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Abstract

Embodied systems experience the world as ‘a symphony of flows’: a combination of many
continuous streams of sensory input entrained to self-motion and intertwined with the mo-
tion of external objects. These streams obey smooth, time-parameterized symmetries (e.g.
translating or expanding optic flow), yet most neural network sequence models ignore this
structure, and instead laboriously re-learn the same transformations from data. In this
work, we introduce ‘Flow Equivariant World Models’, a framework in which both self-
motion and the motion of external objects are unified as one-parameter Lie group ‘flows’
thereby enabling group equivariance with respect to these ubiquitous transformations. On
a 2D partially observed world modeling benchmark, Flow Equivariant World Models learn
with an order of magnitude fewer training iterations and consequently outperform a com-
parable state-of-the-art diffusion-based world-modeling architecture — particularly when
there are predictable world dynamics outside the agent’s current field of view. The flow
equivariant update rule also remains stable over hundreds of future rolled-out timesteps,
generating a latent map robust to internal and external motion. Project page: Link.
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1. Introduction

The sensory experience of embodied agents can be understood as a composition of trans-
formations originating from both internal and external sources. As an agent navigates
in the world, its experience transforms in a highly structured manner with respect to its
own actions: as it turns to the right, its visual input inversely flows left. Simultaneously,
the natural dynamics of external objects combine with this self-motion to yield a complex
entangled flow of stimuli. This flow is challenging to model accurately even when fully
observed; when combined with the inherently limited field of view of embodied agents, the
task becomes nearly insurmountable, even for today’s state-of-the-art world models.
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Figure 1: Partially observable dynamic world modeling. Grayed out areas are not visible
to the agent at time ¢t. The agent moves its view each timestep via action ay.

In this work, we study this task of partially observed dynamical world modeling (visual-
ized in Figure 1), combined with the inherent self-motion of embodied agents, and investi-
gate if we might be able to account for both external and internal sources of visual variation
in a geometrically structured manner. Specifically, we find that both internal and external
motion can be understood as mathematical ‘flows’, enabling both sources of variation to be
handled exactly as time-parameterized symmetries through the framework of ‘flow equivari-
ance’ (Keller, 2025). We demonstrate that we can construct flow equivariant world models
that handle self-generated motion in a precisely structured manner, while simultaneously
capturing the motion of external objects, even outside the agent’s field of view. We show
that this yields substantially improved world modeling performance and generalization to
significantly longer sequences than those seen during training, highlighting the benefits of
precise spatial and dynamical structure in world models.

2. Flow Equivariant World Models

A neural network ¢ is said to be equivariant if its output, ¢(f), changes in a structured,
predictable manner when the input f is transformed by an element g of the group G, i.e.
?(g-f) = g-o(f). This constraint, often imposed analytically through weight-tying (Cohen
and Welling, 2016; Ravanbakhsh et al., 2017), induces a type of representational struc-
ture which enables both improved data efficiency and generalization (Worrall et al., 2017;
Batzner et al., 2022). Recently, Keller (2025) introduced the concept of flow equivariance,
extending existing ‘static’ group equivariance to time-parameterized sequence transforma-
tions (‘flows’), such as visual motion. These flows are generated by vector fields v (elements
of a Lie algebra g of G), and written as ¢,(r) € G. A sequence-to-sequence model ®, map-

ping from (fo,..., fr) = (yo,...,yr) is then said to be flow equivariant if, when the input
sequence undergoes a flow, the output sequence transforms according to a proper flow rep-
resentation, i.e. (I)(Q/)()(I/)-fo, e wT(V)-fT) = (wo(u)-yo, e Q,Z)T(V)-yT), To achieve this,

Keller (2025) demonstrated that it is sufficient to perform computation in the co-moving
reference frame of the input. In other words, for a simple Recurrent Neural Network (RNN),
the hidden state must flow in unison with the input, i.e. hiyar = o (Vac(v) - he + fi). To
achieve equivariance with respect to a set of multiple flows (v € V'), Flow Equivariant RNNs
possess multiple hidden state ‘velocity channels’, each flowing according to their own vector
fields v (denoted as hy(v)), illustrated as stacked rows in Fig. 2 a).
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Self-Motion Equivariance In this work, we leverage the fact that motion is relative (i.e.
self-motion is equivalent to the motion of the input) to additionally achieve equivariance
to self-motion in a unified manner — with the core difference being that self-motion is
accompanied by a known action (a;) between the intervening observations. This additional
information (knowledge of a;) allows us to build a world model which operates in the co-
moving reference frame of the agent, thereby achieving self-motion equivariance, without
any additional ‘velocity channels’ — we call this model FloWM.

