
Stepwise Guided Policy Optimization:
Coloring your Incorrect Reasoning in GRPO

Peter Chen1 Xiaopeng Li1,2 Ziniu Li2 Xi Chen3 Tianyi Lin1

1Columbia 2CUHK SZ 3NYU Stern

Abstract

Reinforcement learning (RL) has proven effective in strengthening the reasoning
capabilities of large language models (LLMs). A widely adopted method, Group
Relative Policy Optimization (GRPO) [Shao et al., 2024], has shown strong empiri-
cal results in training DeepSeek-R1 [Guo et al., 2025a]. However, GRPO fails to
update the policy when all responses within a group are incorrect (i.e., all-negative-
sample groups). This limitation underscores a key gap between artificial and human
intelligence: unlike humans, who can learn from mistakes, GRPO discards these
signals. Our first contribution is to introduce a simple framework that mitigates the
all-negative-sample issue by incorporating response diversity within groups using a
step-wise judge model, which can be either directly trained or adapted from existing
LLMs. We prove that this diversification can accelerate GRPO’s learning dynamics
in a simplified setting. We also empirically validate the proposed stepwise guided
policy optimization (SGPO) method, demonstrating consistent gains across model
sizes (7B, 14B, 32B) in offline and online training on 9 benchmarks, including base
and distilled variants. Our results highlight two advantages: (i) SGPO surpasses
GRPO, especially in the early and mid-training stages where all-negative-sample
groups are prevalent; and (ii) SGPO does not require judge models to generate
correct answers, differentiating it from knowledge distillation methods.

1 Introduction

The rise of OpenAI-o1 [Jaech et al., 2024], DeepSeek-R1 [Guo et al., 2025a], and Kimi-1.5 [Team
et al., 2025] has highlighted the emergence of large AI reasoning models. Unlike instruction-tuned
models [Brown et al., 2020, Chowdhery et al., 2023, Touvron et al., 2023, Achiam et al., 2023],
which produce quick responses by statistically inferring the next token, these new reasoning models
deliberately decompose complex prompts (e.g., mathematical problems) into intermediate steps
and work through chain-of-thought reasoning [Wei et al., 2022, Yao et al., 2023, Besta et al., 2024,
Xiang et al., 2025]. This slower yet more rigorous process yields greater accuracy and makes them
more human-like, enabling success on more complex and challenging tasks [Yang et al., 2018, Shi
et al., 2024, Jain et al., 2025]. As the generative AI applications move beyond simple conversational
interfaces, these reasoning models are poised to become increasingly powerful and widely adopted,
positioning them as a key frontier in practice.

At the heart of this revolution lies post-training with outcome-based and verifiable rewards [Cobbe
et al., 2021, Uesato et al., 2022, Zelikman et al., 2022, Singh et al., 2023, Hosseini et al., 2024,
Lightman et al., 2024, Wang et al., 2024, Setlur et al., 2025, Zhang et al., 2025b], together with
reinforcement learning (RL) methods [Schulman et al., 2015, 2017, Li et al., 2024b, Ahmadian
et al., 2024, Shao et al., 2024, Xiong et al., 2025a], appreciated for their simplicity, intuitiveness,
and practicality. A leading approach is proximal policy optimization (PPO) [Schulman et al., 2017],
which relies on a critic (or value) model to estimate advantages. While essential in general RL tasks,
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this critic is often unnecessary in large language models (LLMs) due to their deterministic transition
dynamics [Li et al., 2024b]. This observation has inspired alternatives such as group relative policy
optimization (GRPO) [Shao et al., 2024] and its extensions [Yu et al., 2025b, Liu et al., 2025b, Chu
et al., 2025, Zhang et al., 2025a], which estimate advantages directly in a group-relative fashion.

A major limitation of these methods arises when all sampled responses in a group are incorrect
(i.e., all-negative-sample groups), which eliminates the learning signal and halts policy updates. In
GRPO, given a prompt x, responses {yi}Gi=1 are drawn from the old policy πold and assigned rewards
{ri}Gi=1, where ri = 1 if yi is correct and 0 otherwise. Advantages are obtained by normalizing
ri within the group. If ri = 0 for all i, the advantage vanishes, yielding no update. Such groups
are frequent in early and mid-stages of training, when reasoning ability is weak. This shortcoming
highlights a gap between artificial and human intelligence: humans effectively learn from mistakes,
which act as essential signals during cognitive development [Chialvo and Bak, 1999]. In mathematical
reasoning, all-negative-sample groups prompt a child to revise rules and strengthen reasoning ability.

Recent studies suggest that negative samples in RL-based large reasoning model training carry more
nuanced value than previously assumed [Xiong et al., 2025a]. Instead of treating negative samples
uniformly, they advocate for principled mechanisms to distinguish negative samples. One prominent
direction is process reward models (PRMs) [Lightman et al., 2024, Wang et al., 2024, Luo et al.,
2024, Setlur et al., 2025, Zhang et al., 2025b], which estimate either the probability of final success
or its change after each reasoning step. However, their reliance on speculative value functions makes
them prone to reward hacking [Skalse et al., 2022].

The key insight is that many reasoning tasks possess a structure where step-level correctness can be
explicitly defined. This motivates the use of a step-wise judge model that evaluates trajectories by
labeling each step as correct (1) or incorrect (0). Such a model can be trained directly [Xiong et al.,
2025b] or adapted from existing LLMs [Zha et al., 2025, He et al., 2025]. By grounding rewards in
step-level correctness rather than speculative value estimates, our method mitigates reward hacking
and yields clearer signals. Intuitively, this allows negative samples to be differentiated through their
trajectories: while early-stage reasoning trajectories are of low-quality, these remain informative –
much like partial credit in education, where intermediate steps still guide learning.

Our approach enables a holistic evaluation of multi-step reasoning by transforming negative samples
from binary outcome rewards into graded, step-level rewards. Consider a negative sample with five
reasoning steps (a1, a2, a3, a4, a5). If the first error occurs at a3, then a1 and a2 are correct, yielding
a correctness proportion of 2

5 . To improve reliability, we adopt a Grok4-Heavy -inspired strategy
where multiple independent judgments are obtained from the judge model, and the error position is
determined by the majority vote. We further introduce two scaling parameters β and γ to downweight
noisy or unreliable signals (see Eq. (1)). Unlike PRMs, our approach avoids memory overhead and
does not require costly step-level human annotations, thereby accelerating training.

Contribution. We propose a Stepwise Guided Policy Optimization (SGPO) framework that leverages
a step-wise judge model that identifies the first incorrect step that causes the trajectory to deviate
from correctness. This makes evaluation computationally tractable and reliable. We also prove that
SGPO outperforms GRPO in a simplified setting. We conduct the experiments demonstrating the
effectiveness of our approach in improving LLM reasoning. Evaluations are undertaken across various
model sizes (7B, 14B, 32B) in both offline and online settings with nine benchmarks, including base
and distilled variants. Our results reveal two key benefits: (i) SGPO delivers improvements beyond
the reach of GRPO, especially in the early and mid-stages of training where all-negative-sample
groups are common; (ii) SGPO does not rely on more powerful judge models generating correct
answers, allowing it to be distinguish from knowledge distillation methods.

2 Main Results
We propose the SGPO framework, which employs the step-wise judge model to detect the first incor-
rect step that leads a trajectory away from correctness. In a simplified setting, we prove that SGPO
consistently accelerates GRPO’s learning dynamics. All background knowledge, including policy
setup in the context of LLM, clipped objective and GRPO advantage, are deferred to Appendix B.

A step-wise judge model. The design of a reward mechanism is motivated by the intuition that
an incorrect final answer does not invalidate the entire reasoning process. This refinement remains
effective under constraints such as reduced output length, where a model may be unable to complete
the full solution but still demonstrates a valid reasoning trajectory.
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Our step-wise judge model evaluates responses sequentially, identifying the first substantive error
that causes the trajectory to deviate from correctness. To formalize this, we define the Reasoning
Trajectory Score (RTS) for an incorrect response y, denoted as RTS(y) ∈ [0, 1]. The judge model
checks each step in order, pinpoints the first error, and treats all preceding steps as the valid reasoning
segment. RTS(y) is computed as the ratio of the valid segment length to the total trajectory length.
We adapt the judge model from existing LLMs, either closed-source (o4-mini, Claude3.7) or open-
source (DeepSeek-V3-0324, Qwen3-235B-A22B, QwQ-32B). To enhance reliability and reduce
variance in the reward signal, we employ the following protocol: (i) alongside the candidate response,
we provide a reference solution drawn from a SFT dataset with correct answers and reasoning
trajectories, anchoring the intended solution path and enabling error localization; and (ii) we elicit
step-wise evaluation rather than holistic evaluation. Based on the reasoning trajectory score, we
introduce a new outcome reward function:

rSGPO(y) =

{
1, if the final answer of y is correct,
1

1+exp(β(RTS(y)−γ)) , otherwise. (1)

where γ > 0 and β > 0 decide scale threshold and intensity. We refer to SGPO as GRPO using
Eq. (1). It is worth noting that SGPO differs from PRMs and knowledge distillation; see Appendix C.

Accelerating learning dynamics. We present a theoretical analysis to explain why SGPO outper-
forms GRPO. We consider a simplified setting with a reasoning horizon of H = 2, where each step
admits two possible actions ah ∈ 1, 2 for h = 1, 2 and restrict the sample space to (1, 1), (2, 1), (2, 2).
We examine the population-level learning dynamics with G = 2, omitting clipping and importance
ratio. Let p(k)GRPO and q

(k)
GRPO denote the probability of selecting the “good" action in the first step at

iteration k under GRPO, and that of selecting the “good" action in the second step conditioned on a
correct first step. Analogously, p(k)SGPO and q

(k)
SGPO denote the corresponding probabilities under SGPO.

We summarize the findings in the following theorem and defer proof details to Appendix D.

Theorem 2.1. Suppose p(0)GRPO = q
(0)
GRPO = p

(0)
SGPO = q

(0)
SGPO =

1
2 and η = 1 for GRPO and SGPO, we have

that (i) GRPO and SGPO achieve successful learning: p(k)GRPO, q
(k)
GRPO, p

(k)
SGPO, q

(k)
SGPO → 1 as k → +∞;

(ii) SGPO outperforms GRPO in learning the “good” action in the first step: p(k)SGPO > p
(k)
GRPO for k ≥ 1;

(iii) SGPO outperforms GRPO in learning the optimal policy: p(k)SGPOq
(k)
SGPO > p

(k)
GRPOq

(k)
GRPO for k ≥ 1.

3 Experiments

We demonstrate the benefits of differentiating negative samples through experiments in both offline
and online settings. Offline RL is more computationally efficient, offering faster training, reduced
memory consumption, and improved stability. In contrast, online RL provides greater flexibility and
learning capacity, and has become the standard approach in large-scale reasoning models such as
DeepSeek-R1 [Guo et al., 2025a].

Offline training. We conduct offline RL training to demonstrate that utilizing all-negative-sample
groups can enhance the reasoning abilities of LLMs; see Appendix E.1 for details. For comparison,
we also include positive-only offline RL training. As shown in Table 1, SGPO with negative samples
consistently improve performance across most of benchmarks, in some cases even surpassing models
trained solely on positive samples. Notably, in the 14B model experiment, training on negative
samples yields improvements on four benchmarks relative to the positive-sample baseline. These
findings underscore the utility of negative samples, which should not be discarded in online GRPO
training; see more discussions in Appendix E.4.

