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Embodied Contrastive Learning with Geometric Consistency and
Behavioral Awareness for Object Navigation

Anonymous Author(s)

ABSTRACT
Object Navigation (ObjcetNav), which enables an agent to seek
any instance of an object category specified by a semantic label,
has shown great advances. However, current agents are built upon
occlusion-prone visual observations or compressed 2D semantic
maps, which hinder their embodied perception of 3D scene geom-
etry and easily lead to ambiguous object localization and blind
exploration. To address these limitations, we present an Embodied
Contrastive Learning (ECL) method with Geometric Consistency
(GC) and Behavioral Awareness (BA), which motivates agents to
actively encode 3D scene layouts and semantic cues. Driven by
our embodied exploration strategy, BA is modeled by predicting
navigational actions based on multi-frame visual images, as behav-
iors that cause differences between adjacent visual sensations are
crucial for learning correlations among continuous visions. The
GC is modeled as the alignment of behavior-aware visual stimulus
with 3D semantic shapes by employing unsupervised contrastive
learning. The aligned behavior-aware visual features and geometric
invariance priors are injected into a modular ObjectNav framework
to enhance object recognition and exploration capabilities. As ex-
pected, our ECL method performs well on object detection and
instance segmentation tasks. Our ObjectNav strategy outperforms
state-of-the-art methods on MP3D and Gibson datasets, showing
the potential of our ECL in embodied navigation. The experimental
code is available as supplementary material.

CCS CONCEPTS
•Computingmethodologies→Computer vision tasks;Knowl-
edge representation and reasoning; Vision for robotics.
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1 INTRODUCTION
Object Navigation (ObjectNav) task [3, 23] requires an agent to
navigate through a previously unknown 3D scenario to find an
object instance, according to a semantic label. Existing work has
made great advances in visual representations [18, 19, 63, 67], data
augmentation techniques [40, 46], and auxiliary tasks [33, 58] for
pre-training. Their core ideas are fully exploiting scene layouts
and semantic contexts to enhance agents’ object localization or
scene exploration capabilities. Some methods [18, 19, 41, 65] specu-
late on correlations among historical visual features for ObjectNav
decision-making by emphasizing spatio-temporal awareness of vi-
sual observations. Although promising progress has been made,
domestic scenes are characterized by substantial occlusion, which
poses challenges for agents to accurately localize object goals and
efficiently explore scenarios. Moreover, agents typically establish
high-level awareness of objects by moving around and perceiving
them from different angles and distances. For instance, learning
about basic physical concepts for object localization, such as large
and long, requires moving beyond image-based observations.

Research in behavioral psychology [42, 51] has shown that many
animals maintain spatial representations of their environments
while navigating. Inspired by this, some other methods attempt to
develop Topological Scene Representations (TSRs) [16, 17, 32, 34, 60,
63] or 2D contextual semanticmaps [9, 22, 23, 45, 61] based on visual
images to balance exploration and exploitation better, as shown in
Fig. 1 (a). Nodes in TSRs typically consist of abstract visual or object
features [16, 34]. Edges in TSRs usually involve discrete semantic
or geometric relationships (e.g., the pillows are in the bed, and
the mouse is used to operate the computer) [32, 60]. However, the
abundant geometric and semantic relations among objects should
be a large relational space and thus difficult to model with discrete
TSRs exhaustively. The 2D contextual semantic maps somewhat
reconstruct the layouts and semantic patterns of the scenarios and
can provide agents with compressed materials to formulate the con-
tinuous relational space [11]. However, RGB image-based semantic
segmentation errors may lead to low-quality and ambiguous 2D
semantic maps, which severely impair the ObjectNav performance,
please see Section A of the supplementary material for more details.

To alleviate the above problems, we propose an Embodied Con-
trastive Learning (ECL) method with Geometric Consistency (GC)
and Behavioral Awareness (BA) to motivate agents to actively ex-
plore 3D scene layouts and encode semantic cues. Instead of model-
ing the correlations among visual features from a spatio-temporal
aware perspective, we advocate inferring the relevance among vi-
sual features at the root by predicting intermediate actions from
consecutive visual frames. We believe that the behaviors that lead
to differences between two adjacent observations are crucial for
learning the relations between two visions, as shown in Fig. 1 (b).
Our BA modeling is more concise than predicting visual features
from action sequences since the observation space consisting of
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(𝒂) (𝒄)

(𝒃)

Figure 1: (a) An illustration of a 2D contextual semantic map
and a local TSR. (b) An illustration of behavior-aware visual
perceptions. The changes in visual sensations are caused by
navigational behaviors. (c) An illustration of 3D local seman-
ticmaps used for geometric-aware contrastive representation
learning, corresponding to the local region in (a).

high-dimensional sensor inputs tends to be large and variable, while
the action space is small, discrete, and relatively fixed.

When searching for a specific object, humans usually take se-
quential actions to actively transform their Field of View (FoV),
locating the target and exploring the scene by aligning their visual
senses with 3D space. Inspired by this, we empower agents to re-
construct local 3D spatial structures and semantic patterns during
navigation, as shown in Fig. 1 (c). The 3D local scene priors allow
agents to learn rich scene representations by immersively aligning
the visual features encoded by the behavior-aware visual encoder
with the 3D scene features encoded by the 3D PointCloud (PCL)
encoder. As a result, the 2D scene understanding is enhanced by
introducing geometric and view-invariant priors into the behavior-
aware 2D visual features. In a nutshell, the GC is modeled as the
alignment of behavior-aware visual perceptions with 3D semantic
shapes by employing unsupervised contrastive learning.

Notably, to adequately mimic the situational interactions of hu-
mans with 3D scenes, the above BA and GC-based contrastive
representation learning is performed in an embodied manner. In
particular, we propose a curiosity and action-aware exploration
policy 𝐸2-CL, which continually motivates agents to adopt diverse
actions to discover novel visual perceptions. On the one hand, the
semantic-rich visual stimulus facilitates agents to carry out more
comprehensive and robust 2D-3D scene representation learning. On
the other hand, the diverse action-vision data pairs collected online
provide rich learning materials and feature bases for BA modeling.
With the collection of novel and complicated action-vision pairs,
the visual frames-based action prediction will be more challeng-
ing. Therefore, the BA modeling will be gradually enhanced in this
adversarial learning process.

