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ABSTRACT

Existing end-to-end Multi-Object Tracking (e2e-MOT) methods have not sur-
passed non-end-to-end tracking-by-detection methods. One potential reason is
its label assignment strategy during training that consistently binds the tracked ob-
jects with tracking queries and then assigns the few newborns to detection queries.
With one-to-one bipartite matching, such an assignment will yield an unbalanced
training, i.e., scarce positive samples for detection queries, especially for an en-
closed scene, as the majority of the newborns come on stage at the beginning of
videos. Thus, e2e-MOT will be easier to yield a tracking terminal without renewal
or re-initialization, compared to other tracking-by-detection methods. To allevi-
ate this problem, we present Co-MOT, a simple and effective method to facilitate
e2e-MOT by a novel coopetition label assignment with a shadow concept. Specif-
ically, we add tracked objects to the matching targets for detection queries when
performing the label assignment for training the intermediate decoders. For query
initialization, we expand each query by a set of shadow counterparts with limited
disturbance to itself. With extensive ablations, Co-MOT achieves superior perfor-
mance without extra costs, e.g., 69.4% HOTA on DanceTrack and 52.8% TETA
on BDD100OK. Impressively, Co-MOT only requires 38% FLOPs of MOTRV2 to
attain a similar performance, resulting in the 1.4 faster inference speed. Codes
are attached for re-implementation.

1 INTRODUCTION

Multi-Object tracking (MOT) is traditionally tackled by a series of tasks, e.g., object detection(|Zou
et al.| (2023); Tan et al. (2020); Redmon et al.| (2016)); [Ge et al. (2021)), appearance Re-ID(|Zheng
et al.| (2016); IL1 et al.| (2018)); Bertinetto et al.| (2016)), motion prediction( [Lefevre et al.| (2014);
Welch et al.| (1995)), and temporal association( Kuhn| (1955)). The sparkling advantage of this
paradigm is task decomposition, leading to an optimal solution for each task. However, it lacks
global optimization for the whole pipeline.

Recently, end-to-end Multi-Object Tracking (e2e-MOT) via Transformer such as MOTR(|Zeng et al.
(2022)) and TrackFormer( Meinhardt et al. (2022)) has emerged, which performs detection and
tracking simultaneously in unified transformer decoders. Specifically, tracking queries realize iden-
tity tracking by recurrent attention over time. Meanwhile, detection queries discover newborns in
each new arriving frame, excluding previously tracked objects, due to a Tracking Aware Label As-
signment (TALA) during training. However, we observe an inferior performance for e2e-MOT due
to poor detection, as it always yields a tracking terminal, shown in Figure[[] MOTRv2([Zhang et al.
(2023)) consents to this conclusion, which bootstraps performance by a pre-trained YOLOX( |Ge
et al.|(2021)) detector, but the detector will bring extra overhead to deployment.

In this paper, we present a novel viewpoint for addressing the above limitations of e2e-MOT: de-
tection queries are exclusive but also conducive to tracking queries. To this end, we develop
a COopetition Label Assignment (COLA) for training tracking and detection queries. Except for
the last Transformer decoder remaining the competition strategy to avoid trajectory redundancy, we
allow the previously tracked objects to be reassigned to the detection queries in the intermediate
decoders. Due to the self-attention between all the queries, detection queries will be complementary
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to tracking queries with the same identity, resulting in feature augmentation for tracking objects with
significant appearance variance. Thus, the tracking terminal problem will be alleviated.

Besides TALA, another drawback in Transformer-based detection as well as tracking is one-to-
one bipartite matching used, which cannot produce sufficient positive samples, as denoted by Co-
DETR( Zong et al.|(2023))) and HDETR( Jia et al.| (2023)) that introduces one-to-many assignment
to overcome this limitation. Differing from these remedies with one-to-many auxiliary training, we
develop a one-to-set matching strategy with a novel shadow concept, where each individual query
is augmented with multiple shadow queries by adding limited disturbance to itself, so as to ease the
one-to-set optimization. The set of shadow queries endows Co-MOT with discriminative training by
optimizing the most challenging query in the set with the maximal cost. Hence, the generalization
ability will be enhanced.

