
ANCHMARK: Anchor-contrastive Watermarking
against Generative Image Modifications

Minzhou Pan*∗1, Yi Zeng*2, Xue Lin1, Ning Yu3, Cho-Jui Hsieh4, and Ruoxi Jia2

13Northeastern University, USA
2Virginia Tech, USA

3Salesforce Research, USA
4University of California, Los Angeles, USA

Abstract
This work explores the evolution of watermarking techniques designed to preserve
the integrity of digital image content, especially against perturbations encountered
during image transmission. An overlooked vulnerability is unveiled: existing wa-
termarks’ detectability significantly drops against even moderate generative model
modifications, prompting a deeper investigation into the societal implications from
a policy viewpoint. In response, we propose ANCHMARK, a robust watermarking
paradigm, which remarkably achieves a detection AUC exceeding 0.93 against per-
turbations from unseen generative models, showcasing a promising advancement
in reliable watermarking amidst evolving image modification techniques.

1 Introduction
Watermarks are crafted to uphold the integrity of digital image content origins and foster the fair
use of images [1]. Over time, watermarks are refined to counter common perturbations like JPEG,
rotation, or Gaussian noise often encountered during image transmission [2; 3; 4]. This resilience is
expected to extend to emerging scenarios where image content is frequently modified by generative
models, e.g., DALL·E 2 [5], Stable Diffusion [6], and Instruct-Pix2Pix [7]. However, our evaluation
reveals an overlooked vulnerability of existing watermarks, as detectability may plummet to random
guessing levels when faced with even moderate generative model modifications (Section 2).

To address the identified limitations and promote the fair use of image content, ANCHMARK is
introduced: a robust watermarking paradigm inspired by contrastive learning. Engineered to anchor
unperturbed samples, ANCHMARK learns a hidden space map of any watermarked counterparts
post-perturbation close to the original watermarked content. This design necessitates only black-box
access to potential perturbations, encompassing strong perturbations induced by computationally
intensive generative models like the diffusion process, avoiding direct backpropagation of potential
perturbations. Comprehensive empirical evaluations attest to ANCHMARK’s stealthiness and robust-
ness. Notably, against perturbations from unseen generative models, including DALL·E 2 image
variation [5], ANCHMARK achieves a detection AUC exceeding 0.93. With 600 steps fine-tuning ,
ANCHMARK can achieve an AUC of 0.98 on DALL·E 2 image variation.

2 Background & Emerging Challenges
Diffusion Models. Recent advancements in diffusion models underscore their significance in
enhancing image generation and editing quality [8]. By meticulously controlling noise addition and
removal, these models transition from mere noise to refined images [9]. Notably, diffusion models
offer the capability to condition the generative process, utilizing text or reference images to steer
the output [10]. The advent of models like InstructPix2Pix [7] has broadened application horizons,
facilitating text-guided image editing, varied object viewpoint production, and image inpainting
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[11; 12; 13]. This capability presents an intriguing juncture with copyright law [1], propelling this
study to ascertain reliable watermarking techniques supporting such regulatory objectives.

Revisiting Image Watermarking. Image watermarking embeds imperceptible but traceable informa-
tion in images for copyright safeguarding. Traditional techniques employ hand-crafted watermarks
in the frequency domain using transforms like DCT [2], DWT [3], and combined transforms (Dct-
DwtSVD) [14]. Deep learning’s advent ushered in refined watermarking methods, many adopting
an encoder-decoder framework [4; 15], which enhances robustness through differentiable image
distortion simulation. Recent innovations like Stable Signature (Stable Sig) [16] and Tree-Ring water-
marks [17] directly manipulate the diffusion process, thus enabling watermarking generated contents
from the modified diffusion models. We conduct a quantitive study of existing image watermarking
techniques in the face of one of the most prevalent image variation tools, InstructPix2Pix [7]. Details
of the experimental set-up and example of modification results are provided in Appendix D.