During the experimental phase, we first validate the superiority
of our ECL on generic object detection and instance segmentation

tasks. Particularly, the visual encoder pre-trained by ECL is further
retrained to solve these two tasks. The great performance of our ap-
proach on both tasks reflects ECL’s expertise in object recognition,
which will be further migrated to the ObjectNav task. In addition,
the pre-trained visual and PCL encoders are integrated into a mod-
ular ObjectNav strategy, which is compared with state-of-the-art
(SOTA) ObjectNav methods on Matterport3D (MP3D) [7] and Gib-
son [54] datasets. Concretely, our method improves the ObjectNav
success rate by 1.4% ∼ 6.2% and 0.8% ∼ 3.1% on the two datasets,
respectively. Sufficient ablation studies demonstrate the substantial
contributions of the individual components in our method. Overall,
the contributions of this paper are as follows:

(1) An embodied contrastive representation learning method
with BA and GC is proposed. The BA modeling helps agents take
informed navigational actions based on behavior-aware visual per-
ceptions. The GCmodeling infuses agents with 3D geometric invari-
ance priors. (2) A curiosity and action-aware exploration strategy
is proposed to support embodied ECL. The diverse action-vision
pairs collected online provide rich feature bases for the BA and GC
modeling. (3) Sufficient comparative and ablative studies on object
detection, instance segmentation, and ObjectNav tasks demonstrate
the superiority of our ECL and 𝐸2-CL methods.

2 RELATEDWORK
(1) Spatio-Temporal Visual Modeling for Visual Navigation.
Human beings can naturally navigate in new environments, which
requires us to find parallels between the new observations and
our past experiences. Inspired by this, visual modeling of spatio-
temporal awareness [13, 18, 19, 30, 36, 41, 65, 66] can provide agents
with historical contextual information for navigation. Its core con-
cept is to implicitly encode the visual semantic clues, the relative
spatial information among objects, and the temporal correlations
among multiple visual frames, using recurrent neural networks
[18, 19, 41] or Transformers [13, 30, 36, 65, 66]. Some improved
methods [41] exploit spatio-temporal attention mechanisms to fil-
ter keyframes and intelligently focus on semantic and spatial cues
that are most relevant to the navigation goal. One of our main
insights is that variations in visual perceptions are the consequence
of active navigational behaviors. Therefore, unlike spatio-temporal
visual modeling that extrapolates dynamic correlations back from
observations, we believe the modeling of behavioral patterns can
help characterize those correlations at the source.

(2) TSRs and Semantic Maps for Visual Navigation. TSRs
have continuously shown improvements in various visual semantic
tasks. Visual language navigation [14, 21, 35, 52] typically embeds
panoramic visual features into the topological graph’s nodes and
represents the topological graph’s edges as combinations of rela-
tive positions and orientations between the nodes. Although the
topology retains the partial geometry of the scene, the relationships
and dynamic transitions between nodes should be encoded with
richer geometric and semantic cues. ObjectNav [18, 19, 64] usually
injects object features detected from visual perceptions into the
topological graph’s nodes. The difference is that the topological
graph’s edges include not only geometric relative positions but also
semantic relationships, e.g., a mouse is used to operate a computer.
Nevertheless, some studies of continuous scene representations
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[11, 20] have shown that such discrete relational modeling is prone
to inductive bias in spatial and semantic understanding.

Since semantic maps preserve fine-grained scene layouts and
semantic patterns, they can alleviate the inductive bias by providing
navigation agents with richer scene representations. By projecting
high-dimensional features encoded from a neural network to a top-
down map, existing works [6, 26] try to generate a deep feature
map, which is used for reconstructing scenes, predicting semantic
maps, and navigating. The semantic map is a type of occupancymap
[44], which indicates whether a point is occupied, represents the
semantic categories of objects, and provides location information
for robotic navigation and exploration. By decoupling ObjectNav
tasks into object localization and scene exploration subtasks, a series
of 2D semantic map-based modular methods [39, 45, 61, 62] have
been proposed and achieved promising performance. Although
2D contextual semantic maps somewhat reconstruct the layouts
and semantic patterns of the scenarios, they lose the 3D geometric
structure that is critically important for embodied navigation.

Although existing work achieves impressive performance on
visual navigation by introducing 3D semantic maps [8, 62] and
bird’s-eye views [1, 38], how to fully mine and exploit 3D geometric
features is still a challenging and open topic. To release the agents
from the 2D observation space, this paper proposes a novel 2D-
3D contrastive representation learning method with geometric
awareness by aligning rich visual features with 3D scene priors in
an embodied manner.

(3) Unimodal and Multimodal Representation Learning
for Visual Navigation. Unimodal representation learning has
emerged with significant success in visual navigation tasks. OVRL
[55] employs the concept of knowledge distillation [5] to learn
navigation-friendly visual representations from pure visual images
in an offline manner. In contrast, CRL [20] presents an embodied
adversarial contrastive learning technique to encourage agents to
actively explore novel surroundings for learning robust visual rep-
resentations online. To alleviate the typically substantial occlusions
in visual images, Chen et al. [11] employed offline contrastive learn-
ing to extract continuous relations among objects from 2D semantic
maps. In terms of TSRs, a novel scene graph contrastive loss [50] is
proposed to encourage representations that encode objects’ seman-
tics, relationships, and history. Unlike the above methods, one of
our main insights is to merge the merits of different modalities to
achieve richer and more robust scene representations.

Multimodal representation learning gains attraction due to its
ability to share modality-specific contexts. Humans naturally build
spatially meaningful cognitive maps in their brains during naviga-
tion. Inspired by this, 𝐸𝑔𝑜2-Map [27] proposes a navigation-specific
method for learning visual representations by aligning egocentric
views with 2D semantic maps in a cross-modal manner. Although
this idea is commendable, ObjectNav agents are born and work in
3D scenes. In this work, we experimentally prove that 3D geometric
awareness is crucial for ObjectNav decision-making by comparing
our method with 𝐸𝑔𝑜2-Map. Inspired by recent work on 2D-3D mul-
timodal representation learning [2, 12, 29, 57], this paper proposes a
GC-based ECL technique that encourages agents to actively exploit
3D geometric and semantic priors. Our inspiration comes from
Pri3D [29], which introduces a contrastive learning method for
multi-view RGB frames and 3D scene scans. Unlike Pri3D, our ECL

method can organically fuse the geometric features in 3D semantic
shapes with behavior-aware visual features. The features from both
modalities will be utilized to enhance ObjectNav. In addition, our
ECL is conducted online in an embodied fashion, with the aim of
active learning through interactions with the scenarios.

