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Abstract

Large language models (LLMs) are prone to hallucination stemming from
misaligned self-awareness, particularly when processing queries exceeding
their knowledge boundaries. While existing mitigation strategies employ
uncertainty estimation or query rejection mechanisms, they suffer from
computational efficiency and sacrificed helpfulness. To address these is-
sues, we propose the Explicit Knowledge Boundary Modeling (EKBM)
framework, integrating fast and slow reasoning systems to harmonize reli-
ability and usability. The framework first employs a fast-thinking model
to generate confidence-labeled responses, enabling immediate utilization
of high-confidence outputs, whereas uncertain predictions trigger a slow
refinement model for accuracy improvement. To align model behavior
with our proposed object, we propose a hybrid training pipeline, enhanc-
ing self-awareness without degrading task performance. Evaluations on
dialogue state tracking tasks demonstrate that EKBM achieves superior
model reliability over uncertainty-based baselines. Further analysis reveals
that refinement substantially boosts accuracy while maintaining low com-
putational overhead. The framework establishes a scalable paradigm for
deploying reliable LLMs in error-sensitive applications, effectively balanc-
ing accuracy and practical utility.

1 Introduction

Recently, large language models (LLMs) have demonstrated impressive text generation
capabilities (Abdullah et al., 2022). However, LLMs are susceptible to hallucinations, where
generated content misaligns with context or factual information (Zhang et al., 2023). Halluci-
nations can be particularly detrimental in applications with low tolerance for error, eroding
user trust in LLM reliability.

Extensive works have been devoted to mitigating hallucinations in LLMs (Tonmoy et al.,
2024). Hallucinations often arise from misalignments between an LLM’s outputs and its
intrinsic knowledge boundaries, particularly when when addressing queries beyond its
expertise (Li et al., 2024b). Improving the model’s self-awareness—its capacity to accurately
assess its own knowledge boundaries and outputs correctness, can effectively mitigate
this misalignment. Uncertainty-based methods estimate model confidence and indirectly
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reflect the model’s self-awareness (Huang et al., 2024), facing challenges of inherence to
the model’s endogenous capabilities, frequently sufferring from high computational costs
or instability across thresholds. Alternative strategies emphasize aligning knowledge
boundaries with actions by rejection of out-of-scope queries (Xu et al., 2024b), avoiding
mistakes but sacrificing helpfulness—a trade-off that undermines model utility particularly
in complex, multi-step tasks where partial correctness remains valuable.

To address these limitations, we propose a novel alignment objective that enhances model
awareness of its knowledge boundaries, enabling models to respond more effectively by
explicitly distinguishing between high-confidence (“sure”) and low-confidence (“unsure”)
outputs. A reliable system should deliver near-perfect accuracy for “sure” predictions and
provide helpful information in the “unsure” category, serving as a form of soft rejection,
appropriately managing user expectations regarding accuracy.

Building on this concept, we propose the Explicit Knowledge Boundary Modeling (EKBM)
framework. EKBM integrates both Fast and Slow systems: a fast-thinking model generates
responses annotated with confidence labels, allowing for immediate use of high-confidence
outputs, while a slow-thinking refinement model engages in deliberate reasoning to improve
low-confidence predictions. Crucially, EKBM does not merely filter uncertain outputs but

Mistakes avoided and help provided.

Standard Dialogue State Tracking

  destination = Cambridge,  leaveat = 7:59

Error! Leaveat = 7:59 is not user intention.

Rejection Aligned Model

  Sorry, I can't confirm if the departure time is 7:00
  or 7:59. Further user confirmation is needed.

Mistakes avoided, but no help provided as well.

Reliability Aligned Model (ours)

  Sure: destination = Cambridge
  Unsure: leaveat = 7:59

  leaveat = 7:59 is not direct user intention, ... ,
  corrected to 7:00. 

To Refinement Model

Dialog history
User: Book me a train, I'd like to leave Cambridge sometime 
                after 7:00.
SYSTEM: I have one that leaves at 7:59.

Figure 1: A case study on Dialog State Tracking:
comparison of different alignment objectives.

leverages them as opportunities for im-
provement, ensuring both precision and re-
call. The collaboration between these two
systems strikes a balance between reliabil-
ity and efficiency, with the fast-thinking
model’s self-awareness being crucial for the
system’s effective functioning.

To operationalize this paradigm, we de-
sign a training pipeline that aligns the
model’s capability boundaries and im-
proves self-awareness. Evaluations on di-
alogue state tracking (DST) tasks demon-
strate that our method effectively and reli-
ably distinguishes the confidence levels of
model output compared to baseline meth-
ods. Additionally, we develop an auto-
matic refinement model for “unsure” out-
puts. Experiments show that the EKBM sys-
tem achieves superior overall performance
compared to traditional approaches that di-
rectly tune models for the task.

Our contributions are summarized as follows:
• We present the EKBM framework, integrating fast-thinking assessment with slow-

thinking refinement, along with metrics for evaluating self-awareness and reliability.
• We develop a comprehensive training pipeline that enhances LLM self-awareness,

yielding more reliable models.
• We perform extensive experiments to demonstrate the effectiveness and scalability

of the EKBM framework, providing valuable insights for future research.

2 Problem Formulation

2.1 Alignment for Reliability

To enhance the reliability of LLMs, a prevailing method involves aligning their performance
with high-quality training data. This alignment aims to achieve the following objective:

s(x, yc) > s(x, yw) (1)

where a scoring function s(x, y) ensures that the score of a correct response yc to an input
prompt x is higher than that of an incorrect response yw.
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Recent studies have introduced rejection as a mechanism to help the model differentiate
between answerable (in-boundary) and unanswerable (out-of-boundary) queries, where
model is encouraged to directly reject the unanswerable ones. The corresponding alignment
objective can be articulated as:

s(x, yc) > s(x, yr) > s(x, yw) (2)

where yr denotes a truthful rejection, and yw an incorrect response. This suggests that
refusal is preferable to providing an incorrect answer.

While this rejection strategy ensures reliability, it may unduly limit the model’s helpfulness.
Therefore, we propose a more nuanced objective: the model should provide an answer when-
ever possible, categorizing its output as either high-confidence (“sure”) or low-confidence
(“unsure”). The model must ensure high accuracy for “sure” responses while tolerating
some errors in the “unsure” category, which can serve as references for users or inputs for
further refinement. Our proposed alignment objective is formalized as:

s(x, yc, cs) > s(x, yc, cu) > s(x, yw, cu) > s(x, yw, cs) (3)

Here, yc and yw denote correct and incorrect responses, while cs and cu represent “sure”
and “unsure” confidence levels. This objective guarantees that correct “sure” predictions
are prioritized over correct “unsure” predictions, which, while less confident, still provide
utility. Incorrect “unsure” predictions are discouraged but considered more acceptable than
incorrect “sure” predictions, as the latter significantly undermine overall reliability.