Specifically, given the action a;, we transform the hidden state of the network to flow
according to the corresponding induced visual flow. In this work, we assert the action is an
element of the Lie algebra, i.e. a; € g (otherwise a mapping can be performed). The visual
flow induced by the action in the agent’s reference frame, the ‘Action Flow’ (¢1(—ay¢)),
then combines with the ‘Internal Flows’ (¢1(v)) of the ‘velocity channels’, resulting in the
following Self-Motion Flow Fquivariant Recurrence Relation:

hip1(v) = o(Y1(v — ar) - W x hy(v) + pad(U * f1)), (1)

where W x hy, and U x f; denote convolutions over the hidden state and input spatial di-
mensions (or group dimensions for groups beyond translation). We see that this unified
framework effectively ‘factors out’ both self-motion and the motion of external objects from
agents’ observations in a group-theoretic manner, thereby supporting a broader set of actions
than prior work (Parisotto and Salakhutdinov, 2017). To model partial observability, we
simply write-in-to (denoted ‘pad(-)’), and read-out-from, a fixed window_size < world_size
portion of the hidden state (blue dashed square in Fig. 2(a)), letting the rest of the
hidden state flow around the agent’s field of view according to ¥1(v — a;). In partic-
ular, the hidden state is windowed at each timestep, pixel-wise max-pooled over ‘veloc-
ity channels’ and passed through a decoder gy to predict the next observation, explicitly:
fir1 = g0 (mgx(window(htﬂ))). We provide more model details in Appendix D, and in A

we review related models that have similarly structured representations with respect to self-
motion, but may be seen as special cases of this framework without input-flow equivariance.

3. Experiments

To test our architecture on partially observable dynamic world modeling, we propose a
simple MNIST World dataset. The world is a 2D black canvas with multiple MNIST
digits moving with random constant velocities. The agent is provided a view of the world,
smaller than the world size, yielding partial observability. At each discrete timestep, the
world evolves according to the velocity of each object, and the agent takes a random action
(relative (z, y) offset) to move its viewpoint. Given 50 observation frames, the task is to
predict the dynamics played out for 20 future frames, integrating future self-motion (given)
and world dynamics. To test length generalization, each validation video has 50 observation
frames and 150 prediction frames. We include ablations on data subsets with different
combinations of partial observability, object dynamics, and self-motion in Appendix B.

On the MNIST World dataset, we train and evaluate our proposed Flow Equivariant
World Model (FloWM), which includes velocity channels (VC) and self-motion equivariance
(SME). We also include ablations FloWM (no VC), FloWM (no VC, no SME), and a state
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Figure 2: a) FloWM Recurrence relation. Velocity channels are plotted as rows, with the
‘read-in’ and ‘read-out’ portion of the hidden state highlighted in blue. b) Rollout MSE
shows length generalization of FloWM. ¢) Training curves show efficient learning of FloWM.

of the art diffusion forcing transformer video world model, termed here DFoT. We note
here that FloWM (no VC, no SME) is just a simple convolutional RNN. More training
and model details are available in Appendices D and E. At each timestep, we calculate the
MSE of the predicted frame for each model, reported in Figure 2(b) and Table 1. Example
rollouts and full world view visualizations are available in Figure 3.

Predictions from the FloWM remain consistent with the motion of objects out of its
view for 150 timesteps past the observation window, well beyond its training horizon of
20 prediction timesteps, while FloWM with (no VC, no SME) fails. We find that the
FloWM with (no VC) can still somewhat learn to model unobserved dynamics, especially
within its training window, but drifts over time. We find models combining SME and VC
require orders of magnitude less training steps to converge, shown in Figure 2(c). The
DFoT model’s predictions quickly diverge from the ground truth, even within its training
window, generating plausible digit-like artifacts. Through additional results in Appendix
C, we explore how the DFoT model can sometimes handle partial observability, object
dynamics, and self-motion individually, but not in any combination.

