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ABSTRACT

Recent advances in reinforcement learning (RL) have predominantly leveraged
neural network-based policies for decision-making, yet these models often lack
interpretability, posing challenges for stakeholder comprehension and trust. Con-
cept bottleneck models offer an interpretable alternative by integrating human-
understandable concepts into neural networks. However, a significant limitation
in prior work is the assumption that annotations for these concepts are readily
available during training. For RL, this requirement necessitates continuous real-
time concept annotation. This reliance either places a significant burden on hu-
man annotators or incurs substantial costs in API queries and inference time when
employing automated labeling methods. To overcome this limitation, we intro-
duce a novel training scheme that enables RL algorithms to efficiently learn a
concept-based policy by only querying annotators to label a small set of data. Our
algorithm, LICORICE, involves three main contributions: interleaving concept
learning and RL training, using a concept ensemble to actively select informative
data points for labeling, and decorrelating the concept data with a simple strategy.
We show how LICORICE reduces human labeling efforts to 500 or fewer concept
labels in three environments and 5000 in another complex environment at minimal
or no cost to performance. We also explore the use of VLMs as automated concept
annotators, finding them effective in some cases but challenging in others. This
work significantly reduces the annotation burden for interpretable RL, making it
more practical for real-world applications where transparency is crucial.

1 INTRODUCTION

In reinforcement learning (RL), agents are tasked with learning a policy, a rule that makes sequential,
reactive decisions in complex environments. In recent RL work, agents typically represent the policy
as a neural network, as such representations tend to lead to high performance (Mirhoseini et al.,
2021). However, this choice can come at a cost: such policies are challenging for stakeholders to
interpret — particularly when the network inputs are also complex, such as high-dimensional sensor
data. This opacity can pose a significant hurdle, especially in applications where understanding the
rationale behind decisions is critical, such as healthcare (Yu et al.,|2021) or finance (Liu et al.,2022)).
In such applications, decisions can have significant consequences, so it is essential for stakeholders
to fully grasp the reasoning behind actions in order to confidently adopt or collaborate on a policy.

To address interpretability concerns in supervised learning, recent works have integrated human-
understandable concepts into neural networks through concept bottleneck models (Koh et al., 2020;
Espinosa Zarlenga et al.,2022). These models insert a bottleneck layer whose units correspond to in-
terpretable concepts, ensuring that the final decisions depend on these concepts instead of on opaque
raw inputs. By training the model both to have high task accuracy and to accurately match experts’
concept labels, these models learn a high-level concept-based representation that is simultaneously
meaningful to humans and useful for machine learning tasks. As an example, a concept-based ex-
planation for a bird classification task might include a unit that encodes the bird’s wing color.

More recently, these techniques have been applied to RL by incorporating a concept bottleneck in
the policy (Grupen et al., |2022; |Zabounidis et al., [2023), so that the actions taken by the agent are a
function of the human-understandable concepts. However, a significant challenge emerges when we
consider the practical implementation of this method: past work assumes that concept annotations
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Figure 1: LICORICE overview. In concept-based RL, the policy includes a concept bottleneck to
map from states to concepts with g, and then from concepts to (distributions over) actions with f.
During training, LICORICE addresses concept label efficiency concerns with three key components:
1) iterative training, ii) data decorrelation, and iii) active learning.

are readily available during the RL training process. To learn a mapping from states to concepts,
an RL agent requires concept information for every state and action it encounters during training,
which can often be measured in millions or billions of state-action pairs. In reality, many real-world
domains of interest—such as autonomous driving—are not accompanied by high-level concepts to
support human-understandable decision-making. This requirement presents major hurdles in prac-
tical implementation. On one hand, relying on human labelers for such vast datasets is impractical,
risking errors due to fatigue (Marshall & Shipman| |2013) and potentially biasing the model training
process. On the other hand, using vision language models (VLMs) for automated concept extrac-
tion (Oikarinen et al., 2023), while alleviating the human bottleneck, introduces significant API or
inference costs that can be prohibitive given the scale of typical RL training sets.

In this work, we address this challenge with LICORICE (Label-efficient Interpretable COncept-
based RelnforCEment learning), a novel training paradigm designed to minimize the number of
concept annotation queries while maintaining high task performance. Figure [I]illustrates our algo-
rithm. LICORICE tackles three key challenges. First, it addresses the problem of concept learning
on off-policy or outdated data. If concepts are learned from data collected by a random policy, the
concept distribution may not reflect the distribution under an optimal policy. To ensure that con-
cept learning occurs on more recent and on-policy data, LICORICE interleaves concept learning
and RL training through iterative training: it alternately freezes the network layers corresponding
to either the concept learning part or the decision-making part. Second, LICORICE addresses the
problem of limited training data diversity that occurs when an agent interacts with the environment,
thereby generating sequences of highly similar, temporally correlated data points. To tackle this is-
sue, LICORICE implements a data decorrelation strategy to produce a more diverse set of training
samples. Third, LICORICE addresses the inefficient use of annotation effort, where labeled samples
may provide redundant information. To resolve this problem, we employ disagreement-based active
learning using a concept ensemble to select the most informative data points for labeling.

To evaluate the effectiveness of LICORICE, we conduct experiments in two scenarios—perfect
human annotation and VLM-based annotation—on four environments with image input: an image-
based version of CartPole, two Minigrid environments, and Atari Boxing. First, under the assump-
tion of perfect human annotation, we show that LICORICE yields both higher concept accuracy and
higher reward while requiring fewer annotation queries compared to baseline methods. Second, we
find that VLMs can indeed serve as concept annotators for some, but not all, of the environments.

In general, our contributions are as follows:

* To the best of our knowledge, we are the first to investigate the problem of a limited concept
annotation budget for interpretable RL. We introduce LICORICE, a novel training scheme that
enables label efficient learning of concept-based RL policies.

* We conduct extensive experiments to show the effectiveness of LICORICE across four environ-
ments with varying budget constraints.

* We study the use of VLMs as automated concept annotators for concept-based RL, demonstrat-
ing their effectiveness in certain environments while highlighting challenges in others.
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2 PRELIMINARIES

Reinforcement Learning In RL, an agent learns to make decisions by interacting with an environ-
ment (Sutton & Barto| |2018). The environment is commonly modeled as a Markov decision pro-
cess (Puterman 2014), consisting of the following components: a set of states S, a set of actions A,
a state transition function 7' : § x A x S — [0, 1] that indicates the probability of transitioning from
one state to another given an action, a reward function R : S x A x § — R that assigns a reward for
each state-action-state transition, and a discount factor v € [0, 1] that determines the present value
of future rewards. The agent learns a policy 7 : § x A — [0, 1], which maps states to distributions
over actions with the aim of maximizing the expected cumulative discounted reward. We evaluate
a policy via its value function, which is defined as V™ (s) = Ex[> 7o ¥*ri4x+1 | st = s]. The
ultimate aim in RL is to determine the optimal policy, 7*, through iterative refinement based on
environmental feedback.

Concept Policy Models Concept-based explanations have emerged as a common paradigm in ex-
plainable AI (Poeta et al.||2023). They explain a model’s decision-making process through human-
understandable attributes and abstractions. In supervised learning, concept bottleneck models (Koh
et al.| [2020) implement this approach using two key functions: a concept predictor g : X — C,
mapping inputs to interpretable concepts, and a label predictor f : C' — Y, mapping the concept
predictions to a downstream task space, such as labels for classification. As a result, the prediction
takes the form § = f(g(x)), where the input = influences the output solely through the bottleneck
¢ = g(x). In RL, we insert a concept bottleneck layer into the policy network:

(s) = f(g(s)),

such that 7 maps from states s € S to concepts ¢ € C' to actions a € A (Grupen et al, 2022}
Zabounidis et al., 2023). This setup allows the policy to base its decisions on understandable and
meaningful features. As a result, we can use any RL algorithm that can be modified to include an
additional loss function for concept prediction.