We evaluate our proposed method on multiple MOT benchmarks, including DanceTrack(|Sun et al.
(2022)), BDD100K(|Yu et al. (2020)) and MOT17(Milan et al.| (2016)), and achieve superior perfor-
mance. The contributions of this work are threefold: i) we introduce a coopetition label assignment
for training tracking and detection queries for e2e-MOT with high efficiency; ii) we develop a one-
to-set matching strategy with a novel shadow concept to address the hungry for positive training
samples and enhance generalization ability; iii) Our approach achieves superior performance on
multiple benchmarks, while it functions as an efficient tool to boosting the performance of end-to-
end Transformer-based MOT.

2 RELATED WORKS

Tracking by detection: Most tracking algorithms are based on the two-stage pipeline of tracking-
by-detection: Firstly, a detection network is used to detect the location of targets, and then an asso-
ciation algorithm is used to link the targets across different frames. However, the performance of
this method is greatly dependent on the quality of the detection. SORT(|Bewley et al.|(2016)) is a
widely used object tracking algorithm that utilizes a framework based on Kalman filters(|Welch et al.
(1995)) and the Hungarian algorithm( |Kuhn| (1955)); After, new methods are proposed, e.g., Deep
SORT(|Wojke et al.|(2017)), JDE(/Wang et al.|(2020)), FairMOT(|Zhang et al.|(2021)), GTR(|{Zhou
et al.[(2022)), TransTrack( |Sun et al.| (2020)), QuasiDense( |Pang et al. (2021)), TraDeS(|Wu et al.
(2021)), CenterTrack( |Stone et al. (2000)), Tracktor++( [Bergmann et al.| (2019)); Recently, Byte-
Track(|Zhang et al.| (2022b)), OC-SORT(|Cao et al. (2023)), MT_IOT( |Yan et al. (2022b)), Strong-
sort (|Du et al.|(2023))), BoT-SORT(|Aharon et al.|(2022)) are proposed, that have further improved
the tracking performance by introducing the strategy of matching with low-confidence detection
boxes. While these methods show improved performance, they often require significant parameter
tuning and may be sensitive to changes in the data distribution. Additionally, some approaches may
require more advanced techniques such as domain adaptation or feature alignment to effectively
handle domain shift issues.

End-to-end tracking: With the recent success of Transformer in various computer vision tasks,
several end-to-end object tracking algorithms using Transformer encoder and decoder modules are
proposed, such as MOTR and TrackFormer. These approaches demonstrate promising results in ob-
ject tracking by directly learning the associations between object states across time steps. MOTRv2
introduces the use of pre-detected anchor boxes from a YOLOX detector to indirectly achieve state-
of-the-art performance in multi-object tracking.

One-to-many label assignment: DETR(|Carion et al. (2020)), being a pioneer in employing trans-
formers for computer vision, utilizes a one-to-one label assignment strategy to achieve end-to-end
object detection. During training, DETR leverages Hungarian matching to compute the global
matching cost and thereby assigns each ground-truth box to a unique positive sample. Researchers
shifte focus towards enhancing the performance of DETR, with most efforts concentrated on de-
veloping new label assignment techniques. For example, DN-DETR( |Li et al.| (2022a))) building
on Deformable DETR( [Zhu et al.| (2020)), breaks away from the traditional one-to-one matching
strategy by introducing noisy ground-truth boxes during training. DINO( |Zhang et al.| (2022a))
builds upon the successes of DN-DETR( [Li et al.|(2022a)) and DAB-DETR( [Liu et al.| (2022)) to
achieve an even higher detection performance, putting it at the forefront of current research. Group-
DETR(|Chen et al.|(2023))), H-DETR(1a et al. (2023))), CO-DETR(|Zong et al. (2022))) start using
the concept of groups to accelerate convergence.
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Figure 1: Visualization of tracking results in DanceTrack0073 and MOT17-09 videos. The first
row displays the tracking results from MOTR, where all individuals can be correctly initialized at
the beginning (#237 and #302). However, heavy occlusion appears in the middle frames (#238 and
#312), resulting in inaccurate detection (indicated by yellow boxes). The tracking of yellow targets
finally terminates in #239 and #322 frames. The second row shows MOTR’s detection results, in
which tracking queries are removed during the inference process. Targets in different frames are
accurately detected.