4. Conclusion

In this work, we have introduced Flow Equivariant World Models, a new framework unify-
ing both internally and externally generated motion for more accurate and efficient world
modeling in partially observable settings with dynamic objects out of the agent’s view. Our
results on a simple dataset with these properties demonstrate the limitations with current



FLow EQUIVARIANT WORLD MODELS

t=49 t=51 t=53 =55 t=127 t= 129 t= 131 t=133 t 193 t=195 t 197 t=199

FlowM
(Ours)

FlowM
(no VC)

FlowM

o m... .... ....
no SME)

b )
- REEE EEFK XYBE

Figure 3: Prediction rollouts over time for FloWM and
baselines. Timesteps 0 to 49 are given as observations.
Note that FloWM does not diverge even at timestep 199.

Table 1: MSE for rollouts of
20 and 150 frames. We see the
FloWM without velocity chan-
nels is able to model the se-
quences well for the training
length (20), but generalizes far
beyond to 150 frames with full
flow equivariance.

Model 20 150
All-Black Baseline 0.16410  0.16410
FloWM (Ours) 0.00058 0.00294
(no VC) 0.00410 0.03380
(no VC, no SME) 0.12242  0.13072
DFoT 0.14874  0.21281

state-of-the-art diffusion-based video world models and highlight the importance of unified
equivariance with respect to motion for handling such settings.
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Appendix A. Related Work

Generative World Modeling with Memory Generative World Models (Ha and Schmid-
huber, 2018; Brooks et al., 2024) aim to simulate and predict how environments evolve over
time in frames. They have broad applications in reinforcement learning (Hafner et al., 2024;
Samsami et al., 2024; Hansen et al., 2024), autonomous driving (Bar et al., 2025; Yang et al.,
2023; Russell et al., 2025; Jia et al., 2023; Wang et al., 2024), robotics (Yang et al., 2023;
Agarwal et al., 2025; Ali et al., 2025; Taniguchi et al., 2023), and planning (Hao et al.,
2023; Cloos et al., 2024), where agents must anticipate future states in order to reason and
act (Gao et al., 2025). Recent works have moved toward building more generalizable and
large-scale world simulators with interactability and persistence (Ball et al., 2025; Agarwal
et al., 2025; Xiang et al., 2024), with game engines emerging as a promising area of interest
reliant on these aspects (He et al., 2025; Ball et al., 2025; Bruce et al., 2024; Dynamics
Lab, 2025; Guo et al., 2025). However, a critical limitation remains: most generative world
models lack a semblance of memory. Autoregressive rollouts with transformer models have
limited context windows, and remaining consistent with information outside of the context
window requires something beyond naive self attention. As a result, long rollouts often
produce contradictions with earlier context or previously generated sequences, undermining
temporal coherence. Although recent explorations have introduced memory mechanisms
through explicit (with 3D priors) (Zhou et al., 2025; Xiao et al., 2025; Yu et al., 2025) or
implicit (based on neural / learned components) (Po et al., 2025; Gu et al., 2025; Savov
et al., 2025) memory mechanisms, the focus has been on maintaining physical consistency
with a static world. Dynamics are included in some datasets, but are not the main focus;
especially the dynamics of objects outside the current field of view has not yet been stud-
ied as the main focus with the context of image space world modeling, to our knowledge.
Prediction of the world necessarily requires predicting the state evolution of occluded or un-
seen entities, especially in real-world settings. Addressing this gap is crucial for advancing
toward faithful and embodied generative world models.

Partially Observable Environments and Tasks Partial observability is a fundamental
challenge in embodied Al and reinforcement learning, and a variety of benchmarks and
environments have been developed to study it. Existing tasks can be broadly categorized
along three dimensions. The first concerns whether the underlying environment is dynamic
or static. The second concerns how partial observability (PO) is introduced: (i) PO within a
fixed view, typically through object occlusion or objects moving in and out of view; (ii) PO
outside the current view, which requires changes in the ego perspective. The third dimension
is the task objective: some benchmarks are designed for question answering under PO, while
others target next-state prediction, i.e. world modeling. We posit that the combination of
all three dimensions — dynamic environments, with partial observability outside the current
view, targeting world modeling — is currently understudied and underdeveloped.