Training Concept Policy Models Training these models requires a dataset of state-concept-action
triplets (s, ¢,a) € S x C x A. The functions f and g are typically implemented as neural networks,
with their parameters collectively defined as 6. Previous work (Zabounidis et al., 2023) simply
combines the concept prediction loss L (#) and RL loss LR-(6):

L(#) = LR(0) + LE(9),

where the exact definitions of LR(6) and L (6) depend on the choice of RL algorithm and concept
learning task. The objective is to find the optimal parameters #* that minimize this combined loss
function. However, this approach requires continuous access to ground-truth concepts for training
f, which may not always be feasible or desirable in practical RL scenarios.

3 LICORICE

As we have mentioned, the standard way of training concept-based RL assumes continuous access
to an oracle to provide concept labels. However, this assumption is problematic due to the large
annotation cost incurred by human or automated labeling efforts. To reduce the number of concept
labels required for concept-based RL, we propose LICORICE, a novel algorithm for interpretable
RL consisting of three main components: iterative training, data decorrelation, and disagreement-
based active learning. The full pseudocode is in Algorithm|[T}

Iterative Training A key challenge in concept-based RL under limited labeling resources is the
changing distribution of visited states and their associated concepts as the agent’s policy improves.
Consider an MDP where states are indexed, and with a random (initial) policy, the agent tends
to visit small-index states near the initial state, encountering only the concepts relevant to those
states. However, as the policy improves, the agent explores higher-index states, leading to a shift
in both the state and concept visitation distribution. If we use all of our queries at the beginning of
training, we risk training the model only on the concepts associated with small-index states from
the random policy, potentially missing important concepts that emerge as the agent explores more
of the environment. We therefore propose iterative training to enable LICORICE to progressively
refine its understanding of concepts as the policy improves. Iterative training consists of two parts:
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Algorithm 1 LICORICE (Label-efficient Interpretable COncept-based ReInforCEment learning)

1: Input: Total budget B, number of iterations M, sample acceptance threshold p, ratio 7 for
active learning, batch size for querying b, number of concept models NV to ensemble

2: Initialize: training set Dy, < 0, and validation set Dy <

3: form =1to M do

4: Allocate budget for iteration m: B,,, < %

5: while |U,,| < 7 - B,, do

6: Execute policy 7, to collect unlabeled data U4,,, using acceptance rate p

7 end while

8 Initialize iteration-specific datasets for collecting labeled data: D}, < 0, D, < 0

9: while B,,, > 0 do

10: Train N concept models {g; }¥.; on Dyyin U D} in» using Dy, U Dy, for early stopping
11: Calculate acquisition function value a(s) for all s € Uy, \ (D, U Dlat)

12: Choose b,,, = min(b, B,,) unlabeled points from I, according to arg maxg a(s)

13: Query for concept labels to obtain new dataset D,,, < {(s, c)}""

14: Split D,,, into train and validation splits and add to D}, D,

15: Decrement budget: B, < B,, — by,

16: end while
17: Aggregate datasets: Dyain < Diain U D).1» Dyat ¢ Dya U D!,

train?® val

18: Continue training the concept network g on Dyin, using Dy, for early stopping
19: Freeze ¢ and continue training f using standard RL training to obtain 7,41
20: end for

concept learning and behavior learning. Assume that we have access to an annotated concept dataset
Dirain based on the the data collected from our current policy 7,,. Then, concept learning focuses
on training the concept portion of the network g on this dataset Dy, (lines to . Behavior
learning involves freezing g and training the behavior portion of the network f with any standard
RL algorithm with its associated loss LR" (line . Upon completion of behavior learning, we
obtain an updated policy 7,41, which serves to collect more unlabeled concept data to help train g
in the next iteration.

Data Decorrelation In the previous section, we omitted that we do not obtain ground-truth concept
labels when rolling out the current policy 7,,. Instead, rollouts produce a dataset ,,, of unlabeled
states as candidates for querying for ground-truth concepts from an oracle. Given that consecutive
states from policy rollouts tend to be highly similar, leading to redundant and inefficient datasets,
this setup raises the question of how to collect diverse and informative data. Simply collecting all
encountered states would give us long chains of nearly-identical samples, undermining the diversity
we need for effective learning. To resolve this challenge, we introduce data decorrelation with two
key components: a budget multiplier 7 that sets |U,,| = T - By, and a per-state acceptance proba-
bility p. This random acceptance/rejection mechanism leverages a fundamental property of Markov
processes—states become increasingly independent as their temporal distance grows according to
the mixing time—allowing us to build more diverse datasets from our policy rollouts.

Disagreement-Based Active Learning Equipped with our unlabeled dataset, we are now prepared
to select data points for querying for concept labels. The purpose of this stage is to make use
of our limited labeling budget B,, to collect a labeled dataset D,,, for training g. We propose
to train a concept ensemble—consisting of N independent concept models—from scratch on the
dataset of training points Dy that has been aggregated over all iterations (line [I0). We use this
ensemble to calculate the disagreement-based acquisition function «(-), which determines whether
each candidate in our unlabeled dataset U,,, ought to receive a ground-truth concept label (line [TT).
This function targets samples where prediction disagreement is highest among ensemble members,
as these points often represent areas of uncertainty or decision boundaries where additional labeled
data would be most informative. For a(-), we use two different formulations, depending on the
concept learning task. For concept classification, we use a query-by-committee (Seung et al.,|1992)
approach, in which we prioritize points with a high proportion of predicted class labels that are not
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the modal class prediction (also called the variation ratio (Beluch et al.,[2018)):

Here, §;(s) is the concept prediction of the i-th model on state s. For concept regression, we directly
use the estimate of variance across the concept models as a measure of disagreement:
;X
2 ~ 2
a(s) = %(s) = 1 D (G(s) — (s))*,
i=1
where i(s) = + Zfil Ji(s) is the mean prediction of the N concept models. After querying for
B,,, ground-truth concept labels (line[I3)) using this acquisition function, we are prepared to continue
training g during the concept learning stage.

Implementation Details For training g (line[I8), we employ two types of loss functions depending
on the nature of the concepts: MSE for continuous concepts and cross-entropy loss for categorical
concepts. If the problem requires mixed-type concepts, we either discretize continuous attributes,
converting them into categorical forms suitable for classification, or we simply use a mixed loss. For
training f (line[T9), we freeze g and use the PPO algorithm to continue training f from the previous
iterations. For complex environments that require many iterations, we note that the RL-related
parameters may get stuck in a local region in early iterations and become hard to optimize later.
To mitigate this optimization issue and ensure training efficiency, we fine-tune f for all iterations
to get Ty, 1, and in the last iteration we additionally train a new RL network f’ from scratch with
741 as the anchoring policy to get the final 77 1. The anchoring policy ensures the trained 77 41
has a similar distribution to the previous one so the annotated observations are still highly relevant.
Specifically, we create another policy instance with the same and freezed g parameters and randomly
initialized f, train it with the standard PPO loss function and an additional KL-divergence penalty
between the current policy and the anchoring policy:

L(0) = L™(0) + B KL[myy 1 (- | 5), m0(- | 8)].

4 EXPERIMENTS

In our experiments, we investigate the following questions:

RQ 1 Under a limited concept annotation budget, does LICORICE enable both high concept
accuracy and high environment reward?

RQ 2 How effective are VLMs as automated concept annotators when used with LICORICE?
RQ 3 How label efficient is LICORICE compared with other methods?
RQ 4 Does LICORICE support test-time concept interventions?

4.1 EXPERIMENT SETUP

In each experiment, we run each algorithm 5 times, each with a random seed. All algorithms use
PPO (Schulman et al.l 2017} Raffin et al., 2021) with a concept bottleneck. More implementation
details and hyperparameters are in Appendix[A.2]

Environments We investigate these questions across four distinct environments: PixelCart-
Pole (Yang et al} [2021)), DoorKey (Chevalier-Boisvert et al., [2023)), DynamicObstacles (Chevalier-
Boisvert et al.| [2023), and Boxing (Bellemare et al.| 2013)). Each environment includes a distinct
challenge and features a set of interpretable concepts describing key object properties. We summa-
rize the environment properties in Table[I} with more details in Appendix [A.T] These environments
are characterized by their dual representation: a complex image-based input and a symbolic concept-
based representation. PixelCartPole, DoorKey, and DynamicObstacles are simpler because we can
extract noiseless ground-truth concept labels from their source code. In contrast, Boxing, as imple-
mented in OCAtari (Delfosse et al.,2023)), uses reverse engineering to extract positions of important
objects from the game’s RAM state. This extraction process introduces a small amount of noise.
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Environment # Concepts  Concept Type Binarized # Concepts
PixelCartPole 4 Continuous N/A
DoorKey 12 Discrete 46
DynamicObstacles 11 Discrete 30

Boxing 8 Discrete 1480

Table 1: Summary of environments, including their associated concepts. Counts for the binarized
version of the concepts provided where applicable to illustrate the problem size.