Table 1: The detection performance (mAP) of MOTR (v2) on DanceTrack validation dataset.
v'means whether the tracking queries are used in the training or inference phase. All the decoded
boxes of both tracking if applicable and detection queries are treated as detection boxes for eval-
uation on mAP. We separately evaluate the detection performance for six decoders. For analysis,
please refer to the motivation section.

methed Training Inference 1 2 3 4 5 6
(a) MOTR v v 414 424 425 425 425 425
(b) MOTR 56.8 60.1 60.5 605 60.6 60.6

v
(c) MOTR 573 622 629 630 63.0 63.0
(d) MOTRv2 v v 679 702 706 70.7 70.7 70.7
(e) MOTRv2 v 71.9 721 721 721 721 721

3 METHOD

3.1 MOTIVATION

To explore the shortcomings of current end-to-end methods in tracking, we conduct an in-depth
study of the effectiveness on DanceTrack validation and MOT17 test dataset by analyzing MOTR,
which is one of the earliest proposed end-to-end multiple-object tracking methods. In Figure [T}
we show MOTR’s tracking results in some frames of video, e.g., DanceTrack0073 and MOT17-09.
In the left three columns of the first row, the 3rd person (in the yellow box) is tracked normally
in #237 image. However, in #238 image, due to an inaccurate detection, the bounding box is not
accurately placed around that person (the box is too large to include a person on the left side). In
#239 image, the tracking is completely wrong and associated with the 2nd person instead. In the
right three columns of the first row, the 2nd person (in the yellow box) is successfully detected
and tracked in #302 image. However, in #312 image, this person is occluded by other people.
When the person appears again in #322 image, she is not successfully tracked or even detected.
To determine whether the tracking failure is caused by the detection or association of MOTR, we
visualized MOTR’s detection results in the second row. We remove the tracking queries during
inference, and the visualization shows that all persons are accurately detected. This demonstrates
that the detection will deteriorate due to the nearby tracked objects, though TALA used in training
ensures that the detection with the same identity of tracked objects will be suppressed.

We further provide quantitative results of how the queries affect each other in Table [I] All the
decoded boxes of both tracking and detection queries are treated as detection boxes so that they can
be evaluated by the mAP metric commonly used for object detection. We can see from the table
that the vanilla MOTR (a) has a low mAP 42.5%, but it increases by 18.1% (42.5% vs 60.6%) when
removing tracking queries during inference (b). Then we retrain MOTR as a sole detection task



Under review as a conference paper at ICLR 2024

—»ToT+1
‘ Pos. Embed. v Pos. Embed. L Pc__)_s_.vE_r_nt_J_e_d ¢ L ¢ Pos. Embed.
Encoder S @E‘ a ((.I i ((‘I fi ((.I f
: @I + @l Qi ~ Q@M
' Ql: T om: o 1 . G
q 2 f2 2
Backbone 3% . 2 oM 3 . 2 2 7t
5 Ol § g — Dt N P
sOM: ¢ Q@B 3 OQFE7 g g Qm-*
P
jom: |om- om- om «
TFrames  From T-1 Frames T t T 1
OO et Groundtun G s-cola — s-coLA ——— s-colA —— STAA ———
[ A A ~ A
- | 8883883 | 8883883 8833883
6% e~ N o

Figure 2: The CO-MOT framework includes a CNN-based backbone network for extracting image
features, a deformable encoder for encoding image features, and a deformable decoder that uses self-
attention and cross-attention mechanisms to generate output embeddings with bounding box and
class information. The queries in the framework use set queries as units, with each set containing
multiple shadows that jointly predict the same target. Detection queries and tracking queries are
used for detecting new targets and tracking existing ones, respectively. To train CO-MOT, S-COLA
and S-TALA are proposed for training only.

by removing tracking queries (c) and mAP further increases to 66.1% (+5.5%). That means the
DETR-style MOT model has a sparking capability of detection but still struggles with the temporal
association of varied appearance, which is the crucial factor of MOT.

