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Abstract

This work extends the theory of identifiability in supervised learning by considering the
consequences of having access to a distribution of tasks. In such cases, we show that linear
identifiability is achievable in the general multi-task regression setting. Furthermore, we
show that the existence of a task distribution which defines a conditional prior over latent
factors reduces the equivalence class for identifiability to permutations and scaling of the
true latent factors, a stronger and more useful result than linear identifiability. Crucially,
when we further assume a causal structure over these tasks, our approach enables simple
maximum marginal likelihood optimization, and suggests potential downstream applications
to causal representation learning. Empirically, we find that this straightforward optimization
procedure enables our model to outperform more general unsupervised models in recovering
canonical representations for both synthetic data and real-world molecular data.

1 Introduction

Multi-task regression is a common problem in machine learning, which naturally arises in many scientific
applications such as molecular property prediction (Stanley et al., 2021; Chen et al., 2023) and machine
learning force fields (Jacobson et al., 2023). Despite this, most deep learning approaches to this problem
attempt to model the relationships between tasks through heuristic approaches, such as fitting a shared neural
network in an attempt to capture the joint structures between tasks. Beyond lacking a principled approach
to modeling task relationships, these approaches fail to account for how we may expect the latent factors
for related tasks to change. In this work, we show that by leveraging assumptions about the relationships
between the latent factors of the data across tasks, in particular that they vary in their causal and spurious
relationships with the target variables, we can achieve identifiability of the latent factors up to permutations
and scaling.

A common assumption in the causal representation learning literature, known as the sparse mechanism shift
hypothesis (Schölkopf, 2019; Schölkopf et al., 2021; Perry et al., 2022), states that changes across tasks arise
from sparse changes in the underlying causal mechanisms. While we do not operate directly on structural
causal models, our result arises by similarly considering the implications of sparse changes in the causal graph
defining a multi-task learning setting. We accomplish this by first extending the theory of identifiability in
supervised learning to the multi-task regression setting for identifiability up to linear transformations (i.e.,
weak identifiability). We then propose a new approach to identifying neural network representations up
to permutations and scaling (i.e., strictly strong identifiability), by leveraging the causal structures of the
underlying latent factors for each task. We empirically validate our model’s ability to recover the ground-
truth latent structure of the data both in simulated settings where data is generated from our model and
for real-world molecular data. This contrasts with current state-of-the-art approaches such as (Khemakhem
et al., 2020a; Lu et al., 2022), whose assumptions also fit our assumed data generating process but which
are difficult to train effectively and only identifiable up to block permutations and scaling of the sufficient
statistics of their exponential family priors. We summarize our contributions in the following section.
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1.1 Contributions

Our work extends the current identifiability literature in the following key aspects.

1. In contrast to prior work (Lachapelle et al., 2023; Fumero et al., 2023) which relates meta/multi-
task learning to identifiability via explicit sparsity constraints, this work expands these conceptual
connections beyond sparsity constraints by considering the shared causal structure between tasks.
This significantly reduces the number of tasks needed to recover the true representations.

2. Our method extends previous identifiability results by resolving the point-wise indeterminacies of
prior work (Khemakhem et al., 2020a; Lu et al., 2022).

3. Our model extends the applicability of conditional prior models to discriminative settings at test
time as our identifiability result does not require conditioning on the target values during inference.

4. To our knowledge, our approach is the first to propose a conditionally factorized prior model which
can achieve identifiability via optimizing the exact marginal likelihood. This leads to improved
empirical results in our experiments despite the probabilistic assumptions of our model.

5. While many works have shown that spurious correlations are a failure case of deep learning and focus
on eliminating them (Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Krueger et al., 2021; Eastwood
et al., 2022; Lu et al., 2022; Kirichenko et al., 2023), we leverage spurious features to improve the
robustness of learned representations in the multi-task setting through our identifiability results.

2 Related Work

2.1 Disentanglement and ICA

The notion of optimizing for disentangled representations gained traction in the recent unsupervised deep
learning literature when it was proposed that this objective may be sufficient to improve desirable attributes
such as interpretability, robustness, and generalization (Bengio et al., 2013; Higgins et al., 2017; Chen
et al., 2016). However, the notion of disentanglement alone is not intrinsically well-defined, as there may
be many disentangled representations of the data which are seemingly equally valid. Thus it is not clear
a priori that this criterion is sufficient to achieve the above desiderata (Locatello et al., 2019). In the
identifiable representation learning literature, the correct disentangled representation is assumed to be the
one corresponding to the ground-truth data generating process. Thus, what is required is an identifiable
representation, which must be equivalent to the causal one for sufficiently expressive model classes. In the
linear case, identifiability results exist in the classical literature for ICA, which requires non-Gaussianity
assumptions on the sources for the data (Herault & Jutten, 1986; Comon, 1994).

2.2 Conditional Prior Models for Non-Linear ICA

Many extensions of ICA to the non-linear case have been proposed, together with significant theoretical
advances. In particular, Hyvarinen et al. (2019) extend this by assuming a conditionally factorized prior
over the latent factors given some observed auxiliary variables, and propose a contrastive learning objective
for recovering the inverse of the function which generated the observations. iVAE (Khemakhem et al., 2020a)
further extends this to the setting of noisy observations, drawing connections with variational autoencoders
(Kingma & Welling, 2013) and enabling direct optimization via a variational objective. Lachapelle et al.
(2022) demonstrate that strong identifiability results remain achievable under weaker conditions on the
sufficient statistics of the prior if the data generating process implies that the latent factors are governed by
sparse mechanism shifts. iCaRL (Lu et al., 2022) derives analogous results for the case where the prior over
the latent factors is a more general non-factorized exponential family distribution. However, the complex
nature of the prior requires score matching, which is difficult to optimize in practice. Khemakhem et al.
(2020b) explore general conditions for identifiability in energy-based models, and introduce the notion of
linear identifiability. This is expanded upon in the context of classification models in Roeder et al. (2021),
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showing that the representations obtained via the final hidden layer of a neural network may be identifiable
up to linear transformations when conditioning on the label set. The works of Hälvä et al. (2021); Morioka
et al. (2021) both obtain strong identifiability results by exploiting specific temporal or spatial structure
in the encoded latents and modelling the joint distributions as dynamical systems, however their models
do not translate well to the static setting, and their identifiability results remain restricted to non-linear
coordinate-wise transformations of the latent variables.

While Hyvärinen & Pajunen (1999); Khemakhem et al. (2020a) show that identifiability is not achievable
without any form of conditioning in the prior, Willetts & Paige (2021); Kivva et al. (2022) recently extended
the results in unsupervised generative models to the case of models with mixture model priors. This can
be seen as providing analogous identifiability results to prior methods using conditionally factorized priors,
without assumptions on the observability or the dimensionality of the conditioning variable. Nonetheless,
these results do not apply to the exact likelihood, and it remains unclear to what extent the practical
consistency and identifiability is achievable when optimizing a variational surrogate objective.

2.3 Structural Approaches to Identifiability

In contrast, Brady et al. (2023) discuss identifiability results which arise from assumptions on the structure
of the mixing function, specifically targeting dual objectives of compositionality with respect to partitions
of the latent factors and invertibility of the mixing function. Thus, no distributional assumptions are made
on the prior. While this approach has similarities with our proposal by introducing assumptions on how
partitions of the latent space evolve with respect to well-defined objects, we propose a general setting which
is not restricted to representation learning in visual scenes. Furthermore, by formalizing these assumptions
within our probabilistic model, we eliminate the need for auxiliary terms in our optimization objective.

Recent work (Lachapelle et al., 2023; Fumero et al., 2023) has expanded this area of research to consider
the multi-task and meta-learning settings, and thus investigate the connections between identifiability and
the structure of the learning problem itself. However, their approach to achieving permutation-identifiable
representations relies on introducing heuristic sparsity constraints, such as entropy and L2-norm regularizers,
within a bi-level optimization objective, which turns out to be difficult to solve both in theory and in practice
(Sinha et al., 2017). In addition, their approaches are less applicable in practice since a huge number of
tasks are required (more than 105 in their experiments). This contrasts with the straightforward, principled
and task-efficient optimization objective arising from our probabilistic model.