2.2 Reliability Evaluation

In this work, we focus on complex multi-slot problems and have modified several metrics
for better evaluation of model reliability.

2.2.1 Weighted-F1
The F1-score, calculated using True Positives (TP), False Positives (FP), and False Negatives
(FN), is typically the evaluation metric for multi-slot problems:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(4)

F1 = 2 · Precision · Recall
Precision + Recall

(5)

We modify the F1 score to align with the objectives of our EKBM framework. Since “unsure”
predictions represent an state of uncertainty, we assign a weighted contribution (denoted by
α1 and α2, both ranging from 0 to 1) to reflect their partial utility as candidates for refinement.
The modified precision and recall are defined as:

Precision(α1) =
STP + α1 · UTP

STP + SFP + α1 · (UTP + UFP)
, Recall(α2) =

STP + α2 · UTP
STP + UTP + FN

(6)

Here, STP and SFP denote True Positives and False Positives for “sure” predictions, while
UTP and UFP are the corresponding values for the “unsure” category. For recall, we consider
a prediction to be a UTP if it is partially correct (i.e., refinable). Unlike precision, we do
not apply the weighting parameter α2 to the denominator of the recall calculation, as recall
measures the proportion of gold labels retrieved, which is independent of the introduction
of α. Notably, incorporating α does not affect the range of precision and recall, both of which
remain within [0,1]. The modified Weighted-F1 score is defined as:

Weighted-F1(α1, α2) = 2 · Precision(α1) · Recall(α2)

Precision(α1) + Recall(α2)
(7)
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Figure 2: The EKBM framework and the data construction methods.

2.2.2 Metric-Objective Consistency: Weighted-F1 as a Parametric Alignment Measure

The Weighted-F1 metric aligns with our four-tiered objective (Equation (3)) by using a
parametric formulation that encodes hierarchical priorities, which ensures: (1) Strict en-
forcement for sure predictions: Unweighted terms prioritize high-confidence correctness
(STP) and apply maximal penalties for errors (SFP). (2) Controlled utility for unsure predic-
tions: The α-scaled terms modulate low-confidence outputs, with attenuated UFP penalties
tolerating unsure errors, and partial UTP rewards incentivizing refinable correct predictions.

This dual-parameter mechanism enables scenario-specific adaptation: Weighted-Precision
regulates error tolerance via α1 (higher α1 tightens unsure-error constraints) and Weighted-
Recall controls reference-value incentives via α2 (higher α2 promotes helpfulness through
unsure-correct outputs). The composite metric thus operationalizes the reliability-
helpfulness trade-off, permitting calibration from conservative (α1 → 1, α2 → 0) to ex-
ploratory (α1 → 0, α2 → 1) strategies.

We discuss a few corner cases: (1) α1 = 0, α2 = 0: Weighted-F1 disregards all “unsure”
predictions. (2) α1 = 0, α2 = 1: Errors in the “unsure” category are ignored, rewarding
effective recall, representing the theoretical upper limit after perfect refinement. (3) α1 = 1,
α2 = 0: Lacks significant interpretation. (4) α1 = 1, α2 = 1: Eliminates confidence labeling,
reverting to traditional methods.

2.2.3 Reliability Metrics
We use two specific Weighted-F1 scores: Quality-F1 as the primary metric for assessing
model reliability, and Optimal-F1 as a supplementary reference.

Quality-F1: Defined as Weighted-F1(0.5, 0.5), this metric assigns half the weight to “unsure”
predictions compared to “sure” ones. This encourages the model to provide high-confidence
“sure” outputs while mitigating penalties for “unsure” ones. Quality-F1 directly measures
the model’s self-awareness and reliability.

Optimal-F1 Defined as Weighted-F1(0, 1), it represents the theoretical upper limit achievable
after perfect refinement of “unsure” predictions, reflecting the overall potential of the system.

3 Method

3.1 Explicit Knowledge Boundary Modeling

We formalize our proposed framework, Explicit Knowledge Boundary Modeling (EKBM),
which aims to improve model reliability and self-awareness by explicitly modeling its
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knowledge boundaries and improve overall performance by incorporating a refinement
model to improve the “unsure” predictions. As shown in Figure 2 (1), the framework divides
the model’s decision-making process into two distinct stages, balancing immediate usability
with comprehensive coverage, making the system both reliable and helpful. We provide a
complete example of the two-stage execution flow and model outputs in Appendix B.
Fast Prediction with Confidence Labeling In the first stage, the model performs the
primary task and simultaneously assigns a confidence label (“sure” or “unsure”) to each
prediction. “Sure” predictions are directly accepted as final outputs, ensuring high precision.
Slow Refinement for Unsure Prediction In the second stage, “unsure” predictions un-
dergo further refinement through strategies like user confirmation, automated multi-step
reasoning, or other post-processing techniques, incuring extra cost but increases overall
accuracy and reliability of the system.

3.2 Reliability Alignment

To align the model’s behavior with our alignment objective, we explore various training
strategies to enhance its intrinsic self-awareness (Xu et al., 2025), including Supervised
Fine-Tuning (SFT) and Direct Preference Optimization (DPO). The data construction process
is shown in Figure 2(2), with two detailed examples provided in Appendix §C.
SFT Data Construction We assume that a model’s task-specific knowledge boundary
can be approximated by repeated sampling on training data. Accordingly, our SFT data
construction is straightforward: for each training sample, we perform multiple samplings.
Predictions consistently deemed accurate are labeled “sure,” while those with errors or
omissions are marked “unsure.” Crucially, we intentionally refrain from correcting erro-
neous outputs to avoid introducing supervisory signals that might inadvertently improve
the model’s task performance. That is, when the model produces an incorrect prediction,
we simply assign a confidence label of “unsure” without rectifying the error. The erroneous
output remains in the final training data, reinforcing the model’s ability to recognize and
categorize uncertain information rather than improving its accuracy directly.

The number of sampling rounds i is a hyperparameter. A larger i results in a more conser-
vative model, as the proportion of “unsure” labels in the training corpus increases. In our
study, we set i = 1 by default to accurately reflect the model’s realistic capability boundary.
DPO Preference Data Construction DPO enables the model to learn directly from pref-
erence pairs, making the design of an effective preference strategy crucial. Given our
alignment objective, it is intuitive to use Weighted-F1 as the preference score function. The
α values in Weighted-F1 significantly influence the model’s behavior and performance.
Through experimentation (see §4.5), we determined that setting α1 to 0.25 and α2 to 0.75 best
balances the model’s immediate helpfulness and its potential performance after refinement.
Therefore, this setting will be used by default unless specified. To enhance the stability of
DPO training, we ensure that all data is generated through multi-sampling from the model
itself, aligning with the model’s output distribution.