Baselines To our knowledge, there exist no previous algorithms that seek to minimize the number
of concept labels for interpretable RL, so we implement three: Sequential-Q, Disagreement-Q, and
Random-Q. In Sequential-Q, the agent spends all of B queries on the first B states it encounters
during the initial policy rollout. In Disagreement-Q, the agent similarly spends its budget at the
beginning of its learning process; however, it uses active learning with the same «(-) as LICORICE
to strategically choose the training data. In Random-Q, the agent receives B concept labels at
random points in the training process using a probability to decide whether to query for a concept
for each state. As a budget-unconstrained baseline, we implement CPM from previous work in
multi-agent RL (Zabounidis et all 2023) for the single-agent setting. As mentioned in Section [2}
CPM jointly trains the concept bottleneck and the policy, assuming unlimited access to concept
labels, meaning it also represents an upper bound on concept accuracy.

VLM Details For our VLM experiments, we use GPT-40 (gpt). During training, we query GPT-40
each time LICORICE requires a concept label. As an example, for the concept related to the position
of an object, we prompt GPT-40 with instructions to report the coordinates (x y). More details about
our prompts can be found in Appendix[A.3]

Performance Metrics We present the reward as a function of the upper bound calculated by training
PPO with ground-truth concept labels (PixelCartPole: 500, DoorKey: 0.97, DynamicObstacles:
0.91, Boxing: 86.05). Percentages (or ratios) make sense since the minimum reasonable reward is
O1in all environments We additionally report the concept error (MSE for regression; 1 - accuracy
for classification). In Boxing, following the practice of OCAtari, we consider a concept prediction
correct if it is within 5 pixels of the ground truth label. All the reported numbers are calculated
during the testing stage, where we evaluate the models on 100 episodes.

4.2 RESULTS

RQ1: REWARD AND CONCEPT ACCURACY UNDER A LIMITED ANNOTATION BUDGET

LICORICE achieves similarly high reward and concept performance to the state-of-the-art
budget-unconstrained baseline. We first seek to understand how LICORICE performs compared
to the state-of-the-art in concept-based RL, CPM, which is not constrained by concept label budgets.
Surprisingly, LICORICE and CPM achieve nearly 100% of the maximum reward in all environments
in this unfair comparison (pink and brown bars, Figure 2). It also achieves a similar concept error
rate, only seeing a small increase in error for the most complex environment, Boxing. We emphasize
that CPM is given an unlimited budget, and in fact, it uses over 1M concept labels for all environ-
ments (even 10M for the complex environment Boxing), which is at least 2000 x the budget used
by LICORICE across all environments. In contrast, LICORICE operates under a strict budget con-
straint, with 5000 labels for Boxing, and at most 500 concept labels for the simpler environments
(PixelCartPole: 500, DoorKey: 300, DynamicObstacles: 300).

LICORICE generally largely outperforms budget-constrained baselines in terms of both re-
ward and concept error. We now investigate how LICORICE performs compared to other algo-
rithms with budget constraints. As a result, we study LICORICE under the same fixed concept
labeling budget B as above against the budget-constrained baselines described in Section Fig-
ure E] shows the results, which reveal that LICORICE outperforms all baselines in terms of both
reward and concept error on all but arguably the easiest environment, DynamicObstacles. In that

'In PixelCartPole and DoorKey, all rewards are nonnegative; in DynamicObstacles, an agent can ensure
nonnegative reward by simply staying in place; in Boxing, a random policy can get around 0 reward and all of
the trained policies have positive reward.



Under review as a conference paper at ICLR 2025

IIIT : I

PixelCartPole DoorKey DynamicObstacles Boxing
1.0 =
20.8
s
u‘c_l 0.6
804 I e
g :[ I
S 0.2 I
bl - e -
0.0 - — = x -
PixelCartPole DoorKey DynamicObstacles Boxing
Sequential-Q Disagreement-Q Random-Q LICORICE LICORICE+GPT-40 CPM

Figure 2: Reward R and concept error achieved by all methods in all environments. The first 5
methods are given a budget of B = [500, 300, 300, 5000], respectively; CPM is given an unlimited
budget (in practice, it uses 4M, 4M, 1M, 10M concept labels respectively). Full results with standard
deviation are in Table[S] Appendix

environment, LICORICE performs similarly to the baselines. The main performance differences
occur in PixelCartPole and Boxing, where LICORICE achieves 100% and 99% of the maximum
reward, respectively, while the second-best algorithm achieves 36% and 81%, respectively. We
therefore answer RQ 1 in the affirmative: not only does LICORICE achieve the same high concept
accuracy and high reward as the state-of-the-art in concept-based RL, it also performs on-par to
budget-constrained baselines in one environment and outperforms them in the other three.

RQ 2: VLMS AS CONCEPT ANNOTATORS

We now seek to answer the question of whether VLMs can successfully provide concept labels in
lieu of a human annotator within our LICORICE framework. Because using VLMs incurs costs and
users requiring interpretable policies for their environments may still face budget constraints, we
operate within the same budget-constrained setting as above. We present these results in Figure

VLMs can serve as concept annotators for

some environments. In DoorKey and Dy-

namicObstacles, LICORICE with GPT-4o la- ¢ Error

bels achieves 83% and 88% of the maximum  Environment LICORICE+GPT-40  GPT-40
reward, respectively. To assess the quality of  pixelCartPole 0.25 0.24
VLM-generated labels, we compare the con-  DoorKey 0.31 0.30
cept error rate of our trained model against = DynamicObstacles 0.13 0.13
GPT-40’s labeling error, both evaluated on the =~ Boxing 0.98 0.82

same rollout observations. Due to computa- Tuple 2 Concept error comparison. The con-

tional constraints, we apply sampling to GPT-  cept error of LICORICE+GPT-40 matches that of
40 evaluations. Table [2] shows that the concept GPT-40 alone.

error of LICORICE is comparable to that of

GPT-40 when GPT-4o labeling error is not high, which suggests that LICORICE can effectively
utilize these concept labels. This indicates that VLMs, particularly GPT-40, could serve as viable
concept annotators for certain environments.

VLMs struggle to provide accurate concepts in more complex environments. In PixelCart-
Pole and Boxing, however, GPT-40 faces challenges in providing accurate labels. Not only does
LICORICE+GPT-4o struggle to achieve even 35% of the maximum reward in either environment,
it also incurs a large concept error. The challenge with PixelCartPole is the continuous nature of
the concepts and the lack of necessary knowledge of physical rules and quantities in this specific
environment. Boxing is particularly challenging due to the large number of possible concept values
that each of the 8 discrete concepts can take on (160 or 210 possible values). We therefore answer
RQ 2 with cautious optimism: there are indeed cases in which LICORICE could be used alongside
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Figure 3: Reward (top) and concept error (bottom) of all algorithms for all environments across
different budgets. Overall, LICORICE more efficiently makes use of the varying budgets, achieving
higher reward and lower concept error.

VLMs. Generally speaking, a more human-intuitive and less complex environment is more likely to
work well with VLMs by enabling clear and detailed labeling instructions in the prompt. However,
in safety-critical settings, VLM capabilities will need to improve before they can be used to fully
alleviate the human annotation burden.

