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ABSTRACT
We introduce a protein language model for determining the com-

plete sequence of a peptide based on measurement of a limited set

of amino acids. To date, protein sequencing relies on mass spec-

trometry, with some novel Edman degradation based platforms

able to sequence non-native peptides. Current protein sequencing

techniques face limitations in accurately identifying all amino acids,

hindering comprehensive proteome analysis. Our method simulates

partial sequencing data by selectively masking amino acids that are

experimentally difficult to identify in protein sequences from the

UniRef database. This targeted masking mimics real-world sequenc-

ing limitations. We then modify and finetune a ProtBERT derived

transformer-based model, for a new downstream task predicting

these masked residues, providing an approximation of the com-

plete sequence. Evaluating on three bacterial Escherichia species,
we achieve per-amino-acid accuracy up to 90.5% when only four

amino acids ([KCYM]) are known. Structural assessment using Al-

phaFold2 and TM-score validates the biological relevance of our

predictions. The model also demonstrates potential for evolution-

ary analysis through cross-species performance. This integration of

simulated experimental constraints with computational predictions

offers a promising avenue for enhancing protein sequence analysis,

potentially accelerating advancements in proteomics and structural

biology by providing a probabilistic reconstruction of the complete

protein sequence from limited experimental data.
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1 INTRODUCTION
Protein sequences are fundamental to understanding biological

processes, disease mechanisms, and therapeutic developments [1,

2]. Despite significant advancements in genomics and proteomics,

aided by machine learning (ML) techniques [3, 4], accurate and

comprehensive protein sequencing remains a challenge in the field

[5].

Protein sequencingmethods primarily rely on techniques such as

Edman degradation [6] and mass spectrometry (MS) [7], including

liquid chromatography tandem mass spectrometry (LC-MS/MS)

[8]. While these methods have advanced our understanding of

proteins, they face significant limitations in accurately identifying

all amino acids in a sequence, particularly for complex or low-

abundance proteins [5]. Studies have shown hat only about 16%

of peptides in complex samples are typically identified by data-

dependent mass spectrometry [9], and we show in Figure 1 that

only being able to identify amino acid sets KCYM or KCYMRHWST

without supplemental computational methods provides only 10%

and 32% of the sequence information. These limitations often result

in partially known sequences, hindering comprehensive proteome

analysis.

Despite these advancements, protein sequencing still faces sig-

nificant challenges, including high error rates, complex data inter-

pretation, and technological limitations [10, 11, 12]. Overcoming

these hurdles requires further advancements in sequencing tech-

nologies, sophisticated data processing algorithms, and improved

experimental protocols to enhance accuracy, reproducibility, and

scalability [13, 12].

Recent advancements in click chemistry and bioorthogonal chem-

istry [14, 15, 16] have attempted to address this issue by enabling

the identification of specific amino acids and their positions. For

instance, Zheng et al. demonstrated the sequencing of short anti-

body peptides using targeted amino acid labeling [17]. However,
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these techniques are still limited by the number of amino acids that

can be correctly identified, resulting in partially masked sequences

(e.g., xCxxCxxx, where C is the experimentally identifiable amino

acid) [18]. Additionally, the click chemistry platform demonstrated

in Zheng et al. only works with non-native peptides that have un-

dergone a priori chemical modifications[17]; limitations in this step

means that parts of the proteomic retinue are not measurable with

this approach. Our language model can work with input from this

non-native peptide platform, as well as hypothetical future devel-

opments in bioorthogonal chemistry that will allow for Edman

degradation of native peptides.

To address this specific limitation, we propose a novel approach

leveraging pretrained language models. Large language models

(LLMs) have shown remarkable adaptability in interpreting pro-

tein sequences, excelling in predicting structures, functions, and

evolutionary relationships [19, 20, 21]. We hypothesize that these

models can be used to predict the identity of amino acids that are

conditionally difficult to determine experimentally.

In this paper, we present a method that simulates partial se-

quencing data by selectively masking amino acids that are exper-

imentally challenging to identify in protein sequences from the

UniRef database. This targeted masking mimics real-world sequenc-

ing limitations. We then utilize ProtBERT [22], a transformer-based

model, to predict these masked residues, providing a probabilistic

reconstruction of the complete protein sequence.