3 METHODOLOGY
3.1 Problem Statement and Overview
Problem Statement. In an unknown environment, the ObjectNav
task requires the agent to navigate to an instance of the specified
target category. As initialization, the agent is located randomly
without access to a pre-built environment map and is given a target
category 𝑐𝑡𝑎𝑟𝑔𝑒𝑡 ∈ {1, 2, ...,𝐶}, where 𝐶 is the number of possible
target categories. For each navigation state 𝑠𝑡 , the agent receives
noiseless onboard sensor readings, including egocentric RGB-D
images {𝑜𝑡 , 𝑑𝑡 } and a 3-DoF pose {𝑥,𝑦, 𝜃 } (2D position and 1D ori-
entation) relative to the starting of the episode. Then the agent
predicts its action 𝑎𝑡 for movement in a discrete action space, con-
sisting of 𝑀𝑜𝑣𝑒_𝐹𝑜𝑟𝑤𝑎𝑟𝑑 , 𝑇𝑢𝑟𝑛_𝐿𝑒 𝑓 𝑡 , 𝑇𝑢𝑟𝑛_𝑅𝑖𝑔ℎ𝑡 , and 𝑆𝑡𝑜𝑝 . An
episode is considered successful if the agent executes 𝑆𝑡𝑜𝑝 within
1.0 m of a target object and the object can be viewed from the
agent’s position. Each episode has a time limit of 500 steps.

Overview. Fig. 2 and Fig. 3 provide overviews of the proposed
ECL method and our modular ObjectNav strategy, respectively. A
curious contrastive reward R𝐸𝑥𝑝 with action awareness is designed
for the embodied exploration in ECL, which motivates agents to ac-
tively explore the scene and consistently gather novel visual images
(§3.2). We believe navigation behavior is one of the main factors
affecting embodied agents’ visual perceptions, the BA is modeled by
using continuous visual frames to predict the intermediate actions
(§3.3). Meanwhile, a PCL-based semantic mapping method is em-
ployed to project the semantically segmented RGB images to a 3D
semantic map based on the depth images, the camera parameters,
and the agent’s poses. This paper focuses on whether 3D scene
priors can enhance visual semantic navigation, thus a contrastive
lossL𝐸𝐶𝐿 is proposed for GCmodeling by aligning behavior-aware
visual features with corresponding 3D scene priors (§3.3). Finally,
the visual encoder 𝐹𝜃 and PCL encoder 𝐹𝜑 pre-trained by ECL are
migrated to downstream tasks to boost the performance of object
detection, instance segmentation, and ObjectNav (§3.4).

In a modular fashion, we decompose the ObjectNav pipeline into
three phases: BA and GC-based scene representation, prediction-
based high-level goal selection, and deterministic low-level plan-
ning, as shown in Fig. 3. Following existing modular approaches
[9, 23, 45, 61, 62], our ObjectNav agent uses a top-down 2D semantic
map as its internal environmental representation. The ObjectNav
task is decoupled into two sub-tasks: object localization and scene
exploration.

3.2 Embodied Exploration with Contrastive
Learning (𝐸2-CL)

This work advocates that agents learn to build environmental cog-
nition by continuously interacting with their surroundings as hu-
mans do. To ensure adequate interactions with diverse scenarios,
a curiosity-driven exploration policy 𝜋𝜃 named 𝐸2-CL is designed
to motivate embodied agents to actively explore the scenarios. 𝜋𝜃

3
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𝑀𝑎𝑝 𝑀3𝐷

𝑡

𝑀𝐿𝑃

𝑀𝐿𝑃

𝑀𝐿𝑃

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 
𝑜𝑓 𝐴𝑐𝑡𝑖𝑜𝑛𝑠

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 
𝑜𝑓 𝑉𝑖𝑠𝑖𝑜𝑛𝑠

𝑜�𝑡𝑜�𝑡+1

𝑜�𝑡+𝑛

Figure 2: (Left: §3.2) Driven by the exploration policy 𝜋𝜃 , our embodied agent actively seeks novel visual observations by
adopting diverse actions to maximize the curious contrastive reward R𝐸𝑥𝑝 . (Middle: §3.3) Our ECL method aligns the behavior-
aware visual features encoded by the visual encoder 𝐹𝜃 with the 3D features encoded by the PCL encoder 𝐹𝜑 to model GC by
minimizing the contrastive loss L𝐸𝐶𝐿 . The BA is modeled by minimizing the cross-entropy loss L𝐶𝐸 between the predicted
actions and the real actions. (Right: §3.4) The pre-trained 𝐹𝜃 and 𝐹𝜑 are transferred to downstream tasks for retraining and
task-specific performance evaluation.
drives agents to consistently discover novel visual perceptions and
facilitates the learning of semantically enriched scene represen-
tations. Specifically, the exploration policy 𝜋𝜃 consists of a visual
encoder 𝐹𝜃 and a Multilayer Perceptron (MLP) projection head used
for predicting exploration actions, as shown in Fig. 2 (Left). For
the RGB visual observations 𝑂 = {𝑜𝑘 }𝑘=1,2,...,𝑁 collected by the
agent during exploration, different image augmentation methods
are applied to each image to obtain pairs of augmented images
�̂� = {𝑜1

𝑘
, 𝑜2

𝑘
}𝑘=1,2,...,𝑁 . 𝑁 denotes the number of collected RGB im-

ages. Each augmented image is encoded using 𝐹𝜃 and followed by
L2 normalization, which is formulated as 𝑧∗

𝑘
= 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝐹𝜃 (𝑜∗𝑘 )).

To maximize the diversity of visions, the following reward sig-
nal is used to train 𝜋𝜃 by maximizing the similarity between the
augmented images in the same pair and minimizing the similarity
between the augmented images in different pairs:

R𝑉 =
1
𝑁

𝑁∑︁
𝑘=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧1

𝑘
, 𝑧2
𝑘
)/𝜏)∑

𝑧−∈𝑍\{𝑧1
𝑘
} 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧

1
𝑘
, 𝑧−)/𝜏))

, (1)

where 𝑍 = {𝑧1
𝑘
}𝑘=1,2,...,𝑁 , 𝜏 is a softmax temperature scaling pa-

rameter, and 𝑠𝑖𝑚(·, ·) corresponds to the dot product.
In practice, we find the agent may only slyly perform steering

actions in place to greedily maximize the reward described in Equa-
tion (1). To alleviate this problem, another reward signal is designed
to maximize the diversity of actions:

RA =
1
𝑁

𝑁∑︁
𝑘=1

∑︁
𝑎−∈Â\{𝑎𝑘 }

𝑠𝑖𝑚(𝑎𝑘 , 𝑎−), (2)

where Â = {𝑎𝑘 }𝑘=1,2,...,𝑁 , 𝑎𝑘 = 𝑀𝐿𝑃 (𝑎𝑘 ), and A = {𝑎𝑘 }𝑘=1,2,...,𝑁
denotes the actions taken to collect visual observations. Overall, the
curiosity and action awareness-driven reward R𝐸𝑥𝑝 = R𝑉 + 𝛼R𝐴
is employed as the total reward signal for our 𝐸2-CL. 𝛼 is a weight

used to balance the two rewards. By doing so, the agent is motivated
to discover diverse RGB images by taking diverse actions.