Online training. We also conduct online RL training; see Appendix E.2 for details. A key insight
from Table 2 is that stronger models generate higher-quality negative samples, which substantially
aid learning. As model capability improves, so does the informativeness of its mistakes. Negative
samples broadly fall into two categories: (i) correct reasoning trajectories truncated by output length
limits, and (ii) trajectories containing logical errors. The first type remains highly valuable – yet
discarded in GRPO – since it preserves meaningful reasoning steps, motivating our step-wise judge
model. The second type, though incorrect, still provides informative signals, especially when all
samples fail on genuinely challenging problems. Notably, stronger distilled models average 6K
tokens per response, compared to only 1K tokens for weaker base models, making truncated but
informative negative samples more common in the stronger case. Likewise, their erroneous responses
also tend to be richer and more useful for step-level judgment.
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Table 1: Evaluation results on offline RL training. For each model, we report the baseline performance
before RL training. We then report RL training results that uses only negative samples and positive
samples, respectively. Performance across validation and training dataset (LIMO) is shown.

AMC23
avg@16

AIME24
avg@16

MATH500
pass@1

Olympiads
pass@1

LIMO
pass@1

Qwen2.5-14B-Instruct
Baseline 58.59 14.58 80.40 41.78 31.70
Negative Samples only 61.88 15.21 80.40 42.37 30.11
Positive Samples only 61.72 14.58 79.80 42.07 38.68

Qwen2.5-32B-Instruct
Baseline 64.22 17.08 83.60 45.93 34.64
Negative Samples only 69.53 20.42 83.00 46.37 36.47
Positive Samples only 66.87 18.75 83.60 47.41 41.86

Table 2: Evaluation results on online RL training. We refer to BASELINE as the performance of the
original model without RL finetuning. Overall is average performance across all the benchmarks.
Note that the training dataset is AIME1997-2023. For DeepSeek-R1-Distill-Qwen-7B, we report
additional results, including (i) compatibility with more judge models and (ii) ablation on the stability
parameters β and γ.

Kaoyan GradeMath MATH500 Olympiads CHMath24 AIME25 AIME24 GaoKao AMC23 Overall
pass@1 pass@1 pass@1 pass@1 avg@16 avg@16 avg@16 avg@16 avg@16 avg

DeepSeek-R1-Distill-Qwen-7B
BASELINE 50.25 41.43 87.00 49.93 73.75 40.62 52.92 80.22 89.53 62.85
GRPO 55.78 43.33 89.40 56.00 71.04 36.68 52.08 80.30 88.91 63.72
SGPO+o4-mini-0416 57.79 46.19 90.80 54.67 75.00 38.33 54.58 81.33 90.00 65.41
SGPO+DeepSeek-V3-0324 54.77 47.17 91.00 55.11 77.29 40.42 56.87 82.28 90.83 66.19
SGPO+Qwen3-235B-A22B 56.78 46.67 92.00 54.67 73.33 37.92 55.63 81.17 90.63 65.42
SGPO+QwQ-32B 52.26 45.24 92.00 53.78 75.00 35.21 56.46 82.28 91.88 64.91
SGPO+QwQ-32B W/O {β ,γ} 58.29 42.38 90.20 55.11 74.58 38.69 53.63 81.24 88.75 65.08

DeepSeek-R1-Distill-Llama-8B
BASELINE 29.15 23.81 77.40 41.48 61.46 27.92 42.29 72.78 87.97 51.58
GRPO 35.68 28.33 84.00 46.32 57.08 28.33 42.08 68.99 86.72 53.06
SGPO+Claude-3.7 39.70 29.05 83.60 48.44 58.96 24.58 39.37 71.52 89.06 53.81

Qwen2.5-14B-Instruct
BASELINE 37.69 49.52 80.40 41.78 21.88 13.13 14.58 41.14 58.59 39.85
GRPO 43.22 47.14 80.20 43.11 21.88 13.13 13.33 39.16 59.84 40.11
SGPO+o4-mini-0416 38.69 53.33 81.00 44.00 22.92 16.67 14.17 39.00 59.22 41.00

Qwen2.5-32B-Instruct
BASELINE 45.73 53.81 83.60 45.93 26.87 12.29 17.08 44.15 64.22 43.74
GRPO 48.24 52.86 83.20 45.93 22.50 12.08 21.67 45.73 67.34 44.39
SGPO+o4-mini-0416 48.24 53.81 83.00 46.81 29.79 14.58 19.58 45.09 69.53 45.06

QwQ-32B
BASELINE 64.32 62.38 94.60 68.74 89.39 68.54 77.71 86.88 97.03 78.84
GRPO 71.36 63.81 94.60 69.48 88.75 64.38 75.83 87.11 97.03 79.15
SGPO+DeepSeek-V3-0324 73.37 64.76 95.00 70.22 88.33 66.46 78.33 87.11 97.97 80.17

Additional experimental results. We conduct the ablation studies to assess the reliability of judge
models (see Appendix E.3) and discuss the motivation for evaluating both offline and online RL (see
Appendix E.4).

4 Conclusion

We propose a simple and efficient framework that introduces response diversity within all-negative-
sample groups and prove, in a simplified setting, that such diversification can accelerate the learning
dynamic of GRPO. Empirically, our approach can yield consistent improvements across model sizes
in both offline and online training over nine benchmarks, including base and distilled variants. Future
works include extending theoretical results to broader multi-step reasoning tasks, applying response
diversity to accelerate other RL methods, and designing lightweight, task-specific reward models that
evaluate reasoning steps correctly even if they cannot solve the full problem.
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A Related Works

We comment on all related topics, including reasoning through test-time compute, chain-of-thought
and its variants, direct preference alignment methods, reward models and reinforcement learning
from AI feedback. For an overview of more reasoning models and methods, we refer to two recent
surveys [Huang and Chang, 2023, Chen et al., 2025c].

Reasoning through test-time compute. OpenAI-o1 [Jaech et al., 2024] is among the first large-scale
applications of RL to reasoning, and achieved state-of-the-art performance upon release. Following
this trend, DeepSeek-R1 [Guo et al., 2025a] is the first open-weight model to match or exceed
OpenAI-o1. Their real-world success stories have involved several simple yet novel techniques that
enhance LLM reasoning through more test-time compute, including chain-of-thought [Wei et al.,
2022], self-consistency [Wang et al., 2023], best-of-N sampling [Snell et al., 2025], process reward
models [Lightman et al., 2024], Monte Carlo tree search [Silver et al., 2016, Hao et al., 2023], tree-
of-thought [Yao et al., 2023], and recent works on preventing overthinking [Chen et al., 2024b, Team
et al., 2025, Luo et al., 2025a, Arora and Zanette, 2025] and compressing chain-of-thought [Hao et al.,
2024b, Cheng and Van Durme, 2024]. More specifically, chain-of-thought is a reasoning approach
where intermediate steps are explicitly written to make complex problem-solving processes more
transparent and logical. Self-consistency suggests generating multiple final answers and returning
the mode of an empirical distribution, enhancing test-time performance when test-time verifiers
are unavailable. Unfortunately, it is computationally expensive and effective only when answers
can be clustered. Best-of-N sampling resolves this issue by sampling answers from the model
and selecting the best at test time according to the scoring function; however, it is sensitive to the
accuracy of test-time scoring functions [Gao et al., 2023]. Process reward models offer fine-grained
supervision of chain-of-thought reasoning, but they might be vulnerable to reward hacking and
introduce computation overhead. Monte Carlo tree search is a generic technique that allocates
computational resources toward the most promising regions of the search space, and tree-of-thought
and its extension [Besta et al., 2024, Gandhi et al., 2024] simplified this idea by exploring multiple
reasoning paths in a specific structure, allowing language models to select the most promising line of
thought for complex problem-solving. Both length regularization and compressed chain-of-thought
are developed to reduce inference costs for reasoning, which is crucial for the economic feasibility,
user experience and environmental sustainability of LLMs. In addition, several works have focused
on specific reasoning tasks [Lampinen et al., 2024, Yang et al., 2025, Srivastava et al., 2024, Huang
et al., 2025, 2024, Guo et al., 2025b, Gou et al., 2024, Wang et al., 2025], demonstrating promising
performance. The recent findings Xiong et al. [2025a] have shown that the REINFORCE-type
methods (including GRPO [Shao et al., 2024]) can not effectively learn from all-negative-sample
groups. Our work alleviates this issue by leveraging AI feedback to differentiate negative samples.
We also provide a theoretical analysis through a stylized model, explaining why such diversification
improves GRPO’s learning dynamics.

Chain-of-Thought and its variants. Chain-of-thought (CoT) refers to as a broad class of methods
that generate an intermediate reasoning process before arriving at a final answer. These approaches
either prompt LLMs [Wei et al., 2022, Khot et al., 2023, Zhou et al., 2023] or train LLMs to generate
reasoning chains through supervised fine-tuning (SFT) [Yue et al., 2024, Yu et al., 2024b, Li et al.,
2025] and/or RL [Wang et al., 2024, Shao et al., 2024, Havrilla et al., 2024, Yu et al., 2025a]. While
CoT has proven effective for certain tasks, its auto-regressive generation nature makes it challenging
to mimic human reasoning on more complex problems [LeCun, 2022, Hao et al., 2023], which require
planning and search. Recent efforts were devoted to equipping LLMs with tree search methods [Xie
et al., 2023, Yao et al., 2023, Hao et al., 2024a] or training LLMs on search trajectories [Lehnert et al.,
2024, Gandhi et al., 2024, Su et al., 2025]. Several other works have investigated why CoT is effective.
For example, [Madaan et al., 2023] used a counterfactual prompting approach to examine the relative
contributions of prompt elements, including symbols (digits, entities) and patterns (equations). [Feng
et al., 2023, Merrill and Sabharwal, 2024, Li et al., 2024a] analyzed CoT from the perspective of
model expressivity, and [Feng et al., 2023] showed that employing CoT increases the effective depth
of a transformer since the generated outputs are looped back to the input. This insight motivated the
chain-of-continuous-thought paradigm [Hao et al., 2024b], and a related approach has been proposed
in [Cheng and Van Durme, 2024].

Direct preference alignment methods. These methods (e.g., DPO [Rafailov et al., 2023]) are simple
and stable offline alternatives to online RLHF. Various DPO variants with other objectives have been
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proposed, including ranking ones beyond pairwise preference data [Dong et al., 2023, Yuan et al.,
2023a, Song et al., 2024, Chen et al., 2024a, Liu et al., 2025a] and simple ones that do not rely on a
reference model [Hong et al., 2024, Meng et al., 2024]. Since DPO does not train a reward model,
the limited size of human labels becomes a bottleneck. To alleviate this limitation, subsequent works
proposed to augment preference data using a trained SFT policy [Zhao et al., 2023] or a refined
SFT policy with rejection sampling [Liu et al., 2024a]. The DPO loss was recently extended to
token-level MDP [Rafailov et al., 2024] given that the transition is deterministic – which has covered
the fine-tuning of LLMs – and more general RL problems [Azar et al., 2024]. There are other DPO
variants [Ethayarajh et al., 2024, Park et al., 2024, Xu et al., 2024, Tang et al., 2024, Meng et al., 2024,
Chen et al., 2025a, Zhao et al., 2025]. For example, [Ethayarajh et al., 2024] designed the specific
loss using a prospect theory, [Tang et al., 2024] optimized a general preference loss instead of the
log-likelihood loss, and [Meng et al., 2024] aligned the reward function in the preference optimization
objective with the generation metric. Dong et al. [2024] and [Xiong et al., 2024] proposed to generate
human feedback in an online fashion to mitigate the distribution-shift and over-parameterization
phenomenon. This improves DPO for complex reasoning tasks [Pang et al., 2024]. Several other
works focus on unintentional alignment of DPO and developing new methods [Pal et al., 2024,
Tajwar et al., 2024, Liu et al., 2024b, Xiao et al., 2024, Yuan et al., 2025, Razin et al., 2025, Chen
et al., 2025b]. Among these works, [Razin et al., 2025] proposed to measure the similarity between
preferred and dispreferred responses using the centered hidden embedding similarity (CHES) score
and showed that filtering out preference pairs with small CHES score improves DPO, while [Chen
et al., 2025b] proposed to use comparison oracles, and showed that combining it with DPO effectively
alleviated the issue of unintentional alignment.