We evaluate our approach on three Escherichia bacterial species:
E. coli, E. albertii, and E. fergusonii. Our results demonstrate high

prediction accuracy even with extremely limited known amino

acids. We also validate the biological relevance of our predictions

through structural assessment using AlphaFold2 [23], and standard

structure evaluation metrics such as template modeling score (TM-

score)[24, 25] and the local distance difference test (lDDT)[26].

This innovative integration of simulated experimental constraints

with computational predictions offers a promising avenue for en-

hancing protein sequence analysis. By improving our ability to

interpret partially sequenced data, we aim to accelerate advance-

ments in proteomics and structural biology, potentially unlocking

new insights into protein structure and function.

The remainder of this paper is structured as follows: In the Meth-

ods section, we detail our data preparation, model fine-tuning pro-

cess, and evaluation metrics. The Results section presents our com-

prehensive analysis of our model’s performance across various

scenarios. Finally, we discuss the implications of our findings and

potential future directions in the Discussion section.

2 PROBLEM STATEMENT
In an assumption that the partial sequencing can be acquired from

Edman degradation enhanced by click chemistry, which provides

the positions and identities of a limited set of amino acids within

a protein, we aim to predict the complete protein sequence. It has

been established in the literature that on non-native peptides, "AFG"

can be distinguished from "AWG" [17]; we have also demonstrated

how this approach could theoretically be extended to non-native

peptides in Supplementary Figure ??. [27, 28] to fill in the gaps

from unknown amino acids, given the context provided from the

known ones in combination with the protein’s domain constraint,

determined at the species level. Our goal is to develop a computa-

tional approach that can accurately predict the full protein sequence

from this partial information, potentially revolutionizing protein

sequencing methodologies.

3 METHODS
3.1 Protein Dataset
For model training, which we conducted on 8 NVIDIA DGX A100

80GB cards, we utilized the UniProt Reference Clusters (UniRef)

database[29], specifically UniRef100, focusing on three bacterial

species: Escherichia coli (NCBI taxID 562), Escherichia albertii (NCBI
taxID 208962), and Escherichia fergusonii (NCBI taxID 564). In addi-

tion, we included a fourth species: Listeria monocytogenes (NCBI
taxID 1639), which is phylogenetically distant, to assess the model’s

generalizability and its applicability to evolutionary studies. These

UniRef100 datasets combined identical sequences and subfragments

with 11 or more residues into one entry, reducing potential data

leakage between training, evaluation, and testing datasets. Addi-

tionally, we removed sequences from hypothetical protein group to

ensure the biological relevance of the dataset. The detailed report

of dataset sizes is shown in Supplement Table ??.
Following the pretrained model’s data processing, we mapped

non–canonical or unresolved amino acids ([BOUZ]) to unknown
(X)[22]. The frequency distribution of 20 canonical amino acids

and unknown (X) extracted from the three Escherichia children is

presented in Supplement Figure ??, and from L. monocytogenes is
presented in Supplement Figure ??.

We propose working on two cases of targeted sets of amino

acids. The first set (KCYM) contains amino acids with two or more

publications supporting successful identification: Lysine (K)[30,

31, 32], Cysteine (C)[33, 34, 35], Tyrosine (Y)[36, 37, 38, 39], and

Methionine (M)[40, 41]. The second set (KCYMRHWST) includes
the amino acids from the first set, with additional amino acids that

have at least one publication supporting successful identification:

Arginine (R)[42], Histidine (H)[43], Tryptophan (W)[44], Serine

(S)[33], and Threonine (T)[45].

3.2 Training Model
We chose ProtBERT[28] as our pretrained model due to its well per-

formance in general tasks, lightweight nature (420M parameters),

and bidirectional property. However, we modified the architecture

of the model to use a masked language modeling head for our train-

ing task, compatible with our problem formulation. We trained

one model per domain (species) and per set of amino acids, KCYM
and KCYMRHWST, resulting in a total of eight finetuned and

architecturally modified models. For E. coli, E. albertii and L. mono-
cytogenes, we performed training and evaluation on 50k and 25k

sequences, respectively. Due to data limitation, E. fergusonii was
trained and evaluated on 40k and 5k sequences, respectively. The

pretrained and architecturally modified model was then finetuned

using HuggingFace transformers[46].