3.3 Refinement Model

We train automated refinement models for each dataset to further optimize unsure pre-
dictions by multi-step reasoning, leveraging supervised fine-tuning (SFT) based on the
LLAMA3 8B model. Our refinement operates at a fine-grained level, addressing each unsure
prediction individually. We employ a reasoning paradigm similar to the Chain of Thought
(Wei et al., 2022) methodology and use GPT-4o (Hurst et al., 2024) to generate detailed
reasoning process for each training prediction. This approach is illustrated in Figure 2 (3),
and detailed information can be found in Appendix §D.

4 Experiments

We conduct experiments focusing on three core research questions:
RQ1 Does our training pipeline outperform current methods in enhancing self-awareness?
RQ2 Does EKBM framework improve the overall performance of LLMs on complex tasks?
RQ3 Does our approach scale robustly across foundation models with varying capabilities?
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Method Type Method MultiWOZ-2.4 BiTOD SGD

Precsure ↑ Rectotal ↑ Opti. F1 ↑ Qual. F1 ↑ Precsure ↑ Rectotal ↑ Opti. F1 ↑ Qual. F1 ↑ Precsure ↑ Rectotal ↑ Opti. F1 ↑ Qual. F1 ↑
LLAMA3-8B Dubey et al. (2024)

Prompt
Direct 72.48 77.98 73.38 73.38 73.37 64.83 65.39 65.39 26.46 28.71 25.12 25.12
Verbose 85.95 85.85 80.88 53.34 91.53 76.52 78.09 53.56 69.59 27.93 29.25 14.98
SR 86.43 81.34 81.34 61.43 92.39 76.32 78.84 48.60 65.32 33.61 33.37 21.30

Uncertainty
Prob 80.05 80.66 77.74 69.03 83.50 72.44 73.40 60.30 36.93 32.28 27.74 22.86
SC 80.11 89.51 84.15 64.48 83.16 75.48 77.33 62.93 84.66 41.06 42.76 16.55
P(True) 72.82 79.00 73.50 70.81 72.44 66.26 65.97 63.06 24.78 29.93 26.26 26.24

Reliability
(Ours)

SFT 94.04 91.75 91.65 82.44 95.66 88.25 88.56 83.08 86.74 85.51 82.66 61.64
+ DPO Joint 94.52 92.16 92.83 83.50 95.84 88.85 88.89 83.11 89.07 86.31 85.89 61.42
+ DPO Post 93.59 93.10 91.75 83.55 95.17 88.00 88.35 85.78 82.26 83.47 79.70 64.14

Qwen2.5-7B Yang et al. (2024)

Prompt
Direct 69.42 71.37 67.22 67.22 71.19 65.31 65.98 65.98 33.43 36.11 33.40 33.40
Verbose 83.02 71.14 69.05 58.88 78.62 77.22 75.23 64.78 65.78 31.80 32.13 21.74
SR 73.54 72.08 69.69 67.87 73.73 66.48 67.90 66.34 35.87 36.82 35.13 34.05

Uncertainty
Prob 77.12 74.47 72.02 65.19 84.57 74.43 75.49 61.11 46.66 38.91 34.83 29.36
SC 83.33 90.20 84.67 57.00 87.65 74.83 77.42 51.43 71.47 61.08 53.38 25.22
P(True) 70.03 71.44 67.49 67.24 72.11 65.66 66.13 65.65 33.60 36.40 33.67 33.56

Reliability
(Ours)

SFT 94.16 91.93 91.98 82.03 96.08 89.13 89.33 83.01 90.69 83.86 83.09 64.63
+ DPO Joint 95.29 92.88 93.03 80.86 95.99 89.86 89.51 82.00 91.23 85.78 83.95 64.48
+ DPO Post 94.02 92.23 92.12 82.89 96.15 89.29 89.60 84.12 86.70 84.61 81.00 67.51

Table 1: Reliability performance on three DST datasets. Method denotation: DPO Joint: SFT and
DPO Joint Tranining. DPO Post: DPO Post Training. Metric denotation: Precsure: precision of ”sure”
predictions. Rectotal: recall of the ”sure” and ”unsure” predictions. Opti. F1: Optimal-F1. Qual. F1:
Quality-F1. Notably, all outputs of the Direct baseline are treated as ”sure”.

4.1 Experiments Setup

4.1.1 Model and Baselines

We utilize the LLaMA3 8B model and the Qwen2.5 7B model as the backbone for our
experiments. For reliability alignment, we conducted Reliability-SFT and integrated DPO
to create two additional variants: Reliability-SFT+DPO Joint Training, which undergoes
joint training with SFT and DPO, and Reliability-SFT+DPO Post Training, where DPO
training follows initial SFT training, optimizing the model beyond the Reliability-SFT
foundation. The key distinction lies in the different source distributions of preference data
sampled for DPO. Training details could be found in Appendix §A.

To evaluate the reliability of our proposed models, we compare them against six baselines:
three prompt-based and three uncertainty-based approaches (see Appendix §E). Notably,
our focus is on the model’s self-awareness rather than task performance, so we do not
include SOTA DST models. By default, we use only 1,000 samples for Reliability-SFT
training and 2,000 for DPO, which is significantly less than traditional models.

Prompt-based methods encompass three approaches: Direct, Verbose, and Self-Reflection
(denoted as SR, Ji et al. (2023a)). The Direct approach generates predictions without confi-
dence estimation, while Verbose produces both predictions and confidence labels simultane-
ously. SR assesses each prediction through self-evaluative reflection.

Uncertainty-based methods include Token Probability (Prob, Manakul et al. (2023)), Self-
Consistency (SC, Chen & Mueller (2024)), and P(True) (Kadavath et al., 2022). These methods
use different techniques to classify outputs as “sure” or “unsure”. Prob calculates average
token probabilities; SC measures the frequency of predictions across multiple samples; and
P(True) determines the probability of the “True” token during model self-evaluation.

4.1.2 Dataset

We evaluate our methods on the Dialogue State Tracking (DST) task in task-oriented dialogue
systems, which involves extracting slot-value pairs from multi-turn dialogues based on a
predefined ontology (Xu et al., 2024a). We focus on the intricate multi-slot problem, where
the model is likely to exhibit varying confidence levels for different parts of responses to the
same query. Consequently, we do not adopt traditional QA or mathematical datasets. To
ensure a robust evaluation, we utilize three datasets: MultiWOZ-2.4 (Ye et al., 2021), BiTOD
(Lin et al., 2021) and SGD (Rastogi et al., 2020). For BiTOD, we adopt the English version,
while for SGD, we randomly select 10,000 instances from the testset to mitigate excessive
computational overhead. Common evaluation metrics for DST include Joint Goal Accuracy
(JGA) and Slot-F1. For JGA, a sample is deemed correct only if all predictions are accurate
without omissions, while Slot-F1 offers a slot-level assessment.
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4.2 Reliability Evaluation

The experimental results on model reliability are summarized in Table 1. We evaluate
our reliability-training pipeline against baseline algorithms, with a particular focus on the
model’s self-awareness capabilities. For RQ1, our method significantly outperforms tradi-
tional prompt-based and uncertainty-based methods across various datasets, demonstrating
a substantial improvement in self-awareness.