3 Proposed Method

We propose a novel method that leverages task structures in the multi-task regression setting to identify the
ground-truth data representations up to permutations and scaling.

3.1 Problem Formulation
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y

Figure 1: Assumed data
generating process.

The assumptions of the ground-truth data generating process considered in this
paper are encapsulated in the causal graph shown in Figure 1, where the input
variable x ∈ X ⊆ Rn, the target variable1 y ∈ R and the task index variable
t ∈ {1, · · · , Nt} are observed variables, and the latent factors z ∈ Rd (d ≤ n)
are unobserved variables. We assume that x is generated by transforming
some (unobserved) ground-truth latent factors z∗ with some unknown injective
mixing function f∗ : Rd → X , i.e., x = f∗(z∗). To incorporate the sparse
mechanism shift hypothesis across tasks, we further assume that each task t
has its own partition of the ground-truth latent factors z∗ = z∗

c ∪ z∗
s into a

set of causal latent factors z∗
c and a set of spurious latent factors z∗

s, and such
partitions potentially vary across tasks. The target variable is assumed to be
a weighted sum of the causal latent factors, i.e., y = (w∗

t )Tz∗, where w∗
t ∈ Rd

1Without loss of generality, we assume that E(y) = 0. This can be achieved by standardizing y in practice.
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Figure 2: The workflow of our proposed method. Shapes are used to track the positions of the ground-truth
and recovered latent factors. Colors are used to differentiate between causal and spurious latent factors. We
assume that the observed variable is obtained by transforming the ground-truth latent factors with some
mixing function. We show that a multi-task regression network (MTRN) can recover the ground-truth latent
factors (i.e., data representations) up to linear transformation and further propose a multi-task linear causal
model (MTLCM) to reduce the equivalence class for identifiability to permutations and scaling.

are the ground-truth regression weights for task t which assign zero weights for the spurious latent factors.
Note that there may be latent factors that are uncorrelated with y in some tasks, which can be included
within z∗

c but with zero regression weights. The spurious latent factors are assumed to be generated from
the target variable with a different linear correlation function in each task t. Our goal is to recover the
unobserved ground truth latent factors z∗ given an empirical task distribution p(t) over Nt training tasks
and an empirical data distribution p(x, y|t) for each task t ∈ {1, · · · , Nt}.

Overall, our proposed method consists of two stages as illustrated in Figure 2. In the first stage (yel-
low), we train a multi-task regression network (MTRN) with a feature extractor shared across tasks and
Nt task-specific linear heads using maximum likelihood estimation. We show that upon convergence, the
representations learned by the feature extractor are identifiable up to some invertible linear transformation
(Corollary 3.3). In the second stage (green), we use the assumed causal structure across tasks to define a
conditional prior over the underlying independent latent factors. We show that this multi-task linear causal
model (MTLCM) enables simple maximum marginal likelihood learning for recovering the linear transforma-
tion in the representations obtained in the first stage, which reduces the identifiability class to permutations
and scaling (Theorem 3.8), and automatically disentangles and identifies the causes and effects of the target
variable from the learned representations.

3.2 Stage 1: Multi-Task Regression Network

In the first stage, we train a multi-task regression network (MTRN) to recover the ground-truth latent factors
up to some invertible linear transformation.

Let fϕ,wt
(x) = wT

t hϕ(x) be the output of an MTRN for task t, where wt ∈ Rd are the regression weights
in the linear head for task t, and hϕ(x) ∈ Rd is the data representation produced by the feature extractor
hϕ shared across all tasks with learnable parameters ϕ. As in typical non-linear regression settings, the
likelihood is assumed to be Gaussian pθ(y|x, t) = N (y|fϕ,wt(x), σ2

r,t) with mean modeled by an MTRN and
variance fixed to some constant σ2

r,t, where θ := (ϕ, w1, · · · , wNt) denotes all parameters in the MTRN.

We first define linearly identifiable (or weakly identifiable) representations in the multi-task setting.
Definition 3.1 (Multi-task weak identifiability). Let θ and θ′ be any two sets of parameters. Then, the
data representations are linearly identifiable if there exists an invertible matrix A ∈ Rd×d such that

pθ′(y|x, t) = pθ(y|x, t), ∀t, x, y =⇒ hϕ′(x) = Ahϕ(x). (1)

We show that data representations of MTRN are linearly identifiable if we have access to a set of sufficiently
diverse tasks measured by the linear dependencies among their regression weights.
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Theorem 3.2. Let θ := (ϕ, {wti
}Nt

i=1) and θ′ := (ϕ′, {w′
ti

}Nt
i=1) be any two sets of parameters such that

pθ(y|x, t) = pθ′(y|x, t), ∀t, x, y. (2)

Assume that Span(Im(hϕ)) = Rd, i.e., the vectors in the image of the feature extractor hϕ span the whole
Rd. Suppose that there exist d tasks {ti}d

i=1 ⊆ {1, · · · , Nt} such that at least one set of regression weights
(i.e., either {wti

}d
i=1 or {w′

ti
}d

i=1) are linearly independent. Then, the data representations of the MTRN
are linearly identifiable.

The proof of Theorem 3.2 can be found in Appendix A.

Following standard practice, we train the MTRN via maximum likelihood estimation (MLE):

θ′ = arg max
θ

Ep(t)p(x,y|t)[log pθ(y|x, t)]. (3)

Using Theorem 3.2, it is straightforward to show that MTRN trained with maximum likelihood estimation
can recover the ground-truth data representations up to some invertible linear transformation.
Corollary 3.3. Let h∗ : X → Rd be the ground-truth mapping from input variables to the ground-truth
latent factors, i.e., z∗ = h∗(x). Assume that Span(Im(h∗)) = Rd. Suppose that there exist d tasks {ti}d

i=1 ⊆
{1, · · · , Nt} such that the set of ground-truth regression weights {w∗

ti
}d

i=1 are linearly independent. Assume
that (3) has a unique solution. Suppose that the optimization procedure for (3) converges to the optimal
predictive likelihood under standard regularity conditions for MLE estimators (Gurland, 1954), i.e.,

pθ′(y|x, t) = p∗(y|x, t) := N (y|(w∗
t )Th∗(x), σ2

r,t), ∀t, x, y. (4)

Then, the feature extractor hϕ′ is guaranteed to recover the ground-truth latent factors up to some invertible
linear transformation A∗, i.e., hϕ′(x) = A∗h∗(x).
Remark 3.4. While Lachapelle et al. (2023)[Proposition 2.2] prove a similar proposition on MLE invariance
to linear feature transformations, their proposition is built upon their Assumption 2.1 that the learned feature
extractor hϕ′ is linearly equivalent to the ground truth feature extractor h∗. However, they do not specify
under what conditions this assumption will hold for the MLE objective; they only specify conditions for the
bi-level objective with a sparsity regularizer in their Section 3. In contrast, our Corollary 3.3 explicitly reveals
such conditions for MLE, i.e., Span(Im(h∗)) = Rd and the existence of d linearly independent ground-truth
task-specific regression weight vectors {w∗

ti
}d

i=1.

3.3 Stage 2: Multi-Task Linear Causal Model

In the second stage, we freeze the feature extractor hϕ′ learned in the first stage and denote its representations
by h := hϕ′(x). Corollary 3.3 suggests that h = A∗z∗ for some invertible matrix A∗. We propose a multi-
task linear causal model (MTLCM) to recover the ground-truth latent factors up permutations and scaling
from h based on our assumed causal graph in Figure 1. The core idea of the MTLCM is to model the change
in the causal and spurious latent factors across tasks with learnable task-specific parameters.