3.3 Evaluation Strategies
The performance of the model predictions were evaluated based

on two major aspects: prediction accuracy and secondary structure

similarity. For prediction accuracy, we computed three measures to

https://www.uniprot.org/uniref?query=*&facets=identity%3A1.0
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/562/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/208962/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/208962/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/564/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/1639/
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Figure 1: The accuracy per amino acid (right), and the per–
sequence average accuracy of unmasking (top left) and iden-
tity (bottom left) of (A) E. coli (B) E. albertii and (C) E. fergu-
sonii with known amino acids: KCYM

compare the primary sequence of the predicted and the true pro-

teins: per–token accuracy, average per–sequence unmasking accu-

racy (i.e, excluded known amino acids), and average per–sequence

total identity. Beside using an in–domain inference dataset to study

the performance of models (see Figure 1 and 2), we also exam-

ined cross–domain accuracy among the three species. This aims to

observe how taxonomic metrics (a prior knowledge about evolution-

ary distance in a phylogenic tree) correlates with the performance

of our model predictions (see Table 1). For the two sets of amino

acids (KCYM and KCYMRHWST), we performed testing infer-

ence on 5,000 sequences per species (randomly sampled from the

inference dataset for 3 folds as shown in Supplement Table ??).
To present useful amino acid suggestions/prioritization for ex-

perimental development in click chemistry based amino acid identi-

fication in the wet lab, we also performed training with amino acids

from the small set and one additional amino acid from ([RHWST]),

creating five additional study cases: KCYMR, KCYMH, KCYMW,

KCYMS, and KCYMT. This configuration was only applied to the

E. coli domain (with the same training protocols), and the inference

was done using E. coli with the same inference setups as KCYM
and KCYMRHST (see Table 2).

For the second aspect of measuring the quality of our predic-

tions, we analyzed an important property of proteins: structure.

AlphaFold2[23] is renowned for its high–accuracy prediction of

protein three–dimensional structures from amino acid sequences

Figure 2: The accuracy per amino acid (right), and the per–
sequence average accuracy of unmasking (top left) and iden-
tity (bottom left) of (A) E. coli (B) E. albertii and (C) E. fergu-
sonii with known amino acids: KCYMTHWST

using multiple sequence alignment in combination with a deep

learning architecture. Recently, these AlphaFold2 predicted struc-

tures have been widely adapted inside large annotated databases,

such as UniProt KnowledgeBase (UniProtKB)[47]. In this study, we

used AlphaFold2 platform to examine how predicted sequences

with less than 90% unmasking accuracy impact their structural in-

tegrity. Our study centered on sequences from the E. coli inference
(fold–1), derived from the KCYM case, with unmasking accuracy

bounded to the range [50–90]%. We used the AlphaFold Monomer

v2.3.2 and its reduced database (with template date 2022-01-01) to

generate structure predictions for our unmasked sequences. For

true sequences (only those annotated in the UniProtKB), we retrieve

the available AlphaFold2 structures from their database, which is

last updated in AlphaFold DB version 2022-11-01, and created with

the AlphaFold Monomer v2.0 pipeline. Filtering under these crite-

ria yielded a total of 124 sequences for our structure analysis (see

section 4.4). Supplement Figure ?? visualizes the protein structure

derived from the predicted sequence and the actual UniProtKB

sequence, these two structures overlaid, as well as the alignment

between the predicted and actual amino acid sequence for one of

these 124 proteins (UniProtKB ID A0A7H9QJ10). For additional

validation on structures generated by AlphaFold2, we employed

ESMFold v1.0, another protein structure prediction model with

high accuracy [23, 48], on the sampled protein A0A7H9QJ10 for

comparison in generated structures (see Supplement Figure ??).
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We computed the TM–score[24, 25] to compare the global simi-

larity between the topologies of two structures. For local similarity,

we computed the local difference distance test of the backbone

atoms (lDDT–C𝛼)[26, 49] between the two structures, similar to

the AlphaFold2 paper (see Figure 3).