Table 1: Moderate-level InstructPix2Pix conditional modifications largely impact the detectability
of existing watermarks. We set the hyperparameters of the InstructPix2Pix to a low level, with both
text and image guidance scales set at 5. Humans can still easily pick up the connection between the
modified version and the original image. We set the prompt used for modification in a randomized
condition that includes “object change, style change, and background change,” simulating the potential
moderate level of potential image modifications. *Stable Sig and Tree-Ring cannot watermark real
images or synthetic images that from models did not adopt their network modifications. We still
included them here to showcase the prevalent vulnerability of existing watermarking techniques.

DwtDctSVD [14] HiDDeN [4] Stable Sig* [16] Tree-Ring* [17]
TPR @ 1% FPR 3.00% 4.20% 1.00% 13.30%
AUC 0.500 0.619 0.589 0.826

The results are collected in Table 1, where we evaluate the detectability in the format of the true
positive rate at 1% of the false positive rate (TPR @ 1% FPR) and the area under the curve (AUC) for
each watermark. From the results, we find even the most advanced watermarking techniques cannot
maintain an acceptable detectability undergoing the perturbations introduced by the generative model,
even though humans can easily connect the modified images and their origins.

Broader Impact. From a policy standpoint, the low detectability of watermarks carries implications
extending beyond intellectual property infringement, as demonstrates by numerous real-life instances.
Unsuccessful tracing of copyrighted content paves the way for potential financial and reputational
damages, as creators find it challenging to assert rights [18]. This scenario further fuels unaccountable
misinformation, with manipulated content masquerading as genuine, thereby amplifying fake news
proliferation [19]. On an individual level, the ethos of consented image sharing is undermined
as modifications and dissemination transpire without approval, leading to privacy violations [20].
Additionally, with the rising prevalence of synthetic data, compromised watermarks hinder the
discernment of its origins, thereby contaminating the data ecosystem. Such contamination jeopardizes
content authenticity and impairs future AI model performance via a phenomenon known as Model
Autophagy Disorder, engendering a cascade of unreliable outputs [21].

3 Methodology
In this section, we present the methodology of our solution, termed ANCHMARK. Our approach
embeds the watermark through the encoder network (E) and retrieves the watermark information
via the decoder network (D). The watermark implanted in watermarked images is designed to
withstand various image distortions, from traditional rule-based perturbations like JPEG to advanced
ones like diffusion-based image modifications (P ). The key difference between this work and the
existing watermarking technique is that the robustness of watermarking is gradually learned through
a contrastive-learning inspired process [22; 23], which does not require accurate backpropagation of
the considered perturbations. The overall training process of ANCHMARK is illustrated in Figure 1
and comprises the following key components:

• Watermark Encoder (E): Encoder embeds an invisible watermark into the original image, x, to
produce its watermarked counterpart, xw. The perceptual similarity between the watermarked
image and the original image is quantified using the Visual Loss, denoted as Lv (Appendix A).

• Perturbations (P ): We randomly apply a list of perturbations (with random hyperparameters)
to the original and watermarked images, i.e., x and xw, accordingly producing the perturbed
counterparts, x′ and x′

w. We utilize a range of perturbations, including randomized generative
model manipulations, the details of which are elaborated in Appendix B.
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Figure 1: Training ANCHMARK. For stealthiness, the watermarked samples and the original images
are used to compute a visual loss to ensure imperceptibility. For watermarking robustness, original
images are watermarked, perturbed, and transformed into latent representations to calculate a com-
bined Anch loss. Using the trained E and D, images are embedded with watermarks and assessed for
watermark presence based on cosine similarity with the Anchor Vector A. *Sg means stop-gradient.

• Watermark Decoder (D): D maps images (x, xw, x′, and x′
w) into their latent representations.

For instance, the original image x is transformed to h = D(x). Similarly, the representations for
xw, x′, and x′

w are given by hw, h′, and h′
w, respectively.

• Anchor Vector (A): This vector has the same dimension as the watermark decoder’s output. The
cosine similarity between A and each of the latent representations (h, hw, h′, h′

w) is computed,
yielding similarity values s, sw, s′, and s′w. These similarity measures are then input into the
Anch loss, denoted as La, to determine the final loss value.