RQ 3: INVESTIGATION OF BUDGET REQUIREMENTS FOR PERFORMANCE

Given these results, we now investigate the minimum budget required for all environments to achieve
99% of the reward upper bound. As a result, we incrementally increase the budget for each envi-
ronment starting from a reasonably small budget until LICORICE reaches 99% of the reward upper
bound. In addition to the baselines, we study LICORICE under perfect (human) annotation and
noisy VLM labels in Figure 3]

LICORICE more rapidly achieves high reward compared to baselines. Across all environments,
LICORICE is the most query efficient. In three environments, it consistently achieves higher reward
than baselines across all budget levels. In the fourth environment, LICORICE outperforms base-
lines at the smallest query budget, after which one Disagreement-Q achieves comparable reward.
LICORICE is similarly performant with respect to concept error. Except for one budget setting for
one environment, LICORICE consistently achieves lower concept error than the baselines.

For LICORICE+GPT-40, more concept labels is not always better. In DoorKey,
LICORICE+GPT-40 exhibits predictable behavior in terms of concept error: as the budget increases,
the reward increases and the concept error decreases. Counterintuitively, for some environments, the
concept error and reward fluctuates with more budget, likely due to the additional labeling noise in-
troduced to the concept network. We therefore provide a more nuanced answer to RQ 3: LICORICE
is indeed label efficient across varying budgets, but the benefit is annotator-dependent.

RQ 4: INTERPRETABILITY ANALYSIS: TEST-TIME CONCEPT INTERVENTIONS

A great property of concept-based networks is the ability for people to successfully intervene on the
concepts to correct them. In RL, this intervention enables the inspection of how different concepts
influence the immediate decisions of the agent.

LICORICE enables test-time concept intervention. We validate that our algorithm supports test-
time intervention for concept-based RL. Specifically, we simulate using a noisy concept model with
our trained policy, studying the impact of concept interventions on the final reward. For PixelCart-
Pole, this means each concept adds a Gaussian noise with a standard deviation of 0.2. For the Min-
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Figure 4: Concept intervention results: LICORICE enables test-time concept intervention.
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Figure 5: Test-time intervention examples, where intervening on a single concept corrects the action.

igrid environments, the label of each concept is randomly changed with probability 0.2. Following
previous work (Koh et al.,[2020), we first intervene individually on concepts, setting them to ground
truth, and sort the concepts in descending order of reward improvement. We then sequentially inter-
vene on the concepts following this ordering, such that any previously intervened concepts remain
intervened. According to Figure ] using a noisy concept model significantly degrades reward for
all environments. However, the performance steadily increases as we intervene on more concepts,
meaning LICORICE indeed supports test-time concept intervention, affirmatively answering RQ 4.

Concept interventions show how the policy decisions change. We now show how domain experts
could interact with the model. Specifically, we simulate a counterfactual question: What if a concept
value is incorrectly predicted? Figure[3]depicts two examples in DoorKey. Just intervening on the
concept of the door being open or closed is sufficient to change the agent’s behavior, both highlight-
ing the importance of this specific concept and the ability of a user to intervene on the concepts to
interrogate and understand agent behavior.

ADDITIONAL EXPERIMENTS

Ablation study: all components of LICORICE contribute positively to its performance. We
now conduct ablations to confirm the effectiveness of our three main contributions: iterative training,
decorrelation, and disagreement-based active learning. LICORICE-IT corresponds to LICORICE
with only one iteration, LICORICE-DE corresponds to LICORICE without decorrelation, and
LICORICE-AC corresponds to LICORICE without active learning (instead, it uses the entire un-
labeled dataset for querying). We show the learning curves in Appendix [B] All of our contributions
are critical to achieving both high reward and low concept error (Table [3] bottom row corresponds
to the upper bound on performance by LICORICE). However, the component that most contributes
to the performance differs depending on the environment. For example, compared with LICORICE,
LICORICE-IT exhibits the largest reward gap for PixelCartPole; however, LICORICE-AC yields the
largest reward gap for DynamicObstacles, and LICORICE-DE yields the largest gap for DoorKey.
We suspect that this difference is because the concepts in DynamicObstacles are simple enough
such that one iteration is sufficient for learning, meaning that the largest gains can be made by us-
ing active learning. In contrast, PixelCartPole requires further policy refinement to better estimate
on-distribution concept values, so the largest gains can be made by leveraging multiple iterations.

LICORICE is robust to various hyperparameter values. LICORICE involves a few key hyper-
parameters, described in Section E| and summarized here for convenience. In data decorrelation, 7
governs the size of the unlabeled dataset collected by the current policy and p controls the rate at
which we accept data points. During the disagreement-based active learning, we set a committee
size N for the number of concept models in the ensemble. We study the effect of the values of these
hyperparameters on DynamicObstacles, finding that LICORICE achieves 96 —99% of the maximum
reward across 2 values for N, 3 values for p, and 3 values for 7 (Appendix .
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PixelCartPole DoorKey DynamicObstacles Boxing
Algorithm Rt ¢MSE|l R?1T cError] R ¢ Error | Rt cError]

LICORICE-IT  0.53 0.08 0.99 0.09 1.00 0.00 0.94 0.19
LICORICE-DE 0.97 0.03 0.78 0.20 0.98 0.00 0.94 0.04
LICORICE-AC 091 0.02 0.82 0.16 0.58 0.00 0.91 0.05

LICORICE 1.00 0.02 0.99 0.05 0.99 0.00 0.99 0.03

Table 3: Ablation study results for LICORICE. All components generally help achieve better reward
and lower concept error. Full results with standard deviation are in Table @ Appendix @

5 RELATED WORK

Interpretable RL Interpretable RL has gained significant attention in recent years (Glanois et al.,
2024])). One prominent approach uses rule-based methods—such as decision trees (Silva et al., 2020;
Topin et al.| 2021), logic (Delfosse et al., |2024), and programs (Verma et al., 2018} [Penkov &
Ramamoorthy, 2019)—to represent policies. These works either assume that the state is already
interpretable or that the policy is pre-specified. Unlike prior work, our method involves learning the
interpretable representation (through concept training) for policy learning.

Concept Learning for RL Inspired by successes in the supervised setting (Collins et al., 2023;
Sheth & Ebrahimi Kahoul 2023} [Zarlenga et al., 2023)), concept models have recently been used in
RL. In addition to interpretability, concept learning offers a powerful path to compositional gen-
eralization by helping RL agents decompose complex tasks into meaningful, reusable components
that can be flexibly recombined (Mao et al.l [2022; Wang et al., [2023). One approach (Das et al.,
2023) learns a joint embedding model between state-action pairs and concept-based explanations to
expedite learning via reward shaping. Unlike LICORICE, their policy is not a strict function of the
concepts, allowing our techniques to be combined to provide both concept-based explanations and
a concept-based interpretable policy. Another example, CPM (Zabounidis et al.l [2023)), is a multi-
agent RL concept architecture that focuses on trade-offs between interpretability and accuracy. They
assume that concept labels are available continuously during training. As we have shown, this ap-
proach uses over 1M concept labels, whereas our approach reduces the need for continuous human
intervention, requiring only 200 — 2000 x fewer concept labels to achieve similar performance in
single-agent environments.

Learning Concepts with Human Feedback Previous research has explored leveraging human con-
cept labels, but not for RL and without focusing on reducing the labeling burden. For instance, Lage
& Doshi-Velez| (2020) has users label additional information about the relevance of certain feature
dimensions to the concept label to facilitate concept learning for high-dimensional data. In a dif-
ferent vein, (Chauhan et al.|(2023)) develop an intervention policy for test-time selection of concepts
requiring labels with the goal of improving the final prediction. Although these approaches offer
valuable insights, they do not directly tackle the issue of reducing the overall labeling burden during
training and could be used alongside our method.