We also observe an excellent detection performance (70.7%) for MOTRv2, which introduces a pre-
trained YOLOX detector. Removing tracking queries during inference brings a slight improvement
(1.4%) for mAP, which means MOTRv2 has almost addressed the poor detection issue with high-
quality detection prior from YOLOX. However, the introduced YOLOX brings extra computa-
tional burden, unfriendly to deployment. In contrast, we intend to endow the end-to-end MOT
model with its own powerful detection capability, rather than introducing any extra pretrained
detector.

3.2 TRACKING AWARE LABEL ASSIGNMENT

Here we revisit the Tracking Aware Label Assignment (TALA) used to train end-to-end Transform-
ers such as MOTR and TrackFormer for MOT. At the moment ¢ — 1, N queries are categorized to
two types: Ny tracking queries Q; = {q;}, ..., qZVT} and Np detection queries Q4 = {gJ, ..., qéVD 1,
where N = Np + Np. All the queries will self-attend each other and then cross-attend the im-
age feature tokens via L decoders, and the output embeddings of the [-th decoder are denoted
as B! = {el,....ely } and F' = {f],..., f\_}. At the moment ¢, there are M ground truth

boxes. Among them, M previously tracked objects, denoted as E = {é1,...,€n,}, are as-
signed to Np tracking queries, where My < Np as some objects disappear. Formally, j-th
tracking embedding eé will be assigned to the same identity with the previous timestamp if still
alive at this moment, otherwise zero (disappearing). Besides, Mp newborn objects, denoted as
F = { fl, ey f Mp }» are assigned to Np detection queries. Specifically, the Hungarian matching
algorithm is used to find the optimal pairing between F'* and F for each decoder, by a cost function
(Lim = L#(c) + L1(b) + Ly(b) € RNVP*Mc) that takes into account the class scores and box over-
lapping. Where L ¢ (c) represents the focal loss for classification, L, (b) represents the Lq cost of the
bounding box, and L, (b) represents the Generalized Intersection over Union cost.

3.3 OVERALL ARCHITECTURE

The entire CO-MOT framework is illustrated in Figure[2} During the forward process, the features of
an image in a video are extracted by the backbone and fed into the deformable encoder to aggregate
information. Finally, together with the detection and tracking queries, they are used as the inputs
of the L layer decoders (L = 6 in this paper by default) to detect new targets or track the already
tracked targets. It is worth noting that queries contain (N7 + Np) * Ng position (P € R*) and
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embedding (E € R?°®) as we use deformable attention. Here N is the number of shadow queries
for each set, and we will introduce the shadow set concept in the following section. All the queries
predict (N7 + Np) x Ng target boxes, where Ng queries in a set jointly predict the same target. To
train CO-MOT, we employ the COLA and TALA on the different decoders, along with the one-to-set
label assignment strategy.

3.4 COOPETITION LABEL ASSIGNMENT

Unlike TALA, which only assigns newborn objects to detection queries, we advocate a novel COope-
tition Label Assignment (COLA). Specifically, we assign M tracked objects to detection queries as
well in the intermediate decoders, i.e., | < L, which is illustrated in Figure@] As shown in the output
of the first decoder, the track queries continue to track the 3rd and 4th person. The detection queries
not only detect the 1st and 2nd newborns but also detect the 3rd and 4th people. Note that we remain
the competition assignment for the L-th decoder to avoid trajectory redundancy during inference.
Thanks to the self-attention used between tracking and detection queries, detection queries with the
same identity can enhance the representation of the corresponding tracking queries (e.g. grey 3rd
helps blue 3rd).

3.5 SHADOW SET

In densely crowded scenes, objects can be lost or mistakenly tracked to other objects due to minor
bounding box fluctuations. We conjecture that one query for one object is sensitive to prediction
noises. Inspired by previous works such as Group-DETR and H-DETR, we propose the one-to-set
label assignment strategy for multi-object tracking, which is significantly different from the one-
to-many manner. During the tracking, an object is no longer tracked by a single query but by a
set of queries, where each member of the set acts as a shadow of each other. Tracking queries

are rewritten as Q; = {{q/ "}, ..., {¢)""}¥5 } and detection queries are rewritten as Qg =

{{q NS {qND’ }Ns}. The total number of queries is N * Ng. When a particular query in
the set tracks the object incorrectly, the other shadows in the same set help it continue tracking the
object. In the experiments, this strategy prove effective in improving tracking accuracy and reducing
tracking failures in dense and complex scenes.