As an example, the overall training process is as follows. We randomly sample an image, x, and
forward pass through E to acquire the watermarked counterpart xw. Then, we compare it with
the original image x to calculate the visual loss, Lv. Meanwhile, the x and xw are then passed
through a set of random perturbations from P , including random image modifications introduced by
generative models, producing x′ and x′

w. This set of images, {x, xw, x
′, x′

w}, are then decoded to
their respective latent representations using the Decoder D. The cosine similarity between each latent
representation and the Anchor Vector A is then computed. The final training loss is the summation
of Lv and La. The details of our loss function can be found in Appendix A. This combined loss
is backpropagated to update the parameters of E, D, and A. It’s important to emphasize that the
parameters of A are updated solely using the non-perturbed views (h and hw), since the strong
image perturbations from P can introduce excessive randomness, making it challenging for A to
converge [24]. Meanwhile, the design does not require any backpropagation of the considered
perturbations, ensuring excellent generalizability to computational expensive perturbations (e.g.,
diffusion process) and even unseen perturbations that may present in the future.

To deploy ANCHMARK, we employ the trained E, D, and A. E is used to embed the watermark into
the image. D then processes this image to yield its latent representation, subsequently employed to
calculate the similarity with the Anchor Vector, A. The cosine similarity will be significantly higher
for images containing the watermark (being perturbed or not), whereas non-watermarked images will
exhibit a markedly lower value. To determine if an image contains the watermark or not, we evaluate
the Bit Correct Ratio (BCR): BCR = HD(h,A)

|A| , where HD is the Hamming distance [25]. A BCR of
1 indicates full accuracy, and 0 denotes a complete mismatch. Unlike other advanced watermarking
techniques, i.e., Stable Sig [16] and Tree-Ring [17], our method can be deployed to watermark
any image, including real images or synthetic data generated by black box generative models.

4 Evaluation
Set Up. We select representative watermarking techniques using different underlining mechanisms
as our baselines. For traditional image watermarking, we chose DctDwtSVD [14]. For the encoder-
decoder-based watermarking approach, Hidden [4] was selected. For diffusion model-specific
watermarking, we choose two most recent works [16; 17] for comparison. We use the acquired BCR to
compute AUC (↑) and TPR (↑) at 1% FPR as evaluation metrics. For the quantitative study, as detailed
in Appendix D, we utilize 2,000 test images (as original images) in our evaluation. For watermark
methods that can be deployed to any given image like ours, i.e., [14; 4], we embed the watermark
into the 2000-size evaluation dataset and then introduce the perturbation based on the couped editing
instructions using different generative models. For [16; 17], we generate the image using the image
description provided with the 2000-size dataset and subsequently modify it based on the editing
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instructions. As this work focuses on perturbations introduced by state-of-the-art generative models
(which are largely centered on diffusion models), we omit the evaluation against traditional GANs.
The considered image modification models include SDEdit [11], InstructPix2Pix [7], Zero 1-to-
3 [12], InPaint [13], and the commercialized DALL·E 2 [5]. Note that [16; 17] cannot be deployed to
watermark an existing image as the ones reside in the 2000-size dataset. We still include them as
unfair baselines to emphasize the evaluation and comparison of the robustness of each watermark.

Table 2: Watermark detection performance against various image modification techniques. *Stable
Sig and Tree-Ring’s results are reflected from their own generated synthetic data.