6 DISCUSSION AND CONCLUSION

In this work, we proposed LICORICE, a novel RL algorithm that addresses the critical issue of
model interpretability while minimizing the reliance on continuous human annotation. We intro-
duced a training scheme that enables RL algorithms to learn concepts more efficiently from little
to no labeled concept data. Our approach interleaves concept learning and RL training, uses an
ensemble-based active learning technique to select informative data points for labeling, and uses a
simple sampling strategy to better decorrelate the concept data. We demonstrated how this approach
reduces manual labeling effort. Finally, we conducted initial experiments to demonstrate how we
can leverage powerful VLMs to infer concepts from raw visual inputs without explicit labels in some
environments. There are broader societal impacts of our work that must be considered. These in-
clude both the impacts of using VLMs in real-world applications, as well as considerations around
interpretability more generally. For a more detailed discussion of limitations and future work, please
refer to Appendix
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Environment Concept Name Type Value Ranges = GPT-40 Error
Cart Position Continuous (—2.4,2.4) 0.01 £ 0.00
PixelCartPole Cart Velocity Continuous R 0.31 £0.12
Pole Angle Continuous  (—.2095,.2095) 0.01 £ 0.00
Pole Angular Velocity Continuous R 0.63 £0.14
Agent Position x Discrete 5 0.36 £ 0.08
Agent Position y Discrete 5 0.41£0.12
Agent Direction Discrete 4 0.28 £0.06
Key Position x Discrete 6 0.20 £ 0.03
Key Position y Discrete 6 0.32+£0.11
DoorKey Door Pos?t@on X D?screte 5 0.37 £0.07
Door Position y Discrete 5 0.32£0.04
Door Open Discrete 2 0.38 £0.09
Direction Movable Right Discrete 2 0.30 £ 0.03
Direction Movable Down Discrete 2 0.19 £ 0.06
Direction Movable Left Discrete 2 0.33 £ 0.06
Direction Movable Up Discrete 2 0.20 £ 0.08
Agent Position x Discrete 3 0.03 £ 0.06
Agent Position y Discrete 3 0.04 £ 0.06
Agent Direction Discrete 4 0.20 £0.05
Obstacle 1 Position x Discrete 3 0.08 £ 0.02
Obstacle 1 Position y Discrete 3 0.19£0.04
DynamicObstacles Obstacle 2 Position x Discrete 3 0.22 £0.09
Obstacle 2 Position y Discrete 3 0.12£0.02
Direction Movable Right Discrete 2 0.19 £ 0.06
Direction Movable Down Discrete 2 0.14 £0.05
Direction Movable Left Discrete 2 0.13£0.02
Direction Movable Up Discrete 2 0.07 £ 0.08
Agent Position x at Frame 1 Discrete 160 0.81 £0.14
Agent Position y at Frame 1 Discrete 210 0.93 £0.05
Enemy Position x at Frame 1 Discrete 160 0.78£0.13
Boxing Enemy Position y at Frame 1 Discrete 210 0.90 £ 0.07
Agent Position x at Frame 2 Discrete 160 0.67 + 0.06
Agent Position y at Frame 2 Discrete 210 0.88 +£0.04
Enemy Position x at Frame 2 Discrete 160 0.71 £0.05
Enemy Position y at Frame 2 Discrete 210 0.83 £ 0.08

Table 4: Concepts and their possible values for all environments. For discrete concepts, we report
the number of categories. We also provide the mean GPT-40 labeling error for each single concept,
averaged across 5 seeds and corresponding to the same evaluation protocols as the ones with the
largest budgets in Table [7]] We use MSELoss for continuous values and 1 - accuracy for discrete
ones, and in Boxing, we regard one prediction correct if it is within distance 5 to the ground truth.
The =+ [value] part shows the standard deviation. The average errors over concepts are 0.24 =+ 0.06,
0.30 + 0.02, 0.13 £ 0.03, and 0.82 £ 0.06 respectively for the four environments.

A EXPERIMENTAL RESULT REPRODUCIBILITY

In this section, we provided detailed descriptions of our concept definitions, prompts, and other
experimental details toward the goal of reproducibility.

A.1 CONCEPTS DEFINITIONS

Table [] provides more details regarding the concepts used in each environment, categorizing them
by their names, types, and value ranges. For the PixelCartPole environment, all concepts such as
Cart Position, Cart Velocity, Pole Angle, and Pole Angular Velocity are continuous. In contrast,
the DoorKey environment features discrete concepts like Agent Position (x and y), Key Position (x
and y), and Door Open status, each with specific value ranges. Similarly, the DynamicObstacles
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Figure 6: Example start configurations of the DoorKey environment. This shows that concepts must
be general enough to apply to many different configurations. As a result, the agent cannot memorize
the exact position of the door and key.

environment lists discrete concepts, including Agent and Obstacle positions, with corresponding
value ranges.

Precise concept definitions are crucial for enabling correct agent behavior. We visualize the
start configurations for DoorKey in Figure [f]to illustrate the importance of well-defined concepts in
reinforcement learning. DoorKey includes a variety of initial states, each with different positions of
the agent, key, and door. This diversity highlights a fundamental challenge in concept-based RL:
how to define concepts that are both specific enough to be meaningful and general enough to apply
across all possible scenarios. An agent trained with poorly defined concepts might perform well in
some configurations but fail to generalize to others, leading to suboptimal performance in new or
unseen environments. As a result, concept engineering is its own separate but important problem.

A.2 LICORICE DETAILS

In this section, we provide additional implementation details for LICORICE. The model architecture
has been mostly described in the main text and we state all additional details here. The number of
neurons in the concept layer is exactly the number of concepts. For continuous concept values, we
directly use a linear layer to map from features to concept values. For discrete concept values, since
different concepts have different numbers of categories, we create one linear classification head for
each single concept, and to predict the final action, we calculate the class with the largest predicted
probability for each concept.

Architecture The network begins with a CNN-based feature extractor fp : X — R? comprising
three convolutional layers that map input state 2 € X to a d-dimensional feature vector h = fy(x).
We then introduce a linear layer g : R? — R for concept prediction (g), mapping extracted
features to k concept values. For regression tasks, each of the k predicted concept is represented
as a real value; for classification tasks, each concept maps to one categorical value derived from a
classification head. The action prediction component (f) is implemented as an MLP with two fully
connected layers, each containing 64 neurons with Tanh activation, taking only c as input to produce
action logits a = MLP(c). Notably, we share the CNN feature extractor fp between policy and value
functions, a decision informed by improved performance observed in preliminary experiments.

Value-Based Methods If we were to use a value-based

method as the RL backbone, we would need to make

the following changes. First, we would need to mod- Features B, Folicy
ify V(s,a) or Q(s,a) to include a concept bottleneck, Network
such that Q(s,a) = f(g(s)). Then, we can conduct in-

terleaved training in a similar way to LICORICE.

Value

Feature Extractor If we use the actor-critic paradigm,
Network

we propose to share a feature extractor between the pol-
icy and value networks, shown in Figure [/} Intuitively,
this choice can offer several advantages compared with Figure 7: Architecture of our concept-
using image or predicted concepts as input for both net- bottleneck actor-critic method.

works. Sharing a feature extractor enables both networks
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to benefit from a common, rich representation of the input

data, reducing the number of parameters to be trained. More importantly, it balances the updates of
the policy and value networks. In experiments, we observed that directly using the raw image as in-
put for both networks complicated policy learning. Conversely, relying solely on predicted concepts
for the value network may limit its accuracy in value estimation, particularly if the concepts do not
capture all the nuances relevant to the value predictions.

A.3 VLM DETAILS

We detail our prompts for each environment here.

PixelCartPole

Prompt: Here are the past 4 rendered frames from the CartPole environment. Please use these
images to estimate the following values in the latest frame (the last one):

* Cart Position, within the range (-2.4, 2.4)

* Cart Velocity

* Pole Angle, within the range (-0.2095, 0.2095)
* Pole Angular Velocity

Additionally, please note that the last action taken was [last action].

Please carefully determine the following values and give concise answers one by one. Make
sure to return an estimated value for each parameter, even if the task may look challenging.

Follow the reporting format:

* Cart Position: estimated_value

 Cart Velocity: estimated_value

* Pole Angle: estimated_value

* Pole Angular Velocity: estimated_value

16
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DoorKey

1.

2.

Prompt: Here is an image of a 4x4 grid composed of black cells, with each cell either empty
or containing an object. Each cell is defined by an integer-valued coordinate system starting at
(1, 1) for the top-left cell. The coordinates increase rightward along the x-axis and downward
along the y-axis. Within this grid, there is a red isosceles triangle representing the agent, a
yellow cell representing the door (which may visually disappear if the door is open), a yellow
key icon representing the key (which may disappear), and one green square representing the
goal. Carefully analyze the grid and report on the following attributes, focusing only on the
black cells as the gray cells are excluded from the active black area.