Notably, the exploration policy is trained to maximize the fol-
lowing cumulative reward by utilizing the Proximal Policy Opti-
mization (PPO) [48]:

𝑚𝑎𝑥
𝜃
E

𝑥∼𝜋𝜃
[
𝑇∑︁
𝑡=0
R𝐸𝑥𝑝 (𝐹𝜃 , 𝑥)] . (3)

In particular, 𝜋𝜃 is trained by optimizing the objective 𝐿(𝜃 ) =

E[𝑚𝑖𝑛(𝑐𝑡 (𝜃 )𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑐𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 )], where the clip ratio
𝑐𝑡 =

𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )

and the advange 𝐴𝑡 is computed utilizing the

value function 𝑉 (𝑠𝑡 ). During exploration, 𝜋𝜃 is optimized by using
the collected minibatches of data from PPO. Please see Section B of
the supplementary material for more details. As shown in Fig. 2,
the RGB-D images {𝑜𝑡 , 𝑑𝑡 } and agent’s poses 𝑠𝑡 collected by 𝐸2-CL
are used for the subsequent online ECL.

3.3 ECL with Geometric Consistency and
Behavioral Awareness

Behavioral Awareness Modeling. When searching for a specific
object (e.g., a key), humans usually actively transform their FoVs or
move forward to localize the object instance. Inspired by this, we
propose to model the correlations between behaviors and visions
(the long-horizon dynamic transitions between visual frames) by
predicting action sequences based on successive multi-frame visual
perceptions, as shown in Fig. 2. Notably, our exploration strategy
𝐸2-CL tends to adopt diverse actions to discover novel visual stimuli,
which provides rich behavior-vision data for BA modeling. To be
more specific, a neural network consisting of the visual encoder
𝐹𝜃 and an MLP projection head is utilized to predict 𝑙 intermediate
navigation actions {𝑎𝑖 }𝑡+𝑙−1

𝑖=𝑡
from 𝑙 + 1 RGB visual frames {𝑜𝑡 }𝑡+𝑙𝑖=𝑡

.
This procedure is accompanied by the embodied exploration so that
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3-𝐷𝑜𝐹 𝑃𝑜𝑠𝑒
{𝑥,𝑦,𝜃}

𝑜𝑡

𝑑𝑡

 𝑐𝑡𝑎𝑟𝑔𝑒𝑡

𝐼𝑛𝑝𝑢𝑡𝑠

𝑂𝑏𝑗𝑒𝑐𝑡 
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
𝑆𝑢𝑏-𝑝𝑜𝑙𝑖𝑐𝑦

𝑆𝑐𝑒𝑛𝑒 
𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛
𝑆𝑢𝑏-𝑝𝑜𝑙𝑖𝑐𝑦

3𝐷 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 
𝑀𝑎𝑝 𝑀3𝐷

𝑡

2𝐷 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 
𝑀𝑎𝑝 𝑀2𝐷

𝑡

𝑅𝐺𝐵 
𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠

𝑻𝒂𝒓𝒈𝒆𝒕 
𝑮𝒐𝒂𝒍

 𝒈𝒕𝒂𝒓𝒈𝒆𝒕𝒕

𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏 
𝑮𝒐𝒂𝒍
 𝒈𝑬𝒙𝒑𝒕

+

+ 𝑀𝐿𝑃

𝑀𝐿𝑃

+

+

𝐺𝑅𝑈

ℎ𝐸𝑥𝑝𝑡−1

𝐴𝑐𝑡𝑖𝑜𝑛 (𝑎𝑡)

𝐹𝑎𝑠𝑡 𝑀𝑎𝑟𝑐ℎ𝑖𝑛𝑔
𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔

𝐺𝑜𝑎𝑙 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 
𝑀𝑜𝑑𝑢𝑙𝑒

𝐺𝑅𝑈

ℎ𝑡𝑎𝑟𝑔𝑒𝑡𝑡−1

Figure 3: TheObjectNav strategy takes RGB-D images, agent’s
pose, and object goal category as inputs. A PCL-based seman-
tic mapping module is employed to build a 3D semantic map
𝑀𝑡

3𝐷 along with a projected 2D semantic map𝑀𝑡
2𝐷 based on

semantically segmented RGB-D images and poses. The pre-
trained visual encoder 𝐹𝜃 and PCL encoder 𝐹𝜑 are utilized for
object localization. 𝐹𝜑 and another 2D map encoder 𝐹𝜗 are
used for scene exploration. A deterministic local planning
policy is utilized to drive the agent to the target goal 𝑔𝑡𝑡𝑎𝑟𝑔𝑒𝑡
or exploration goal 𝑔𝑡

𝐸𝑥𝑝
.

the agent’s real navigation actions {𝑎𝑖 }𝑡+𝑙−1
𝑖=𝑡

can be collected as
supervisory signals. The cross-entropy lossL𝐶𝐸 is used to optimize
the neural network:

L𝐶𝐸 = −1
𝑙

𝑙−1∑︁
𝑖=0

𝑎𝑖𝑙𝑜𝑔𝑎𝑖 . (4)

It is worth noting that the agent’s action space is small and dis-
crete while the observation space is relatively large and variable.
Therefore, our BA modeling is concise and manageable in com-
plexity compared to the modeling technique of predicting visual
observations from navigation actions.