Let T (t) = {ct,γt} be a collection of task-specific variables associated with task t, which are free parameters
to be learned from data, where ct ∈ {0, 1}d are the causal indicator variables which determine the partition
of z = zc ∪ zs for the given task t (i.e., ct,i = 1 indicates that zi is a causal latent factor in task t and
ct,i = 0 indicates that zi is a spurious latent factor in task t), and γt are the coefficients used to generate
the spurious latents from y for task t.

3.3.1 Conditionally Factorized Prior Given Task and Target Variables

We assume that the causal latent factors zc are sampled from a standard Gaussian distribution a priori:

pT (zc|t) = N (zc|0, I), (5)

which depends on the task variable t since the causal indicator variable ct that determines which subset of
latent factors are causal varies across tasks.
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According to the assumed data generating process, the target y is a linear function of the latent data
representations z. Following the common setting of the last layer in a regression neural network, we assume
that y is generated from zc via a linear Gaussian model with the regression weights wt masked by the causal
indicators ct:

pT (y|zc, t) = N (y|(wt ◦ ct)Tz, σ2
p), (6)

and that the spurious latent factors zs are generated from y via another linear Gaussian model:

pT (zs|y, t) = N (zs|yγt, σ2
sI). (7)

The structured conditional prior over all latent factors given t and y can then be obtained by Bayes’ Rule:

pT (z|y, t) = pT (zc|t)pT (y|zc, t)pT (zs|y, t)∫
pT (zc|t)pT (y|zc, t)pT (zs|y, t)dzsdzc

. (8)

Since no prior knowledge of regression weights wt is assumed, we marginalize out wt from pT (y|zc, t) under
an uninformative prior (i.e., an infinite-variance Gaussian prior). This makes the structured conditional
prior factorize over all latent factors (see Appendix C for a derivation):

pT (z|y, t) = pT (zc|t)pT (zs|y, t) = N (z|at, Λt), (9)

where the mean at and covariance Λt can be compactly expressed as:

at := yγt ◦ (1 − ct), Λt := diag(σ2
s(1 − ct) + ct). (10)

3.3.2 Linear Gaussian Likelihood

Since the data representation h learned in the first stage is equivalent to z∗ up to some linear transformation,
we model their relationship with a probabilistic PCA model (Tipping & Bishop, 1999), i.e., we assume a
linear Gaussian likelihood with invertible linear transformation A:

pA(h|z) = N (h|Az, σ2
oI), (11)

where A is to be learned from data, which aims to recover the ground-truth linear transformation A∗ for
the linearly identifiable representation h.

3.3.3 Exact Maximum Marginal Likelihood Learning

Let ψ = (A, T ) denote all parameters in an MTLCM, including the linear transformation A and the task-
specific parameters T (t) = {ct,γt} for all tasks t. The marginal likelihood for MTLCM is given by

pψ(h|y, t) =
∫

pA(h|z)pT (z|y, t)dz = N (h|µt, Σt), (12)

where the mean µt and covariance Σt have closed-form expressions (see Appendix D for a derivation):

µt = yA(γt ◦ (1 − ct)), Σt = Adiag(σ2
s(1 − ct) + ct)AT + σ2

oI. (13)

Remark 3.5. It is important to note that the conditional prior p(z|y) over the latent factors z is typically
non-factorized according to the data generating process described in Section 3, since the causal latent factors
zc are parents of the target variable y, which become correlated when conditioning on y. In order to
guarantee strong identifiability, iCaRL (Lu et al., 2022) parameterizes such non-factorized conditional priors
using ReLU activated energy-based models optimized by variational inference and score matching, which
turns out to be difficult to train in practice due to variational overpruning (Trippe & Turner, 2018) and high
computational complexity (Hyvärinen & Dayan, 2005). In contrast, our proposed structured conditional
prior (9) factorize over all latent factors, which, together with the linear Gaussian likelihood (11), allows us
to use exact maximum marginal likelihood learning for (12) to recover the ground-truth latent factors z∗

up to permutations and scaling from the linearly identifiable data representations h = hϕ(x) learned in the
first stage:

ψ′ = arg max
ψ

Ep(t)p(x,y|t)[log pψ(hϕ(x)|y, t)]. (14)
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Remark 3.6. It is worth noting that our method has greater applicability for supervised learning than the
methods that rely on a learned probabilistic inverse qψ(z|u) to extract identifiable latent factors from data
such as iVAE (Khemakhem et al., 2020a) and iCaRL (Lu et al., 2022). While these approaches theoretically
could apply to learned representations in discriminative settings by letting u = (x, y), they are impractical
in such contexts since qψ(z|x, y) depends on the target variable y which is generally unknown at test time.
In contrast, our method does not depend on y at inference time, since the identifiable latent factors can be
obtained by applying the inverse linear transformation learned by the MTLCM to the linearly identifiable
data representations produced by the MTRN, i.e., z = A−1hϕ(x). This enables our model to be applicable
to discriminative settings at test time.

3.3.4 Identifiability Theory

We first define the concept of strictly strong identifiability in the multi-task setting.
Definition 3.7 (Strictly strong identifiability). Let ψ and ψ′ be any two sets of parameters. The latent
factors are identifiable up to permutations and scaling if there exists a permutation and scaling matrix
P ∈ Rd×d such that

pψ′(h|y, t) = pψ(h|y, t), ∀h, t, y =⇒ (A′)−1h = PA−1h. (15)

We show that the latent factors of MTLCM are strictly strongly identifiable if there are sufficient variations of
causal/spurious latent factors across tasks measured by the linear dependencies among the natural parameters
of their conditional priors.
Theorem 3.8. Let u := [y, t] denote the conditioning variable and k := 2d. Assume that the learned
and ground-truth linear transformations A and A∗ are invertible. Suppose that there exist k + 1 points
u0, u1, · · · , uk such that

L := [η(u1) − η(u0), · · · ,η(uk) − η(u0)] (16)

is invertible, where η(u) :=
[

Λ−1
t at

− 1
2 diag(Λt)

]
∈ Rk are the natural parameters of pT (z|u). Assume that (14)

has a unique solution. Suppose that the optimization procedure for (14) converges to the optimal marginal
likelihood under standard regularity conditions for maximum marginal likelihood estimators (Gurland, 1954),
i.e., for all h, y, t,

pψ′(h|y, t) = p∗(h|y, t) := N (h|µ∗
t , Σ∗

t ), (17)

where µ∗
t and Σ∗

t are defined by Equation (13) but with the ground-truth linear transformation A∗, ground-
truth causal indicators c∗

t and ground-truth spurious coefficients γ∗
t . Then, the latent factors recovered by

MTLCM are guaranteed to be strictly strongly identifiable.
Remark 3.9. The proof of Theorem 3.8 can be found in Appendix B. The first part of the proof adapts
the proof technique from Khemakhem et al. (2020a) to show identifiability up to block permutations and
scaling. The second part of the proof is novel, which leverages the properties of the linear likelihood as
shown in Equation (11) to further reduce the block-identifiable equivalence class to permutations and scaling
of the actual ground-truth latent factors. This resolves the point-wise indeterminacies of Khemakhem et al.
(2020a); Lu et al. (2022) as they are only identifiable up to block transformations.

3.4 Discussion of Model Assumptions

This section discusses some of the main assumptions underlying our model and their implications.

Regarding causal associations, our model proposes that the correlations between latent factors and the
regression targets for each task be modelled as a partitioning of causal and spurious influences. We provide
real-world motivating examples to justify this assumption in Appendix F. One could in principle consider
other cases; one where there is no correlation between a latent variable and the target, or one where the
correlation between a latent variable and the target arises from a confounding variable. We note that the
former case could be handled by the model by treating it as a causal variable with a regression weight of zero.
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Table 1: Identifiability performance for recovering the linearly transformed synthetic latent factors measured
by strong MCC (%).