4 RESULTS
4.1 Inference Accuracy
The accuracy of sequence predictions generated using the known

amino acids set KCYM is presented in Figure 1, and the set KCYM-
RHWST is presented in Figure 2 for Escherichia species. As shown
in the confusion heatmap for KCYM, even with a masking rate of

88.5%, the per–amino–acid accuracy reaches 74.7–80.9% in E. coli,
85.3–90.5% in E. albertii, and 83.8–88.8% in E. fergusonii. Accuracy
analysis of L. monocytogenes is shown in Supplement Figure ??.

The top left panel of Figure 1 shows that the average per–sequence

accuracies (unmasking and identity) vs. sequence length, averaged

per 50-residue bin and highlighted using the 75th percentile inter-

val. The average per–sequence unmasking accuracy and identity

are 73.53% and 76.75% for E. coli, 88.46% and 89.87% for E. albertii,
88.33% and 89.73% for E. fergusonii. The performance of the model

decayed when the protein sequence length exceeds the model’s

maximum length of 1024 residues. This behavior is expected due

to the property of the BERT model, which has linear positional

embedding and the training maximum length is set to be 1024

residues. Note that only about 5% of sequences in the data had

length exceeding this threshold.

After taking this into account, the line plots (left) indicate that

the performance of the prediction is more stable and accurate for

longer protein sequences. Specifically, with just the four known

amino acids KCYM, the unmasking accuracy for sequences longer

than 300 residues reached approximately 80% for E. coli and over

90% for E. albertii and E. fergusonii. However, it should be noted

that only about half of the protein sequences in these species are

longer than 300 residues.

In the case of knowing nine amino acids KCYMRHWST (see

Figure 2), where the masking rate is 67.1%, the per–amino–acid

accuracy reaches 84.1–89.1% in E. coli, 90.5–94.1% in E. albertii, and
90.5–94.0% in E. fergusonii. The average per–sequence unmasking

accuracy and identity are 83.26% and 88.96% in E. coli, 93.38% and

95.62% in E. albertii, 93.49% and 95.69% in E. fergusonii. For proteins
with length longer than 200 residues, representing 80% of protein

sequences, the unmasking accuracy of E. coli exceeds 80%, while E.
albertii and E. fergusonii exceed 90% accuracy.

4.2 Cross–species Performance
We evaluated the model’s performance in capturing evolutionary

information by cross–inferring each species’ protein sequences

using models trained on each other species. Our three species: E.
coli, E. albertii, and E. fergusonii, are all members of the Escherichia
genus, and thus are expected to share a significant amount of genetic

information, indicating a decent homology in protein sequences.

As shown in Table 1, when the model only knows the four amino

acids KCYM, the unmasking accuracy is high only when the train-

ing and inference are from the same domain (see section 4.1). The

unmasking accuracy is significantly lower when the model tries

predicting out–of–domain sequences, proportional to phylogenetic

distance between domains. The results of the KCYM case reveal

that, in the condition where the domain is specified, the model

predictions only need a small set of known amino acids (in this

case, KCYM) to capture the characteristics of the domain’s protein

sequences, achieving an average accuracy of at least 73%. However,

with this size of amino acids set, our model fails to capture the

nuance of sequences beyond the domain specified.

In the case of knowing nine amino acids KCYMRHWST, the
in–domain unmasking accuracy increased by 5–10% compared to

the previousKCYM case. Besides the high in–domain accuracy, the

model predictions for out–of–domain sequences also performed

much better, with the lowest accuracy at 64.02% when training on

E. fergusonii and inferring on E. coli, and the highest accuracy at

82.35% when training on E. coli and inferring on E. albertii.
Overall, the model trained on E. coli performed best on out–of–

domain inference, followed by E. albertii, and lastly E. fergusonii.
This outcome is expected due to the high yield of protein sequences

available from E. coli and E. albertii compared to E. fergusonii. In
summary, the cross–inference results indicate that knowledge of

the species to which a sequence belongs increases prediction ac-

curacy. Furthermore, they demonstrate the model’s potential for

predicting protein sequences based on another related species when

the sequences’ species identity may not be known.