Geometric Consistency Modeling. To align the 2D behavior-
aware visual features with the 3D scene priors, the semantically
segmented RGB images are projected into a 3D semantic map in
the form of PCL based on the camera’s parameters and the cor-
responding depth images. At time step 𝑡 , the past 𝑙 + 1 frames of
visual observations {𝑜𝑖 , 𝑑𝑖 }𝑡𝑖=𝑡−𝑙 and poses {𝑠𝑖 }𝑡𝑖=𝑡−𝑙 are utilized to
construct a 3D local semantic map𝑀𝑡

3𝐷 ← {(𝑃
𝑡
𝑝 , 𝑃

𝑡
𝑠 )} ∈ R𝑄

𝑡×(𝐶+3)

for the consistency of 2D-3D features. Here, 𝑃𝑡𝑝 ∈ R3 and 𝑃𝑡𝑠 ∈ R𝐶
denote each point’s position and semantic category, respectively.𝐶
and 𝑄 denote the number of semantic categories and the number
of PCL in 𝑀𝑡

3𝐷 , respectively. In practice, the off-the-shelf mod-
els [24, 31] are employed to obtain semantic segmentations from
{𝑜𝑖 }𝑡𝑖=𝑡−𝑙 and combine the depths {𝑑𝑖 }𝑡𝑖=𝑡−𝑙 to generate 3D seman-
tic PCL. However, each semantic point may probabilistically belong
to multiple different semantic categories. Therefore, we suggest
employing a max-fusion mechanism [62] to merge the temporal-
variant semantic PCL to ensure consistent scene semantics.

Humans often efficiently localize specific object targets in an
embodied manner by actively matching their visual senses with

3D scene structures. Inspired by this, a multimodal contrastive
loss L𝐸𝐶𝐿 is proposed to push the 2D and 3D features describing
the same spatial patterns closer to each other while pushing the
2D and 3D features describing different spatial patterns farther
away from each other. More specifically, L𝐸𝐶𝐿 aligns the behavior-
aware visual features 𝑒𝑣 with the 3D geometric-aware features 𝑒𝑔 by
constructing a common 2D-3D space for the visual encoder 𝐹𝜃 and
the PCL encoder 𝐹𝜑 , as shown in Fig. 2. To this end, the multimodal
contrastive learning loss is as follows:

L𝐸𝐶𝐿 = L𝑐𝑟𝑜𝑠𝑠 (𝑒𝑣, 𝑒𝑔) + L𝑐𝑟𝑜𝑠𝑠 (𝑒𝑔, 𝑒𝑣), (5)

L𝑐𝑟𝑜𝑠𝑠 (𝑒𝑣, 𝑒𝑔) =
1

2𝑁

𝑁∑︁
𝑖=1
−𝑙𝑜𝑔

𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑒𝑣
𝑖
, 𝑒
𝑔

𝑖
)/𝜏)∑

𝑒−∈𝑒𝑔\{𝑒𝑔
𝑖
} 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑒𝑣𝑖 , 𝑒−)/𝜏)

.

(6)

L𝐸𝐶𝐿 can not only transfer geometric information from 3D to
behavior-aware 2D features but also transfer semantic details from
2D to 3D features. Overall, the visual encoder 𝐹𝜃 and the PCL
encoder 𝐹𝜑 are trained by using the loss L𝑉 = L𝐶𝐸 + 𝛽L𝐸𝐶𝐿 and
the loss L𝐸𝐶𝐿 , respectively. 𝛽 is a weight used to balance the two
losses. Moreover, 𝐹𝜃 is also trained by utilizing PPO as described in
subsection 3.2.

3.4 Transfer to Downstream Tasks
Object Detection and Instance Segmentation. Before transfer-
ring the pre-trained visual encoder 𝐹𝜃 to the ObjectNav task, 𝐹𝜃 is
employed to solve the object detection and instance segmentation
tasks to verify its expertise in terms of object recognition. Dur-
ing ECL, the semantically rich and novel visual samples collected
by 𝐸2-CL are saved for retraining 𝐹𝜃 . In addition, the semantic
labels corresponding to the visual samples are extracted from the
simulator and used as supervisory signals for these two tasks.

Object Navigation. The pre-trained 𝐹𝜃 and 𝐹𝜑 are integrated
into the framework illustrated in Fig. 3 to validate their contri-
butions to ObjectNav. Following existing works [45, 61, 62], the
ObjectNav task is decoupled into an object localization sub-task and
a scene exploration sub-task, which are trained using PPO. 𝐹𝜃 and
𝐹𝜑 are used to extract features from consecutive 𝑙+1 frames of visual
perceptions and the corresponding 3D local semantic maps, respec-
tively.We believe the retrained 𝐹𝜃 and 𝐹𝜑 will deliver object-specific
semantics and structural cues to the object localization sub-strategy.
Moreover, the retrained 𝐹𝜑 can provide directional guidance and
3D-level semantic relations for the exploration sub-strategy. In our
work, 𝐹𝜃 and 𝐹𝜑 are implemented as the Mask-RCNN [24] with
ResNet-50 [25] backbone and the PointNet [43], respectively.

Following existing works [23, 45, 61, 62], an additional egocentric
2D semantic map 𝑀𝑡

2𝐷 ∈ R
𝑈 ×𝑊 ×𝐻 is constructed for the explo-

ration sub-strategy and the deterministic local path planning policy.
𝑊 and 𝐻 denote the height and width of𝑀𝑡

2𝐷 , respectively. Each
element in𝑀𝑡

2𝐷 corresponds to a cell of size 25𝑐𝑚2 in the physical
world. Each pixel on the egocentric top-down map is labeled with
the corresponding semantic category, represented with a one-hot
vector with𝑈 = 𝐶 + 2 channels where𝐶 is the number of object cat-
egories, and the extra two channels indicate obstacles and explored
regions. An encoder 𝐹𝜗 consisting of fully convolutional networks
is employed to extract the scene layout features in𝑀𝑡

2𝐷 . The scene
5
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layout features and the 3D geometric cues encoded by 𝐹𝜑 are fed
into the exploration sub-strategy to predict exploration goals 𝑔𝑡

𝐸𝑥𝑝
.

This paper highlights the significant contributions of ECL pre-
trained encoders to both scene exploration and object recognition.
As shown in Fig. 3, we employed a similar corner-guided explo-
ration sub-strategy as in 3DAware [62]. Please see Section F of the
supplementary material for more details. The target goal 𝑔𝑡𝑡𝑎𝑟𝑔𝑒𝑡 is
the set of elements in the 2D semantic map with semantic 𝑐𝑡𝑟𝑎𝑔𝑒𝑡 .
To be specific, once the probability that part of the point clouds
in the current 3D local map belongs to the target category 𝑐𝑡𝑟𝑎𝑔𝑒𝑡
is greater than the threshold predicted by our object recognition
sub-policy, the agent recognizes the object target. Then, this part of
the point clouds is projected onto the 2D semantic map to localize
the positions of the object target 𝑔𝑡𝑡𝑎𝑟𝑔𝑒𝑡 . The goals 𝑔

𝑡
𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑔

𝑡
𝐸𝑥𝑝

from two sub-strategies will be consistently updated during Object-
Nav. The Fast Marching Method [49] is used to plan the shortest
path from the agent’s current location to the goal, which is followed
by the agent by taking deterministic actions.