#Causal 2 4
#Latent/Observed 3/3 5/5 10/10 20/20 50/50 5/5 10/10 20/20 50/50

iVAE 87.75±5.02 78.02±0.73 81.36±0.57 82.30±0.27 81.96±0.07 81.67±2.97 74.29±0.30 77.57±0.15 79.79±0.10
iCaRL 75.22±6.40 74.55±2.09 72.37±2.22 79.43±0.52 80.00±1.00 66.98±1.32 66.00±3.00 71.54±1.69 78.67±0.61

MT-iVAE 91.78±8.12 90.14±5.01 99.89±0.04 97.90±1.51 90.56±3.18 76.09±7.69 76.36±2.32 98.42±0.88 94.53±2.49
MT-iCaRL 81.09±3.37 71.12±2.97 76.13±0.53 79.26±1.00 81.30±0.84 61.55±1.26 64.04±1.08 72.79±1.92 79.54±0.59
MTLCM 99.95±0.01 99.96±0.01 99.77±0.16 99.70±0.16 98.97±0.55 99.95±0.01 99.71±0.21 99.51±0.36 99.14±0.27

In the latter case, this confounding variable would then itself be a latent variable with a causal association
to the target, and thus would not be unobserved. These possibilities are depicted graphically in appendix
E. While it may be interesting for future work to consider the potential pairwise structure between latent
variables, the simplicity of our model’s optimization arises from its conditionally factorized structure.

Regarding probabilistic assumptions, while our model requires certain Gaussianity assumptions, we note
that the final latent representation obtained by our model is a simple transformation only of the arbitrarily
non-linear latent representation obtained from the MTRN described in Section 3.2. Thus, the conditional
Gaussian form of Equation (9) may be viewed as a standard prior as in VAEs (Kingma & Welling, 2013). The
Gaussian assumption in Equation (11) follows the standard linear PCA model (Tipping & Bishop, 1999),
which is a natural choice given the linear identifiability result arising from the MTRN in Stage 1. The linear
Gaussian regression model of Equation (6) is analogous to the standard predictive distribution for the final
layer of regression neural networks.

While the causal and probabilistic assumptions of our approach do not constitute the most general con-
ceivable case, we note that there is an inherent tradeoff between full generality and tractability. Indeed,
prior work which may theoretically allow for more general causal or probabilistic models typically entail an
approximation in the optimization. Further, the empirical results on real-world data of Section 4 suggest
that our approach may indeed be robust to moderate mis-specification.

4 Experiments

This section empirically validates our model’s ability to recover canonical representations up to permutations
and scaling for both synthetic and real-world data. We contrast our model with the more general identifiable
models of iVAE (Khemakhem et al., 2020a) and iCaRL (Lu et al., 2022). For a fair comparison, we also
consider the multi-task extensions of iVAE and iCaRL, namely MT-iVAE and MT-iCaRL, which include
the task variable t in the conditioning variables u in their conditional priors pT (z|u), with the task-specific
parameter T (t) = {vt} to be learned from data, which is the counterpart to T (t) = {ct,γt} in our MTLCM
but has no explicit interpretations with respect to a causal graph. We note that while the works of Fumero
et al. (2023); Lachapelle et al. (2023) also consider methods for identifiability arising from learning across
tasks, their approaches effectively implement a meta-learning setting (i.e., require that the support and query
sets be disjoint in the bi-level optimization process). The assumption on task support variability for the
latter also requires a much larger number of tasks (more than 105 tasks as in their experiments) than what
we consider here. These methods are thus not particularly well suited to comparison with our approach
and we omit them from our baselines. Detailed model configurations can be found in Appendix G. Each
experiment is run until convergence and repeated across 5 random seeds to guarantee reproducibility.

4.1 Synthetic Data

We first validate our approach in the situation when the data generating process agrees with the assumptions
of our models. For each task, we first sample the causal indicator variables c∗

t . The causal latent factors z∗
c are

then sampled from a standard Gaussian prior. These are then linearly combined according to random weights
w∗

t to produce observed targets y with a task-dependent noise corruption. Finally, the spurious variables z∗
s

are generated via different weightings γ∗
t of the target y. This mirrors the causal data generating process

8
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Table 2: Identifiability performance for recovering the non-linearly transformed synthetic latent factors
measured by strong MCC (%). The weak MCC (%) for MTRN is also reported.

#Causal 4 8 12
#Latent/Observed 20/50 20/100 20/200 20/50 20/100 20/200 20/50 20/100 20/200

iVAE 73.11±1.13 77.42±0.20 76.95±0.31 65.18±1.49 68.66±0.14 69.05±0.17 58.70±0.33 60.33±0.27 59.85±0.31
iCaRL 56.70±3.49 63.29±4.26 58.64±2.83 57.09±2.41 60.66±2.74 61.02±2.43 52.93±2.13 58.80±1.81 54.40±2.54

MT-iVAE 71.78±1.45 80.14±0.37 73.89±2.98 65.44±1.60 69.31±0.35 68.56±0.34 55.79±1.61 60.56±0.23 59.61±0.30
MT-iCaRL 67.57±1.97 70.26±3.22 65.52±0.65 63.37±0.84 63.75±2.19 61.61±1.52 57.13±1.07 60.56±0.15 58.10±1.04
MTLCM 93.31±1.10 97.94±0.71 97.44±0.68 95.67±0.16 98.12±0.75 89.05±0.97 95.75±0.14 96.28±1.20 84.28±1.27

MTRN (weak) 89.38±0.71 96.15±0.91 96.19±0.87 93.96±0.22 97.63±0.79 87.75±0.99 95.14±0.17 96.12±1.27 83.70±1.22

described in Section 3. For the linear case, we generate observed data using random linear transformations
of the ground-truth latent factors. For the non-linear case, we extend this to non-linear transformations
parameterized by randomly initialized neural networks and demonstrate that our approach can be combined
with the multi-task identifiability result up to linear transformations to recover permutations and scaling of
the ground-truth. The detailed experimental setup can be found in Appendix H.

4.1.1 Linear Case

We study the ability of our proposed multi-task linear causal model (MTLCM) to recover the latent factors
up to permutations and scaling via the Mean Correlation Coefficient (MCC) as in Khemakhem et al. (2020a).
The synthetic data is generated by sampling 200 tasks of 100 samples each. Each task varies in its causal
indicator variables c∗

t , causal weights w∗
t , and spurious coefficients γ∗

t . We then transform the ground-truth
latent factors z∗ with a random invertible matrix A∗ shared across all tasks to obtain linearly identifiable
representations h. Identifiability in this setting is assessed by directly computing the MCC score between
the representations obtained from our MTLCM and the ground-truth latent factors, which is referred to as
strong MCC. Since the data is known to be linearly identifiable, we use linear likelihoods for the baselines.

In Table 1, we show that MTLCM manages to recover the ground-truth latent factors from h up to per-
mutations and scaling, and the result is scalable as the number of latent factors and the number of causal
factors increase. In contrast, iVAE, iCaRL and their multi-task extensions underperform our model by a
large margin in most cases. We find that for all tasks, the learned causal indicator variables also exactly
match the ground-truth and the results from conditional independence testing (Chen, 2021; Lu et al., 2022).
Ablation study for the effects of the learnable parameters and the type of linear transformation can be found
in Appendix I.