Initialization. P/ € R* and X%/ € R?%, which represents position and embedding of the
j-th shadow query in the i-th set, are initialized, which significantly affects the convergence and
the final performance. In this paper, we explore three initialization approaches: i) I,4y,4: random
initialization; ii) 1, copy’ : initializing all shadows in the same set with one learnable vector, i.e., pPii =
Pt and X% = X' where P! and X are learnable embeddings with random initialization; iii)
L 0ise: adding Gaussian noises NV(0, op) and N(0,0;) to Pdand X9, respectively, in the previous
approach. In the experiment, we set o, and o, to 1e-6. Although the variance between each shadow
in the same set is subtle after initialization, it expands to le-2 at the end of training. The last approach
provides the similarity for helping optimization and diversity to improve tracking performance.

Training. We propose a shadow-based label assignment method (S-COLA or S-TALA) to ensure
that all objects within a set are matched to the same ground truth object. Take S-COLA as an
example, we treat the set as a whole, and select one of them as a representative based on criteria to
participate in subsequent matching. Specifically, for tracking queries Q:, the tracked target in the
previous frame is selected to match with the whole set; For detection queries 4, we first calculate
the cost function (L, € RNp*Ns*Mc) of all detection queries with respect to all ground truth.
We then select the representative query by a strategy A (e.g., Mean, Min, and Max) for each set,
resulting in L,,, = A\(L,,) € RNp*Mc [, is then used as an input for Hungarian matching to
obtain the matching results between the sets and newborns. Finally, the other shadows within the
same set share the representative’s matching result.

Inference. We determine whether the ¢-th shadow set tracks an object by the confidence score of
the selected representative. Here we adopt a different strategy ¢ (e.g., Mean, Min, and Max) for
representative sampling. When the score of the representative is higher than a certain threshold 7,
we select the box and score predictions of the shadow with the highest score as the tracking outputs
and feed the entire set to the next frame for subsequent tracking. Sets that do not capture any object
will be discarded.
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4 EXPERIMENT

Table 2: Comparison to state-of-the-art methods on different dataset. Please pay more attention to
the metrics with blue.

(a) Comparison to existing methods on the Dance- (c) Comparison to existing methods on the
Track test set. 7*”, ” T respectively represent the MOT17 test dataset. Best results of end-to-end
use of DAB-Deformable backbone and joint train- methods are marked in bold.
ing with CrowdHuman. Best results of end-to-end
methods are marked in bold. HOTA DetA AssA MOTA IDF1
Non-End-to-end
HOTA DetA AssA MOTA IDF1 Tracktor++ 44.8 449 45.1 535 523
Non-End-to-end CenterTrack 52.2 53.8 51.0 67.8 64.7
ByteTrack 47.7 71.0 32.1 89.6 53.9 TraDeS 527 552 508 69.1 63.9
QDTrack 54.2 80.1 36.8 87.7 504 QuasiDense  53.9 55.6 52.7 68.7 66.3
OC-SORT 55.1 803 383 920 54.6 TransTrack 54.1 61.6 479 745 639
TransTrack 45.5 759 275 884 452 GTR 59.1 57.0 61.6 715 753
MOTRV2+ 699 830 590 919 71.7 FairMOT 59.3 609 58.0 73.7 723
End-to-end CorrTracker 60.7 629 589 76.5 73.6
MOTR 542 73.5 402 797 515 Unicom 617/ [/ 772 75.5
MeMOTR 63.4 77.0 523 854 655 GRTU 620 621 621 749 750
MeMOTR* 68.5 80.5 584 899 71.2 MAATrack 62.0 642 602 794 759
“COMOT 653 %01 535 893~ 665 ByteTrack  63.1 645 620 803 773
+ OC-SORT 632 / 632 780 775
CO-MOT™ 694 821 589 912 719 QDTrack 635 62.6 645 715 787
(b) Comparison to existing methods on the BoT-SORT 646 / / 80.6 79.5
BDD100K validation set. Deep OC-SORT 649 / / 80.6 794
P3AFormer / / /812 781
TETA LocA AssocA CIsA MOTRV2 62.0 63.8 60.6 78.6 75.0
DeepSORT 48.0 464 46.7 510 End-to-end
QDTrack 47.8 458 48.5 492 TrackFormer / / /650 63.9
TETer 50.8 472 529 524 MOTR 57.8 603 557 73.4 68.6
MOTR 50.7 358 51.0 / MeMOT 569 / 552 725 69.0
MOTRv2 549 495 519 63.1 MeMOTR 588 59.6 584 728 715
‘CO-MOT(ours) 528 387 562  63.6 - CO-MOT  60.1 59.5 60.6 72.6 727