4 EXPERIMENTS
4.1 Experimental Setups
Object Detection and Instance Segmentation. We perform ex-
periments on the Habitat simulator [47] with the Gibson [54]
dataset that contains photorealistic 3D reconstructions of real-
world environments. Following previous works [8, 9], we use 25
train / 5 val scenes from the Gibson tiny split for our experiments
where semantic annotations are available. The agent’s observation
space consists of 640 × 480 RGB-D images. The agent’s discrete
action space consists of Move_Forward (0.25m), Turn_Left (30◦),
and Turn_Right (30◦). Our agent performs about 819K frames of
interactive learning in diverse scenarios to optimize the exploration
policy 𝐸2-CL, the visual encoder 𝑓𝜃 , and the PCL encoder 𝑓𝜑 . Our
ECL is carried out on four NVIDIA 3090 GPUs and takes about 72
hours. The pseudo-code, hyperparameters, and training curves of
ECL are listed in Section B of the supplemental material.

For downstream task retraining, our agent actively acts to collect
10K visual frames in each training scene using 𝐸2-CL. That is, a total
of 250K visual frames are collected. Meanwhile, the corresponding
semantic labels are extracted from the Habitat simulator [47] as
supervision signals for retraining object detection and instance seg-
mentation models. Following evaluation setups in previous works
[8, 9], we use six common indoor object categories for our experi-
ments: chair, couch, bed, toilet, TV, and potted plant. Thus, 250K
frames of images contain a total of about 316K objects. We consider
two evaluation settings: (1) Train Split. 5K images containing
6393 objects are randomly sampled from 25 in-distribution training
scenes (200 images per scene). (2) Test Split. 5K images containing
5025 objects are randomly sampled from 5 out-of-distribution test
scenes (1000 images per scene).

Our method is implemented by using the collected 250K frames
to retrain the ResNet50 pre-trained by ECL. To highlight the contri-
butions of our ECL to object-oriented visual representation learning,
the following baselines are selected for comparative study: SimCLR
[15], CRL [20], OVRL [55], 𝐸𝑔𝑜2-MAP† [28], Pri3D [29], and MIT
[57]. Among them, CRL [20] employs an adversarial contrastive
loss for embodied visual representation learning based on only

Table 1: Performance of different methods on object detec-
tion and instance segmentation tasks.

Method (Venue)
Train Split Test Split

ObjDet InstSeg ObjDet InstSeg
𝐹𝑟𝑜𝑚 𝑆𝑐𝑟𝑎𝑡𝑐ℎ 62.93 52.94 15.01 13.20
𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 70.03 60.47 22.20 19.43
SimCLR [15] (ICML 2020) 66.37 54.82 20.17 18.40
CRL [20] (ICCV 2021) 68.21 56.54 22.45 19.61
Pri3D [29] (ICCV 2021) 70.28 59.86 25.34 23.04
OVRL [5, 55] (ICLR 2023) 67.56 54.82 22.23 20.18
𝐸𝑔𝑜2-MAP† [28] (ICCV 2023) 67.29 54.97 20.72 19.89
MIT [57] (ICCV 2023) 68.30 56.88 24.19 22.61
From ECL (Ours) 72.32 62.11 25.89 23.81

RGB images. 𝐸𝑔𝑜2-MAP [28] proposes a multimodal contrastive
representation learning method based on visual features and 2D
semantic maps. Since we do not have access to the source code
of 𝐸𝑔𝑜2-MAP, the RGB images and the 2D semantic maps in our
method are utilized to replicate the approach as much as possible.
The replicated approach is named 𝐸𝑔𝑜2-MAP†. To ensure fair com-
parisons, the RGB images used to pre-train our method are saved
for the pre-training of SimCLR [15] and OVRL [55]. Besides the
RGB images, additional 2D semantic maps are collected for the
pre-training of 𝐸𝑔𝑜2-MAP†. Moreover, another two fundamental
baselines are set: (1)A raw ResNet50 without pre-training is trained
in a supervised manner using the collected 250K frames, which
is named 𝐹𝑟𝑜𝑚 𝑆𝑐𝑟𝑎𝑡𝑐ℎ. (2) The collected 250K frames are used
to retrain the ImageNet-supervised pre-trained weights, which is
named 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 .

We report the bounding box and the mask AP scores for Ob-
ject Detection (ObjDet) and Instance Segmentation (InstSeg) tasks,
respectively. AP is the average precision averaged over multiple
Intersection over Union (IoU) (10 IoU thresholds of .50:.05:.95) and
is the primary challenge metric in the COCO dataset [37]. IOU
is defined to be the intersection over union of the predicted and
ground-truth bounding box or the segmentation mask.

Object Navigation. We perform experiments on the MP3D
[7] and Gibson [54] datasets with the Habitat simulator [47]. For
Gibson, we use 25 train / 5 val scenes from the Gibson tiny split.
Following existing works [62], we consider 6 goal categories, in-
cluding chair, couch, potted plant, bed, toilet, and TV. For MP3D,
we use the standard split of 61 train / 11 val scenes with the Habitat
ObjectNav dataset [47], which consists of 21 goal categories. In
the pre-training phase, the visual encoder 𝐹𝜃 and the PCL encoder
𝐹𝜑 are optimized using our ECL method in diverse Gibson and
MP3D scenes, respectively. Subsequently, 𝐹𝜃 and 𝐹𝜑 are integrated
into the framework shown in Fig. 3 for object navigation. Both
our ECL and ObjectNav agents have 640 × 480 RGB-D observation
spaces for constructing semantic maps. The discrete action space of
our ObjectNav agent consists of Move_Forward (0.25m), Turn_Left
(30◦), Turn_Right (30◦), and Stop. Note that, the RGB-D {𝑜𝑡 , 𝑑𝑡 } and
pose 𝑠𝑡 readings are noise-free from simulation. The pre-trained 2D
semantic model RedNet [31] and the Mask-RCNN [24] trained with
COCO dataset [37] are employed for 2D and 3D semantic mapping
on MP3D and Gibson datasets, respectively. For each frame, we
randomly sample 512 points for PCL-based 3D semantic construc-
tion. That is, the number of points in the 3D local semantic map
is 𝑄𝑡 = 512 × (𝑙 + 1). During training, we sample actions every 25
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Table 2: ObjectNav results onMP3D (val). † denotes the results
we obtained using the official open-source code.