4.1.2 Non-Linear Case

A more general analysis of the identifiability of our proposed approach is to consider the extension of the
linear experiments to the setting of arbitrary transformations of the latent factors. For this, we consider
the case where random (non-linear) MLPs are used to transform z∗ into higher dimensional observations
x. By Corollary 3.3, it is possible to recover linearly identifiable representations h of the data by training
standard multi-task regression networks (MTRNs). Identifiability in this setting is assessed by first perform-
ing a Canonical Correlation Analysis (CCA) as in Roeder et al. (2021), which linearly maps the obtained
representations such that they maximize the covariance with the ground-truth latent factors. The resulting
mapped representations can thus be compared with the ground-truth latent factors via the MCC score. This
is referred to as weak MCC, which quantifies the linear identifiability of the learned representations from
MTRNs. We further train our MTLCM on the linearly identifiable representations h obtained from the
MTRN to obtain identifiable representations up to permutations and scaling. Identifiability in this setting
is assessed by directly computing the MCC score between the representations obtained from our MTLCM
and the ground-truth latent factors as in the linear case (i.e., strong MCC). We assess this for various di-
mensionalities of the observed data and for different settings of the causal variables, where we generate 500
tasks of 200 samples each to improve convergence of the multitask model. The MTRN and the likelihoods
in the baselines are parameterized by one-hidden-layer MLPs.
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Table 3: Identifiability performance for the latent factors learned on the superconductivity dataset measured
by strong MCC (%). The weak MCC (%) for MTRN is also reported. “−” indicates divergence of optimiza-
tion during training.

Latent dim 5 10 20 40 80
iVAE 32.87±1.16 33.21±1.04 30.68±0.39 37.41±0.84 45.52±0.81
iCaRL − 32.23±0.61 35.62±0.40 32.58±2.16 32.19±2.45

MT-iVAE 35.58±1.48 33.54±0.80 31.68±0.32 35.14±0.82 44.49±0.96
MT-iCaRL − − − − 42.26±2.33
MTLCM 98.90±0.03 96.93±0.12 84.56±1.11 46.31±0.34 48.94±2.16

MTRN (weak) 98.85±0.03 97.17±0.04 93.23±0.08 78.58±0.09 52.02±0.19

In Table 2, we find that the strong MCC for our MTLCM is able to match the weak MCC for the MTRN.
In contrast, the strong MCC for iVAE, iCaRL and their multi-task extensions significantly underperform
MTLCM. Again, we find that for all tasks, the learned causal indicator variables exactly match the ground-
truth and the results from conditional independence testing (Chen, 2021; Lu et al., 2022).

4.2 Real-World Data

We further evaluate our model on two real-world molecular datasets. We assume that the data x is generated
by transforming some unknown ground-truth latent factors z∗ with some unknown non-linear mixing func-
tion. Since z∗ are unknown to us, identifiability in this setting is assessed by first training a model 5 times
with different random seeds, then computing the MCC score between the data representations recovered by
each pair of those 5 models, as in Khemakhem et al. (2020b). As in Section 4.1, we employ the weak MCC
score to assess the linear identifiability of the representations h learned by the MTRN and the strong MCC
score to assess the strictly strong identifiability of the latent factors z recovered by each method. Given
that the true latent dimension is unknown, we assess the identifiability of each model at gradually increasing
latent dimensions. In practical scenarios, the latent dimension would be selected based on a similar model
selection exercise. While the MCC threshold is likely to be dependent on the particular use case, the results
in Table 3 and Figure 3 suggest there is a relatively rapid shift from strong identifiability above 0.9 to much
lower identifiability scores.

4.2.1 Superconductivity Dataset

The superconductivity dataset (Hamidieh, 2018) consists of 21, 263 superconductors. We consider the tasks
of regressing 80 readily computed target features such as mean atomic mass, thermal conductivity and
valence of the superconductors from their chemical formulae, represented as discrete counts of the atoms
present in the molecule. The MTRN and the likelihoods in the baselines are parameterized by MLPs.

In Table 3, we find that the strong MCC for our MTLCM is greater than 0.96 and is able to match the
weak MCC for the MTRN when the dimensions of the latent representations are 5 and 10, showing that
our method manages to recover canonical latent representations for the superconductors. Interestingly, the
strong MCC score for the MTLCM decreases as we increase the number of latent factors in the model,
suggesting that there are at most 10-20 independent tasks out of the 80 targets used for this data. In sharp
contrast, all baseline models fail to recover identifiable latent factors for the superconductors in all cases as
their strong MCC scores do not exceed 0.4. There are several settings where optimization diverged during
training, since VAE-based models are generally difficult to train on discrete inputs of chemical formulae.

4.2.2 QM9 Dataset

The QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) is a popular benchmark for molecular
prediction tasks consisting of 134, 000 enumerated organic molecules of up to nine heavy atoms together with a
set of 12 calculated quantum chemical properties. In contrast to the more artificial superconductivity dataset,
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Figure 3: Identifiability performance for the latent factors learned on the QM9 dataset.

the QM9 dataset enables us to assess the feasibility of achieving identifiable representations in the context
of highly non-trivial quantum chemical properties which are highly relevant to their pharmacological profile.
Accurately modeling this dataset requires us to capture potential three-dimensional atomic interactions,
allowing us to assess the translation of our theoretical results to more complex equivariant graph neural
network architectures. For this reason, we use an equivariant graph neural network (EGNN) (Satorras et al.,
2021) as the feature extractor for the MTRN. This enables the model to incorporate positional features of
each atom while exhibiting equivariance to their rotation, translation or reflection. Given that the graph
autoencoders proposed in Satorras et al. (2021) and prior works (Kipf & Welling, 2016; Simonovsky &
Komodakis, 2018; Liu et al., 2019) do not provide a means of jointly decoding the feature and adjacency
matrices, we do not consider the iVAE and iCaRL baselines for this dataset.

In Figure 3, the weak identifiability achieved from the MTRN implies that identifiability is achievable up to
eight latent features, after which there is a sharp decline in MCC. The implication of this observation is that
there exist some redundancies between tasks which limit the maximal identifiable latent dimension. This is
clearly the case for certain tasks. For example, prediction of the HOMO-LUMO gap can be directly obtained
as a result of the difference between HOMO (highest occupied molecular orbital energy) and LUMO (lowest
unoccupied molecular orbital energy) values. Nonetheless, the MTLCM is able to closely approximate the
weak MCC score up to eight latent factors, always surpassing a score of 0.9, demonstrating its ability to
recover permutation identifiable representations in the context of realistic molecular datasets.

5 Conclusion

We have proposed a novel perspective on the problem of identifiable representations by exploring the impli-
cations of explicitly modeling task structures. We have shown that this implies new identifiability results
for linear equivalence classes in the general case of multi-task regression. Furthermore, while spurious corre-
lations have been shown to be a failure case of deep learning in many recent works, we have demonstrated
that such latent spurious signals may in fact be leveraged to improve the ability of a model to recover more
robust disentangled representations (i.e., point-wise identifiability). In particular, when the latent space
is explicitly represented as consisting of a partitioning of causal and spurious features per task, the linear
identifiability result of the multi-task setting may be reduced to identifiability up to simple permutations
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and scaling under sufficient variability conditions. We have thoroughly discussed the assumptions underlying
our proposed model and their implications. Empirically, we have confirmed that the theoretical results hold
for both linear and nonlinear synthetic data and for two real-world molecular datasets of superconductors
and organic small molecules. We anticipate that this may reveal new research directions for the study of
both causal representations and synergies with multi-task methods.
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A Proof of Theorem 3.2

Proof. By the assumption that the predictive likelihoods for the two sets of parameters θ′ and θ are equal,
we have

pθ′(y|x, t) = pθ(y|x, t), ∀t, x, y, (18)
=⇒ N (y|fϕ′,w′

t
(x), σ2

r,t) = N (y|fϕ,wt
(x), σ2

r,t), ∀t, x, y, (19)
=⇒ N (y|hϕ′(x)Tw′

t, σ2
r,t) = N (y|hϕ(x)Twt, σ2

r,t), ∀t, x, y. (20)

This implies that the means of the two Gaussian likelihoods on both sides are identical:

hϕ′(x)Tw′
t = hϕ(x)Twt, ∀t, x, y. (21)

By the assumption that Span(Im(hϕ)) = Rd, there exist d inputs x1, · · · , xd such that the matrix
H = [hϕ(x1), · · · , hϕ(xd)] ∈ Rd×d is invertible. By the assumption that there exist d tasks {ti}d

i=1
such that the set of regression weights {wti

}d
i=1 are linearly independent, we construct an invertible ma-

trix W = [wt1 , · · · , wtd
] ∈ Rd×d. For hϕ′ , we similarly define H′ = [hϕ′(x1), · · · , hϕ′(xd)] ∈ Rd×d and

W′ = [w′
t1

, · · · , w′
td

] ∈ Rd×d.