Our approach consistently achieves superior Quality-F1 scores, demonstrating improved
ability to distinguish predictions as “sure” or “unsure” based on confidence. A high
Precisionsure indicates reliable “sure” predictions, fostering user trust with minimal need
for verification. Simultaneously, a high Recalltotal ensures the “unsure” category contains a
broad range of potentially correct outputs, which forms a solid basis for refinement. Together,
these metrics lead to a higher Optimal-F1 score, representing the theoretical maximum post-
refinement performance. In essence, our system optimally balances precision and recall,
providing both immediate reliability and a strong potential for post-refinement accuracy.

In our approach, DPO-based methods generally outperform SFT-only methods. Specifically,
models trained with DPO Joint Training achieve higher Optimal-F1 scores, suggesting a
more conservative stance that defers to subsequent refinement. In contrast, those undergoing
Post Training yield superior Quality-F1 scores, indicating greater confidence and higher-
quality predictions. This discrepancy arises because Joint Training samples from a pre-
SFT distribution, which has poorer performance. This results in a dataset with a higher
proportion of “unsure” predictions, leading to more cautious model behavior.

Notably, some baselines, such as Self-Consistency, show high Precisionsure, Recalltotal, and
Optimal-F1 scores, suggesting initial superiority. However, this often indicates an overly
conservative model that frequently labels predictions as “unsure.” This leads to a suboptimal
balance between prediction types, as evidenced by a significantly lower Quality-F1 score. In
an extreme case, a model could label all predictions as “unsure”, maximizing Optimal-F1
but shifting the entire burden to the refinement stage. This approach sacrifices immediate
usability and fails to balance reliability and helpfulness.

4.3 Refinement for Unsure Prediction

As described in Section §3.3, we trained an automatic refinement model for each dataset.
We refined the “unsure” predictions from the initial stage and merged them with the “sure”
predictions to generate the final results. Table 2 shows the overall evaluation. For RQ2,
our method achieves significantly better performance after refinement, with substantial
improvements in Slot-F1 and JGA.

Method Type Method MultiWOZ-2.4 BiTOD SGD

Slot-F1 ↑ JGA ↑ Slot-F1 ↑ JGA ↑ Slot-F1 ↑ JGA ↑
LLAMA3-8B

Prompt
Direct 78.86 36.01 82.40 36.46 32.41 13.58
Verbose 76.80 36.69 76.93 27.99 23.11 9.00
SR 78.68 29.72 76.50 30.74 29.90 11.25

Uncertainty
Prob 75.89 24.19 73.88 24.86 28.48 9.63
SC 70.98 20.70 69.98 24.86 25.60 4.39
P(True) 73.88 19.18 67.07 19.03 26.29 7.34

Reliability
(Ours)

SFT 85.95 53.76 85.21 60.09 74.04 27.62
+ DPO Joint 86.47 54.31 84.53 61.37 75.47 29.18
+ DPO Post 86.55 56.33 85.87 64.95 73.96 28.13

Qwen2.5-7B

Prompt
Direct 78.66 36.35 83.23 37.39 42.02 16.93
Verbose 67.59 26.45 74.37 27.38 27.79 9.19
SR 68.88 19.09 67.18 19.15 34.77 8.78

Uncertainty
Prob 74.18 23.56 73.97 25.64 35.91 10.81
SC 59.34 23.45 65.60 28.31 34.34 3.06
P(True) 67.52 17.05 66.25 17.99 33.66 8.07

Reliability
(Ours)

SFT 84.50 51.90 85.29 58.39 74.86 28.02
+ DPO Joint 87.06 52.41 85.44 62.31 74.85 27.06
+ DPO Post 87.57 53.19 85.86 63.61 74.95 28.51

Table 2: Comparison of different methods on overall
performance after refinement. Note: for Direct baseline
we conduct a fully refinement since there’s no confi-
dence label.

Referring to §4.2, despite their higher
theoretical performance limit (Optimal-
F1), DPO Joint Training models exhibit
suboptimal Slot-F1 and JGA after re-
finement compared to Post Training
models. This discrepancy stems from
the limitations of the refinement model.
Since the refinement model is not per-
fect, an excessive number of “unsure”
predictions can lead to residual errors
after refinement, incurring significant
costs without proportional gains. This
highlights the importance of a balanced
“sure” and “unsure” classification. An
ideal model should minimize unneces-
sary “unsure” predictions and refine
only when truly warranted, maximiz-
ing both efficiency and overall perfor-
mance.
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4.4 Scalability Analysis

To evaluate scalability, we experimented with foundation models of varying capabilities.
We consider the original LLAMA3 8B as a low-performance baseline (denoted as Low),
then fine-tuned two models with 1,000 (Medium) and 10,000 (High) samples to enhance
their DST capabilities. We then continually conducted reliability training and evaluated the
performance of the obtained reliable LLMs against baseline methods. As shown in Figure
3, our methods consistently outperform baselines after refinement, demonstrating strong
scalability. This is particularly relevant for real-world scenarios where models are often
domain-specifically tuned and possess high task capabilities. Detailed results in Appendix
§F further support these findings.

As illustrated in Table 7 in Appendix §F, the advantage of DPO Post Training over Joint
Training becomes more pronounced as foundation model performance improves. This
is because our offline DPO algorithm’s limitations are exacerbated by higher-performing
foundation models, negatively affecting the Joint Training data distribution and overall
performance. Notably, in the SGD dataset, the benefits of DPO Joint Training diminish with
increasing foundation model performance, even falling behind the SFT-only approach.
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4.5 DPO Preference Strategies
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Figure 5: Comparison of
DPO preference strategies on
model behavior and perfor-
mance.

We constructed our DPO preference data using Weighted-
F1 as the ranking metric, as detailed in §2.2.1. Weighted-F1
incorporates two adjustable α parameters: α1 for Weighted
Precision and α2 for Weighted Recall. Using the Reliability-SFT
trained LLAMA3 8B model, we generated DPO preference
data with varying α values and performed subsequent Post
Training. Results on the MultiWOZ-2.4 dataset (Figure 5) show
that the model achieves optimal performance at α1 = 0.25 and
α2 = 0.75, reaching near-best results at a relatively low cost.

Analysis indicates that increasing α1 heightens sensitivity to
errors in “unsure” predictions, reducing tolerance and the
number of “unsure” outputs. Conversely, increasing α2 am-
plifies rewards for successfully recalling “unsure” predictions,
encouraging a more conservative stance. The optimal alpha
settings depend on the specific scenario and refinement model
performance; if the refinement model underperforms, the cost
of excessive “unsure” predictions may not be justified. The
flexible adjustment of both α parameters allows for adaptation
to diverse real-world scenarios.