4.1 DATASETS AND METRICS

Datasets. We validate the effectiveness of our approach on different datasets, including DanceTrack,
MOT17, and BDD100K. Each dataset has its unique characteristics and challenges.

The DanceTrack dataset is used for multi-object tracking of dancers and provides high-quality an-
notations of dancer motion trajectories. This dataset is known for its significant difficulties such as
fast object motion, object similar appearances

The MOT17 dataset is a commonly used multi-object tracking dataset, and each video contains a
large number of objects. The challenges of this dataset include high object density, long-period
occlusions, varied object sizes, dynamic camera poses, and so on.

The BDD100K dataset is a large-scale autonomous driving scene recognition dataset that is used
for scene understanding in autonomous driving systems. This dataset provides multiple object cate-
gories, such as cars, pedestrians, etc. The challenges of this dataset include rapidly changing traffic
and road conditions, diverse weather conditions, and lighting changes.

Metrics. To evaluate our method, we use the Higher Order Tracking Accuracy (HOTA) metric
(let al.|(2020)), which is a higher-order metric for multi-object tracking. Meantime We analyze the
contributions of Detection Accuracy (DetA), Association Accuracy (AssA), Multiple-Object Track-
ing Accuracy (MOTA), Identity Switches (IDS), and Identity F1 Score (IDF1). For BDD100K, to
better evaluate the performance of multi-class and multi-object tracking, we use the Tracking Every
Thing Accuracy (TETA)(|L1 et al.|(2022b))), Localization Accuracy (LocA), Association Accuracy
(AssocA), and Classification Accuracy(CIsA) metrics.
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Table 3: Ablation studies of our proposed CO-MOT on the DanceTrack validation set. Please pay
more attention to the metrics with blue.

(a) Ablation study on individual CO-MOT components. As com- (c) Effect of initialization meth-
ponents are added, the tracking performance improves gradually. ods for shadow queries I,,, and
number of shadows Ng on the
COLA Shadow HOTA DetA AssA MOTA IDF1 DanceTrack validation set.
(a) 564 71.8 44.6 798 57.5
b v 60.2 732 49.7 81.8 624 HOTA DetA AssA
(©) v 59.0 72.6 482 80.9 59.6 7 60.6 739 500
copy . . .
@ Vv v 61.8 735 522 81.7 633 I, Lo 615 73.1 519
(b) Effect of different A and ¢ combinations. Irand 59.6 732 489
A max mean min 1 60.2 73.2 49.7
. . . 2 61.5 73.1 51.9
¢ min mean max min mean max min mean max N 3 618 735 522
HOTA 57.6 56.4 55.1 56.7 55.2 52.0 57.5 55.9 51.5 4 60.8 73.8 50.3
DetA 70.7 69.3 65.4 70.6 66.5 59.0 70.8 66.4 59.3 5 60.2 722 50.5
AssA 47.3 46.1 46.7 459 46.1 46.1 46.8 47.2 45.0 6 59.1 70.5 49.8