Now, we evaluate Equation (21) at the d inputs x1, · · · , xd and d tasks t1, · · · , td defined above, which gives
us the following linear equation:

(H′)TW′ = HW. (22)

Since both H and W are invertible by assumption and the weight matrices W and W′ do not depend on
the input x, the matrix W′ must be invertible.

Now, evaluating Equation (21) at the d tasks t1, · · · , td, we have

(W′)Thϕ′(x) = WThϕ(x), ∀x (23)
=⇒ hϕ′(x) = (W′)−TWThϕ(x), ∀x (24)
=⇒ hϕ′(x) = Ahϕ(x), ∀x. (25)

Note that we have shown that A := (W′)−TWT is invertible. This completes the proof.

B Proof of Theorem 3.8

Proof. Let k := 2d and u := [y, t]. We first rewrite the density of the conditional prior in the exponential
family form:

pT (z|u) = Z(u)−1 exp
(
T(z)Tη(u)

)
, (26)

where Z(u) = (2π)d/2|Λt|0.5 exp
(
− 1

2 aT
t Λtat

)
is the normalizing constant, T(z) = [ z

z◦z ] ∈ Rk are the
sufficient statistics, and η(u) =

[
Λ−1

t at

− 1
2 diag(Λt)

]
∈ Rk are the natural parameters. We also rewrite the likelihood

pA(h|z) using the noise distribution pϵo
(ϵo) = N (ϵo|0, σ2

oI):

pA(h|z) = N (h|Az, σ2
oI) = N (h − Az|0, σ2

oI) = pϵo
(h − Az). (27)

Let A∗ be the ground-truth transformation matrix such that z∗ = A−1
∗ h, and T∗(t) = {c∗

t ,γ∗
t } the ground-

truth task-specific variables associated with each task t. The proof starts off by using the fact that we have
maximized the marginal likelihood (12) of A and T for all tasks. This means that the marginal likelihoods
of the two models are identical:

pA,T (h|u) = pA∗,T∗(h|u), ∀h, u. (28)
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The goal is to show that the latent factors z = A−1h recovered by our model and the ground-truth latent
factor z∗ = A−1

∗ h are identical up to permutations and scaling for all h.

Starting from the equality of the two marginal likelihoods (28), we have

pA,T (h|u) = pA∗,T∗(h|u) (29)

⇐⇒
∫

pA(h|z)pT (z|u)dz =
∫

pA∗(h|z)pT∗(z|u)dz (30)

⇐⇒
∫

pϵo
(h − Az)pT (z|u)dz =

∫
pϵo

(h − A∗z)pT∗(z|u)dz (31)

⇐⇒
∫

pϵo
(h − h̄)pT (A−1h̄|u) det(A)−1dh̄ =

∫
pϵo

(h − ĥ)pT∗(A−1
∗ ĥ|u) det(A∗)−1dĥ (32)

⇐⇒
∫

pϵo
(h − h̄)p̃A,T ,u(h̄)dh̄ =

∫
pϵo

(h − ĥ)p̃A∗,T∗,u(ĥ)dĥ (33)

⇐⇒ (pϵo
∗ p̃A,T ,u)(h) = (pϵo

∗ p̃A∗,T∗,u)(h) (34)
⇐⇒ F [pϵo

](ω)F [p̃A,T ,u](ω) = F [pϵo
](ω)F [p̃A∗,T∗,u](ω) (35)

⇐⇒ F [p̃A,T ,u](ω) = F [p̃A∗,T∗,u](ω) (36)
⇐⇒ p̃A,T ,u(h) = p̃A∗,T∗,u(h) (37)

⇐⇒ pT (A−1h|u) det(A)−1 = pT∗(A−1
∗ h|u) det(A∗)−1 (38)

⇐⇒ T(A−1h)Tη(u) − log Z(u) − log det(A) = T(A−1
∗ h)Tη∗(u) − log Z∗(u) − log det(A∗), (39)

where

• Equation (32) follows by the definition h̄ := Az, ĥ := A∗z,

• Equation (33) follows by the definition p̃A,T ,u(h̄) := pT (A−1h̄|u) det(A)−1,

• ∗ in Equation (34) denotes the convolution operator,

• F in Equation (35) denotes the Fourier transform operator,

• Equation (36) follows since the characteristic function F [pϵo
] of the Gaussian noise ϵo is nonzero

almost everywhere.

Now we evaluate Equation (39) at u = u0, u1, · · · , uk from our assumption to obtain k + 1 such equations
and subtract the first equation from the remaining k equations to obtain the following k equations:

T(A−1h)T(η(ul) − η(u0)) + log Z(u0)
Z(ul)

= T(A−1
∗ h)T(η∗(ul) − η∗(u0)) + log Z∗(u0)

Z∗(ul)
, (40)

where l = 1, · · · , k. Putting those k equations in the matrix-vector form gives

LTT(A−1h) = LT
∗ T(A−1

∗ h) + q, (41)

where ql = log Z∗(u0)Z(ul)
Z∗(ul)Z(u0) , L is the invertible matrix defined in the assumption, and L∗ is similarly defined

for the second model. Since L is invertible, we can left multiply Equation (41) by L−T to obtain

T(A−1h) = MT(A−1
∗ h) + r, (42)

where M = L−TLT
∗ and r = L−Tq. We note that our assumption only says L is invertible and tells us

nothing about L∗. Therefore, we need to show that M is invertible. Let hl := Azl, l = 0, · · · , k. We
evaluate Equation (42) at these k + 1 points to obtain k + 1 such equations, and subtract the first equation
from the remaining k equations. This gives us

[T(z1) − T(z0), · · · , T(zk) − T(z0)] = M[T(A−1
∗ h1) − T(A−1

∗ h0), · · · , T(A−1
∗ hk) − T(A−1

∗ h0)]. (43)
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We denote Equation (43) by R := MR∗. We need to show that for any given z0, there exist k points
z1, · · · , zk such that the columns of R are linearly independent. Suppose, for contradiction, that the columns
of R would never be linearly independent for any z1, · · · , zk. Then the function g(z) := T(z) − T(z0)
would live in a k − 1 or lower dimensional subspace, and therefore we would be able to find a non-zero
vector λ ∈ Rk orthogonal to that subspace. This would imply that (T(z) − T(z0))Tλ = 0 and thus
T(z)Tλ = T(z0)Tλ = const, ∀z, which contradicts the fact that our conditionally factorized multivariate
Gaussian prior pT (z|u) is strongly exponential (see Khemakhem et al. (2020a) for the definition). This shows
that there exist k points z1, · · · , zk such that the columns of R are linearly independent for any given z0.
Therefore, R is invertible. Since R = MR∗ and M is not a function of z, this tells us that M must be
invertible.