SDEdit[11] InstructPix2Pix[7] Zero 1-to-3[12] InPaint[13] DALL·E 2[5]
TPR (↑) @

1%FPR AUC (↑) TPR (↑) @
1%FPR AUC (↑) TPR (↑) @

1%FPR AUC (↑) TPR (↑) @
1%FPR AUC (↑) TPR (↑) @

1%FPR AUC (↑)

DwtDctSVD
[14] 0.020 0.537 0.030 0.500 0.010 0.510 0.010 0.586 0.010 0.500

HiDDeN
[4] 0.020 0.521 0.042 0.619 0.010 0.592 0.030 0.689 0.000 0.589

Stable Sig*
[16] 0.010 0.510 0.010 0.589 NA 0.030 0.629 0.010 0.561

Tree-Ring*
[17] 0.143 0.880 0.133 0.826 NA 0.218 0.895 0.231 0.856

ANCHMARK
(Ours) 1.000 1.000 1.000 1.000 0.910 0.990 0.854 0.966 0.713 0.938

Experiments Result. From Table 2 we find that DwtDctSVD [14], HiDDeN [4], and Stable
Signature [16] fail to detect the watermark after the evaluated image modifications, as the results are
AUC that close to 0.5 – akin to random guessing. For DwtDctSVD [4], the non-detectability attributes
to the most evaluated image modifications include the diffusion process, where high-frequency space
is largely perturbed and reconstructed; thus, the watermark is distorted. For HiDDeN [4] and Stable
Signature [16], their original design requires accurate computation of a linearized approximation of
the considered perturbation; thus, they cannot be efficiently generalized to consider the perturbation
introduced by nowadays generative models. Tree-Ring [17] embeds the watermark directly into the
diffusion latent space and was reported by existing work indicating their robustness to imperceptible-
level of discussion-based modifications [26]. In our evaluation, as we increased the modification scale,
especially with designed prompt and guidance that simulates the reality level of moderate image
modifications that users may introduce, we find that the TPR at 1% of FPR dramatically dropped
to 23.1%. In contrast, ANCHMARK is able to maintain an AUC for all the evaluated perturbations.
Note that we only used SDEdit [11] with randomly generated text (including gibberish prompts)
instructions for the training process’ considered perturbations (Appendix B). For unseen perturbation
techniques introduced by other generative models and newly sampled instructions, ANCHMARK had
no prior exposure. The outstanding robustness against unseen perturbations can be attributed to the
inherent similarity of the evaluated generative models, which all deploy the diffusion process. Since
ANCHMARK doesn’t require model architecture details or gradient information, we can finetune
trained E, D, and A directly on DALL E·2 to improve the performance of ANCHMARK customizely.
In particular, we finetuned E, D, and A for 600 steps using around 11,100 new sampled DALL
E·2 modified image pairs (approximated expense $180). After finetuning, ANCHMARK reach an
AUC of 0.98 and a TPR of 0.824. This adaptability uniquely positions ANCHMARK to effectively
handle perturbations introduced by unseen models and architectures. Further evaluations on visual
comparison and traditional perturbations can be found in Appendix C.

5 Conclusion
This work identifies vulnerabilities in existing watermarking techniques against moderate image mod-
ifications using popular generative models. To address these weaknesses, we introduce ANCHMARK,
a robust watermarking framework inspired by contrastive learning. ANCHMARK maximizes the
cosine similarity between watermarked images and a trainable anchor vector in the decoder’s hid-
den space, improving generalization against diffusion perturbations without direct backpropagation.
Against unseen diffusion-model-based perturbations, ANCHMARK achieves AUC over 0.93, demon-
strating resilience to generative models. By promoting data integrity amidst increasing synthetic
content, ANCHMARK significantly advances reliable watermarking in our AI-driven landscape.
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A Loss function

As described in the previous section, our comprehensive loss function is defined as:

L = La + Lv (1)

While La ensures that the decoder can effectively differentiate images with and without watermarks,
Lv maintains the invisibility of the watermark.