4.6 Detailed Analysis

4.6.1 Prediction Types Analysis

To evaluate our model’s ability to make reliable confidence judgments, we further analyzed
the distribution of its output categories and compared them to baselines. We examined five
output categories: correct and incorrect predictions classified as “sure” or “unsure”, along
with missing predictions. The results are presented in Figure 6.
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Figure 6: Percentage of predictions types among different methods. Chosen representative methods:
Prompt-based: Direct; Uncertainty-based: Prob; Reliability: SFT+DPO Post Training.

Our findings highlight two key improvements: (1) Enhanced reliability: We observed
a notable reduction in incorrect “sure” predictions, with most errors concentrated in the
“unsure” category. This indicates a stronger self-assessment capability, allowing the model
to better identify potential errors than baselines. Additionally, the “unsure” category
consistently contains fewer correct predictions than incorrect ones, a distinction baseline
models struggle to achieve. (2) Improved recall: Our approach significantly reduces missing
predictions by capturing previously omitted relevant information within the “unsure”
category. While some of these may still contain errors, this shift enhances overall helpfulness
and provides a stronger foundation for refinement.

4.6.2 Cost Analysis
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Figure 7: Comparison of different meth-
ods of Cost-JGA on MultiWOZ-2.4.

In this work, Cost refers to the additional overhead
from the refinement process. We define the cost
of refining an “unsure” prediction as a constant
value of 1, equating Cost to the number of “unsure”
predictions. For better comparison, we express
Cost as the proportion of “unsure” predictions.

We compare the performance and Cost of various
baselines in Figure 7. Results are shown for the
MultiWOZ-2.4 dataset, with complete findings in Appendix §G. Our methods show sig-
nificant performance improvements at a relatively low Cost. Additionally, as shown in
Appendix Table 8, Cost decreases significantly as the foundation model’s performance
improves, which is expected as a stronger model produces fewer uncertain predictions.

4.6.3 Refinement Model Comparison

MultiWOZ-2.4 BiTOD0

20

40

60

80

100

R
ef

in
em

en
t A

cc
ur

ac
y 

(%
)

R1-8B R1-70B GPT-4o Ours

30

40

50

60

70

80

JG
A 

(%
)

35.50

51.66
48.21

54.67

47.53

56.0856.33

64.95

Figure 8: Comparison of different refinement
models. The line chart represents “Refine-
ment Accuracy”, while the histogram repre-
sents “JGA”.

We used various refinement models to en-
hance predictions from the LLAMA3 Reliability-
SFT+DPO Post model. As shown in Table 8,
we compared our trained models against GPT-
4o and the DeepSeek series (DeepSeek-AI et al.,
2025) (8B and 70B), all known for strong rea-
soning. Results show significant performance
differences, with DeepSeek 8B underperform-
ing while the 70B model nearly matches GPT-4o.
Our task-specific fine-tuning with CoT substan-
tially improves refinement accuracy.

4.7 Extension to Mathematical Problems

To validate the generalization of our method to different tasks, we conducted supplementary
experiments on the widely used GSM8K mathematics dataset (Cobbe et al., 2021) using the
Qwen2.5-7B-Instruct model with 1,000 training samples. We evaluated the model under
two test settings: (a) with Chain-of-Thought (CoT) reasoning (Wei et al., 2023) and (b) by
directly predicting the final answer. We tested both settings as LLMs generally perform
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differently on each. For the refinement model, we used the DeepSeek-R1-Distill-Llama-70B
model, which has strong mathematical reasoning capabilities.

We adapted the F1-based evaluation metric from Section §2.2 to an accuracy-based definition:

Weighted-Accuracy(X, α) =

∑
xi∈Sure

S(xi) + α × ∑
xj∈Unsure

S(xj)

NSure + α × NUnsure

Quality-Accuracy(X) = Weighted-Accuracy(X, 0.5)

As shown in Table 3, our method consistently outperformed both prompt-based and
uncertainty-based baselines in improving the model’s self-assessment ability, achieving
higher Quality-Accuracy. Furthermore, after applying refinement with the same refinement
model, our approach yielded a higher final accuracy at a reasonable computational cost.

Method
Type Method Quality

Accuracy
Final

Accuracy

Prompt Direct 86.81 86.81
Verbose 90.8 90.98

Uncertainty Prob 87.69 88.55
SC 89.41 91.48

Reliability
(ours)

SFT 89.69 91.05
+ DPO Joint 90.14 93.10
+ DPO Post 92.73 95.30

(a) Inference setup: Chain-of-Thought

Method
Type Method Quality

Accuracy
Final

Accuracy

Prompt Direct 19.94 19.94
Verbose 21.44 24.34

Uncertainty Prob 24.49 76.50
SC 24.37 70.05

Reliability
(ours)

SFT 27.31 77.94
+ DPO Joint 26.16 78.24
+ DPO Post 27.83 79.83

(b) Inference setup: Answer Directly

Table 3: Comparison of different methods on GSM8K dataset. Quality Accuracy assigns a weight of
0.5 to unsure samples. Final Accuracy represents the overall accuracy after refinement.

5 Related Work
The knowledge boundary of LLMs has emerged as a critical topic in recent research, high-
lighting their limitations in generating reliable outputs (Yin et al., 2024; Li et al., 2024b).
Misalignment between model behavior and knowledge boundaries can result in factual
hallucinations (Huang et al., 2023) and ambiguous responses (Liu et al., 2023).

Various methods have been proposed to assess these boundaries. Uncertainty-based ap-
proaches quantify prediction confidence through token probabilities (Manakul et al., 2023)
and consistency (Chen & Mueller, 2024). Calibration strategies, including prompting (Tian
et al., 2023) and fine-tuning (Tao et al., 2024) for improved confidence expression, align
model confidence with prediction accuracy. Internal State Probing evaluates prediction fac-
tuality by analyzing model states, such as activations (Li et al., 2024a). While effective, these
methods often rely on external post-hoc techniques, which are computationally expensive
and lack integration with the model’s endogenous reasoning processes (Huang et al., 2024;
Zhou et al., 2024; Pan et al., 2025; Shan et al., 2025).

To further align model behavior rather than merely estimate uncertainty, some studies
guide models in self-reflection to minimize self-contradictions (Wei et al., 2022; Ji et al.,
2023b), albeit with increased computational overhead. More recently, RL-based approaches
leverage uncertainty estimation to train reward models, enhancing LLM truthfulness by
rejecting queries beyond their capabilities (Xu et al., 2024b; Chen et al., 2024; Xue et al., 2024).
While effective, these methods rely on the accuracy of uncertainty estimation algorithms
and meanwhile may unintentionally reduce overall helpfulness.

6 Conclusion
In this work, we propose a two-stage framework that enhances the reliability of large lan-
guage models by integrating fast and slow thinking paradigms. Through precise confidence
assessment and high-accuracy refinement, we achieve a balance between reliability and
usability. Extensive evaluations demonstrate that our method significantly improves model
self-awareness and performance across complex tasks, establishing a new paradigm for
enhancing the reliability of language models in error-sensitive applications.
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A Training Details

We modify the DeepSpeed-Chat (Yao et al., 2023) framework to accommodate our experimen-
tal setup. We adopt most of the default training parameters provided by DeepSpeed-Chat
except that the learning rate for DPO training is set to 1e-7 and the maximum sequence
length is set to 8096 on the SGD dataset and 2048 on the others. All models are trained for 1
epoch using NVIDIA A800 GPUs.

