 20.1 23.8 - 54.6 8.7 14.5 - 52.0 8.3 13.8 - 52.7

LLaMA ROC* 0.0 0.0 13.2 71.6 0.0 0.0 7.1 64.8 0.0 0.0 1.6 51.2 0.0 0.0 9.9 68.5 0.0 0.0 7.9 63.3
BCE 15.4 25.4 20.9 69.0 7.8 13.4 10.1 58.2 15.3 14.6 10.9 62.2 13.8 24.2 21.7 67.4 11.8 18.9 15.5 62.1

Longformer ROC* 17.0 25.4 18.0 71.8 10.2 19.1 16.6 69.5 15.0 17.9 10.0 51.5 15.3 23.8 19.9 71.7 12.8 21.0 16.2 65.6
BCE 0.0 0.0 22.0 73.3 0.0 0.0 16.1 71.1 0.0 0.0 9.3 56.8 0.0 0.0 17.8 72.9 0.0 0.0 16.3 68.3

Baseline freq. 9.8 20.6 22.4 63.2 6.5 14.6 17.0 68.3 22.9 39.7 37.7 62.1 11.4 23.8 27.2 69.8 9.7 20.6 22.7 65.7
ens. 14.6 23.3 24.0 69.0 11.3 20.1 19.3 69.3 22.2 23.9 31.0 64.9 21.6 32.9 31.3 76.7 15.0 23.8 24.2 69.0

Table 23: Prediction results on the DLU dev split, but for the prompting model, we take all occurrences of a word
listed by the prompted model to be looked-up. (Results on non-prompting models are unchanged.)

A B C unk All

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 9.6 11.6 - 52.7 15.8 20.3 - 59.2 0.0 0.0 - 47.2 1.7 2.9 - 48.0 9.3 13.0 - 55.1
fewshot 16.1 19.8 - 57.7 14.5 20.6 - 59.7 0.0 0.0 - 46.8 5.3 9.0 - 53.8 11.4 16.6 - 57.7

LLaMA-Inst. zeroshot 11.0 16.9 - 54.7 10.5 18.5 - 58.8 3.0 6.4 - 56.5 4.4 8.4 - 53.1 8.6 15.2 - 57.1
fewshot 9.7 15.7 - 53.1 8.5 12.9 - 53.9 3.3 6.8 - 57.0 0.0 0.0 - 42.5 6.1 10.2 - 52.3

LLaMA ROC* 4.9 3.8 3.8 72.2 21.7 17.9 17.9 70.2 0.0 0.0 0.0 76.2 13.3 15.2 15.2 58.9 14.9 13.1 13.1 69.5
BCE 17.1 24.2 24.2 69.5 17.6 24.2 24.2 67.0 0.0 0.0 0.0 58.8 11.9 22.0 22.0 74.2 14.4 22.1 22.1 68.4

Longformer ROC* 22.5 26.5 26.5 78.8 22.0 29.2 29.2 75.4 5.3 10.0 10.0 62.8 7.2 10.9 10.9 73.2 17.3 23.7 23.7 75.5
BCE 16.1 16.4 16.4 73.0 12.6 12.5 12.5 72.2 0.0 0.0 0.0 72.7 7.0 9.0 9.0 73.6 11.1 12.2 12.2 72.7

Table 24: Prediction results on test split when for each document only one user was randomly selected.



A B C unk All

F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC F1 F2 aF2 AUC

Gemma-Inst. zeroshot 7.5 11.2 - 53.7 4.1 5.7 - 50.8 26.2 21.7 - 58.5 0.0 0.0 - 46.6 8.8 11.2 - 53.7
fewshot 6.7 10.4 - 52.9 7.5 10.9 - 54.5 19.2 17.9 - 55.9 0.0 0.0 - 47.7 9.2 12.3 - 54.3

LLaMA-Inst. zeroshot 8.3 14.3 - 56.2 6.3 12.1 - 56.0 14.8 19.4 - 53.2 2.6 6.1 - 59.0 6.9 12.8 - 53.3
fewshot 8.3 15.8 - 58.2 3.7 6.8 - 49.6 22.7 35.3 - 63.1 0.0 0.0 - 41.3 9.3 16.8 - 57.9

LLaMA ROC* 5.7 5.6 5.6 64.7 6.1 5.6 5.6 67.6 0.0 0.0 0.0 50.6 16.7 20.8 20.8 76.2 5.0 4.3 4.3 61.0
BCE 4.5 7.0 7.0 61.8 4.4 6.0 6.0 53.8 7.5 5.7 5.7 54.2 8.0 16.1 16.1 83.7 5.5 7.1 7.1 52.1

Longformer ROC* 17.4 20.0 20.0 71.3 13.3 20.3 20.3 68.5 13.7 15.6 15.6 54.5 10.8 20.4 20.4 70.6 13.7 18.7 18.7 64.9
BCE 13.0 15.0 15.0 71.7 18.0 22.2 22.2 69.6 12.8 12.4 12.4 55.0 15.4 20.0 20.0 72.3 15.3 17.2 17.2 66.6

Table 25: Prediction results on dev split when for each document only one user was randomly selected.
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