4.3 Generalizability
From previous results (see section 4.1 and 4.2), our work suggests

that transformer models like BERT can predict protein sequences

with high accuracy, given prior knowledge of limited sets of amino

acids and the species domain. Additionally, the accuracy of the pre-

dictions increases significantly with a larger set of known amino

acids. However, expanding the set of identifiable amino acids intro-

duces exponential challenges in Edman degradation. This process

requires peptides to undergo more chemical identification cycles,

leading to an increased noise in sequencing and a higher risk of

unstable peptide degradation. Therefore, we investigated our model

performance on sequence prediction by using five different sets of

known amino acids as a guide for prioritizing amino acids to de-

velop future click chemistry based identification for; in essence we

are comparing how unmasking new amino acids ameliorate model

performance, and comparing these results to prioritize future wet

lab efforts. We evaluated the inference of five additional models,

which are trained on five known amino acids: four being KCYM
and one from the set ([RHWST]) amino acids (see Table 2).

Among the five experiments, the one with KCYMS has the

highest sequence coverage from known amino acids, at 17.69% (cor-

responding to 82.31% masking rate). However, the case of KCYMR
demonstrates the best, with average per–sequence unmasking ac-

curacy at 76.18% (2.65% more than KCYM), average per–sequence

identity at 80.48% (3.73% more), and per–token accuracy at 80.11%

(1.94% more). The other four cases show comparable results to

KCYMR (within 2% differences).

4.4 Structure Analysis
The comparison of lDDT–C𝛼 vs. TM–score between the predicted

and true sequences’ AlphaFold2 structures is shown in Figure 3, in
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Table 1: Inference unmasking accuracy and standard deviation across species and sets of amino acids

finetuning model on known tokens: KCYM (3 folds)
Pretrained
model

E. coli model E. albertii
model

E. fergusonii
model

L. monocy-
togenes model

E. coli 7.28% (0.01) 73.53% (0.49) 51.38% (0.17) 45.22% (0.09) 7.58% (0.03)

E. albertii 7.35% (0.02) 65.15% (0.49) 88.46% (0.18) 50.16% (0.64) 7.62% (0.03)

E. fergusonii 7.35% (0.03) 60.06% (0.35) 50.61% (0.34) 88.33% (0.15) 7.65% (0.01)

L. monocytogenes 6.58% (0.03) 7.60% (0.03) 7.70% (0.002) 7.67% (0.01) 88.22% (0.22)
finetuning model on known tokens: KCYMRHWST (3 folds)
Pretrained
model

E. coli model E. albertii
model

E. fergusonii
model

L. monocy-
togenes model

E. coli 9.94% (0.04) 83.26% (0.45) 69.08% (0.33) 64.02% (0.17) 18.18% (0.08)

E. albertii 9.89% (0.02) 82.35% (0.45) 93.38% (0.05) 71.04% (0.67) 19.07% (0.16)

E. fergusonii 9.79% (0.05) 79.58% (0.46) 72.49% (0.18) 93.49% (0.13) 19.29% (0.01)

L. monocytogenes 9.57% (0.01) 21.66% (0.10) 20.29% (0.17) 19.77% (0.20) 91.92% (0.21)

Table 2: Inference accuracy report and masking ratio of different sets of known amino acids

KCYM KCYMR KCYMH KCYMW KCYMS KCYMT KCYMRHWST
Per–token acc. [%] 78.17% (0.37) 80.11% (0.63) 78.67% (0.70) 79.35% (0.71) 78.58% (0.71) 80.07% (0.69) 86.82% (0.27)

Per–seq acc. [%] 73.53% (0.60) 76.18% (0.81) 74.81% (0.94) 75.61% (0.91) 75.10% (0.89) 75.52% (0.90) 83.26% (0.55)

Per–seq identity [%] 76.75% (0.53) 80.48% (0.65) 78.41% (0.79) 78.95% (0.78) 79.76% (0.73) 79.90% (0.73) 88.96% (0.37)

Masking ratio [%] 88.47% (0.01) 82.74% (0.09) 86.27% (0.07) 86.91% (0.05) 82.31% (0.07) 82.91% (0.03) 67.09% (0.03)

which the left panel is colored by per-sequence unmasking accuracy,

and the right panel is colored by sequence length.