Reward models. For the prompt x with a ground-truth response y⋆
x, we evaluate by implementing

a regular expression match on the final answer [Hendrycks et al., 2021]: r(x,y) = 1 if y matches
y⋆
x on the final answer and r(x,y) = 0 otherwise. An outcome reward model (ORM) [Cobbe et al.,

2021, Uesato et al., 2022] is trained for estimating r(x,y). In particular, we first choose x ∈ D and
collect training samples (x,y ∼ πθ(·|x), r(x,y)). Then, we take (x,y) as input and train an ORM
to predict r(x,y). This can be done using binary classification [Cobbe et al., 2021, Yu et al., 2024a],
direct preference optimization [Hosseini et al., 2024] or next-token prediction [Zhang et al., 2024b].
Previous works also train LLMs on self-generated data using the ground-truth outcome reward model
with either supervised fine-tuning [Singh et al., 2024, Yuan et al., 2023b, Zelikman et al., 2022] or
online RL [Bi et al., 2024, Guo et al., 2025a]. A process reward model (PRM) is trained to score
ah at sh = (x, a1, . . . , ah−1) either using human annotations [Lightman et al., 2024] or the value
functions based on LLM-generated data [Wang et al., 2024, Luo et al., 2024, Setlur et al., 2025];
indeed, PRMs estimate either the likelihood of future success or the change in the likelihood of
future success before and after taking ah. In addition, PRMs were also developed to improve search
methods [Snell et al., 2025, Wu et al., 2025], and to identify the “first pit" in an incorrect reasoning
trajectory to construct preference pairs for direct preference alignment [Hwang et al., 2024, Setlur
et al., 2024].

Reinforcement learning from AI feedback. Reinforcement learning from human feedback (RLHF)
uses human-preference-aligned reward models to evaluate response quality [Christiano et al., 2017,
Ziegler et al., 2019, Stiennon et al., 2020, Ouyang et al., 2022]. A key barrier to scale RLHF is
the need for high-quality human labels. Previous studies [Gilardi et al., 2023, Ding et al., 2023]
have shown that modern LLMs exhibit strong alignment with human judgments, suggesting that
AI-generated labels can serve as a viable alternative. In this context, [Bai et al., 2022] was the first to
explore RLAIF, jointly optimizing helpfulness and harmlessness using both human and AI-generated
labels, and [Roit et al., 2023, Kwon et al., 2023, Lee et al., 2024] showed that LLMs can produce
informative reward signals for RL post-training. Our approach can leverage AI feedback to introduce
response diversity within all-negative-sample groups by assigning intermediate binary rewards to
reasoning steps. Indeed, one identifies the proportion of correct steps in the reasoning trajectory and
use it to compute a reward ri ∈ [0, 1).

B Preliminaries and Technical Background

Modern LLMs are built based on the Transformer architecture [Vaswani et al., 2017] and generate
responses y = (a1, . . . , aH) to user prompts x, where each token ah ∈ V⋆, with V denoting the
vocabulary and V⋆ the set of all possible token sequences. We view the LLM as a policy πθ(y|x)
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parameterized by θ, assigning probabilities to responses y given x. The policy operates in an
auto-regressive way as follows:

πθ(y|x) =
H∏

h=1

πθ(ah | x, a1, . . . , ah−1).

For a prompt x with ground-truth response y⋆
x, performance is evaluated using a regular-expression

match on the final answer: r(x,y) = 1 if y matches y⋆
x and r(x,y) = 0 otherwise [Hendrycks

et al., 2021]. We consider the reasoning tasks defined over a dataset D = (x,y⋆
x), where each x is a

problem and y⋆
x its ground-truth solution.

The policy gradient methods [Williams, 1992, Sutton and Barto, 1998] aim to maximize the objective
J(θ) = Ex∼ρ,y∼πθ(·|x)[r(x,y)] where ρ is the prompt distribution and πθ is an LLM policy. Param-
eters are updated via θ ← θ+ η∇θJ(θ). In practice, trajectories are sampled from an old policy πθold ,
which is different from πθ, motivating the use of importance sampling as follows:

J(θ) = Ex∼ρ,y∼πθold (·|x)

[
πθ(y|x)
πθold (y|x)

r(x,y)
]
.

However, this estimator suffers from high variance when πθ deviates from πθold . To stabilize training,
clipped surrogate objectives are used as follows:

J(θ) = Ex∼ρ,y∼πθold (·|x)

[
min

{
πθ(y|x)
πθold (y|x)

r(x,y), clip
{

πθ(y|x)
πθold (y|x)

, 1− ϵ, 1 + ϵ
}
r(x,y)

}]
.

The group relative policy optimization (GRPO) and its variants [Yu et al., 2025b, Liu et al., 2025b,
Chu et al., 2025, Zhang et al., 2025a] adopt this framework but estimate gradients using groups of
samples. For each prompt x, GRPO samples responses y1, . . . ,yG from πθold and maximizes the
objective function in the form of

J(θ) = 1
G

G∑
i=1

[
min

{
πθ(yi|x)
πθold (yi|x)Ai, clip

{
πθ(yi|x)
πθold (yi|x) , 1− ϵ, 1 + ϵ

}
Ai

}]
,

where ϵ ∈ (0, 1) and the advantage Ai is computed as

Ai =
r(x,yi)−mean({r(x,y1),...,r(x,yG)})

std({r(x,y1),...,r(x,yG)}) , (2)

where r(x,yi) = 1 if yi matches the ground-truth answer and 0 otherwise.
Remark B.1. When rewards are identical across all samples within a group, Ai = 0 and no update
occurs. This is appropriate for all-positive groups but constitutes a critical limitation for all-negative
groups, where GRPO fails to exploit mistakes as learning signals.

C Comparisons with Related Approaches

Our SGPO approach differs from process reward models (PRMs) [e.g. Lightman et al., 2024]. For a
prompt x and a prefix of reasoning steps (a1, . . . , at), a PRM typically predicts either (i) a prefix-
level value V (x, a1:t) = P(final answer correct | x, a1:t), or (ii) a step-level progress signal such as
∆t = V (x, a1:t)−V (x, a1:t−1). In practice, PRMs are trained by supervised ranking of intermediate
steps and are used to re-rank trajectories or shape training at the prefix level, acting as approximate
value (or Q-value) functions over prefixes. In contrast, SGPO introduces a different way of producing
and using feedback signals: (i) Policy-guided rollouts without search. All trajectories are sampled
from the current policy, without PRM-guided exploration or trajectory alteration; (ii) Post-hoc first-
error identification. A step-wise judge inspects the entire trajectory, pinpoints the earliest error relative
to a reference solution, and converts this into a calibrated scalar reward rSGPO(y) via the reasoning
trajectory score; (iii) Stable credit assignment in all-negative-sample groups. By locating the first
definitive mistake only after observing the full trace, SGPO eliminates the look-ahead ambiguity and
feedback loops inherent to PRM-guided search [Zhang et al., 2024a], while avoiding the need for the
judge to solve the problem or approximate a value function.

Our SGPO approach also differs from knowledge distillation [e.g. Kang et al., 2023, Gu et al.,
2024]. The student model trained via knowledge distillation inherits the judge model’s failure,
since it only imitates the judge model’s outputs. For instance, consider the AIME problem: “The
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twelve letters {A,B,C,D,E, F,G,H, I, J,K,L} are randomly grouped into six pairs. Each pair is
ordered alphabetically to form a two-letter word, and the six words are listed alphabetically, such
as AB,CD,EF,GH, IJ,KL. The probability that the last word listed contains G is m

n with m,n
coprime. Find m+n". Neither the student model (DeepSeek-R1-Distill-Qwen-7B) nor the judge
models (DeepSeek-V3-0324) can solve this problem within 16 rollouts. In contrast, SGPO leverages
the judge model to identify mistakes in the student’s reasoning, providing learning signals that go
beyond imitation and enabling improvements unattainable by knowledge distillation.

D Missing Proofs

We first present the detailed setup for our stylized model and prove several technical lemmas. Then,
we use these lemmas to prove our main result in Theorem 2.1.

D.1 Stylized model

We consider a policy parameterized by a softmax function, which is standard in the analysis of
reinforcement learning methods [Agarwal et al., 2020, Mei et al., 2021, Li et al., 2024b]:

πθ(a1:T |x) =
T∏

t=1

πθt(at |x, a1:t−1) =

T∏
t=1

exp(θ
x,a1:t−1,at
t )∑

a′
t∈V⋆ exp(θ

x,a1:t−1,a′
t

t )
,

By convention, we assume that πθ1(a1 |x, a1:0) = πθ1 (a1 |x).
For simplicity, we perform our analysis in the likelihood space rather than in the parameter space
(i.e., θ) directly. To illustrate, we consider a simplified setting with a reasoning horizon of H = 2,
where each step admits two possible actions ah ∈ 1, 2 for h = 1, 2. This configuration follows
prior works [Dayan, 1991, Li et al., 2024b], where analogous examples were employed to validate
theoretical insights. Indeed, we define the key quantities as follows,

p
.
= πθ1(a1 = 2 |x) = eθ

x,2
1

eθ
x,1
1 +eθ

x,2
1

, q
.
= πθ2(a2 = 2 |x, a1 = 2) = eθ

x,2,2
2

eθ
x,2,1
2 +eθ

x,2,2
2

.

Note that the original 4-dimensional parameter space defined by θx,11 , θx,21 , θx,2,12 and θx,2,22 in R is
reduced to a 2-dimensional likelihood space defined by p, q ∈ [0, 1].

In our analysis, we omit the clipping and importance sampling, thus we can rewrite the generic GRPO
update with a step size η > 0 as follows,

θ(k+1) = θ(k) + η · g(θ(k)), where g(θ(k)) =
1

NGH

(
N∑
i=1

G∑
k′=1

H∑
h=1

sθ(k)(xi, ai,k
′

1:h−1)Ai,k′

)
,

where N is the number of prompts, G is the number of groups, H is the number of reasoning steps in
each response, sθ(xi, ai,k1:h−1) := ∇θ log πθ(at|x, a1:h−1) is the score function, and the advantage
Ai,k is defined by

Ai,k =
r(xi,yi,k)−(1/G)

∑G
j=1 r(xi,yi,j)√

(1/G)
∑G

j=1(r(x
i,yi,j)−(1/G)

∑G
j′=1

r(xi,yi,j′ ))2

To distinguish, we denote gGRPO(·) as the gradient estimator using classical outcome reward model r,
and gSGPO(·) as the gradient estimator using the reward rSGPO as proposed in Section 2. The algorithm
iteratively updates the policy parameter θ using samples drawn from the current policy πθ.

We compute the score functions in terms of likelihood parameters p, q as follows,

s(a1 = 1 |x) =

 p
−p
0
0

 , s(a1 = 2 |x) =

p− 1
1− p
0
0

 ,

and

s(a2 = 1 |x, a1 = 2) =

 0
0
q
−q

 , s(a2 = 2 |x, a1 = 2) =

 0
0

q − 1
1− q

 .
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For clarity, we restrict the sample space to (1, 1), (2, 1), (2, 2), excluding (1, 2) since a correct
reasoning step is unlikely to, and should not, follow an incorrect precursor. Without loss of generality,
we assume a unique ground-truth response y⋆

x = (2, 2) for the prompt x. The responses can be drawn
i.i.d. from the distribution as follows,

(a1, a2) =


(1, 1), w.p. 1− p,

(2, 1), w.p. p(1− q),

(2, 2), w.p. pq.
.