4.2 IMPLEMENTATION DETAILS

Our proposed label assignment and shadow concept can be applied to any e2e-MOT method. For
simplicity, we conduct all the experiments on MOTR. It uses ResNet50 as the backbone to ex-
tract image features and uses a Deformable encoder and Deformable decoder to aggregate features
and predict object boxes and categories. We also use the data augmentation methods employed in
MOTR, including randomly clipping and temporally flipping a video segment. To sample a video
segment for training, we use a fixed sampling length of 5 and a sampling interval of 10. The dropout
ratio in attention is zero. We train all experiments on 8 V100-16G GPUs, with a batch size of 1 per
GPU. For DanceTrack and BDD100k, we train the model for 20 epochs with an initial learning rate
of 2e-4 and reduce the learning rate by a factor of 10 every eight epochs. For MOT17, we train the
model for 200 epochs, with the learning rate reduced by a factor of 10 every 80 epochs. We use 300
initial queries due to the large number of targets to be tracked.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

DanceTrack. Our method presents promising results on the DanceTrack test set, as evidenced by
Table 2a] As shown in the original paper(|Gao & Wang (2023)), the backbone used by MeMOTR
is the original version of Deformable DETR, which is the same as the one we use, while that of
MeMOTR* is DAB-Deformable-DETR(|Liu et al.| (2022)). Without bells and whistles, our method
achieve an impressive HOTA score of 69.4%. In comparison with tracking-by-detection methods,
such as QDTrack( [Fischer et al. (2022)), OC-SORT, our approach stands out with a significant
improvement in a variety of tracking metrics. For example, compared to OC-SORT, CO-MOT
improves HOTA, and AssA by 10.2%, and 15.2%, respectively. Our approach can avoid tedious
parameter adjustments and ad hoc fusion of two independent detection and tracking modules. It
realizes automatic learning of data distribution and global optimization objectives. Compared to
other end-to-end methods, such as MOTR, MeMOTR, CO-MOT outperforms them by a remarkable
margin (e.g., 11,1% improvement on HOTA compared to MOTR, 1.9% compared to MeMOTR).
Note that CO-MOT™ has a comparable performance with MOTRv2 which introduces an extra
pre-trained YOLOX detector to MOTR. Both apply joint training on CrowdHuman.

BDD100K. Table [2b| shows the results of different tracking methods on the BDD100K validation
set. To better evaluate the multi-category tracking performance, we adopt the latest evaluation metric
TETA, which combines multiple factors such as localization, association and classification. Com-
pared with DeepSORT, QDTrack, and TETer( L1 et al.| (2022b))), MOTR, although the LocA was
considerably lower, we achieve superior performance on TETA with an improvement of 2% (52.8%
vs 50.8%), which is benefited from the strong tracking association performance revealed by the As-
SOcA (56.2% vs 52.9%). Compared with MOTRv2, CO-MOT slightly falls behind on TETA, but its
AssocA (56.2%) is much better than MOTRvV2 (51.9%).
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MOT17. Table [2_cj shows the results of the MOT17 test set. Compared to the end-to-end methods,
such as TrackFormer, MOTR, MeMOT(|Cai et al. (2022)), MeMOTR, we still have significant im-
provement on HOTA. Although it is inferior to non-end-to-end methods such as P3AFormer(|[Zhao
et al.| (2022)), Deep OC-SORT, BoT-SORT, OC-SORT, ByteTrack, MAATrack( |Stadler & Bey-
erer| (2022))), GRTU(|Wang et al.|(2021b)), Unicorn( |Yan et al. (2022a)), CorrTracker(|Wang et al.
(2021a)), we conjecture that the insufficient amount of MOT17 training data cannot be able to fully
train a Transformer-based MOT model.

4.4 ABLATION STUDY

Component Evaluation of CO-MOT. Based on the results shown in Tabld3a, we examine the im-
pact of different components of the CO-MOT framework on tracking performance, as evaluated on
the DanceTrack validation set. Through experimental analysis by combining various components,
we achieve significant improvements over the baseline (61.8% vs 56.4%). By introducing the COLA
strategy to the baseline (a), we observe an improvement of 3.8% on HOTA and 5.1% on AssA, with-
out any additional computational cost. By incorporating the concept of shadow into the baseline (a),
HOTA is improved by 2.6% and AssA is improved by 3.6%.