B Execution Example for Two Stages

We provide an example sample that includes the complete execution flow and model outputs
for the two stages as shown in Table 4.

Input

Dialog history:
USER: Hi, I’m looking for a hotel to stay in.
....
USER: Okay, please book that for 3 people and 2 nights starting from Friday.
SYSTEM: Booking was successful. Reference number is : 9HMD04UW. anything else?
USER: I would love to find a restaurant as well.
...

Reliable dialog state:

Stage One: Reliable LLM Predictions

{“hotel”: {“bookday”: {“value”: “friday”, “confidence”: “sure”}, “bookpeople”: {“value”:
“3”, “confidence”: “sure”}, “bookstay”: {“value”: “2”, “confidence”: “sure”}}, “restaurant”:
{“bookpeople”: {“value”: “3”, “confidence”: “unsure”}}}
Stage Two: Refinement for “Unsure” Predictions:

Target: {“domain”: “restaurant”, “slot”: “bookpeople”, “value”: “3”}
Refinement model:
Thinking steps:
step1: structure aspect: “bookpeople” is one of the slots in the restaurant domain and the
value is specified as “3”.
step2: semantic aspect: In this case, the user never specifies the number of people for the
restaurant booking. The number “3” is related to the hotel booking, not the restaurant.
Therefore, the slot-value pair is irrelevant to the user’s intent for the restaurant and should
be removed.
step3: the predicted slot-value pair is incorrect in semantic, and the slot should be removed.
Refine action: removing
Refined slot-value pair: none

Final Refined Predictions:

{“hotel”: {“bookday”: {“value”: “friday”, “confidence”: “sure”}, “bookpeople”: {“value”:
“3”, “confidence”: “sure”}, “bookstay”: {“value”: “2”, “confidence”: “sure”}}}

Table 4: An example of the complete execution flow and model outputs.

C Training Data Construction

We provide detailed examples to illustrate our training data construction process, including
model inputs and the expected outputs the model is intended to learn. The data construction
for SFT is outlined in Table 5, while that for DPO is detailed in Table 6.
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Input

Dialog history:
USER: Is there a modern European restaurant in the north?
SYSTEM: I found city stop restaurant. They are located at Cambridge City Football Club
Milton Road Chesterton.
USER: That sounds lovely!
SYSTEM: Would you like me to help you with reserving a table?
USER: Maybe. Is that restaurant in the moderate price range?
SYSTEM: No, it is in the expensive price range. Is this okay, or would you like to try another
area?
USER: How about a restaurant that serves Indian food?
SYSTEM: There are several restaurants what part of town would you like it?
USER: A restaurant in the north, please.

Reliable dialog state:

Gold Labels

{“restaurant”: {“area”: “north”, “food”: “indian”, “pricerange”: “moderate”}}
LLM Original Predictions

{“restaurant”: {“area”: “north”, “food”: “european”, “name”: “Cambridge City Football
Club Milton Road Chesterton”}}
Constructed SFT Sample Output

{“restaurant”: {“area”: {“value”: “north”, “confidence”: “sure”}, “food”: {“value”: “Eu-
ropean”, “confidence”: “unsure”}, “pricerange”: {“value”: “moderate”, “confidence”:
“unsure”}, “name”: {“value”: “Cambridge City Football Club Milton Road Chesterton”,
“confidence”: “unsure”}}}
Explanation

In the LLM’s original predictions, the value for area is correct, food is incorrect, name is
extraneous, and pricerange is missing. Consequently, in the constructed SFT sample output,
area is labeled as ”sure,” while the other three are marked as ”unsure,” with erroneous
information left uncorrected.

Table 5: An example of the SFT data construction.

D Refinement Model

We trained an automated refinement model for each dataset. The refinement model con-
ducts in-depth step-by-step reasoning on unsure predictions based on task-specific criteria,
operating within a defined action space. Our refinement models are built upon LLAMA3
8B utilizing SFT training with data constructed using OpenAI’s GPT-4o.

Action Space The action space of the refinement model includes three actions: remove,
reserve, and correct. A prediction should be reserved if entirely correct, should be corrected if
partially correct and should be removed if entirely unnecessary. For any unsure predictions,
a proper action from these three options is sufficient to achieve the required refinement.

Data Construction We adopt a multi-step reasoning Chain-of-Thought (CoT) paradigm.
The specific reasoning instructions and processes are detailed in Table 10. For data construc-
tion, we used OpenAI’s GPT-4o model. During the data generation process, we provided the
model with the prediction to be refined and the corresponding golden label, then instructed
it to generate a reasoning process based on predefined principles, as shown in Table 11. We
combined the instruction, input, the prediction to be refined, the thinking steps, and the
refinement result into a final training sample. For each dataset, we sampled 5,000 examples
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Input

Dialog history:
USER: Is there a modern European restaurant in the north?
SYSTEM: I found city stop restaurant. They are located at Cambridge City Football Club
Milton Road Chesterton.
USER: That sounds lovely!
SYSTEM: Would you like me to help you with reserving a table?
USER: Maybe. Is that restaurant in the moderate price range?
SYSTEM: No, it is in the expensive price range. Is this okay, or would you like to try another
area?
USER: How about a restaurant that serves Indian food?
SYSTEM: There are several restaurants what part of town would you like it?
USER: A restaurant in the north, please.

Reliable dialog state:

Gold Labels

{“restaurant”: {“area”: “north”, “food”: “indian”, “pricerange”: “moderate”}}
Multi-Sampling With the Foundation LLM

Sample1
...
Samplen

Constructed DPO Sample Output Pairs

Chosen
{“restaurant”: {“area”: {“value”: “north”, “confidence”: “sure”}, “food”: {“value”: “in-
dian”, “confidence”: “sure”}, “pricerange”: {“value”: “moderate”, “confidence”: “un-
sure”}}}
Rejected
{“restaurant”: {“area”: {“value”: “north”, “confidence”: “sure”}, “food”: {“value”: “in-
dian”, “confidence”: “sure”}}}
Explanation

Compared to the rejected sample, the chosen sample exhibits a higher recall for a correct
pricerange within the ”unsure” category, aligning more closely with our alignment objectives.
This is reflected in a higher Weighted-F1 score, justifying its selection over the rejected
sample.

Table 6: An example of the DPO data construction.

from the model’s unsure predictions as well as from randomly selected data in the training
set, ensuring a balanced distribution of data across three actions.

E Baselines Details

Here we detail the specifics of the baselines.

Prompt-based

• Direct: Utilizes prompts similar to those in Table 13 to guide the model in generating
predictions directly, without incorporating confidence labels.