Focusing on La, the primary objective during training is to guide the decoder, D, such that it distances
the latent representations of non-watermarked samples (h, h′) from the anchor A, while drawing those
of watermarked samples (hw, h′

w) closer to A. Using cosine similarity as our distance metric, we aim
for similarity measures s and s′ to be close to -1, and sw and s′w to approach 1. We’ve adapted the
binomial deviance loss [27] for our purposes. To simplify the expression, let’s denote watermarked
similarities sw, s′w as positive and represent them by si, while non-watermarked similarities s, s′ are
negative and represented by sj :

La =
∑m

i=1

τ ·
(
log

[
1 + e(λ−si)/τ

]
+ log

[
1 + e(sj−λ)/τ

])
︸ ︷︷ ︸

binomial deviance loss

· sg
(
esj−si/τ

)
︸ ︷︷ ︸

scaler

 (2)

The aforementioned loss is bifurcated into two components: the binomial deviance loss and a scaler.
Delving into the binomial deviance loss, we introduce a temperature parameter τ , allowing the model
to emphasize harder examples [28]. The margin λ is set to ensure a desirable separation between
positive and negative samples. Transitioning to the scaler component, it gauges the disparity between
positive and negative samples. When positive samples exceed negative ones in value, the scaler
surpasses 1, thereby reducing the overall La and prompting the model to focus more on Lv. We
also incorporate the temperature parameter τ to refine the scaling of the scaler. The term sg denotes
the stop gradient, ensuring the scaler does not unnecessarily amplify computational overhead by
extending the computation graph.

The second loss component, Lv , retains the image quality after its procession through the watermark
encoder E. This loss function is articulated as:

Lv = αLLPIPS + βLMSE (3)

In this context, we employ both LPIPS [29] loss and the MSE loss to capture visual deviations. The
coefficients α and β serve as hyperparameters, adjusting the influence of each metric.

B Implementation details

Image Perturbations Our primary objective is to ensure robustness against multiple image
Perturbations. To this end, we integrate a variety of perturbations during training. Taking advantage of
the inherent properties of ANCHMARK—which eliminates the need for gradient propagation through
these perturbations—we employ their original implementations directly. This approach guarantees
both precision and operational efficiency. For each image, we randomly select a combination of one to
three perturbations and combine them as P , which encompass JPEG, Gaussian blur, Gaussian noise,
random rotations, brightness-contrast alterations, and the Diffusion-based image editing method,
SDEDIT [11]. We initiate with mild Perturbations and gradually escalate their intensity, reinforcing
our decoder’s adaptability and promoting stable training.

Model Architecture. The adaptability of ANCHMARK enables compatibility with a diverse range
of model structures. However, mindful of the practical requirements of real-world watermarking, we
gravitate towards models with fewer parameters. This choice expedites both training and inference.
Our encoder adopts a U-Net structure [30] with several SENet blocks [31], totaling a mere 0.22M
parameters. The decoder harnesses the efficiency of MobileNet-V3 Large [32], streamlined to 2.5M
parameters. We’ve transitioned its classification layer to a custom MLP to produce outputs congruent
with the anchor vector A dimensions. Cumulatively, the entire encoder-decoder architecture is
astoundingly lightweight at just 2.53M parameters, dwarfing even the basic model ResNet-18 [33]
which houses 11.7M parameters.
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Algorithm 1 PyTorch-style pseudocode of the ANCHMARK Training stage

# Initialize watermark Encoder and Decoder
E, D = encoder (), decoder(out_dim = anchor_len)

# Initialize Anchor Vector with ones
A = ones(1, anchor_len)

# Initialize optimizers for Encoder , Decoder , and Anchor Vector
opt_e , opt_d , opt_a = AdamW(E.params (), D.params (), A.params ())

# Loop through the image and modify instruction using dataloader
for x, inst in dataloader:

# Encode input data
x_w = E(x)
# Apply perturbation P with modify instruction to the data
x_prime , x_w_prime = P((x, x_w), inst)
# Decode the original and perturbed data
h, h_w , h_prime , h_w_prime = D(x, x_w , x_prime , x_w_prime)
# Compute cosine similarity with the anchor vector
s, s_w , s_prime , s_w_prime = COS(A, (h, h_w , h_prime , h_w_prime))

# Compute visual loss
L_v = visual_loss(x, x_w)
# Compute anchor loss
L_a = anch_loss(s, s_w , s_prime , s_w_prime)
# Compute total loss as sum of anchor loss and visual loss
total_loss = L_a + l_v