Method (Venue)
MP3D (val)

SR (%) ↑ SPL (%) ↑ DTS (m) ↓ Ext. Data
DD-PPO [53] (ICLR 2019) 8.0 1.8 6.90 no
FBE [56] (First proposed in 1997) 22.7 7.2 6.70 no
ANS [10] (CVPR 2020) 21.2 9.4 6.30 no
SemExp [9] (NeurIPS 2020) 28.3 10.9 6.06 no
Red-Rabbit [58] (ICCV 2021) 34.6 7.9 - no
TreasureHunt [40] (ICCV 2021) 28.4 11.0 5.58 yes
Habitat-Web [46] (CVPR 2022) 35.4 10.2 - yes
L2M [22] (ICLR 2022) 32.1 11.0 5.12 no
PONI [45] (CVPR 2022) 27.8 12.0 5.60 no
OVRL [55] (ICLR 2023) 28.6 7.4 - no
𝐸𝑔𝑜2-MAP [28] (ICCV 2023) 29.0 10.6 5.17 yes
3D-Aware† [62] (CVPR 2023) 33.4 13.6 5.03 no
ECL-ObjectNav (Ours) 34.8 14.7 4.95 no

steps and use the PPO [48] for both object localization and scene
exploration sub-policies.

To evaluate all methods qualitatively, the following three met-
rics are reported: (1) Success Rate (SR): percentage of successful
episodes, (2) SPL: success weighted by path length, which measures
the efficiency of the agent over oracle path length. SPL ranges from
0 to 1 and higher SPL indicates better model performance. (3) DTS:
geodesic distance of agent to the object goal at the end of the episode.
In addition, we report which methods use external data (Ext. Data)
to enhance ObjectNav. Besides using the 𝑅𝑎𝑛𝑑𝑜𝑚 𝑆𝑎𝑚𝑝𝑙𝑒 and clas-
sical FBE as non-learning baselines, we consider the following main-
stream baselines in the ObjectNav task: (1) End-to-end strategies:
DD-PPO [53], Habitat-Web [46], Red-Rabbit [58], TreasureHunt
[40], OVRL [55], and 𝐸𝑔𝑜2-MAP [28]. (2) Modular strategies: FBE
[56], ANS [10], SemExp [9], FSE [59], L2M [22], PONI [45], and
3D-Aware [62].

4.2 Object Detection and Instance Segmentation
The quantitative comparative results between our method and sev-
eral baselines on the object recognition tasks are shown in Table 1.
Firstly, as expected, both self-supervised and 𝐼𝑚𝑎𝑔𝑒𝑛𝑒𝑡 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑

baselines have significant performance gains relative to 𝐹𝑟𝑜𝑚 𝑆𝑐𝑟𝑎𝑡𝑐ℎ.
This phenomenon reflects that different types of pre-training can
improve the models’ performance on both tasks. Secondly, our
method and Pri3D outperform 𝐼𝑚𝑎𝑔𝑒𝑛𝑒𝑡 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 pre-training
models on both tasks. These results reflect the potential and supe-
riority of 2D-3D self-supervised contrastive learning, i.e., the 3D
scene priors can enrich the 2D visual features. Thirdly, the advan-
tages of embodied contrastive learning over offline self-supervised
learning are revealed by comparing CRL with SimCLR (or OVRL).
Notably, CRL, SimCLR, and OVRL are retrained using the same
250K visual frames. The difference is that CRL uses an adversarial
contrastive loss for interactive visual pretraining, while SimCLR
and OVRL are pre-trained offline using saved data.

Fourthly, the experimental results of 𝐸𝑔𝑜2-Map† indicate that
contrastive learning between 2D visual features and 2D semantic
maps yields no significant performance improvement. In contrast,
the exchange of information between 2D visual features and 3D
geometric cues facilitates the accuracy of object recognition tasks.
In particular, Pri3D improves the AP metrics by 3.91 (Train Split)

Table 3: ObjectNav results on Gibson (val). † denotes the re-
sults we obtained using the official open-source code.

Method (Venue)
Gibson (val)

SR (%) ↑ SPL (%) ↑ DTS (m) ↓ Ext. Data
DD-PPO [53] (ICLR 2019) 15.0 10.7 3.240 no
FBE [56] (First proposed in 1997) 41.7 21.4 2.63 no
𝑅𝑎𝑛𝑑𝑜𝑚 𝑆𝑎𝑚𝑝𝑙𝑒 54.4 28.8 1.92 no
ANS [10] (CVPR 2020) 67.1 34.9 1.66 no
SemExp [9] (NeurIPS 2020) 65.2 33.6 1.52 no
PONI [45] (CVPR 2022) 73.6 41.0 1.25 no
FSE [59] (ICRA 2023) 71.5 36.0 1.35 no
3D-Aware† [62] (CVPR 2023) 73.8 39.6 1.39 no
ECL-ObjectNav (Ours) 74.6 41.7 1.27 no

and 5.17 (Test Split) absolutely on the object detection task rela-
tive to the self-supervised learning baseline (SimCLR). Similarly,
Pri3D improves the AP metrics by 5.04 (Train Split) and 4.64 (Test
Split) absolutely on the instance segmentation task relative to the
self-supervised learning baseline (SimCLR). Finally, our method
achieves the best AP metrics on two splits of both two tasks. On the
one hand, by comparing our method with offline self-supervised
learning baselines (methods other than CRL), the results reveal the
necessity of embodied contrastive learning using 2D visual features
and 3D geometric structures. On the other hand, by comparing
it with existing offline 2D-3D contrastive representation learning
baselines (Pri3D and MIT), our results demonstrate the superiority
of our behavioral awareness and geometric consistency modeling.

4.3 Object Navigation
Our ECL-enhanced ObjectNav policy is evaluated on the MP3D(val)
and Gibson(val) datasets. As shown in Table 2, our method im-
proves the SR and SPL metrics by 12.1%∼26.8% and 7.5%∼12.9%
compared to the learning-based (DD-PPO) and classical frontier-
based (FBE) baselines, respectively. In the comparative studies with
SOTA methods (OVRL, 𝐸𝑔𝑜2-MAP, and 3D-Aware†), our policy
improves the SR and SPL metrics by 1.4% ∼ 6.2% and 1.1% ∼ 7.3%
compared to the end-to-end and modular approaches, respectively.
Moreover, our scheme achieves the best DTS metric on MP3D(val).
Notably, Habitat-Web achieved the best SR metric on MP3D (Val)
thanks to the use of a large amount of external data. Nevertheless,
our scheme competes strongly with the external data enhanced
methods (TreasureHunt, Habitat-Web, and 𝐸𝑔𝑜2-MAP).