Detailed Instructions:

Agent Position: Identify and report the coordinates (X, y) of the red triangle (agent). En-
sure the accuracy by double-checking the agent’s exact location within the grid.
Agent Direction: Specify the direction the red triangle is facing, which is the orientation
of the vertex (pointy corner) of the isosceles triangle. Choose from ’right’, ’down’, ’left’,
or "up’. Clarify that this direction is independent of movement options.
Key Position: Provide the coordinates (x, y) where the key is located. If the key is absent,
report as (0, 0). Verify visually that the key is present or not before reporting.
Door Position:
¢ Position: Determine and report the coordinates (X, y) of the door.
 Status: Assess whether the door is open or closed (closed means the door is visible as
a whole yellow cell, while open means the door disappears visually). Report as ’true’
for open and ’false’ for closed. Double-check the door’s appearance to confirm if it is
open or closed.
Direction Movable: Evaluate and report whether the agent can move one cell in each
specified direction, namely, the neighboring cell in that direction is active and empty (not
key, closed door, or grey inactive cell):
* Right (x + 1): Check the cell to the right.
e Down (y + 1): Check the cell below.
e Left (x - 1): Check the cell to the left.
e Up (y - 1): Check the cell above.
Each direction’s feasibility should be reported as ’true’ if clear and within the grid, and
“false’ otherwise.

Reporting Format: Carefully report each piece of information sequentially, following the for-
mat ‘name: answer’. Ensure each response is precise and reflects careful verification of the
grid details as viewed.
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DynamicObstacles

1.

2.

Prompt: Here is an image of a 3x3 grid composed of black cells, with each cell either empty
or containing an object. Each cell is defined by an integer-valued coordinate system starting at
(1, 1) for the top-left cell. The coordinates increase rightward along the x-axis and downward
along the y-axis. Within this grid, there is a red isosceles triangle representing the agent, two
blue balls representing obstacles, and one green square representing the goal. Please carefully
determine the following values and give concise answers one by one:

Agent Position: Identify and report the coordinates (X, y) of the red triangle (agent). En-
sure the accuracy by double-checking the agent’s exact location within the grid.

Agent Direction: Specify the direction the red triangle is facing, which is the orientation
of the vertex (pointy corner) of the isosceles triangle. Choose from ’right’, ’down’, ’left’,
or "up’. Clarify that this direction is independent of movement options.

. Obstacle Position: Identify and report the coordinates of the two obstacles in ascending

order. Compare the coordinates by their x-values first. If the x-values are equal, compare
by their y-values.

(a) First Obstacle: Provide the coordinates (X, y) of the first blue ball.

(b) Second Obstacle: Provide the coordinates (X, y) of the second blue ball.

. Direction Movable: Evaluate and report whether the agent can move one cell in each

specified direction, namely, the neighboring cell in that direction is active and empty (not
obstacle or out of bounds):

* Right (x + 1): Check the cell to the right.

e Down (y + 1): Check the cell below.

e Left (x - 1): Check the cell to the left.

e Up (y - 1): Check the cell above.
Each direction’s feasibility should be reported as ’true’ if clear and within the grid, and
“false’ otherwise.

Reporting Format: Carefully report each piece of information sequentially, following the for-
mat ‘name: answer’. Ensure each response is precise and reflects careful verification of the
grid details as viewed.
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Boxing

Prompt: Here are two consecutive rendered frames from the Atari Boxing environment. The
game screen is 160x210 pixels, with (0, 0) at the top-left corner. The x-coordinate increases
rightward, and the y-coordinate increases downward. For each frame, estimate the following
values as integers:

» The white player’s x and y coordinates
* The black player’s x and y coordinates

Please carefully determine the following values and give concise answers one by one. Make
sure to return an estimated value for each one, even if the task may look challenging.

Follow the reporting format:

e frame 1 white x: estimated_value
* frame 1 white y: estimated_value
 frame 1 black x: estimated_value
 frame 1 black y: estimated_value
* frame 2 white x: estimated_value
 frame 2 white y: estimated_value
 frame 2 black x: estimated_value
* frame 2 black y: estimated_value

A.4 EXPERIMENTAL DETAILS

For the PPO hyperparameters, we set 4 - 10% total timesteps for PixelCartPole and DoorKey, 10°
for DynamicObstacles, and 107 for Boxing. For PixelCartPole, DoorKey, and DynamicObstacles,
we use 8 vectorized environments, horizon 7" = 4096, 10 epochs for training, batch size of 512,
learning rate 3 - 10~%, entropy coefficient 0.01, and value function coefficient 0.5. For Boxing,
we use 8 vectorized environments, horizon 7' = 1024, 4 epochs for training, batch size of 256,
learning rate 3 - 10~*%, entropy coefficient 0.01, and value function coefficient 0.5. For all other
hyperparameters, we use the default values from Stable Baselines 3 Raffin et al.[(2021).

For the concept training, we set 100 epochs with Adam optimizer with the learning rate linearly
decaying from 3 - 10~ to 0 for each iteration in PixelCartPole and Boxing. In DoorKey and Dy-
namicObstacles, we use the same optimizer and initial learning rate, yet set 50 epochs instead and set
early stopping with threshold linearly increasing from 10 to 20, to incentivize the concept network
not to overfit in earlier iterations. The batch size is 32.

We model concept learning for PixelCartPole as a regression problem (minimizing mean squared
error). We model concept learning for DoorKey, DynamicObstacles, and Boxing as classification
problems.

For LICORICE, we set the sample acceptance rate p = 0.05, the ratio for active learning 7 = 10,
batch size to query labels in the active learning module b = 20, and the number of ensemble models
N = 5 for the first three environments. For the complex environment Boxing, we choose the sample
acceptance rate p = 0.1, the ratio for active learning 7 = 4, batch size to query labels in the active
learning module b = B,,/5 and number of ensemble models N = 5 to make a balance between
performance and speed. The default number of iterations chosen in our algorithm is M = 4 for
PixelCartPole, M = 2 for DoorKey, DynamicObstacles, and M = 10 for Boxing. The Random-Q
baseline uses the sample acceptance rate of p = 0.1.

In the complex environment Boxing, due to many iterations, we use both the KL-divergence penalty
and PPO loss at the end of the algorithm to improve optimization with 8 = 0.01, as mentioned
in Section

Computational resources. We use NVIDIA A6000 and NVIDIA RTX 6000 Ada Generation. Each
of our training program uses less than 2GB GPU memory. For Boxing, each run takes less than
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12 hours to finish. For PixelCartPole and DoorKey, each run takes less than 9 hours to finish. For
DynamicObstacles, each run takes less than 2 hours to finish.

For all experiments, we consistently use 5 seeds [123, 456, 789, 1011, 1213] to train the models. We
then evaluate on the environment with seed 42 with 100 episodes and take the average of the reward
across the episodes and the concept error across the observations within each episode.
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Algorithm R7 ¢ Error |

Sequential-Q 0.23£0.09 0.10£0.04
Disagreement-Q 0.36 £0.20 0.10£0.04

. Random-Q 0.34£0.14 0.07£0.02
PixelCartPole LICORICE 1.00 +0.00  0.02 + 0.00
LICORICE+GPT-40 0.06 £0.01 0.25£0.08

CPM 1.00+0.00 0.01+£0.00

Sequential-Q 0.46 £0.09 0.46 £0.05

Disagreement-Q 0.76 £0.12 0.39£0.07

DoorKey Random-Q 0.89 £0.03 0.27 £0.08
LICORICE 0.99 +£0.01 0.0540.01

LICORICE+GPT-40 0.83+0.06 0.31+£0.01

CPM 1.00 £ 0.00 0.00 £ 0.00

Sequential-Q 0.79+£0.44 0.01£0.01

Disagreement-Q 0.99£0.01 0.00=£0.00

DynamicObstacles Random-Q 0.98 £0.01 0.0240.01
LICORICE 0.99 £0.00 0.00 £ 0.00

LICORICE+GPT-40 0.88£0.09 0.13£0.03

CPM 0.97 £0.02 0.00 £ 0.00

Sequential-Q 0.81£0.21 0.07+£0.00

Disagreement-Q 0.63 +0.27 0.34£0.27

Boxing Random-Q 0.61£0.20 0.26 £0.17
LICORICE 0.99 £0.05 0.03+0.01

LICORICE+GPT-40 0.29£0.09 0.98 £0.01

CPM 1.00 £0.05  0.00 4 0.00

Table 5: Evaluation of the reward R and concept error achieved by all methods in all environments.
This is a extended table from Figure [2] The reward is reported as the fraction of the reward upper
bound. For PixelCartPole, the ¢ error is the MSE. For the other 3 environments, the ¢ error is
1 - accuracy. The first five algorithms are given a budget of B = [500, 300, 300, 5000] for each
environment, from top to bottom; CPM is given an unlimited budget (in practice, it uses 4M, 4M,
1M, 10M concept labels respectively). The + [value] part shows the standard deviation.