# Backpropagate the loss
total_loss.backward ()
# Update the parameters using the optimizers
opt_e.step(), opt_d.step(), opt_a.step()

Replace BN with GN. Image perturbations can drastically alter an image’s statistics. For instance,
changes in brightness directly modify pixel values, consequently altering the image’s mean. Concur-
rently, the extensive size of the diffusion model restricts the training batch size. In our experiments, we
were constrained to a relatively small batch size of 16. This combination of factors adversely impacts
the performance of Batch Normalization (BN) [34]. So we replace the Batch Normalization (BN)
with Group Normalization (GN) [35]. GN operates by normalizing groups of channels, eliminating
the need for large batch sizes. This ensures stable and consistent training, even when image statistics
vary widely.

C Additional Results

C.0.1 Watermark Visiual Comparision

PSNR↑ SSIM↓ LPIPS↓
DwtDctSVD 32.2197 0.89598 0.10785

HiDDeN 30.8405 0.89548 0.12753
Ours 28.3564 0.89521 0.04368

Table 3: Comparison of visual similarity metrics for various watermarking methods. Higher PSNR
values indicate less pixel-based difference between the original and watermarked images, whereas
lower SSIM and LPIPS values suggest better preservation of structural and perceptual information,
respectively.

The visual similarity between watermarked images and their original counterparts is essential to
ensure that the watermark does not degrade image quality noticeably. For a clearer understanding, we
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Figure 2: Visual comparison of different post-hoc watermarking techniques. Overall, local, and
deficit (×10).

provide visual examples in Figure 2. Additionally, Table 3 quantitatively compares our method with
other baseline techniques using three key metrics: PSNR, SSIM [36], and LPIPS [29].

From the results, DwtDctSVD achieves the highest PSNR value of 32.2197, indicating the least
difference between the watermarked and original images in terms of pixel-based differences. However,
it’s worth noting that a higher PSNR doesn’t always correlate to perceived visual similarity due to the
non-linear nature of human visual perception.

Regarding the SSIM metric, which attempts to model the perceived change in the structural in-
formation of the image, all methods exhibit values close to each other. This suggests that the
structural degradation caused by the watermarking process is relatively consistent across the tech-
niques. Nonetheless, our method has the lowest SSIM of 0.89521, hinting at the least structural
difference when compared to the other methods.

The most significant distinction arises in the LPIPS metric. Our method outperforms the other
baselines with a score of 0.04368, nearly 50% lower than DwtDctSVD and almost 66% lower than
HiDDeN. LPIPS is designed to be more aligned with human perceptual judgments, and a lower
LPIPS value means that the difference between two images is less noticeable. Hence, the watermarks
added using our method are less perceptually noticeable than those from the other two techniques,
making our method superior in preserving the visual quality of the original image.

C.0.2 Robustness against Standard Image Perturbations

In our evaluation of the robustness of various watermarking methods against traditional image
perturbations, as detailed in Table 4, we employ specific hyperparameters to simulate real-world
scenarios. For JPEG compression, we used a quality factor (Q) of 80. When introducing Gaussian
Noise, the noise standard deviation (σ) was set at 0.2. For Gaussian Blur, we utilized a kernel size
(s) of 5 and a blur standard deviation (σ) of 1.5. To test the resilience against rotation, both random
horizontal (H) and vertical (V) flips were applied. Finally, for alterations in contrast and brightness,
pixels were manipulated by multiplying with a contrast factor, ’a’, and subsequently adding ’b’. For
our experiments, ’a’ was set to 10, while ’b’ remained fixed at 0.2.