COLA. It is also evident from Table[3a|that both COLA and Shadow have minimal impact on DetA
(71.8% vs 73.5%), which is detection-related. However, they have a significant impact on AssA
(44.6% vs 52.2%) and HOTA (56.4% vs 61.8%), which are more strongly related to tracking. On
the surface, our method seems to help detection as it introduces more matching objects for detection,
but it actually helps tracking.

To answer this question, we demonstrate the attention weights between detection and tracking
queries in Figure[3] The horizontal and vertical axes denote the attention weights after self-attention
between different types of queries on different decoder layers. These weights roughly indicate the
contribution of one query to another. In our model, there are a total of 6 decoder layers. T2T rep-
resents the contribution of a tracking query to itself. D2T represents the contribution of a detection
query predicting the same object to a tracking query. Two bounding boxes with an IOU greater than
0.7 are treated as the same object. MD2T represents the average contribution of all detection queries
to a specific tracking query, which serves as a reference metric. Note that the normalized attention
weights are with a sum of 1.

From Figure[3] it is evident that detection queries make a significant contribution (more than 15%) to
their corresponding tracking queries in decoder layers where L > 2, even greater than the T2T for #4
and #6 decoders and much higher than the MD2T for all the decoders. This indicates that detection
queries pass on the rich semantic information they represent to their corresponding tracking queries,
which in turn can be utilized by the tracking queries to improve their tracking accuracy.

Shadow Set. Table [3¢| and Table [3b]list ablation experiments related to three hyperparameters of
shadow, which are the number of shadows, initialization method of shadows, and representative
sampling strategies A and ¢. To choose the appropriate option for A and ¢, we first set Ng to 5
and train the model only on the DanceTrack training set for 5 epochs using I, 4,4 Without COLA.
Then we try different combinations of A and ¢. It can be seen from Table [3b| that the combination
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(b)

Figure 5: Failed cases are often due to the failure to detect the target.

of A = max and ¢ = mun yields the best results. That means we use the most challenging query
in the set to train the model, leading to discriminative representation learning. To determine the
initialization method, we also fix Ng = 2 with COLA and find that the best results are achieved
using I,pise. For I.qnq, there is a considerable variation between different shadows within the
same set due to random initialization, making convergence difficult and resulting in inferior results.
Finally, we try different values of Ng and find that the best results are achieved when Ng = 3. When
Ng is too large, we observe that convergence becomes more difficult, and the results deteriorate.

4.5 EFFICIENCY COMPARISON

In Figure [} efficiency comparisons on DanceTrack test dataset are made between CO-MOT and
MOTR(v2). The horizontal axis represents FLOPs (G) and the vertical axis represents the HOTA
metric. The size of the circles represents the number of parameters (M). It can be observed that
our model achieves comparable HOTA (69.4% vs 69.9%) with MOTRv2 while maintaining similar
FLOPs (173G) and number of parameters(40M) with MOTR. The runtime speed of CO-MOT is
much faster (1.4x) than MOTRv2’s. Thus, our approach is effective and efficient, which is friendly
for deployment as it does not need an extra detector.

4.6 LIMITATIONS

Despite the introduction of COLA and Shadow, which improve the tracking effect of MOTR, the
inherent data-hungry nature of the Transformer model means that there is not a significant improve-
ment in smaller datasets like MOT17. As shown in Figure [5a, a prominently visible target has
not been detected, but this issue has only been observed in the small MOT17 dataset. And due to
the scale problem, the detection and tracking performance is poor for small and difficult targets in
Figure [5b] In order to further improve the effect, it is necessary to increase the amount of training
data or use a more powerful baseline such as DINO.

5 CONCLUSION

This paper proposes a method called CO-MOT to boost the performance of end-to-end Transformer-
based MOT. We investigate the issues in the existing end-to-end MOT using Transformer and find
that the label assignment can not fully explore the detection queries as detection and tracking queries
are exclusive to each other. Thus, we introduce a coopetition alternative for training the interme-
diate decoders. Also, we develop a shadow set as units to augment the queries, mitigating the
unbalanced training caused by the one-to-one matching strategy. Experimental results show that
CO-MOT achieves significant performance gains on multiple datasets in an efficient manner. We
believe that our method as a plugin significantly facilitates the research of end-to-end MOT using
Transformer.
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