B ADDITIONAL RESULTS

B.1 BALANCING CONCEPT PERFORMANCE AND ENVIRONMENT REWARD

In Table[5] we present all of the numerical results from Figure [2] including standard deviation. Our
method enjoys low variance across all environments in terms of both concept error and reward.

B.2 BUDGET ALLOCATION EFFECTIVENESS

In Table[6] we present an extension of the results in Figure [3] including the standard deviation. As
expected, as the budget increases, the standard deviation for both the reward and concept error tends
to decrease. The one exception is the reward for PixelCartPole. Interestingly, the standard deviation
is highest for B = 400. We suspect this is because the concept errors may be more critical here,
leading to higher variance in the reward performance.

B.3 INTEGRATION WITH VISION-LANGUAGE MODELS

In Table[7] we present an extension of the results in Figure§]in the main paper, including the standard
deviation. Interestingly, the standard deviation for the reward obtained by using LICORICE with
GPT-4o0 as the annotator does not always follow the same trend as shown in Table[6](when we assume
access to a more accurate human annotator). Instead, the standard deviation is relatively consistent
for PixelCartPole, regardless of the budget. It steadily decreases for DoorKey, as expected. However,
in DynamicObstacles, we see an increase when B = 300. We are not sure of the cause of this.
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B M R c Error |
300 1 0.28+0.10 0.1540.07
PixelCartPole 400 3 0.77£0.22 0.05+0.01
500 4 1.00£0.00 0.0240.00
100 1 0.77+0.04 0.26£0.04
DoorKey 200 2 0.93+£0.02 0.09+0.01
300 2 0.99+£0.01 0.05+0.01
100 1 0.96+0.02 0.04+£0.01
DynamicObstacles 200 1 098£0.01 0.01+£0.00
300 2 0.99£0.00 0.00%£0.00
1000 5 0.88+0.15 0.14£0.05
Boxing 3000 5 0.96+0.06 0.06=+0.01
5000 10 0.99£0.05 0.03=£0.01

Table 6: Performance of LICORICE on all environments for varying budgets. We select M to opti-
mize R - c error without additional weighting since they are observed to have the same magnitude.
The reward is reported as the fraction of the reward upper bound. For PixelCartPole, c error is MSE;
for the other environments, c error is 1 - accuracy. The =+ [value] part shows the standard deviation.
This shows a more complete version of the results in Figure E}

Environment B M R7 LICORICE+GPT-40 ¢ Error |  GPT-40 ¢ Error
300 1 0.06£0.02 0.17+0.19 0.19+£0.25
PixelCartPole 400 2 0.07£0.02 0.25£0.15 0.22+0.15
500 2 0.06+£0.01 0.25 £0.08 0.24 £0.07
100 1 0.71+0.04 0.454+0.04 0.31 +£0.03
DoorKey 200 2 0.74+0.04 0.33£0.01 0.31 +£0.03
300 2 0.83+£0.06 0.31£0.01 0.30 £0.03
100 1 0.27+0.37 0.20 £0.03 0.16 £0.03
DynamicObstacles 200 1 093+£0.05 0.13+0.03 0.12£0.05
300 1 0.88+£0.09 0.134+0.03 0.13+0.03
1000 5 0.34+0.09 0.98 £0.01 0.82 £0.05
Boxing 3000 5 0.22+0.01 0.98 £0.01 0.79 £0.05
5000 5 0.2940.09 0.98 £0.01 0.82 +0.06

Table 7: Performance of LICORICE with GPT-4o0 integrated into the loop for all environments
across different budgets, along with the concept labeling error of GPT-40 as a reference. We select
M to optimize R - c error without additional weighting since they are observed to have the same
magnitude. GPT-4o c error is evaluated on a random sample of 50 observations from the same
rollout set used for LICORICE+GPT-40, due to API cost constraints. This shows a more complete
version of the results in Figure

Perhaps at this point the algorithm begins overfitting to the errors in the labels from GPT-40 (the
concept error rate is the same for 200 and 300 labels). Further investigation is required to understand
the underlying factors contributing to this anomaly.

Different tasks and concepts have various difficulties for GPT-4o. Table [4]list detailed concept
errors for concepts in all environments. In PixelCartPole, cart position and pole angle have smaller
errors, while velocities require understanding multiple frames and thus are harder to predict accu-
rately. For DoorKey and DynamicObstacles, different concepts have slightly varying concept errors,
indicating visual tasks have different difficulties for GPT-40. Agent direction has as high as around
0.3 prediction error for both DoorKey and DynamicObstacles. Direction movable is also hard for
DoorKey, with a high concept error even if it is a binary concept. We posit it requires the correct
understanding of more than one particular object to ensure correctness. The concept accuracies in
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Figure 8: LICORICE+GPT-40 waits until the coast is clear to move to the goal. It appears to make
a small mistake in the bottom left, requiring it to wait slightly longer than necessary to navigate to

the goal.
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Figure 9: Learning curves for ablations in the first three environments. Shaded region shows 95%
CI, calculated using 1000 bootstrap samples.

DoorKey are generally higher than DynamicObstacles, suggesting GPT-40 more struggles with a
larger grid.

A GPT-4o-trained RL agent recovers from a mistake. In Figure[8] we show an example of a
GPT-4o-trained RL agent on DynamicObstacles, in which the agent appears to wait until it is safe to
move towards the goal: the green square. The image sequence shows the agent (red triangle) starting
from its initial position and moving to the right. It then is cornered by an obstacle (blue circle), then
both obstacles. In the bottom left corner frame, it appears to make a mistake by turning to the right,
meaning it missed a window to escape. Finally, it moves to the goal when the path is clear in the
second-to-last and last frames (bottom right). This behavior highlights that the agent may still learn
reasonable behavior even if the concept labels may be incorrect (causing it to make a mistake, as in
the bottom left frame).
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Algorithm R7T ¢ Error |

LICORICE-IT 0.53£0.26 0.08 £ 0.03
LICORICE-DE 0.97£0.05 0.03+0.01

PixelCartPole 11 ORICELAC 0.91 £ 010 0.02 % 0.01
LICORICE  1.00+0.00 0.02=0.00
LICORICE-IT  0.99 +0.01  0.09 =+ 0.02
DoorKe LICORICE-DE  0.78 4 0.08 0.20 4 0.05
y LICORICE-AC  0.8240.10 0.16 + 0.06
LICORICE  0.9940.01 0.05+0.01
LICORICE-IT  1.0040.00 0.00 4 0.00
DynamicObstacles ICORICE-DE  0.98+0.01 0.0+ 0.00
y LICORICE-AC  0.58 4 0.53  0.00 4 0.00
LICORICE  0.99+0.00 0.00 = 0.00
LICORICE-IT  0.9440.08 0.1940.13
. LICORICE-DE  0.94+0.02 0.04+ 0.01

Boxing

LICORICE-AC 0.91£0.08 0.05=+0.02
LICORICE 0.99+0.05 0.03+£0.01

Table 8: Ablation study results for LICORICE in all environments, where we delete every single
component to compare with LICORICE. This shows a more complete version of the results in Ta-

ble E}

B.4 ABLATION

In Table[§] we present an extension of the results in Table 3] including standard deviation. Figure 9]
shows all learning curves for ablations in all environments. In PixelCartPole, we clearly see the ben-
efit of iterative strategies on reward: LICORICE, LICORICE-DE and LICORICE-AC consistently
increase in reward and converge at high levels, but LICORICE-IT converges at less than 50% of the
optimal reward. We also see that LICORICE-IT also achieves higher concept error, indicating that
it struggles to learn the larger distribution of concepts induced by a non-optimal policy. In DoorKey,
all algorithms steadily increase in reward. However, we can see a dip at around 10% environment
steps where we begin the second iteration for LICORICE, LICORICE-AC, and LICORICE-DE. Al-
though LICORICE-IT achieves similar reward to LICORICE, LICORICE achieves lower concept
error, which is beneficial for the goal of interpretability. Finally, in DynamicObstacles, LICORICE-
AC lags behind the most in terms of both reward and concept error. This result indicates that the
active learning component is most important for this environment.