Under GRPO, the rewards are assigned as r((2, 2)) = 1 and r((2, 1)) = r((1, 1)) = 0, meaning
that only selecting the “good" action 2 at both steps yields a positive reward. In contrast, SGPO
assigns rSGPO((2, 2)) = 1, rSGPO((2, 1)) = 1

2 and rSGPO((1, 1)) = 0. The difference is that partial
progress – choosing the “good" action 2 in the first step but failing at the second – receives no credit
in GRPO yet proportional credit in SGPO. Here, 1

2 is chosen for illustrative purposes to convey
the qualitative behavior of the reward mechanism, while the exact values used in experiments are
determined by Eq. (1).

We set G = 2 and focus on the SGPO and GRPO training dynamics with population-level policy
gradient. It can be computed exactly for the stylized model as follows,

ḡSGPO(θ) = E[gSGPO(θ)] = 1
2

 p(p− 1)
p(1− p)
p2q(q − 1)
p2q(1− q)

 , ḡGRPO(θ) = E[gGRPO(θ)] = 1
2

p(p− 1)q
p(1− p)q
pq(q − 1)
pq(1− q)

 .

Since gGRPO(θ) and gSGPO(θ) concentrate around ḡGRPO(θ) and ḡSGPO(θ) when the number of samples in
each group is sufficiently large, it is reasonable to analyze the population-level dynamics at first. Note
that the high-probability guarantees for the sample-level dynamics can be derived using concentration
inequalities under certain conditions.

Let p(k)GRPO and q
(k)
GRPO denote the probability of selecting the “good" action in the first step at iteration k

under GRPO, and that of selecting the “good" action in the second step conditioned on a correct first
step. Analogously, p(k)SGPO and q

(k)
SGPO denote the corresponding probabilities under SGPO.

We can explicitly write down the SGPO and GRPO update rules with η = 1 using the likelihood
parameters p and q as follows,{

p
(k+1)
SGPO = exp(f11(p

(k)
SGPO)),

q
(k+1)
SGPO = exp(f12(p

(k)
SGPO, q

(k)
SGPO)),

and

{
p
(k+1)
GRPO = exp(f21(p

(k)
GRPO, q

(k)
GRPO)),

q
(k+1)
GRPO = exp(f22(p

(k)
GRPO, q

(k)
GRPO)),

, (3)

where the functions fij are defined by

f11(p) = log(p) + p(1− p)− log(1− p+ pep(1−p)),

f21(p, q) = log(p) + p(1− p)q − log(1− p+ pep(1−p)q),

f12(p, q) = log(q) + p2q(1− q)− log(1− q + qep
2q(1−q)),

f22(p, q) = log(q) + pq(1− q)− log(1− q + qepq(1−q)).

(4)

D.2 Technical lemmas

We provide several technical lemmas that are important to the subsequent proof of Theorem 2.1.
Indeed, the first lemma summarizes the properties of particular functions related to the aforementioned
functions f11, f21, f12 and f22 from Eq. (4).

Lemma D.1. The following statements hold true,

(i) The function f11 is strictly increasing on (0, 1).
(ii) The function hp(x) := x− log(1− p+ pex) is strictly increasing for any fixed p ∈ (0, 1).
(iii) The function f21 is strictly increasing in either p for any fixed q or q for any fixed p on (0, 1).
(iv) The function φ(x) := log(1 + (1/2)e−ex) is strictly concave on (−∞, 0).
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Proof. First of all, we have

f ′
11(p1) =

1+(1−2p1)p1(1−p1)

p1(1+p1+p1ep1(1−p1))
> 3

4p1(1+p1+p1ep1(1−p1))
> 0.

Thus, the function f11 is strictly increasing on (0, 1).

Furthermore, we have

h′
p(x) = 1− pex

1−p+pex = 1−p
1−p+pex

0<p<1
> 0.

Thus, the function hp(x) is strictly increasing.

Moreover, we have
∂f21(p1,p2)

p1
= 1+p2(1−2p1)p1(1−p1)

p1(1+p1+p1ep2p1(1−p1))
> 3

4p1(1+p1+p1ep1(1−p1))
> 0,

∂f21(p1,p2)
p2

= p1(1−p1)
2

1+p1+p1ep2p1(1−p1) > 0.

Thus, the function f21 is strictly increasing in either p for any fixed q or q for any fixed p on (0, 1).

Finally, we have

φ′′(x) = (ex+ex/2−ee
x
/2−1/4)ex

e2ex+eex+1/4
.

Since u = ex ∈ (0, 1) for x < 0, we have

(ueu/2− eu/2− 1/4)u = (eu(u− 1)/2− 1/4)u < −(1/4)u < 0.

Thus, φ′′(x) < 0 for all x < 0 which shows that f is strictly concave on (−∞, 0).

The second lemma presents an inequality which plays a key role in the proof of Theorem 2.1.
Lemma D.2. We define the auxiliary functions as follows,

A(x) = 1 +
(
1
x − 1

)
e−x(1−x), B(x, y) = 1 +

(
1
y − 1

)
e−x2y(1−y),

C(z) = 1 +
(
1
z − 1

)
e−z2(1−z).

Then, we have C(
√
xy)2 > A(x)B(x, y) for all x and y satisfying 1/2 < y < x < 1.

Proof. We consider the lower and upper bound of e−u when u > 0:

1− u+ u2

2 −
u3

6 < e−u < 1− u+ u2

2 .

Since 1/x− 1, 1/y − 1 and 1/
√
xy − 1 are all positive, we have

A(x) ≤ 1 + 1−x
x

(
1− x(1− x) + x2(1−x)2

2

)
= 1

x − (1− x)2 + x(1−x)3

2 .

B(x, y) ≤ 1 + 1−y
y

(
1− x2y(1− y) + x4y2(1−y)2

2

)
= 1

y − x2(1− y)2 + x4y(1−y)3

2 .

C(z) ≥ 1 + 1−z
z

(
1− z2(1− z) + z4(1−z)2

2 − z6(1−z)3

6

)
= 1

z − z(1− z)2 + z3(1−z)3

2 − z5(1−z)4

6 .

Set z2 = xy, the original statement is equivalent to (zC(z))2 > (xA(x))(yB(x, y)). Using the
above upper and lower bound, it suffices to show C1(

√
xy)2 > A1(x)B1(x, y) where

A1(x) = 1− x(1− x)2 + x2(1− x)3/2, B1(x, y) = 1− x2y(1− y)2 + x4y2(1− y)3/2,

C1(z) = 1− z2(1− z)2 + z4(1− z)3/2− z6(1− z)4/6.

By Lemma D.3, this is indeed true. This completes the proof.

Lemma D.3. Define functions

A1(x) = 1− x(1− x)2 + x2(1− x)3/2, B1(x, y) = 1− x2y(1− y)2 + x4y2(1− y)3/2,

C1(z) = 1− z2(1− z)2 + z4(1− z)3/2− z6(1− z)4/6.

Then, C1(
√
xy)2 > A1(x)B1(x, y) for all 1/2 < y < x < 1.
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Proof. Let x = u2 and y = v2, then 1 > u > v > 1/
√
2 and z = uv. We next show the desired

inequality holds on a larger region, i.e., 1 > u > v > 2/3. On this larger region, we have the
reparameterization as follows:

u = 2s+3
3s+3 , v = 2r+2s+3

3r+3s+3 , s, r ∈ (0,+∞),

or equivalently,
s = 3(1−u)

3u−2 , r = 3(u−v)
(3u−2)(3v−2) , 1 > u > v > 2

3 .

It is easy to see this defines a one-to-one correspondence from (u, v)-space to (s, r)-space. Thus, we
aim to prove the following function f is positive:

F (s, r) := C1

(
2s+3
3s+3 ·

2r+2s+3
3r+3s+3

)2
−A1

((
2s+3
3s+3

)2)
B1

((
2s+3
3s+3

)2
,
(

2r+2s+3
3r+3s+3

)2)
.

By leveraging Sympy’s symbolic engine, the function expands and simplifies to:

F (s, r) = f(s,r)
c(s+1)20(r+s+1)20 , where f(s, r) :=

20∑
k=0

c20−k(s)r
20−k,

where c > 0 is a universal constant, and single-variable polynomials c20(s), . . . , c2(s), c0(s) > 0
and ∆2 := c1(s)

2 − 4c2(s)c0(s) < 0, for all s > 0 (see Table 3 for details). Notice that from the
table, we can see the only nontrivial parts are c3(s) > 0 and c2(s) > 0 because only these two
contain negative coefficients. The positivity of c3(s) is simple because there is only one term (s9)
with negative coefficient and for all s > 0,

19471456710454363005152664s10+9684588377731643071927236s8 > 14413823109350224541499726s9.

To see this, simple estimation and AM-GM inequality yield

LHS > 1.9× 1025s10 + 9.6× 1024s8 > 2
√
182.4× 1024s9 > 2.7× 1025s9 > RHS.

The positivity of c2(s) is more complicated because it has 4 negative terms s10, s9, s8, s7. However,
we can use similar idea, i.e., choosing a pair of positive terms to bound a negative term:

95791062786555508724088742320s15 + 571809550541807937530952s5 > 70273595236432368329707716s10;

43785862330162499052209529768s14 + 184789343789534461150530s4 > 99854072704322871537392604s9;

16326736853527122991715155824s13 + 35488375569622472169240s3 > 35726031377969792088188925s8;

4608219050084326790748933153s12 + 4362950858813170449228s2 > 6099037895307670142287608s7.

To see this, simple estimation and AM-GM inequality yield

LHS > 9.5× 1028s15 + 5.7× 1023s5 > 2
√
541.5× 1025s10 > 4.6× 1026s10 > RHS;

LHS > 4.3× 1028s14 + 1.8× 1023s4 > 2
√
77.4× 1025s9 > 1.7× 1026s10 > RHS;

LHS > 1.6× 1028s13 + 3.5× 1022s3 > 2
√
5.6× 1025s9 > 4.7× 1025s8 > RHS;

LHS > 4.6× 1027s12 + 4.3× 1021s2 > 2
√
19.7× 1024s7 > 8.8× 1024s7 > RHS.