As an end-to-end approach, OVRL uses a knowledge distillation-
like self-supervised learning method to pre-train the visual encoder.
In contrast, 𝐸𝑔𝑜2-MAP further introduces additional contrastive
pre-training based on 2D visual features and 2D scene priors. How-
ever, OVRL and 𝐸𝑔𝑜2-MAP perform less well than our method. The
superiority of our approach is partly attributed to modeling BA
and GC in an embodied manner, and partly to a modular strategy
design based on semantic maps. More significantly, our approach
likewise outperforms the modular and semantic map-based Object-
Nav schemes (SemExp, L2M, and PONI). In particular, our approach
outperforms 3D-Aware†, which also attempts to exploit the 3D
scene priors. Such experimental results reflect the contributions of
our ECL-based pre-trained point cloud encoder and visual encoder
for scenario exploration and object recognition tasks. Moreover,
our BA and GC-based embodied pretraining provides new ways
for active scene perception and object recognition.
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Figure 4: An ObjectNav demo on the Gibson dataset.

As shown in Table 3, our method’s performance on Gibson(val)
is similar to that on MP3D(val). These experimental results reflect
our scheme works universally on different datasets. Quantitatively,
our method improves the SR and SPL metrics by 0.8% ∼ 3.1% and
0.7% ∼ 5.7% compared to the SOTA methods (FSE, PONI, and 3D-
Aware†), respectively. Our method employs an enhanced corner-
guided exploration policy, which is distinct from that of SemExp,
FSE, and 3D-Aware†. This is one of the reasons why we achieve
good ObjectNav performance. Qualitatively, a specific ObjectNav
example on the Gibson dataset is shown in Fig. 4. The agent initially
recognizes the couch as a chair due to a semantic segmentation
error. Although the segmentation error has been corrected to some
extent, point clouds with the couch semantic in the map are still
intermingled with point clouds with chair semantics. Luckily, the
features provided by our pre-trained visual encoder motivate the
agent to make correct recognition and navigate to a chair in another
room. Please see Section H of the supplementary material for more
ObjectNav examples.

In addition, we evaluate our method’s generalization ability
across datasets to verify whether it can handle unseen scenarios,
as detailed in Section E of the supplementary material. The experi-
mental results show that ECL pre-training across datasets likewise
enhances the ObjectNav performance. As expected, the behavior-
aware visual features that fuse 2D-3D cross-modal scene priors can
be generalized to novel and unseen scenes.

4.4 Ablation Studies
We conduct ablation studies on specific components in the ECL,
and the results are shown in Table 4. Specifically, we employ com-
binations of different components to implement ECL and evaluate
the pre-trained models on two object recognition tasks. We first
ablate BAL𝐶𝐸 and GCL𝐸𝐶𝐿 while retaining the exploration policy
𝐸2-CL (R𝑉 and R𝐴) (line 1 ∼ line 3). The results reflect that both BA
and GC enhance our method’s performance. The best results are

Table 4: Ablation studies of specific components in ECL.
Ablations Train Split Test Split

R𝑉 R𝐴 L𝐶𝐸 L𝐸𝐶𝐿 ObjDet InstSeg ObjDet InstSeg
✓ ✓ 67.59 55.27 21.62 20.08
✓ ✓ ✓ 70.10 59.88 23.65 22.92
✓ ✓ ✓ 70.62 60.19 23.43 22.38
✓ ✓ ✓ ✓ 72.32 62.11 25.89 23.81

✓ ✓ 67.89 56.03 21.74 20.81
✓ ✓ ✓ 69.33 58.94 24.10 21.25

✓ ✓ ✓ 70.51 59.26 25.22 23.47

Table 5: Ablation studies of specific features in ObjectNav.
Ablations Gibson (val)
𝐹𝜃 𝐹𝜑 SR (%) ↑ SPL (%) ↑ DTS (m) ↓
✓ 74.4 41.5 1.28

✓ 74.0 41.2 1.30
✓ ✓ 74.6 41.7 1.27

achieved when both are used at the same time. In addition, we retain
BA and GC and ablate the different components of 𝐸2-CL. Line 5 of
Table 4 indicates that a randomized wandering exploration method
is used. The results show that both R𝑉 and R𝐴 enhance our method.
Notably, Line 3 of Table 4 shows that better AP metrics can also
be achieved by using only L𝐶𝐸 (without L𝐸𝐶𝐿), which suggests
that action awareness facilitates the agent’s active movement and
perception in the scenarios. The comparison with the randomized
wandering exploration also demonstrates the superiority of our
𝐸2-CL. Please see Section C of the supplementary material for more
comparative studies on exploration strategies.

As shown in Table 5, the contributions of 𝑓𝜃 and 𝑓𝜑 are ablated
by adopting or not adopting the pre-trained models to initialize the
ObjectNav policy. The results show the enhanced ObjectNav per-
formance by using our BA and GC-based 2D-3D multimodal ECL.
Both pre-trained 𝑓𝜃 and 𝑓𝜑 can boost the SR and SPL metrics. Ad-
ditional parametric studies and computational cost evaluation are
available in Section D and Section G of the supplemental material,
respectively.

5 CONCLUSION
This paper focuses on ObjectNav and proposes a novel embodied
contrastive representation learning method based on BA and GC,
named ECL. In addition, we equip ECL with an exploration strategy
𝐸2-CL based on a curiosity and action awareness-driven contrastive
reward. Unlike previous self-supervised learning methods based
on RGB images, our approach performs an organic cross-modal
fusion of semantically rich 2D visual patterns and 3D geometric
structural features. In addition, our embodied BA and GC modeling
outperforms existing purely vision-based self-supervised learning
approaches and offline 2D-3D contrastive representation learning
techniques on object recognition tasks. By integrating the pre-
trained point cloud encoder and visual encoder into a modular
ObjectNav framework, our policy achieves the best performance on
the MP3D and Gibson datasets. These improvements are attributed
to the adequate scene representation capability and excellent object
recognition potential of our pre-trained models. In particular, the
ablation studies also indicate the effective contributions of the
individual components in our method. In the future, more efficient
embodied learning paradigms and 3D feature extraction methods
need to be further investigated and discussed.
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