With these parameters in mind, the analysis reveals that in the realm of JPEG Compression, most
watermarking methods, especially ANCHMARK, display admirable resilience. Gaussian Noise, with
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JPEG Gaussian Noise Gaussian Blur Rotation Contrast &
Brightness

TPR
1%FPR AUC TPR

1%FPR AUC TPR
1%FPR AUC TPR

1%FPR AUC TPR
1%FPR AUC

DwtDctSVD
[14] 0.962 0.989 0.280 0.841 0.806 0.963 0.542 0.913 0.243 0.684

HiDDeN
[4] 0.972 0.997 0.482 0.903 0.774 0.958 0.937 0.998 0.802 0.964

Stable Sig
[16] 0.770 0.955 0.330 0.858 0.740 0.949 0.883 0.984 0.582 0.911

Tree-Ring
[17] 0.986 0.999 0.638 0.937 0.901 0.988 0.988 0.999 0.658 0.944

ANCHMARK
(Ours) 0.999 0.999 0.942 0.993 0.994 0.999 0.984 0.999 0.882 0.985

Table 4: Comparison of watermark detection performance across various methods on traditional
image perturbations. The table evaluates the True Positive Rate (TPR) at 1% False Positive Rate
(FPR) and the Area Under the Curve (AUC) values for different image transformation models.

Category Original Sentence Edit Instruction
Object Change The image features a close-up

of a large crab...
Add another crab.

The image features a close-up
of a large, green lizard...

Remove the lizard.

The image features a woman sit-
ting on the grass...

Replace the dog with a cat.

The image shows a person hold-
ing a black bag...

Change the black bag to a red bag.

The image features a dog stand-
ing on a wooden floor...

Make the dog run.

Background Change The picture features a mailbox
sitting in a field...

Make the sky start raining.

The image is a nighttime scene
featuring a fish...

Replace the ground with a table.

The picture features a man hold-
ing a black and white accor-
dion...

Change the background color to green.

Style Change The image features a man wear-
ing a hat...

Turn it into an oil painting style.

The image features a man rid-
ing a motorcycle...

Change the helmet’s material to metal.

Table 5: Various examples are given to ChatGPT to generate Edit Instructions.

its defined standard deviation, was more challenging for most, yet our method excelled with a TPR
of 0.942. Gaussian Blur, even with its significant kernel size and standard deviation, still saw our
proposed technique achieving top results. Rotation’s impact was notable, with most methods demon-
strating strong resistance, especially when considering the added complexity of random flips. For
alterations involving contrast changes, guided by our parameters, our technique maintained its excep-
tional performance. Overall, while several watermarking techniques showcased robustness against
the perturbations with our chosen hyperparameters, our proposed method stood out, underscoring its
robustness and adaptability in confronting a range of image perturbations.

D Expanded Experimental Set-Up

In this section, we further detail the procedure of experiment set-up and how we adapt the Ima-
geNet [37] dataset with corresponding edit instructions for our evaluation.
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Figure 3: Workflow for the creation and implementation of the image edit instructions dataset.

In all evaluations (Section 2, 4), we keep the baseline method with their original implementation.
For ANCHMARK, we set the latent space of Decoder D to 16-bits. For the evaluation dataset, a
comprehensive visualization of this process is provided in Figure 3. The procedure begins with the
original image, which is fed into LLAVA [38], a visual-language model. This model can respond
to textual queries based on the provided image. By posing the question "What is the content of the
image?" to LLAVA, it yields an approximate 60-word description of the image. This description,
along with the modification prompts from Table 5, is then input into ChatGPT [39]. ChatGPT
generates editing instructions based on this input. These instructions are subsequently fed into our
diffusion-based image modification tool, Instruct Pix2Pix [7], to produce the final modified images.

Training Dataset for ANCHMARK. For the training dataset, we employ the previously mentioned
method to generate editing instructions for the ImageNet [37] test dataset, which contains 100,000
images across 1,000 different classes. We shuffle the editing instructions for each image to simulate
random perturbation, enhancing the model’s robustness.

Evaluation Dataset. For the evaluation dataset, we also employ the previously mentioned method
to generate editing instructions for the ImageNet [37] validation dataset, comprising 50,000 images
from 1,000 different classes, selecting 1,000 images for our purposes. To enhance the diversity of the
evaluation dataset, we incorporate an additional 1,000 images from the InstructPix2Pix dataset [7],
maintaining each image with its original editing instruction.
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