In conclusion, we have all coefficient ci(s) positive except c1(s), but it doesn’t affect the positivity of
f because ∆2 < 0. This completes the proof.
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Table 3: Coefficient Lists of F (s, r)

Notation Value
c 437675956526049436836

c20

2(2s + 3)2(1714774320744848750s18 + 26610409260691576200s17 +
191778746468802317181s16 + 850194149855082319224s15 +
2587082434290045806049s14 + 5704415906039160731874s13 +
9366197581963232054460s12 + 11563054951307567026248s11 +
10670965452123886149660s10 + 7187176769582075261292s9 +
3372972168996579430017s8 + 1072082836158220703952s7 +
370302094042890771285s6 + 329901677376902425818s5 +
282799986805616267862s4 + 151168270170893365008s3 +
49139849518345513368s2 + 9090603727935062976s+ 742484948385838248)

c19

8(2s + 3)2(8573871603724243750s19 + 141183751848798840450s18 +
1085065457535611084097s17 + 5159905424662678527663s16 +
16962017821014041355285s15 + 40761515892906930261393s14 +
73777358861762677983126s13 + 101968163476291942277643s12 +
107719550183279202945336s11 + 85951871005332247942347s10 +
50477142420763872747039s9 + 21228461710484227270812s8 +
7175576253360286202193s7 + 3821642119447908810138s6 +
3343140602539615070982s5 + 2308058741380310946144s4 +
1046528691565621471344s3 + 300769285860744146028s2 +
50403014643440592936s+ 3785769852305984190)

c18

2(2s + 3)2(325807120941521262500s20 + 5673987380977312396200s19 +
46320143614200183575358s18 + 235164624868455434314740s17 +
830330782346499878631402s16 + 2159105892766696625508432s15 +
4268066364777710628878112s14 + 6521177726276586191628264s13 +
7742933419720025359660131s12 + 7110911361873582109051992s11 +
4976474876383070663195517s10 + 2600230719135591148269222s9 +
1035307928116150386109695s8 + 420495220158165783672300s7 +
287436345862168026209421s6 + 225749912117527047120354s5 +
132205553924765757023286s4 + 52546262098747895532864s3 +
13596497258861930544108s2 + 2087305777245729888936s +
145293329180967197454)

c17

12(2s + 3)2(325807120941521262500s21 + 5982992191700268855300s20 +
51700930512613327403406s19 + 279079780777259477944590s18 +
1053187317945045364767966s17 + 2945458902809849586876810s16 +
6310900331865363012743844s15 + 10554182290179327214273482s14 +
13894164004300292404029789s13 + 14397511755502695216399777s12 +
11648187532971253859583195s11 + 7253672843249894875203621s10 +
3463934076062711984148183s9 + 1401311871124636922510679s8 +
709635073453803384330663s7 + 526601300781722718969621s6 +
366411462920903557014120s5 + 187790938366917450633606s4 +
66828265788979238418684s3 + 15774993964318985462592s2 +
2238177282159012945966s+ 145311275743961970078)

c16

3(2s + 3)2(5538721056005861462500s22 + 106963949041194830344800s21 +
975372417387075095557110s20 + 5577701869567635624516312s19 +
22401070138854784562671602s18 + 67034725561809321462257220s17 +
154689592660061775780683034s16 + 280889539801332767094091608s15 +
405664328993005936098158220s14 + 467432234597450323377654624s13 +
428162911701836470453488816s12 + 308851193177419859648120664s11 +
173923711507624595412555792s10 + 78611043902295277305014364s9 +
34502723932108659968068191s8 + 20784869678087847011350512s7 +
15211070491275270899260479s6 + 9439795169478817720557390s5 +
4323642777299210867466840s4 + 1398336255225225668686176s3 +
304165103383419145366680s2 + 40170170984468888396880s +
2445688799534592091926)
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c15

12(2s + 3)2(4430976844804689170000s23 + 89773624658788072119600s22 +
861449789967478967902968s21 + 5202052340570363961799272s20 +
22150958674722147636887880s19 + 70610768977431597138502416s18 +
174547747719038741579249148s17 + 341846798830220759744006802s16 +
537017897494050473220887475s15 + 680386317088643909072652357s14 +
694900917445527709102606203s13 + 568854294351452352559155357s12 +
370162500862325208186949407s11 + 192089934615274810143113637s10 +
85560000374404871078044743s9 + 42188979069325595690484894s8 +
27986482983635448916149477s7 + 19349473000527948423160098s6 +
10826549522417650582347903s5 + 4499119009419911850147903s4 +
1337268081929646109116429s3 + 270188727447397870150299s2 +
33412191448722202871793s+ 1916481339467789227047)

c14

3(2s + 3)2(44309768448046891700000s24 + 939760900846202799633600s23 +
9465882231449979270581616s22 + 60189415644287265430240224s21 +
270831851136366961169859120s20 + 916082243422713193340650464s19 +
2414605718335618880853970032s18 + 5071784805050410035823167576s17 +
8606003351786628019139811024s16 + 11882072721559268002578594336s15 +
13373135736066588915267225192s14 + 12233789753017327381398656592s13 +
9038087243602138768195078704s12 + 5369286552690873446276117328s11 +
2623535852573549267091555300s10 + 1196071780982939651865144096s9 +
660078244623496780263588075s8 + 451393195997666208667458852s7 +
290343677073268941864046305s6 + 148042042832629803967321050s5 +
56464193331043404116741784s4 + 15559478430192850829818824s3 +
2939179015494775847121192s2 + 342046929585497061253176s +
18557914646800278459054)

c13

6(2s + 3)2(44309768448046891700000s25 + 981785555104524878071200s24 +
10357132334422169539112688s23 + 69166131783384274997062320s22 +
327906609514495942625889552s21 + 1172872936442019296825004672s20 +
3283063721629310545911589320s19 + 7360333239220785966714322212s18 +
13411238091959519801173855314s17 + 20030874331258639447616405430s16 +
24612632066584435063045693896s15 + 24861807943243247848564702728s14 +
20554616309938676564088193632s13 + 13828701774644445607198489296s12 +
7593307018019776947591316692s11 + 3573164437682539651140298914s10 +
1711205400898634741432588709s9 + 1026436201325482873227731181s8 +
693346698158130213351442587s7 + 413729468327452341092783823s6 +
194077643830831926535960674s5 + 68561905220231775619051080s4 +
17640970508803332546397944s3 + 3132633769453198732801032s2 +
344560424227000935565860s+ 17745096925489168423620)

c12

3(2s + 3)2(144006747456152398025000s26 + 3327383180429252608653600s25 +
36686806677921921575024412s24 + 256712663785782687868607040s23 +
1278878488443918869718977532s22 + 4822501965635852078399708760s21 +
14284937167605407625123613032s20 + 34039675734020531218713639960s19 +
66269194087347804842641890936s18 + 106420251181999059483739591464s17 +
141673718347886548611527896944s16 + 156512253734744849831503592064s15 +
143119458698672790284020359156s14 + 107772919457957006535562903236s13 +
66583563316818931905117287625s12 + 34208027977787101480006575072s11 +
15821430510294339891416781741s10 + 8030913522092664743057080482s9 +
5050521785734143734257145460s8 + 3292374301511579644939102872s7 +
1827212365211212115171329068s6 + 795146625577647417589837740s5 +
262142182103903879108812389s4 + 63354427214296180937779584s3 +
10625610419721898094320272s2 + 1108770079900593722922360s +
54371622599418650521707)
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c11

2(2s + 3)2(288013494912304796050000s27 + 6927926613537598727151600s26 +
79684994050724088696229560s25 + 583013575348670021732718984s24 +
3044719667796555717818159544s23 + 12071152881690852686028406920s22 +
37719751802283064561860228312s21 + 95186570754684978954315680724s20 +
197141443250509137121100298018s19 + 338621398294617306936300888486s18 +
485320394172125494078362290142s17 + 581787906451611153835763035926s16 +
582802786083324408675746802192s15 + 485993832849417808677870096480s14 +
335594444689992516446373541470s13 + 191818678234951313275318187166s12 +
93215508141687941579846043591s11 + 42995488556619072965421127845s10 +
22993334205445704498638551659s9 + 14702002876383491619167125293s8 +
9151802478157350485470780638s7 + 4746495171599998113140409294s6 +
1930238883493800552821467836s5 + 597661705826550277052178582s4 +
136369421095118152409287875s3 + 21690051407678516824173015s2 +
2154400447443907595487183s+ 100873131758694046028745)

c10

(2s + 3)2(633629688807070551310000s28 + 15842391105676722921391200s27 +
189762104968446645014104296s26 + 1448899233419905865696230704s25 +
7915017749037631812296989272s24 + 32911374092963881171128851808s23 +
108184113680419836957062571120s22 + 288181457405913203915560147656s21 +
632563077547125768289724175852s20+1156966248842167228077853758672s19+
1775610230389152091840398326292s18+2294661769917892997575576903488s17+
2498192965867701162268688835924s16+2285659112305489254434518711416s15+
1748991971403770816761602941934s14+1113797684163785846264967323376s13+
592491395159743574390096742111s12 + 274476600715541565615011213796s11 +
127044619585271350650188845452s10 + 70538582326147723865407765680s9 +
44889681102540017067072498465s8 + 26602898887160759567836334520s7 +
12967769746561749479001701280s6 + 4960789745148078555411299844s5 +
1450732098731590049595423084s4 + 313930894468329082145284956s3 +
47525670620612611058618019s2 + 4506795195444098216749962s +
201981066438920088074121)

c9

2(2s + 3)2(288013494912304796050000s29 + 7474247118895785746840400s28 +
93085137978826092989684184s27 + 740402244183890613610238616s26 +
4222492016436341447317422840s25 + 18373474587737757143576597976s24 +
63374311264983526695777429384s23 + 177689296198984770408646605492s22 +
411992129847683864453855977890s21 + 799270570087512158479167778014s20 +
1307454563265970530661662310488s19+1811440906673507850196226957292s18+
2129008833631551803404401966618s17+2120318902997465121470552812398s16+
1782752578142774040882126045846s15+1258348636755929955587480574282s14+
742222950605778500648135120808s13 + 368759532677717760323871620448s12 +
163292340177616665345297878034s11 + 75628135544208165254280371040s10 +
42858735954613893102489442569s9 + 26815609860493555439017106967s8 +
15154066307595953401565854680s7 + 6986502898234763627448498006s6 +
2529774938694747662152377363s5 + 702330501810674770487862723s4 +
144732655027863948827862261s3 + 20924547208371262485560295s2 +
1899529777608715114521399s+ 81667865388403953518175)
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c8

3(2s + 3)2(144006747456152398025000s30 + 3873703685787439628342400s29 +
50086950606023925868479036s28 + 414347293343103311413357200s27 +
2462455716417895553466814404s26 + 11190311839066344259536714024s25 +
40409295972773177050104566556s24 + 118947134811306669490272616200s23 +
290460448001449937986609641984s22 + 595650982876961700444247916136s21 +
1034394503332837044832871973660s20+1529122522398341452237748264328s19+
1929170112144408531295247240352s18+2077275729835779898627972452564s17+
1904400092584849147398803257857s16+1479295019246765244421617960408s15+
967232587581523134128767690737s14 + 529827149456294513579866857762s13 +
245850149371151220247602350838s12 + 103586181981415962365079350136s11 +
47441969831005210765856651490s10 + 27017370328613731242988726116s9 +
16543604074621342316534833896s8 + 8959808104815503968120901160s7 +
3934148480503417587877177653s6 + 1356708501926603220744080694s5 +
359356010050812330787473279s4 + 70800398025365428901919252s3 +
9805705639441860010993074s2 + 854294427989006197205052s +
35306186075611540243056)

c7

12(2s + 3)2(22154884224023445850000s31 + 616966740327228674348400s30 +
8270907073696162683430488s29 + 71054888374958447419331400s28 +
439319157110546803811896968s27 + 2081153035704566658130624800s26 +
7851699408458680802242634484s25 + 24207516760625423072207073414s24 +
62092517428805875866794674881s23 + 134191349159021239688414857431s22 +
246518378732311775029464265197s21 + 387229048800653531738114739999s20 +
521849077561894657636398449655s19 + 604010499659026951460897607741s18 +
599706193952136964321127694249s17 + 508932600092700362308014694866s16 +
366923845830106735087199088303s15 + 222970678878271885535159028828s14 +
113510751404816691589761355815s13 + 48959621580159733845289884633s12 +
19343819733170955544319552163s11 + 8570967648243419298660377211s10 +
4842281705213527108416513279s9 + 2909138374562317990360031394s8 +
1522921303596173996138575905s7 + 642212965528640572310436879s6 +
212347408792609836644815359s5 + 53940504869138165983355556s4 +
10200981421548866272272021s3 + 1357609423748226427157778s2 +
113782587792457476788865s+ 4528476210896135134182)

c6

3(2s + 3)2(44309768448046891700000s32 + 1275958134912779427134400s31 +
17712124648743520374246000s30 + 157800783303192342484807776s29 +
1013476002096822653934247536s28 + 4996346811471994438240970400s27 +
19656891049003759997738219664s26 + 63343018585986823082619729288s25 +
170258537043632779229473723584s24 + 386719255970188993917224574336s23 +
749195973037122202127202135768s22+1245952789865163842159925500256s21+
1785990969360715046000117363568s20+2210911897085152430737822315488s19+
2363325656949833631869930474232s18+2176386534475868543250178452024s17+
1718519269597730769046219931925s16+1154898997656814617038309424924s15+
653993799682370716585040976045s14 + 309097812387589842994049088882s13 +
122649986514805927975811013678s12 + 44139321593386486437541304232s11 +
18194600512073131179652474218s10 + 10080729455247177149466360108s9 +
6012154495009832863143860703s8 + 3086713901904485302077423912s7 +
1264536513002644891553573532s6 + 404269004313535997709064188s5 +
99085318554137395893467265s4 + 18066869592965845573731768s3 +
2318037559219684454533893s2 + 187335877784959577298978s +
7192069815364796066229)
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c5