Now that we have shown that M is invertible, the next step is to show that M is a block transformation
matrix. We define a linear function l(z) = A−1

∗ Az. Now, Equation (42) becomes

T(z) = MT(l(z)) + r. (44)

We first show that the linear function l is a point-wise function. We differentiate both sides of the above
equation w.r.t. zs and zt (∀s ̸= t) to obtain:

∂T(z)
∂zs

= M
d∑

i=1

∂T(l(z))
∂li(z)

∂li(z)
∂zs

, (45)

∂2T(z)
∂zs∂zt

= M
d∑

i=1

d∑
j=1

∂2T(l(z))
∂li(z)∂lj(z)

∂lj(z)
∂zt

∂li(z)
∂zs

+ M
d∑

i=1

∂T(l(z))
∂li(z)

∂2li(z)
∂zs∂zt

. (46)

Since the prior pT (z|u) is conditionally factorized, the second-order cross derivatives of the sufficient statistics
are zeros. Therefore, the second equation above can be simplified as follows:

0 = ∂2T(z)
∂zs∂zt

(47)

= M
d∑

i=1

∂2T(l(z))
∂li(z)2

∂li(z)
∂zt

∂li(z)
∂zs

+ M
d∑

i=1

∂T(l(z))
∂li(z)

∂2li(z)
∂zs∂zt

(48)

= MT′′(z)l′
s,z(z) + MT′(z)l′′

s,z(z) (49)
= MT′′′(z)l′′′

s,z(z), (50)

where

T′′(z) =
[

∂2T(l(z))
∂l1(z)2 , · · · ,

∂2T(l(z))
∂ld(z)2

]
∈ Rk×d, (51)

l′
s,z(z) =

[
∂l1(z)

∂zt

∂l1(z)
∂zs

, · · · ,
∂ld(z)

∂zt

∂ld(z)
∂zs

]T
∈ Rd, (52)

T′(z) =
[

∂T(l(z))
∂l1(z) , · · · ,

∂T(l(z))
∂ld(z)

]
∈ Rk×d, (53)

l′′
s,z(z) =

[
∂2l1(z)
∂zs∂zt

, · · · ,
∂2ld(z)
∂zs∂zt

]T

∈ Rd, (54)

T′′′(z) = [T′′(z), T′(z)] ∈ Rk×k, (55)
l′′′
s,z(z) = [l′

s,z(z)T, l′′
s,z(z)T]T ∈ Rk. (56)

By Lemma 5 in Khemakhem et al. (2020a) and the fact that k = 2d, we have that the rank of T′′′(z) is
2d and thus it is invertible for all z. Since M is also invertible, we have that MT′′′(z) is invertible. Since
MT′′′(z)l′′′

s,z(z) = 0, it must be that l′′′
s,z(z) = 0, ∀z. In particular, this means that l′

s,z(z) = 0, ∀s ̸= t for
all z, which shows that the linear function l(z) = A−1

∗ Az is a point-wise linear function.
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Now, we are ready to show that M is a block transformation matrix. Without loss of generality, we assume
that the permutation in the point-wise linear function l is the identity. That is, l(z) = [l1z1, · · · , ldzd]T
for some linear univariate scalars l1, · · · , ld ∈ R. Since A and A∗ are invertible, we have that l−1(z) =
[l−1

1 z1, · · · , l−1
d zd]T. Define

T̄(l(z)) := T(l(z)) + M−1r (57)

and plug it into Equation (44) gives:

T(z) = MT̄(l(z)). (58)

We then apply l−1 to z at both sides of the Equation (58) to obtain

T(l−1(z)) = MT̄(z). (59)

Since l is a point-wise function, for a given q ∈ {1, · · · , k} we have that

0 = ∂T(l−1(z))q

∂zs
=

k∑
j=1

Mq,j
∂T̄(z)j

∂zs
, for any s such that q ̸= s and q ̸= 2s. (60)

Since the entries in T̄(z) are linearly independent, it must be that Mq,j = 0 for any j such that ∂T̄(z)j

∂zs
̸= 0.

This includes the entries j in T̄(z) which depend on zs (i.e., j = s and j = 2s). Note that this holds true for
any s such that q ̸= s and q ̸= 2s. Therefore, when q is the index of an entry in the sufficient statistics T that
corresponds to zi (i.e., q = i or q = 2i, and i ̸= s), the only possible non-zero Mq,j for j are the ones that
map between Ti(zi) and T̄i(li(zi)), where Ti are the factors in T that depend on zi and T̄i are similarly
defined. This shows that M is a block transformation matrix for each block [zi, z2

i ] with scaling factor li.
That is, the only possible nonzero element in M are Mi,i, Mi,2i, M2i,i, and M2i,2i for all i ∈ {1, · · · , d}.

Furthermore, for any i ∈ {1, · · · , d} we have that

l−1
i = ∂T(l−1(z))i

∂zi
=

k∑
j=1

Mi,j
∂T̄(z)j

∂zi
= Mi,i + 2Mi,2izi, (61)

2l−1
i zi = ∂T(l−1(z))2i

∂zi
=

k∑
j=1

M2i,j
∂T̄(z)j

∂zi
= M2i,i + 2M2i,2izi. (62)

This implies that Mi,2i = 0 and M2i,i = 0 for any i ∈ {1, · · · , d}, and Mi,i = l−1
i for i ∈ {1, · · · , k}, which

reduces M from a block transformation matrix to a permutation and scaling matrix. In particular, this
means that the latent factors zi are identifiable up to permutations and scaling, with the transformation
matrix P ∈ Rd×d defined by the first d rows and d columns of M:

A−1h = PA−1
∗ h + r ⇐⇒ h = AP(A−1

∗ h) + Ar. (63)

Since h is linearly identifiable by assumption, it must be that Ar = 0 by Definition 3.1. Since A is invertible
by assumption, it must be that r = 0. Therefore, we have

A−1h = PA−1
∗ h. (64)

This completes the proof.

C Derivation of the Factorized Structured Conditional Prior

Since no prior knowledge is assumed for the task-specific regression weights wt ∈ Rd, we put an uninformative
prior over wt ∈ Rd for all tasks t:

p(wt) ∝ 1. (65)
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This uninformative prior can be thought of as a Gaussian prior with infinite variance:

p(wt) = lim
τ→∞

qτ (wt), (66)

where qτ (wt) = N (wt|0, τ2I). We marginalize out wt from pT (y|zc, t) = N (y|(wt ◦ ct)Tz, σ2
p) under our

uninformative prior over wt, which makes the conditional prior over y uninformative:

p′
T (y|zc, t) =

∫
pT (y|zc, t)p(wt)dwt (67)

=
∫

pT (y|zc, t) lim
τ→∞

qτ (wt)dwt (68)

= lim
τ→∞

∫
pT (y|zc, t)qτ (wt)dwt (69)

= lim
τ→∞

N (y|0, τ2(z ◦ ct)T(z ◦ ct) + σ2
p) (70)

∝ 1. (71)

This is known as an improper uniform distribution since it does not necessarily integrate to one. However,
it is worth noting that pT (z|y, t) is still well-defined even p′

T (y|zc, t) is improper. To see this, we denote the
improper uniform distribution by p′

T (y|zc, t) = C for some constant C. Then, we have

pT (z|y, t) = pT (zc|t)p′
T (y|zc, t)pT (zs|y, t)∫

pT (zc|t)p′
T (y|zc, t)pT (zs|y, t)dzsdzc

(72)

= pT (zc|t)pT (zs|y, t)∫
pT (zc|t)pT (zs|y, t)dzsdzc

(73)

= pT (zc|t)pT (zs|y, t). (74)

Since pT (zc|t) factorizes over the causal latent factors and pT (zs|y, t) factorizes over the spurious latent
factors, the structured conditional prior pT (z|y, t) factorizes over all latent factors z.

Furthermore, we verify that the compact expressions for the mean and variance of pT (z|y, t) in Equation
(10) are correct. Recall that Equation (5) tells us that

pT (zc|t) = N (zc|0, I), (75)

and Equation (7) tells us that
pT (zs|y, t) = N (zs|yγt, σ2

sI). (76)
Recall that the compact expressions given by Equation (10) are

at := yγt ◦ (1 − ct), Λt := diag(σ2
s(1 − ct) + ct). (77)

For any causal latent variable zi, we have ct,i = 1 and therefore at,i = 0 and Λt,i = 1. For any spurious
latent variable zj , we have ct,j = 0 and therefore at,j = yγt,j and Λt,j = σs. This verifies that Equation (10)
is correct.