• Verbose: Employs prompts akin to those in Figure 13 to direct the model, which
outputs confidence labels (sure or unsure) alongside predictions based on its self-
assessment.
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• Self-Reflection (SR): Builds on predictions from the Direct baseline, allowing the
model to reflect on each prediction to assess its confidence level.

Uncertainty-based

• Token Probability (Prob): Computes average token-level probabilities, classifying
outputs as “sure” or “unsure” based on a threshold t, with probabilities normalized
and t set to 0.8.

• Self-Consistency (SC): Samples N times, classifying predictions that appear consis-
tently at proportion p as “sure,” while others are marked as “unsure.” We conduct
ten samples (N = 10) and set p to 50%.

• P(True): Based on predictions from the Direct baseline, this method evaluates the
correctness of each prediction individually, marking those with a higher probability
of responding “True” than “False” as “sure,” otherwise as “unsure.”

F Scalability Analysis

The detailed results are presented in Table 7, demonstrating that our method maintains
superiority across various capability baselines, achieving more reliable outcomes (higher
Precisionsure, Recalltotal, and Quality-F1) and enhanced overall performance post-refinement
(higher JGA).

Method Type Method MultiWOZ-2.4 BiTOD SGD

Precsure ↑ Rectotal ↑ Qual. F1 ↑ JGA ↑ Precsure ↑ Rectotal ↑ Qual. F1 ↑ JGA ↑ Precsure ↑ Rectotal ↑ Qual. F1 ↑ JGA ↑
1000Samples-Trained LLAMA3 Based

Prompt Direct 91.07 86.28 87.84 42.73 93.01 92.78 92.82 70.91 82.28 85.10 82.77 38.13

Uncertainty Prob 91.84 86.52 86.84 45.43 94.93 93.55 93.66 72.73 84.45 85.24 82.80 39.48
SC 92.68 92.37 84.31 43.18 95.70 95.12 92.05 70.37 86.61 92.30 78.71 28.62

Reliability
(Ours)

SFT 95.42 92.11 89.86 55.62 94.97 94.74 93.80 73.64 85.16 85.14 81.06 39.23
+ DPO Joint 95.11 90.68 89.05 58.94 96.06 95.60 95.11 75.36 81.66 82.82 79.69 37.62
+ DPO Post 96.33 92.15 89.91 59.12 96.22 95.54 95.43 77.70 86.67 85.44 83.27 41.48

10000Samples-Trained LLAMA3 Based

Prompt Direct 94.51 93.30 93.63 63.19 95.35 95.14 94.34 80.76 83.24 83.75 83.11 43.96

Uncertainty Prob 95.77 94.06 92.95 67.39 95.95 95.53 95.23 81.26 84.37 84.61 83.08 43.52
SC 96.24 96.40 92.13 67.61 97.83 97.81 93.42 78.04 88.13 92.42 79.26 38.20

Reliability
(Ours)

SFT 96.98 95.86 94.40 70.85 96.44 96.20 96.03 80.54 85.30 83.92 83.57 45.11
+ DPO Joint 96.98 95.61 94.71 70.84 97.15 96.65 95.96 82.35 82.31 82.36 80.75 40.48
+ DPO Post 97.71 96.32 94.80 71.51 96.57 96.35 96.59 82.69 86.29 85.53 84.21 45.43

Table 7: Reliability performance of methods on models with higher task capability. Note: the JGA
column indicates results after refinement.

G Refinement Cost

The detailed overall results of cost are presented in Table 8 and 9. The relationships between
cost and performance for the BiTOD and SGD datasets are illustrated in Figure 9a and
Figure 9b, respectively, where cost refers to the proportion of unsure predictions.

Method Type Method MultiWOZ-2.4 BiTOD SGD

LLAMA Qwen LLAMA Qwen LLAMA Qwen

Prompt
Direct 100.00 100.00 100.00 100.00 100.00 100.00
Verbose 87.28 30.62 80.69 38.05 90.30 74.07
SR 55.43 28.07 95.50 8.55 84.77 15.07

Uncertainty
Prob 36.47 40.65 50.46 52.91 56.68 53.01
SC 69.26 58.91 58.05 62.59 96.80 92.71
P(True) 14.63 10.22 13.35 1.82 1.52 1.71

Reliability
(Ours)

SFT 32.67 30.98 20.03 21.78 51.24 55.96
+ DPO Joint 31.96 31.98 21.19 23.63 57.72 45.29
+ DPO Post 27.69 28.38 10.54 18.14 40.68 53.10

Table 8: Cost comparison of different methods
using the original LLAMA3-8B and Qwen2.5-7B
models.

Method Type Method MultiWOZ-2.4 BiTOD SGD

Medium High Medium High Medium High

Prompt Direct 100.00 100.00 100.00 100.00 100.00 100.00

Uncertainty Prob 6.55 5.74 3.29 1.37 8.14 5.53
SC 28.93 12.17 6.25 2.12 41.68 41.42

Reliability
(Ours)

SFT 13.52 5.12 2.16 0.66 12.60 1.87
+ DPO Joint 10.70 3.94 1.36 1.04 11.66 2.67
+ DPO Post 13.32 8.59 3.44 1.46 19.01 4.19

Table 9: Cost comparison of reliability-trained
models using different foundation models:
Medium denotes a model that has acquired cer-
tain task capabilities through SFT with 1,000 task-
specific samples, while High refers to the 10,000-
samples-trained one.
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Figure 9: Comparison of different methods in terms of performance and cost.

Refinement Examples

Give you a dialog history between USER and SYSTEM, and a slot-value pair extracted from
the dialog, I want you to analyze on the dialog history and review/refine the given dialog
state slot-value pair to make them more accurate and reliable.
## Domain Slot Spaces
{

”hotel”: {
”name”: {

”data type”: str,
”example”: ”hamilton lodge”

},
...

},
...

}
## Question
Dialog history:
USER: Hello. I need train to London liverpool Street. SYSTEM: Where are you departing
from and do you have a time preference? USER: Yes, I’d like to leave Cambridge sometime
after 7:00. SYSTEM: I have one that leaves at 7:59 and 4 more that depart every two hours
after. USER: The 7:59 will be fine.
Predicted slot-value pair:
train: leaveat = 7:59
Refinement:
Thinking steps:
step1: structure aspect: ”leaveat” is one of the slots in the train domain and the value is
incorrectly specified as ”7:59” (formation error). Precise time should strictly follow the
”HH:MM” format.
step2: semantic aspect: ”leaveat” is not a ”name”-related slot, so the value must be extracted
from the user’s direct intent. Although the system provides a train that departs at 7:59, the
user only mentions that he’d like to leave Cambridge after 7:00. Considering the formation,
the correct value should be 07:00.
step3: domain train correct; slot leaveat correct; value 7:59 incorrect.
step4: the predicted slot-value pair is incorrect in both structure and semantic, and the value
should be corrected.
Refine action: correct
Refined slot-value pair: train: leaveat = 07:00

Table 10: An example of the Refinement process.
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GPT4o Prompt For Refinement Thinking Steps Generation

Give you a dialog history between USER and SYSTEM, a predicted slot-value pair and a gold
refinement, I want you to analyze on the dialog history, refer to the examples I’ve provided
and the golden refinement, and then continue to provide the thinking steps following the
predefined principles.
Firstly, we use json dict to describe the slots and their corresponding value space. Then, we
will specify the requirements you need to comply and provide some examples. Last, we
will present you with the dialog history, the predicted dialog state slot-value pair and the
gold refinement for you to perform continuation.
## Domain Slot Spaces
{

”hotel”: {
”name”: {

”data type”: str,
”example”: ”hamilton lodge”

},
...