6(2s + 3)2(8861953689609378340000s33 + 263596557834220301114400s32 +
3784460184258343211722032s31 + 34920466929143934879808368s30 +
232642130166877120425752976s29 + 1191697800945367086458055072s28 +
4880694751880441559218476632s27 + 16406950824469547680560778764s26 +
46112865280418851489322074134s25 + 109812274944960351155991786018s24 +
223725856433516713998849805632s23 + 392660140917098227883941019880s22 +
596450332899276085006754000436s21 + 786241559139425306167747437324s20 +
900162472445706270827205735408s19 + 894118456198813762374744874842s18 +
768019765700356821541048064211s17 + 567188919515029404795124639815s16 +
356892849173690588784279865923s15 + 188887726440058090918123569807s14 +
82758519677573937797801658678s13 + 29755841968295155180938377160s12 +
9265655123985315388229427762s11 + 3269804705124270960946179492s10 +
1745378750437674672254525343s9 + 1067124171571276165079329161s8 +
553192327447935426146669544s7 + 224471881547232310097558892s6 +
70271287113829333092849234s5 + 16759856517295120894936656s4 +
2963427571961631174417201s3 + 367988093962382467875321s2 +
28750493973686584294998s+ 1066338997876680421860)

c4

3(2s + 3)2(5538721056005861462500s34 + 170000930428677948001200s33 +
2521542870629614052494182s32 + 24069033861073900393194288s31 +
166112140239471730224127950s30 + 882861984743248195220227068s29 +
3758135559481861075860190560s28 + 13155787658258741235890755800s27 +
38587134973448786366330248032s26 + 96129109345583765886638321232s25 +
205447147746380335664768754954s24 + 379449453375926778871028692368s23 +
608776780980435381145177931646s22 + 851251839731897497067600541072s21 +
1039128387112340409627618422211s20+1107338907683241287910817574616s19+
1028236425910911889110211542327s18+828653388719550997841334599814s17+
575679860099214460991336767122s16 + 341113980250874385715195498752s15 +
169602112160966873244672554562s14 + 69019121880524178108395152092s13 +
22192275965509681657763172138s12 + 5513039324469607430622101184s11 +
1308552733582056616685717799s10 + 622822426968272935610750562s9 +
441208218615564366021478680s8 + 251086626744997918806221832s7 +
105542726343197962447668330s6 + 33182712041751038192684904s5 +
7819078036046387444720541s4 + 1353372939412637489000388s3 +
163593372233172281873202s2 + 12396727299661082512092s +
444813790293506728368)

c3

6(2s + 3)2(651614241883042525000s35 + 20618119083643318565400s34 +
315621334999692786151116s33 + 3113065178572047666007860s32 +
22229797545183952680520284s31 + 122422561739941481599835484s30 +
540840514528742111761776912s29 + 1968384017248063183323104976s28 +
6014334916396782599305697730s27 + 15642733509059107994947830402s26 +
34991063427920339849664070098s25 + 67834512242456744868412053510s24 +
114610735641635823232680558264s23 + 169420289219412443682245006436s22 +
219630129457905943676457475806s21 + 249914888458917575863280485878s20 +
249458032509437740525240777731s19 + 217920380868106493481515756421s18 +
165868299839291545410161133771s17 + 109196804131621756456248426789s16 +
61455743971044438451107683232s15 + 29010820857450160933812140136s14 +
11111724769820435809112639700s13 + 3230978841571830756780993930s12 +
597734071316630030096071452s11 + 19471456710454363005152664s10 −
14413823109350224541499726s9 + 9684588377731643071927236s8 +
12560219583039185504039910s7 + 6629813221106696409536742s6 +
2267528918316638233964400s5 + 549510851612447197946100s4 +
95169593716835317546698s3 + 11333379076369208961606s2 +
837761545501050427146s+ 29118359247617829474)
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c2

(2s + 3)2(651614241883042525000s36 + 21236128705089231483600s35 +
335176828913504517258492s34 + 3412480272349060314590760s33 +
25184187621847674304218612s32 + 143532477912633204107111040s31 +
657199533413487737746005840s30 + 2483057802762141981372604872s29 +
7890444256414221204984097182s28 + 21386706626264438997499257504s27 +
49968626609865032054943532722s26 + 101443944207534124952038283748s25 +
180022708498134425424774257358s24 + 280473316548653330703764939232s23 +
384770188717561290211106882724s22 + 465568061409025346140795055268s21 +
497070528817890647576496874221s20 + 467853455550722338016560291068s19 +
387255091639245361342752551670s18 + 280658492377779215502417761676s17 +
176840580743027422215976620477s16 + 95791062786555508724088742320s15 +
43785862330162499052209529768s14 + 16326736853527122991715155824s13 +
4608219050084326790748933153s12 + 763090880285610579007863108s11 −
70273595236432368329707716s10 − 99854072704322871537392604s9 −
35726031377969792088188925s8 − 6099037895307670142287608s7 +
385997000711223832356168s6 + 571809550541807937530952s5 +
184789343789534461150530s4 + 35488375569622472169240s3 +
4362950858813170449228s2+320602140994390122456s+10806813741383936712)

c1

2s2(2s + 3)2(5s + 6)2(1371819456595879000s33 + 42716345570559668088s32 +
643544475178313701908s31 + 6247566555702580389060s30 +
43916765565269249016660s29 + 238129437052493452170540s28 +
1036074226442125183419168s27 + 3714930106381256786671824s26 +
11187728687072575053763704s25 + 28696708254175557235886484s24 +
63352891406570842442956878s23 + 121330161626918848657558398s22 +
202765255131175811905486752s21 + 296952156159684842999476188s20 +
382193906007924533060066196s19 + 432977106373155008061033636s18 +
431882942555537334945182376s17 + 378922778321739951076319160s16 +
291693785851369028780662644s15 + 196147224158011892839433394s14 +
114410349624644626423212729s13 + 57248884332430976396451627s12 +
24130617950503756984051008s11 + 8287189086050003227856022s10 +
2152391916458370195915867s9 + 325184614597411140314601s8 −
33007972351878903475404s7 − 41792510938686638897304s6 −
15831185972996449730358s5 − 3877006197061115690130s4 −
665506024092175855680s3−78419814392209911120s2−5759186746951521828s−
200126180395998828)

c0

s4(2s + 3)2(5s + 6)4(5487277826383516s30 + 162900207047936448s29 +
2337377142714373098s28 + 21588165729897598296s27 +
144210704373637237422s26 + 742206852421449807276s25 +
3061285798160471289822s24 + 10391895636644586020112s23 +
29588363727735612069036s22 + 71651404108146138897096s21 +
149117620073027461547436s20 + 268806705178958727187248s19 +
422185992215286625454736s18 + 580191752386498986323712s17 +
699694724310231624064272s16 + 741757261801656111225984s15 +
691666247103583662351612s14 + 567033087779716710023352s13 +
408047131644656580559296s12 + 257036644794565634383008s11 +
141145264141826804073576s10 + 67178460532288884909516s9 +
27499663057942951141041s8 + 9582491278489242855672s7 +
2803365139419823150782s6 + 675682953313836552876s5 +
130659498671205647052s4+19489563056909654496s3+2105305456045150908s2+
146594486051390088s+ 4941387170271576)
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∆2

−36s4(2s+ 3)4(5s+ 6)4(188188862149501274759871978264100000s66

+11719822793673389354852048917721870400s65

+359034059515843764915172404946627408992s64

+7212088571266452516322419090023965301952s63

+106839132025368784093448214456114080089896s62

+1244653930745343462400612341123366430556112s61

+11874531272586759157048871425273776419646480s60

+95397174639780849117400217925290860797543072s59

+658601421196162394675006092409270655783387096s58

+3968022355733696091765263130542489256493297296s57

+21117182157874536980169655465156091744276920380s56

+100234695532226306436649215523120163350432040784s55

+427723545408455739277440670239201960498527445168s54

+1651693204898583110001983831675383703838803111280s53

+5803881305128515928064472759889503906134840719788s52

+18645262399111732404927179918528703191829668776944s51

+54982160923970862907155853987157692828051002129468s50

+149340327131211909506021191619303279476069307001480s49

+374738908504925756556865067810806785110272348870998s48

+870959171363388767125455183938474548684433032733976s47

+1879125423105677523532695113591118653251030543219650s46

+3770893425502604495219029177077658520798571516698604s45

+7050015221784174490794108388251813073259643663091008s44

+12297516978145400887377430125405972391309535236404816s43

+20038164484164236659289158464333223322979861456369558s42

+30532204930658301922179960307897986850960973110401060s41

+43539740165642307747449376716152274738997971952381288s40

+58147942722340474688455284463585466926829447124690864s39

+72765609819670245981642226229421333542816165300786478s38

+85352226271944117403522054472274990615987412077658020s37

+93861185123580180986528832241395054124125210332787978s36

+96773676228707454794185949836280770022200702637789136s35

+93535505340566829835280969592461902479874869737070324s34

+84726573070331222224010481384087646174794999517275720s33

+71892923025396467242385567135204296459367606931171072s32

+57107505385821670765861094421169358296399126222638720s31

+42429475579369200294980396815322839839865021711481712s30

+29453402248671311370918975586371950400100875859184424s29

+19076887418815475591391225344828673331985433949859745s28

+11509630902613742430056710113025979946368929363591560s27

+6455314570589262935425947995355398219841083619460275s26

+3357432561061020603580382785922585900536396393910862s25

+1614483581569691108434974127018929362203153022365980s24

+715184392123946764432274154396140356129136774278152s23

+290561593707882411154971270303899134550457836920080s22

+107686614725038641896140906093508540897806554334884s21

+36175123767827876571287168571772096066641842189715s20

+10936295413621417840147244658584579127207174389352s19

+2956231446951945885452453177600650222360031507853s18

+714328315495087334767452511829810830341704532294s17

+157862256397341201315796262528952028945210160178s16

+34669184815408932243484290688498684622916000552s15

+8792208859688249070338942374434094956929968434s14

+2728958913497904679605629304348283067662149156s13

+908514477310679518991239534084776498569549130s12

+281997384651571824431416925444015818101696600s11

+76595712561329944441138942454188872738496992s10
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+17823235368805916505433544016195415996681584s9

+3522507407940359387775769801382214828420516s8

+586782005064608000832043474107919395519552s7

+81484523152763229188477555846803640661672s6

+9275689993243887053899463828498929963344s5

+843808167321923057379954129881612634096s4

+58988087589412129623633466476137297856s3

+2972581287433071568118115850779633072s2

+95923391203691628771401672158154016s
+1483351410366365393372190806569392)

The last lemma presents some properties for the population-level SGPO and GRPO dynamics.
Lemma D.4. Under the assumptions from Theorem 2.1, the following statements hold true,

(i) p
(k)
SGPO, q

(k)
SGPO, p

(k)
GRPO, q

(k)
GRPO ∈ (0, 1) for all k ≥ 0.