D Derivation of the Marginal Likelihood for MTLCM

The marginal likelihood for MTRN given by Equation (12) is

pψ(h|y, t) =
∫

pA(h|z)pT (z|y, t)dz = N (h|µt, Σt), (78)

where pA(h|z) = N (h|Az, σ2
oI) and pT (z|y, t) = N (z|at, Λt). Equivalently, we can rewrite the likelihood in

the following form:
h = Az + ε, (79)
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where p(ε) = N (ε|0, σ2
oI). Since both pA(h|z) and pT (z|y, t) are linear Gaussians, we can derive closed-form

expression for the mean µt and covariance Σt using moment matching:

µt = EpT (z|y,t)[h] = AEpT (z|y,t)[z] = Aat = yA(γt ◦ (1 − ct)), (80)

Σt = VarpT (z|y,t)[h] = AVarpT (z|y,t)[z]AT+Varε[ε] = AΛtAT+σ2
oI = Adiag(σ2

s(1−ct)+ct)AT+σ2
oI. (81)

This verifies that Equation (12) is correct.

E Possible DAGs for the Generating Process on the Target Variable

Possible structures for the latent factors generating the target y are given in Figure 4.

zi

zj

zk

y

(a) Standard case

zi

zj

zk

y

(b) Uncorrelated case

zi

c zj

zk

y

(c) Confounder case

Figure 4: Illustration of causal relationships which are captured by our model (a, b) and not captured by
our model (c) for the relationships between latent variables and observed target y for a given task. The
red arrow in (c) indicates the portion of the graph which is not captured by MTLCM. Note than in (b),
the existence of learned regression weights encapsulates this case if the learned weight is zero on the arrow
zi → y. This is depicted with the dashed green arrow.

F Motivating Examples for the Assumed Non-Causal Relationship

We acknowledge that indeed our assumed direct edge y → zs in Figure 1 does not in general capture all
possible non-causal correlations between latent features and the target y, since the Reichenbach principle
states that non-causal correlations can originate from either (1) a common cause (i.e., confounders) or (2)
an anti-causal/spurious relationship (as assumed in this work). However, we argue that there are many
situations where the proposed model can be useful in practice, even if it does not explicitly model the
confounders in full generality, since this anti-causal relationship (as in our paper) is well-documented in real-
world examples in epidemiology and drug discovery. We provide a couple of real-world motivating examples
to justify this anti-causal assumption below.

• Epidemiology: See Figure 1 in Wang et al. (2021), treating perceived pandemic impact or IES-R
score as the regression target, or Figure 6 (right) in von Kügelgen et al. (2021), where testing status
may well be included as a feature in estimating Case Fatality Rates, but there is likely to be causal
influence between overall case fatality rate and testing policy. Broadly, any form of selection bias
may lead to similar cases, where the selection criterion may be included in the feature set.

• Drug discovery: in most drug discovery campaigns, molecules to be tested are selected based on some
structural similarities to an originally promising molecule (based on the quantity to be estimated,
e.g. drug potency). Structural molecule features are then likely to be spuriously correlated with
the regression target due to their selection criteria, without actually being involved in the drug’s
mechanism of action.
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Algorithm 1 Pseudocode for the data generating process in the synthetic data experiments
Require: the number of latent features d, the number of causal features Nc, the number of tasks Nt, the

number of points per task Ns, Ground-truth transformation F (random invertible matrix or random MLP)
Set σs = 0.1 and σo = 0.01
for each task t do

Sample d binary causal feature indicators It
1, It

2, · · · , It
d

Sample d weights wt
1, wt

2, · · · , wt
d ∼ U(0, 1)

Sample spurious coefficients γt
j ∼ U(−1, 1) for all j such that It

j = 0.
for each data point xt

i in this task t do
Sample causal features zi,j ∼ N (0, σ2

s) for all j such that It
j = 1

Sample σt
p ∼ U(2, 3)

Obtain target y =
∑

j|Ij=1 zi,j + ϵt
p, ϵt

p ∼ N (0, (σt
p)2)

Obtain spurious features zi,j = γjy + ϵs,i,j , ϵs,i,j ∼ N (0, σ2
s) for all j such that Ij = 0

Obtain observed features via the transformation xt
i = F(zt

i) + ϵt
o,i, ϵ

t
o,i ∼ N (0, σ2

oI)
end for

end for

G Model Configurations

In Stage 1, the learnable parameters of a multi-task regression network (MTRN) are the feature extractor
parameters ϕ and the task-specific regression weights wt for all tasks t. These model parameters are learned
by maximum likelihood as defined in Equation (3).

In Stage 2, the learnable parameters of a multi-task linear causal model (MTLCM) are the linear transfor-
mation A, the causal indicators ct for all tasks t, and the spurious coefficients γt for all tasks t. These are
free parameters learned by maximum marginal likelihood as defined in Equation (14). The binary causal
indicators ct are parameterized as free parameters squashed to [0, 1] by the sigmoid function. To allow for
gradient update of ct, we do not binarize the output of the sigmoid function during training; instead, we
use a soft version c̃t ∈ [0, 1]d during training. In practice, we find that this works well and all learned values
for ct,1 are very close to either 0 or 1. In the synthetic data setting, the learned causal indicators match
the ground-truth values. In practice, we find that fixing the spurious noise variance σs to 0.01 and the
observational noise variance σ0 to 0.1 works well for all experiments.

For a fair comparison, we also consider the multi-task extensions of iVAE and iCaRL, MT-iVAE and MT-
iCaRL, which include the task variable t in the conditioning variables u in their conditional priors pT (z|u),
with the task-specific parameter T (t) = {vt} to be learned from data, which is the counterpart to T (t) =
{ct,γt} in our MTLCM but has no explicit interpretations with respect to a causal graph. We set dim(vt) =
dim(ct)+dim(γt) to ensure the same degree of flexibility as our MTLCM. The task-specific parameters vt are
free parameters learned together with other parameters in these models by optimizing their variational/score
matching objective.

H Experiment Settings for the Synthetic Data

This section details the precise process for the data generation of the synthetic data for both the linear and
non-linear experiments in Section 4.1. Algorithm 1 details the full data generation process, Table 4 details
the experiment hyperparameters used in the linear setting and Table 5 details the hyperparameters used
in the non-linear setting. The transformation in the linear experiments corresponds to either the identity,
an orthogonal or a random matrix of size d × d, while in the non-linear experiments it corresponds to a
randomly initialized neural network with the specified hidden dimensions and relu activations.
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I Ablation Study for the Linear Synthetic Data

In Figure 5, we contrast the effect of training only the linear transformation matrix A in our MTLCM
when the ground-truth task variables ct,γt are known to the model, with the more general setting of
learning all parameters jointly via maximum marginal likelihood. We assess the convergence of our multi-
task linear causal model across 5 random seeds for increasingly complex linear transformations (identity,
orthogonal, random) for data consisting of 10 latent factors with two causal features. Rather than inhibiting
convergence, we find that training all parameters jointly leads to improved performance, possibly due to
additional flexibility in the parameterizations of the model. For all types of linear transformations, our
model succeeds in recovering the ground-truth latent factors. In additional, we find that standardizing the
features accelerates convergence..
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Table 4: Experimental Settings for the Linear Synthetic Data

Latent Dim 3, 5, 10, 20, 50
Observation Dim Latent Dim

Causal 2, 4
Seed 1, 2, 3, 4, 5

Matrix Type random

Table 5: Experimental Settings for the Non-Linear Synthetic Data

Observation Dim 50, 100, 200
Encoder Network Num Hidden Layer 1

Encoder Network Hidden Dim 2 * Observation dim
Latent Dim 20
Num Causal 4, 8, 12

Seed 1, 2, 3, 4, 5

0 1000 2000 3000 4000 5000 6000
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
C

C

Matrix type = identity

0 1000 2000 3000 4000 5000 6000
Epoch

Matrix type = orthogonal

0 1000 2000 3000 4000 5000 6000
Epoch

Matrix type = random

Ground truth scaled
No ground truth scaled
Ground truth not scaled
No ground truth not scaled

Figure 5: Convergence of the model in the case of transformations of the latent factors for identity, orthogonal
and arbitrary linear transformations. Scaled means standardizing the features.
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