},
...

}
## Meta Requirements
1. Analyze the dialog history and the predicted slot-value pair carefully, correct and refine
the pair according to the following Detailed Refinement Principles.
2. For the given slot-value pair, you should only take one of the actions of ”reserve”,
”remove” or ”correct” according to the following principles.

a. reserve: if the slot is relevant to the dialog history and the value is correctly specified,
you should keep the pair.

b. remove: if the slot is irrelevant to the given dialog history or there’s not corresponding
value could be extracted from the history, you should print ”none” indicating that the pair
has been removed.

c. correct: if the slot is relevant to the dialog history and the value is incorrectly specified,
you should extract the correct value and replace it.
3. You need to think and reason in the same way as the Examples. Please refer to the
Examples for formatting requirement. Make sure the output is all lowercase. Only focus on
the given slot-value pair and do not consider any other slot. only provide the reasonable
thinking steps, do not provide any extra prefixes or suffixes.
## Detailed Refinement Principles
· · ·
## Examples
· · ·
## Question
Dialog history:
USER: ... SYSTEM: ...
Predicted slot-value pair:
train: leaveat = 7:59
Refinement:
Refine action: correct
Refined slot-value pair: train: leaveat = 07:00
Thinking steps:

Table 11: The prompt used to instruct GPT-4o to generate thinking steps for refinement.

H LLM Instructions

The instructions used in this work are presented in this chapter, taking the MultiWOZ-2.4
dataset as an example. The instructions for the BiTOD dataset are similar.
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H.1 Inference Instruction

The prompts used with the original untrained LLAMA3 model are shown in Tables 12 and
13. Among them, the Direct Inference Instruction requires the model to directly output the
prediction results, while the Reliability Inference Instruction additionally requires the model
to output a confidence label alongside the prediction.

Direct Inference Instruction

Give you a dialog history between USER and SYSTEM, I want you to analyze on it and
generate the dialog state.
Firstly, we use json dict to describe the slots and their corresponding value space in each
domain. Then, we will specify the requirements you need to comply. Last, we demonstrate
some use cases.
## Domain and Slot Space
The availabel ontology of the dialog state is as follows:
{

”hotel”: {
”name”: {

”data type”: str,
”example”: ”hamilton lodge”

},
...

},
...

}
## Requirements
1. Analyze the dialog history carefully and fill the relevant domains and slots.
2. For slots with a specified value range, responses must fall within the provided range. For
slots without specified value range, the answer must be extracted from the history. Set value
as ”dontcare” if user doesn’t have a preference.
3. You only need to consider the domains and slots that are relevant to the conversation
history. Do not include those irrelevant in your response and avoid presenting empty
domains or slots.
4. Your answer should also be in one-line jsonl format and make sure the output is all
lowercase. Do not provide any extra prefixes or suffixes or any explanations.
## Output Dialog State Example
{”hotel”: {”area”: ”centre”, ”name”: ”alexander bed and breakfast”, ”parking”: ”yes”,
”type”: ”guesthouse”}, ”attraction”: {”name”: ”kambar”}}
## Examples
shots...

Table 12: Instruction used in Direct, Token probability and Self-consistency baselines.

H.2 Training Instruction

The prompts used with the trained LLAMA3 model are shown in Tables 14 and 15. The
Direct Training Instruction is designed to train foundation models capable of directly
outputting prediction results. In contrast, the Reliability Training Instruction is designed to
train models capable of explicitly outputting confidence labels alongside predictions.
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Reliability Inference Instruction

Give you a dialog history between USER and SYSTEM, I want you to analyze on it and
generate the dialog state.
Firstly, we use json dict to describe the slots and their corresponding value space in each
domain. Then, we will specify the requirements you need to comply. Last, we demonstrate
some use cases.
## Domain and Slot Space
The availabel ontology of the dialog state is as follows:
{

”hotel”: {
”name”: {

”data type”: str,
”example”: ”hamilton lodge”

},
...

},
...

}
## Requirements
1. Analyze the dialog history carefully and fill the relevant domains and slots.
2. For slots with a specified value range, responses must fall within the provided range. For
slots without specified value range, the answer must be extracted from the history. Set value
as ”dontcare” if user doesn’t have a preference.
3. You should try to cover as many domians and slot-value pairs relevant to the conversation
history as possible. Mark each slot with either ”sure” or ”unsure” according to your
confidence in it. For slot-value pairs that you are pretty sure that they are truly relevant
and should be included, and meanwhile you have great confidence in the correctness of the
value, you should tag it with ”sure”. Otherwise, you should tag the slot-value pair with
”unsure”.
4. Principles:

a. Goal one: Achieving as close to 100% accuracy as possible in those ”sure” slot-value
pairs.

b. Goal two: The ”sure” part along with the ”unsure” part should cover all possible slots
involved in the dialog history as much as possible.

c. Heavy penalization: Providing incorrect slot-value pairs in the ”sure” part.
d. Heavy penalization: Missing slot-value pairs that should be extracted.
e. Light penalization: Providing incorrect or redundant slot-value pairs in the ”unsure”

part.
5. Your answer should also be in one-line jsonl format and make sure the output is all
lowercase. Do not provide any extra prefixes or suffixes or any explanations. Please refer to
the Output Dialog State Example for formatting requirement.
## Output Dialog State Example
{”hotel”: {”area”: {”value”: ”centre”, ”confidence”: ”sure”}, ”name”: {”value”: ”alexander
bed and breakfast”, ”confidence”: ”sure”}, ”parking”: {”value”: ”yes”, ”confidence”:
”unsure”}, ”type”: {”value”: ”guesthouse”, ”confidence”: ”sure”}}, ”attraction”: {”name”:
{”value”: ”kambar”, ”confidence”: ”unsure”}}}
## Examples
shots...

Table 13: Instruction used with original LLAMA model in Verbose baselines.

Direct Training Instruction

Generate the dialogue state based on the given dialogue context.

Table 14: Instruction used in Direct SFT Training.
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Reliability Training Instruction

Generate the dialogue state based on the given dialogue context. Ensure the results are as
reliable as possible, the ’sure’ parts are as accurate as possible, and the overall coverage
includes all relevant slots.

Table 15: Instruction used in Reliable Training, guiding the model to explicitly extinguish between
“sure” and “unsure” responses.
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