(ii) p
(k)
SGPO, q

(k)
SGPO, p

(k)
GRPO, q

(k)
GRPO are strictly increasing in k and lie in ( 12 , 1) for all k ≥ 1.

(iii) p
(k)
SGPO > q

(k)
SGPO for all k ≥ 1.

Proof. We first rewrite the update rule in Eq. (3) as follows,

p
(k+1)
SGPO = p

(k)
SGPO

e
∆

(k)
SGPO,p

1−p
(k)
SGPO+p

(k)
SGPOe

∆
(k)
SGPO,p

, where ∆
(k)
SGPO,p = p

(k)
SGPO(1− p

(k)
SGPO),

q
(k+1)
SGPO = q

(k)
SGPO

e
∆

(k)
SGPO,q

1−q
(k)
SGPO+q

(k)
SGPOe

∆
(k)
SGPO,q

, where ∆
(k)
SGPO,q = (p

(k)
SGPO)

2q
(k)
SGPO(1− q

(k)
SGPO),

p
(k+1)
GRPO = p

(k)
GRPO

e
∆

(k)
GRPO,p

1−p
(k)
GRPO+p

(k)
GRPOe

∆
(k)
GRPO,p

, where ∆
(k)
GRPO,p = p

(k)
GRPO(1− p

(k)
GRPO)q

(k)
GRPO,

q
(k+1)
GRPO = q

(k)
GRPO

e
∆

(k)
GRPO,q

1−q
(k)
GRPO+q

(k)
GRPOe

∆
(k)
GRPO,q

, where ∆
(k)
GRPO,q = p

(k)
GRPOq

(k)
GRPO(1− q

(k)
GRPO).

First of all, the uniform initialization yields the desired result for k = 0. Suppose p
(k)
SGPO ∈ (0, 1) for

some k ≥ 0. Then, we have

1− p
(k)
SGPO + p

(k)
SGPOe

∆
(k)
SGPO,p > p

(k)
SGPOe

∆
(k)
SGPO,p > 0,

which implies p(k+1)
SGPO ∈ (0, 1). By induction, we have p

(k)
SGPO ∈ (0, 1) for all k ≥ 0. Similarly, we can

show that q(k)SGPO, p
(k)
GRPO, q

(k)
GRPO ∈ (0, 1) for all k ≥ 0.

Furthermore, we have ∆
(k)
SGPO,p > 0 since p

(k)
SGPO ∈ (0, 1). This implies

p
(k+1)
SGPO

p
(k)
SGPO

= 1

(1−p
(k)
SGPO)e

−∆
(k)
SGPO,p+p

(k)
SGPO

> 1

1−p
(k)
SGPO+p

(k)
SGPO

= 1.

Since p(0)SGPO =
1
2 , we have p(k)SGPO ∈ ( 12 , 1) for all k ≥ 1. Similarly, we can show that q(k)SGPO, p

(k)
GRPO, q

(k)
GRPO

are strictly increasing and lie in ( 12 , 1).

Finally, we have p
(0)
SGPO ≥ q

(0)
SGPO. Thus, it suffices to show that p(k)SGPO ≥ q

(k)
SGPO implies p(k+1)

SGPO > q
(k+1)
SGPO

for all k ≥ 0. Indeed, Lemma D.1(i) and p
(k)
SGPO ≥ q

(k)
SGPO yield

p
(k+1)
SGPO = exp(f11(p

(k)
SGPO)) ≥ exp(f11(q

(k)
SGPO)) = exp(log(q

(k)
SGPO) + h

q
(k)
SGPO

(q
(k)
SGPO(1− q

(k)
SGPO))).

Then, Lemma D.1(ii) and p
(k)
SGPO ∈ (0, 1) yield

exp(log(q
(k)
SGPO) + h

q
(k)
SGPO

(q
(k)
SGPO(1− q

(k)
SGPO))) > exp(log q

(k)
SGPO + h

q
(k)
SGPO

((p
(k)
SGPO)

2q
(k)
SGPO(1− q

(k)
SGPO))).

In addition, we have

q
(k+1)
SGPO = exp(f12(p

(k)
SGPO, q

(k)
SGPO)) = exp(log q

(k)
SGPO + h

q
(k)
SGPO

((p
(k)
SGPO)

2q
(k)
SGPO(1− q

(k)
SGPO))).

Putting these pieces together yields p(k+1)
SGPO > q

(k+1)
SGPO .
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D.3 Proof of Theorem 2.1

To show (i), recall that the sequence (p
(k)
SGPO)k∈N is strictly increasing and bounded in (0, 1) from

Lemmas D.4(i) and D.4(ii), so it converge to some value c ∈ (0, 1]. Take limit as k →∞:

1 = lim
k→∞

p
(k+1)
SGPO

p
(k)
SGPO

= lim
k→∞

1

(1−p
(k)
SGPO)e

−∆
(k)
SGPO,p+p

(k)
SGPO

= 1
(1−c)e−c(1−c)+c

.

Using the simple Taylor lower bound e−x ≥ 1− x, we have

1 = 1
(1−c)e−c(1−c)+c

≥ 1
(1−c)(1−c(1−c))+c =⇒ (c− 1)2 ≤ 0 =⇒ c = 1.

This shows p(k)SGPO → 1 as k →∞. Similarly, we can show q
(k)
GRPO, p

(k)
SGPO, q

(k)
SGPO → 1 as k →∞.

To show (ii), consider the base case:

p
(1)
SGPO = exp(f11(p

(0)
SGPO)) = exp(log p

(0)
SGPO + h

p
(0)
SGPO

(p
(0)
SGPO(1− p

(0)
SGPO)))

= exp(log p
(0)
GRPO + h

p
(0)
GRPO

(p
(0)
GRPO(1− p

(0)
GRPO)))

> exp(log p
(0)
GRPO + h

p
(0)
GRPO

(p
(0)
GRPO(1− p

(0)
GRPO)q

(0)
GRPO)) = exp(f21(p

(0)
GRPO, q

(0)
GRPO)) = p

(1)
GRPO,

where the inequality follows from Lemma D.1(ii). Thus, we use induction and assume p
(k)
SGPO > p

(k)
GRPO

for some k ≥ 1. Then we have,

p
(k+1)
SGPO = exp(f11(p

(k)
SGPO)) > exp(f11(p

(k)
GRPO)) = exp(log p

(k)
GRPO + h

p
(k)
GRPO

(p
(k)
GRPO(1− p

(k)
GRPO)))

> exp(log p
(k)
GRPO + h

p
(k)
GRPO

(p
(k)
GRPO(1− p

(k)
GRPO)q

(k)
GRPO)) = exp(f21(p

(k)
GRPO, q

(k)
GRPO)) = p

(k+1)
GRPO ,

where the first inequality uses Lemma D.1(i) and the second one uses Lemma D.1(ii). Thus, p(k+1)
SGPO >

p
(k+1)
GRPO and induction completes. We have proved that p(k)SGPO > p

(k)
GRPO for all k ≥ 1.

To show (iii), first notice that we can show p
(k)
GRPO = q

(k)
GRPO for all k ≥ 0 by induction. The base

case is trivial by initialization. Suppose p
(k)
GRPO = q

(k)
GRPO for some k ≥ 0, then by noticing that

f21(p, p) = f22(p, p), we have

p
(k+1)
GRPO = exp(f21(p

(k)
GRPO, q

(k)
GRPO)) = exp(f21(p

(k)
GRPO, p

(k)
GRPO))

= exp(f22(p
(k)
GRPO, p

(k)
GRPO)) = exp(f22(p

(k)
GRPO, q

(k)
GRPO)) = q

(k+1)
GRPO .

Thus, by induction, p(k)GRPO = q
(k)
GRPO for all k ≥ 0. Now, we can reduce the update rule of p(k)GRPO as

p
(k+1)
GRPO = 1

(1/p
(k)
GRPO−1) exp(−(p

(k)
GRPO)

2(1−p
(k)
GRPO))+1

.

Also recall the update rule of p(k)SGPO and q
(k)
SGPO:

p
(k+1)
SGPO = 1

(1/p
(k)
SGPO−1) exp(−p

(k)
SGPO(1−p

(k)
SGPO))+1

q
(k+1)
SGPO = 1

(1/q
(k)
SGPO−1) exp(−(p

(k)
SGPO)

2q
(k)
SGPO(1−q

(k)
SGPO))+1

,

and it suffices to show p
(k)
SGPOq

(k)
SGPO > (p

(k)
GRPO)

2 for all k ≥ 1. We prove by induction. For the base case,√
p
(1)
SGPOq

(1)
SGPO =

√
1

1+(1/2)e−1/4 · 1
1+(1/2)e−1/16 > 1

1+(1/2)e−1/8 = p
(1)
GRPO.

The above inequality holds true since Lemma D.1(iv) implies

2 log(1 + (1/2)e−1/8) > log(1 + (1/2)e−1/4) + log(1 + (1/2)e−1/16),

It remains to show that p(k)SGPOq
(k)
SGPO > (p

(k)
GRPO)

2 implies p
(k+1)
SGPO q

(k+1)
SGPO > (p

(k+1)
GRPO )2 for k ≥ 1. By

Lemma D.4(iii), we know p
(k)
SGPO > q

(k)
SGPO for all k ≥ 1. Thus, Lemma D.2 implies that

p
(k+1)
SGPO q

(k+1)
SGPO = 1

A(p
(k)
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Using Lemma D.1(iii), we complete the induction by applying our induction hypothesis:
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p
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(
f21
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(k)
SGPOq

(k)
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√
p
(k)
SGPOq

(k)
SGPO

))
> exp(f21(p

(k)
GRPO, p

(k)
GRPO)) = (p

(k+1)
GRPO )2.

This completes the proof of Theorem 2.1.
Remark D.5. Theorem 2.1 presents one of the first theoretical analyses of GRPO with multiple
samples and multi-step reasoning in the context of LLM reasoning. The first part establishes that
SGPO converges to the optimal policy. The second and third parts demonstrate that SGPO both
accelerates the acquisition of partially correct reasoning steps and preserves partial reasoning ability
even when the final answer is incorrect. Importantly, the theorem provides a per-iteration comparison
of learning under different reward mechanisms – an aspect rarely examined in previous works. The
provable improvement in learning the optimal policy is also consistent with our numerical findings as
shown in Figure 1; see Appendix D.4 for further details.

D.4 Empirical evaluations

We conduct simple simulations to compare SGPO and GRPO under the stylized model and plot
the resulting learning curves in Figure 1. The left panel shows the probability of selecting the
“good" action in the first step at iteration k (i.e., p(k)SGPO vs. p

(k)
GRPO), while the right panel shows the

probability of learning the optimal policy (i.e., p(k)SGPOq
(k)
SGPO vs. p(k)GRPOq

(k)
GRPO). The results align with the

predictions of Theorem 2.1, demonstrating that the likelihood of learning the optimal policy under
SGPO consistently exceeds that of GRPO across training.
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Figure 1: Learning dynamics of GRPO and SGPO in the simplified setting.

E Details of Experiment

We first introduce the experimental setup details for the offline and online training in Appendices E.1
and E.2. Then we provide further ablation studies in Appendix E.3 and discussions in Appendix E.4.
Finally, we provide additional experimental results on SGPO’s impact in the view of policy entropy
in Appendix D.4.