The TM–score evaluates the global similarity between two struc-

tures, while the lDDT–C𝛼 assesses the local distances of the back-

bones. According to the plot, the high lDDT–C𝛼 can happens even

with low TM–score, but not the opposite where the TM–score is

high but lDDT–C𝛼 is low. This is often caused by the structures

having the large difference in the bending angles at the coil regions,

yield a divergence in the structure’s global shapes, and hence re-

sulted in low TM–score. But the local structure conformations, such

as alpha–helices and beta–sheets, are conserved, leading to high

value of lDDT–C𝛼 . An AlphaFold2 and ESMFold example result

(UniProtKB ID: A0A7H9QJ10) is presented in Figure ??, showing
the molecular view of two structures (using py3Dmol[50]) and their

pairwise alignment, colored by unmasking matches (green) and

mismatches (red). An additional illustrative example of a different

protein is presented in the appendix.

To know how our model prediction’s quality (measured by un-

masking accuracy) impacts the predicting protein structure, we

need to understand how the value of TM–score approximately cor-

responds to whether the protein pairs sharing the same topology.

Xu et al.’s paper, studied on the CATH and SCOP databases, re-

ported that the high posterior probability of two structures having

the same topology corresponds to a TM–score roughly between 0.4

and 0.6, with the specific threshold varies by datasets[24]. In our

structure results, reported from 124 samples of E. coli with known

set as KCYM, we also observed the decrease in general lDDT–C𝛼

values when the TM–score lower than 0.6, and hence 0.6 is our

evaluation threshold. This means for TM–score > 0.6, we have a

high statistical confidence that the two structures are the same

topology. And for TM–score < 0.6, we need to evaluate auxiliary

metrics such as lDDT–C𝛼 , unmasking accuracy, sequence length,

etc. to conclude the similarity in topology.

The Figure 3’s left panel suggests that we have a high confi-

dence in structure similarity between our predicted sequences and

true sequences (TM–score > 0.6) when the unmasking accuracy is

above 75%. For outliers where the unmasking accuracy > 75% but

TM–score < 0.6, we notices that their sequence length are often

long (see Figure 3’s right panel). Because of the sequence length,

these protein are thus expected to have higher chance having local

divergence, leading to a sensitive TM–score, but the high lDDT–C𝛼 .

While intuition may suggest that the low accuracy predictions

have low structure similarity, it is not the case. For TM–core > 0.6,

many of the sequences has unmasking accuracy < 75%, and some

are even less than 65%. These sequences are observed to often have

lower lDDT–C𝛼 compared to ones with high accuracy.

5 FUTURE DIRECTIONS
Peptide sequencing enabled by our language model will have many

important implications for the development of liquid biopsies, which

could yield more information for treatment decisions in the oncol-

ogy clinic. Liquid biopsy is a minimally invasive tool to identify

cancer biomarkers within fluids such as blood plasma and urine.

These liquid samples have been readily explored as sources of nu-

cleotide biomarkers such as non-coding RNAs and tumor-specific

DNA, but creating diagnostics based on proteins has been limited by
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Figure 3: C𝛼 LDDT vs TM–score generated from comparing E.
coli – KCYM’s predicted vs real sequence’s AlphaFold2 struc-
tures, colored in unmasking accuracy (left) and sequence
length (right)

signal to noise ratios for the detection of low-abundance hits, and

difficulty discerning the source of proteins to cancer- specific cells

without first isolating the circulating cancer cells [51]. However, liq-

uid biopsies are advantageous due to their safety, high repeatability,

ability to monitor disease progression and prognosis, all without

the need for an inpatient procedure [52].