We now inspect the performance at the last training iteration in Figure Overall, we find that
LICORICE performs better than or equal to the ablations on all environments. It enjoys the best
reward performance on PixelCartPole, while performing similarly to LICORICE-IT on DoorKey
and to LICORICE-IT and LICORICE-DE on DynamicObstacles. It exhibits the lowest concept error
on PixelCartPole and DoorKey, and achieves similarly low error to LICORICE-DE and LICORICE-
IT on DynamicObstacles.

In PixelCartPole, LICORICE achieves the highest reward, indicating the benefits of multiple iter-
ations, active learning, and decorrelation, which are absent in LICORICE-IT, LICORICE-AC, and
LICORICE-DE, respectively. LICORICE also enjoys the lowest concept error, showcasing its abil-
ity to learn and apply concepts accurately. LICORICE-AC and LICORICE-DE perform well in
minimizing concept error, while LICORICE-IT shows a relatively higher error rate, underscoring
the importance of multiple iterations in some environments.

B.5 HYPERPARAMETER SENSITIVITY

We now seek to understand how sensitive LICORICE is to the choice of hyperparameters. Figure
shows the results of this experiment for DynamicObstacles. Interestingly, we find that the main
difference between the settings is the variation. Overall, LICORICE is relatively robust to the choice
of hyperparameter settings in this environment, with the final average reward ranging between 96%
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Figure 10: Performance of ablations at the final training iteration in the first three environments,
with black bars representing the 95% confidence interval, calculated using 1000 bootstrap samples.
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Figure 11: Hyperparameter sensitivity results for DynamicObstacles. Bars represent standard devi-
ation. Here, bars are grouped by the same p values (acceptance probability). Bars of the same color
share the same 7 value (budget multiplier), and bars with the same pattern share the same value for
N (committee size). Generally, p = 0.1 tend to perform better overall with greater stability. Having
a larger committee (N = 5 vs. N = 3) also tends to help with performance.

and 99.5% of the optimal. The concept error for all settings was 0.00 &+ 0.00, so we do not plot it
here.

B.6 CHOICE OF ACQUISITION STRATEGY

We now investigate the impact of the choice of acquisition strategy on both reward and concept
accuracy. We implemented an entropy-based disagreement measurement for the committee and
studying its effects on a MiniGrid environment. Specifically, we implement the following vote
entropy acquisition function: U(s;) = —+ Zszl Zfi 1 Vl\],k log VJ\J,’“ , where s; is the input state,
K is the number of concepts we learn, P, is the number of classes for the k-th concept, V;j;y, is the
number of votes for the j-th class of the k-th concept for state s;, and N is the number of committee
members.

Table 0] shows these results on DynamicObstacles. There is essentially no difference between the
two strategies in terms of both reward and concept error.
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100 200 300
R ¢ Error R ¢ Error R ¢ Error

Disagreement 0.96  0.05 0.97 0.01 1.00  0.00
Entropy 095 007 098 0.02 099 0.00

Table 9: Comparison of disagreement- and entropy-based active learning strategies for DynamicOb-
staclesunder different labeling budgets. There is essentially no difference between the two strategies.

C ADDITIONAL DISCUSSION

C.1 LIMITATIONS AND FUTURE WORK

While our approach has demonstrated promising results, there are several limitations to be addressed
in future work. One significant challenge is the difficulty VLMs face with certain types of concepts,
especially continuous variables. This limitation can impact the overall performance of concept-
based models, especially in domains where continuous data is prevalent. Furthermore, although
VLM:s can be successfully used for automatic labeling of some concepts, there are still hallucination
issues (Achiam et al.} 2023)) and other failure cases, such as providing inaccurate counts. We believe
that future work that seeks to improve general VLM capabilities and mitigate hallucinations would
also help overcome this limitation. Addressing this issue could involve developing specialized tech-
niques or using existing tools and libraries to better complement VLM capabilities.

Another area for future improvement is the refinement of our active learning and sampling schemes.
Our current method employs an disagreement-based acquisition function to select the most informa-
tive data points for labeling. While this approach is effective, there is potential for exploring more so-
phisticated active learning strategies, such as incorporating advanced exploration-exploitation trade-
offs or leveraging recent advancements in active learning algorithms (Tharwat & Schenck, [2023)).

Furthermore, scaling challenges may arise from environmental complexity, such as when only a
subset of given concepts are relevant or when learning certain concepts is prerequisite to gathering
training data for others. Future research could explore using attention mechanisms (Vaswani et al.,
2017) or sparse coding (Olshausen & Field, |1996) to identify relevant concepts. Another exciting
direction is the work in human-Al complementarity and learning-to-defer algorithms (Mozannar,
et al., |2023) to train an additional classifier for deferring labeling to a person when the chance of
an error is high. In our work, we assume a known set of concepts for the environment; future
work could investigate the use of human-VLM teams to determine a reasonable concept set for the
environment.

Finally, designing a concept-based representation for RL remains an open challenge. Our work
provides a few illustrative examples, but the exact design of these representations can significantly
impact performance, often for reasons that are not entirely clear — especially when using VLMs as
annotators. Prior work (Das et al., [2023) proposed some desiderata for concepts in RL, but future
work could refine these principles, especially in the face of VLM annotators. Future work could also
include systematically investigating the factors that influence the effectiveness of different concept-
based representations in RL. This could involve extensive empirical studies, theoretical analyses,
and the development of new design principles that guide the creation of effective concept represen-
tations. Understanding these factors better will help in creating more reliable and interpretable RL
models, ultimately advancing the field and broadening the applicability of concept-based approaches
in various RL tasks.

C.2 BROADER IMPACTS

Interpretability in RL.  Incorporating concept learning with RL presents both positive and nega-
tive societal impacts. On the positive side, promoting interpretability and transparency in decision-
making fosters trust and accountability. However, in cases where it yields incorrect results, stake-
holders might be misled into trusting flawed decisions due to the perceived transparency of the
model (Kaur et al.l [2020). Unintended misuse could also occur if stakeholders lack the technical
expertise to accurately interpret the models, leading to erroneous conclusions and potentially harm-
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ful outcomes. To mitigate these risks, an avenue for future work is developing clear guidelines for
interpreting these models and tools to scaffold non-experts’ understanding of the model outputs.

Using VLMs for Concept Labeling On one hand, VLMs have the potential to significantly im-
prove the efficiency and scalability of labeling processes, which can accelerate advancements in
various fields. By automating the labeling of large datasets, VLMs can help reduce the time and cost
associated with manual labeling. However, there are important ethical and social considerations to
address. One major concern is the potential for bias in the concept labels generated by VLMs. If
these models are trained on biased or unrepresentative data, they may perpetuate or even amplify
existing biases, leading to unfair or discriminatory outcomes. This is particularly problematic in
sensitive applications like hiring, lending, or law enforcement, where biased decisions can have sig-
nificant negative impacts on individuals and communities. Furthermore, there are privacy concerns
related to the data used to train VLMs. Large-scale data collection often involves personal informa-
tion, and improper handling of this data can lead to privacy violations. To mitigate these risks, future
work could include developing robust data governance frameworks to protect individuals’ privacy
and comply with relevant regulations.
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