E.1 Offline Setup

For baselines, we consider strong models without further fine-tuned on math-specific SFT datasets,
namely Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct. Prior work showed that a small
set of carefully curated prompts significantly enhance the reasoning capability. Accordingly, we adopt
the GAIR/LIMO dataset [Ye et al., 2025] as the training set, which has demonstrated strong potential
for improving the reasoning performance of large-scale (32B) models in offline SFT. Evaluation
is conducted on four standard math reasoning benchmarks: AIME24, AMC23, MATH500 [Hendrycks
et al., 2021], and OlympiadBench [He et al., 2024]. Our aim is to highlight the rich learning signal
contained in all-negative-sample groups, showing that training exclusively on them can still yield
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performance gains. For benchmarks with fewer than 100 questions (AMC23, AIME24), we report
avg@16 results with a decoding temperature of 0.6 and Top_P = 0.95. For benchmarks with more
than 100 questions, we report pass@1 results using greedy decoding. Across all experiments, the
maximum decoding length is set to 32768 tokens.

We conduct all response generation and model updates using offline RL [Peters and Schaal, 2007]
with the standard GRPO mechanism. Specifically, the model is updated with advantages estimated
from the offline dataset [see, e.g., Peng et al., 2019, Li et al., 2024b]. For each prompt, we sample six
responses per group and identify all-negative-sample groups in which all responses yield incorrect
answers. Within these groups, we apply the step-wise judge model to assign differentiated rewards
to negative samples, which are then used for offline RL updates. The model is trained for three
epochs with a learning rate of 2× 10−6. As a contrastive baseline, we also perform offline RL using
only positive rollouts with correct answers. This parallel setup enables a direct comparison between
learning from exclusively negative reasoning trajectories and from exclusively positive ones.

E.2 Online Setup

For baselines, we consider applying Qwen2.5-14B-Instruct, Qwen2.5-32B-Instruct, QwQ-32B,
DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B. Online GRPO train-
ing is implemented using the verl framework [Sheng et al., 2025]. For the step-wise judge model,
we adopt a diverse set of LLMs, ranging from closed-source models with strong reasoning capabilities
(o4-mini, Claude3.7) to open-source models that are more accessible to the community, including
DeepSeek-V3-0324, Qwen3-235B-A22B, and QwQ-32B.

Compared to offline RL, online RL yields larger improvements in a model’s reasoning capabilities.
Since our baselines already include strong distillation models, some benchmarks used in offline
evaluation are nearing saturation. To provide a better assessment, we expand our evaluation suite
beyond AMC23, AIME24, MATH500, and OlympiadBench by including AIME25, GradeSchool [Ye
et al., 2025], CHMath24, Kaoyan, and Gaokao. Specifically, CHMath24 is the benchmark from the
2024 Chinese High School Mathematics League Competition, Gaokao from China’s 2024 National
College Entrance Examination, Kaoyan from the Chinese Graduate School Entrance Examinations,
and GradeSchool targets elementary-level mathematical reasoning. Among these, CHMath24 and
Gaokao each contain fewer than 100 questions, for which we apply the temperature-based decoding
for evaluation.

For GRPO training, we use the AIME collections from 1997 to 2023 provided in DeepScaler [Luo et al.,
2025b], training for 12 epochs. All training questions are in English, while evaluation benchmarks
include multilingual questions. Notably, negative samples learned during training generalize well to
out-of-domain mathematical reasoning tasks. SGPO training follows the same setup. With batch-
simultaneous processing, judge model calls take 90 seconds per batch of negatives, adding 10%
wall-clock time relative to rollout and update. Step-wise supervision is applied only to all-negative-
sample groups during the first three epochs, as we expect this duration to suffice for the model to
internalize corrective signals; beyond this point, unresolved examples are more indicative of model
capacity limits than learnability. For all models, rollout length is fixed at 8192 tokens and group size
at 8. Models less than 8B are trained on 8 H100, 14B models on 16 H100, and 32B models on 32
H200. We adopt the default KL coefficient and learning rate from the verl training script [Sheng
et al., 2025], and use the LIMO evaluation script [Ye et al., 2025], both of which are standard practices
in the community.

E.3 Further Ablation Studies
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Figure 2: Policy entropy levels during training for GRPO and SGPO across different base models.
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Table 4: Evaluation results are reported for DeepSeek-R1-Distill-Qwen-7B across four indepen-
dent runs. First column indicates judge models and its corresponding reward stability setup.

Kaoyan GradeMath MATH500 Olympiads CHMath24 AIME25 AIME24 GaoKao AMC23 Overall
pass@1 pass@1 pass@1 pass@1 avg@16 avg@16 avg@16 avg@16 avg@16 avg

DeepSeek-R1-Distill-Qwen-7B-SGPO
+Qwen3-235B-A22B 53.90 ± 2.10 46.55 ± 0.24 91.30 ± 0.87 53.45 ± 1.35 74.48 ± 1.10 37.40 ± 1.05 55.73 ± 1.39 81.33 ± 0.18 90.19 ± 0.48 64.92 ± 0.37

+QwQ-32B 53.89 ± 1.66 44.88 ± 1.36 91.15 ± 0.84 53.71 ± 0.74 74.33 ± 1.29 37.03 ± 1.23 54.76 ± 1.87 81.91 ± 0.53 90.08 ± 1.23 64.64 ± 0.41
+QwQ-32B w/o {β,γ} 56.14 ± 2.76 44.53 ± 2.41 90.10 ± 0.66 53.64 ± 1.08 73.89 ± 1.13 38.70 ± 1.80 53.63 ± 2.15 81.24 ± 0.50 88.83 ± 0.81 64.52 ± 0.57

Table 5: Evaluation results are reported for DeepSeek-R1-Distill-Qwen-7B as base model and
QwQ-32B as judge model with and without majority voting.

Kaoyan GradeMath MATH500 Olympiads CHMath24 AIME25 AIME24 GaoKao AMC23 Overall
pass@1 pass@1 pass@1 pass@1 avg@16 avg@16 avg@16 avg@16 avg@16 avg

DeepSeek-R1-Distill-Qwen-7B-SGPO
+QwQ-32B 53.89± 1.66 44.88± 1.36 91.15± 0.84 53.71± 0.74 74.33± 1.29 37.03± 1.23 54.76± 1.87 81.91± 0.53 90.08± 1.23 64.64± 0.41
+QwQ-32B with voting 56.66± 1.66 45.24± 2.16 91.35± 0.50 53.82± 0.94 74.19± 0.92 37.35± 2.25 55.81± 0.99 82.12± 0.43 90.53± 1.07 65.23± 0.18

Table 6: Evaluation results are reported in terms of pass@16 across benchmarks. The first two
columns show the total number of questions and the number solved within 16 attempts, while the last
two columns report the number of unique questions solved by one method but not the other.

SGPO - pass@16 GRPO - pass@16 SGPO \ GRPO GRPO \ SGPO

AIME24 23/30 19/30 4 0
AIME25 21/30 21/30 1 1
Gaokao 70/79 68/79 2 0
AMC23 39/40 38/40 1 0
CHMath24 27/30 25/30 2 0

To assess reliability of judge models, we evaluate our approach not only with strong closed-source
reasoning models but also with publicly available models of weaker capacity: DeepSeek-V3,
Qwen3-235B and QwQ-32B. As shown in Table 2 (best-tuned results) and Table 4 (multiple runs
with weaker judges), performance remains stable, indicating that weaker judges do not significantly
degrade outcomes. We attribute this reliability to two design choices: (i) first-step error identification
with a reference answer. SGPO requires the judge only to verify each step against the reference,
not to solve the problem, thereby reducing task difficulty and avoiding the pitfalls of generic PRMs;
(ii) reward stability parameters β and γ, which filter and smooth noisy signals. As confirmed by
ablations, removing β and γ increases variance and weakens performance. To improve verification,
we incorporate a Grok4−Heavy-inspired strategy: multiple independent evaluations by the judge
model, with the error position selected by majority voting. Using QwQ-32B as the judge model,
DeepSeek-R1-Distill-Qwen-7B as the base model, and four rollouts per judgment, we have
observed noticeable gains in consistency and stability (see Table 5).

While avg@16 measures average performance across rollouts, pass@16 reflects the ability to solve
new questions with multiple attempts. As shown in Table 6, SGPO’s gains in pass@16 stem
directly from leveraging negative samples. Learning only from solvable problems reinforces existing
ability, whereas all-negative-sample groups correspond to genuinely difficult questions where GRPO
consistently fails. These are precisely the cases where additional feedback can be most valuable. By
providing step-level signals, SGPO rewards near-misses by reinforcing correct reasoning up to the
first error, penalizes early failures by discouraging persistent error modes, and exposes blind spots
by turning hard cases into informative training signals. In this regard, SGPO provides benefits that
GRPO cannot match, covering more hard problems and providing sharper credit assignment, which
translates to faster and more reliable learning under realistic compute budgets.

By leveraging richer early-stage signals from negative samples, SGPO can achieve faster and stronger
performance than GRPO. As shown in Figure 3, SGPO continues improving beyond epoch 5 by
solving several additional hard training problems, whereas GRPO plateaus. This improvement stems
from informative negative samples that help resolve previously unsolved problems as also shown in
Table 6. We also find that SGPO converges more rapidly to a deterministic policy, as illustrated by
the training trajectories in Figure 2 (see Appendix E.5).
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Figure 3: Evaluation results on GRPO and SGPO. SGPO rewards end at epoch 3.

E.4 Discussions

We highlight the motivation for evaluating both offline and online RL. In the offline setup, training
uses only negative samples, allowing us to directly test whether incorrect or incomplete reasoning
trajectories can improve performance. In the online setup, we simulate realistic GRPO training, where
batches contain a random mix of positive and negative samples. This demonstrates that negative
samples are not only effective in isolation but also remain valuable in practical settings with noisier,
mixed data. While mixing positives and negatives introduces noise, simply discarding negative
samples does not stabilize training; in several cases, the performance of GRPO even drops below
baseline, as the model overfits to problems it can already solve.

This instability arises from limited out-of-domain generalization and catastrophic forgetting. Without
exposure to challenging or partially correct reasoning, the model risks overfitting to easy cases, rein-
forcing shallow heuristics instead of developing robust problem-solving skills. The absence of diverse
failure cases can also cause catastrophic forgetting, degrading performance on previously solvable
tasks. Incorporating negative samples mitigates these issues, as SGPO consistently outperforms
GRPO on Chinese OOD math benchmarks. Nonetheless, further work is needed to design more
stable training frameworks, including richer reward diversification mechanisms for handling negative
samples and corresponding efficient RL methods beyond GRPO.
Remark E.1. The additional overhead from all-negative-sample groups remains modest, since the cor-
rectness can be efficiently verified against reference solutions, enabling rapid assessment of reasoning
steps. As the computational and financial costs of closed-source judge models (o4-mini, Claude3.7)
rise, SGPO accelerates learning dynamics, making the trade-off worthwhile. SGPO also outperforms
GRPO with less powerful and more affordable open-source judge models (DeepSeek-V3-0324,
Qwen3-235B-A22B, QwQ-32B), confirming that SGPO remains effective even without cutting-edge
LLMs and underscoring its practicality in lower-resource settings.

E.5 Additional Experimental Results

Beyond aggregate results, we provide a targeted analysis of SGPO’s impact. In line with our
theoretical finding that SGPO converges faster than GRPO, empirical metrics offer supporting
evidence. Prior work on RLVR entropy highlights its link to performance: Cui et al. [2025] showed
that lower policy entropy under correct signals correlates with stronger policies, while Agarwal
et al. [2025] demonstrated that directly minimizing entropy can improve performance. As shown
in Figure 2, SGPO reduces policy entropy more rapidly than GRPO, indicating faster convergence
toward deterministic RLVR behavior with higher rollout confidence. This matches our theoretical
results, confirming that step-wise signals accelerate convergence.
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