There is a significant technological gap between current diagnos-

tic assays and the proteoform resolution necessary to characterize

and quantifiably identify cancer-specific biomarkers and prognosis

indicators [53]. Taken together, an improvement in proteoform iden-

tification and quantification with resolution to the single molecule

would foster rapid development and implementation of utilizing

well- studied proteoforms as both diagnostic and prognosis biomark-

ers. Optimally, such a technology would enable the detection of

protein analytes in fecal, urine, or plasma samples.

Thus, in the future, we aim to expand peptide sequencing via

the language model presented in this paper to develop a platform

to directly sequence proteins within a complex milieu through

highly-specific chemical ligation of amplifiable DNA barcodes for

amino acid identity, sequence position, and peptide identity which

provides a quantifiable readout with higher sensitivity than mass

spectrometry alone [54][5]. This future platform will driven by

closely entwined advancements in machine learning algorithm

design and chemical reaction development and characterization.

6 DISCUSSION
We present a protein language model designed to determine the

complete sequence of a peptide based on the measurement of a

limited set of amino acids. Traditional protein sequencing primarily

relies on mass spectrometry, with some novel Edman degradation-

based platforms capable of sequencing non-native peptides. How-

ever, these techniques face significant limitations in accurately

identifying all amino acids, thus hindering comprehensive pro-

teome analysis. Our approach simulates partial sequencing data

by selectively masking amino acids that are experimentally chal-

lenging to identify in protein sequences from the UniRef database,

therebymimicking real-world sequencing limitations. Bymodifying

and fine-tuning a ProtBERT-derived transformer-based model, we

predict these masked residues, providing an approximation of the

complete sequence. Unlike traditional multiple sequence alignment

(MSA) approaches, our model views sequence data as partial se-

quences, providing a new perspective and methodology for protein

sequence analysis.

Our method, evaluated on three bacterial Escherichia species,

achieves per-amino-acid accuracy of up to 90.5% when only four

amino acids ([KCYM]) are known. Structural assessments using

AlphaFold2 and TM-score validate the biological relevance of our

predictions, and the model demonstrates potential for evolution-

ary analysis through cross-species performance. This integration

of simulated experimental constraints with computational predic-

tions offers a promising avenue for enhancing protein sequence

analysis. By improving our ability to interpret partially sequenced

data, our approach has the potential to accelerate advancements in

proteomics and structural biology, enabling a probabilistic recon-

struction of complete protein sequences from limited experimental

data.

OxfordNanopore’s DNA/RNA sequencing platform,whichmakes

inferences from incomplete signal (squiggles) and converts them

algorithmically to sequence space, initially performed with lower

accuracy when first introduced [55, 56] than our model in terms

of accuracy of inferred sequence. This suggests that our computa-

tional model paired with a few additional wet lab improvements has

the potential to yield the first clinically useful protein sequencing

platform.

However, several challenges remain. Experimental verification is

essential to validate our computational predictions and ensure their

biological relevance. Additionally, successfully implementing the

hypothetical Edman degradation pipeline requires effective peptide

immobilization techniques without C-terminus modification. Over-

coming these hurdles will be crucial for the practical application of

our method.

This integration of simulated experimental constraints with com-

putational predictions offers a promising avenue for enhancing

protein sequence analysis. By improving our ability to interpret

partially sequenced data, we aim to accelerate advancements in pro-

teomics and structural biology, potentially unlocking new insights

into protein structure and function.

The future directions for our research involve expanding peptide

sequencing via our language model to develop a platform capable

of directly sequencing proteins within complex milieus. This will in-

volve highly specific chemical ligation of amplifiable DNA barcodes

for amino acid identity, sequence position, and peptide identity,

providing a quantifiable readout with higher sensitivity than mass

spectrometry alone [54][5]. Such advancements will drive closely

intertwined developments in machine learning algorithm design

and chemical reaction characterization, ultimately fostering rapid

implementation of proteoform-based diagnostics and prognostics.

In summary, our computational approach, validated through pre-

dicted structures generated using AlphaFold2 and evaluated using

TM-score and lDDT–C𝛼 , demonstrates significant potential for im-

proving protein sequence analysis. By integrating these predictions

with experimental techniques, we aim to bridge the gap between

current technologies and the high-resolution identification required

for advanced proteomics.
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