A first branch of existing work lies in the fixed-view setting, where PO arises from
occlusion in 3D scenes. Vision benchmarks such as CATER (Girdhar and Ramanan, 2020)
and IntPhys (Riochet et al., 2020) capture such occlusion scenarios, but remain focused on
passive observation without involving an embodied agent or dynamics outside the current
field of view.
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A second branch tests out-of-view partial observability, frequently utilizing simulators
to control the state of the world. Early work introducing partially observable markov
decision processes in environments like partially observable pacman require a rough un-
derstanding of the state of the world that may include dynamics (Hausknecht and Stone,
2017), but the task is entangled with decision making on a limited domain. 3D plat-
forms such as DMLab (Beattie et al., 2016), VizDoom (Kempka et al., 2016), and Mini-
World /MiniGrid (Chevalier-Boisvert et al., 2023), probe exploration or combat with com-
pact observations. For example, Pasukonis et al. (2022) introduces a memory maze using
DMLab to evaluate the static memory of RL agents. Among these simulators, DMLab is
largely static, while VizDoom and MiniGrid can introduce dynamics out-of-view.

Newer benchmarks approach dynamic PO but for the most part, they are primarily
focused on QA rather than explicit next-state forecasting. Dynamic House (Kurenkov
et al., 2023) includes evolving scenes and asks for future relations (e.g., whether an ob-
ject moved rooms when hidden), effectively casting dynamics as link prediction. Hazard
Challenge (Zhou et al., 2024) evaluates decision-making under evolving disasters (e.g. fire,
flood). WorldPredictions (Chen et al., 2025) studies world modeling in a partially observ-
able semi-MDP, but emphasizes action selection and procedural planning. Similarly, first-
person embodied QA datasets over long videos (Ye et al., 2025; Das et al., 2018; Kim and
Ammanabrolu, 2025) combine partial observability with dynamics but are retrospective:
they query past observations rather than test predictive reasoning about where previously
dynamic objects might be now.

Although many relevant tasks and environments exist, to our knowledge, there are still
no direct evaluations designed to test world models on their ability to understand, encode,
and predict dynamics under partial observability. Nevertheless, these existing environments
provide valuable building blocks for constructing benchmarks that assess whether generative
world models can move beyond static memory to capture the evolving dynamics of objects
out of view.

Equivariant World Models Equivariant models respect the symmetry of their data,
ensuring that structured transformations in the input induce predictable changes in the
model’s internal state. This inductive bias has indeed been found to be valuable in prior
work on world modeling. Specifically, although not explicitly framed as equivariant, one
of the most related world modeling architectures to our proposed self-motion equivariance
is the Neural Map (Parisotto and Salakhutdinov, 2017). This work introduced a spatially
organized 2D memory that stores observations at estimated agent coordinates. The storage
location of these observations is shifted precisely according to the agent’s actions, yielding
an effectively equivariant ‘allocentric’ latent map. In Section 5 of the paper, the authors
describe an egocentric version of their model which can in fact be seen as a special case
of our FloWM, specifically equivalent to the ablation without velocity channels. The au-
thors demonstrate that their allocentric map enables long-term recall and generalization in
navigation tasks. In a similar vein, EgoMap (Beeching et al., 2020) built on this by leverag-
ing inverse perspective transformations to map from observations in 3D environments to a
top-down egocentric map. This work also explicitly transforms the latent map in an action-
conditioned manner, although the transformation is learned with a Spatial Transformer
Network, making it only approximately equivariant. Our work can be seen to formalize

13



LILLEMARK HUANG ZHAN DU KELLER

these early models in the framework of group theory, allowing us to extend the action
space beyond just spatial translation to any Lie group and any world space. For example,
our framework can theoretically support full 3-dimensional ‘neural maps’ without problem,
following the framework of flow equivariance. Finally, there are a few other works that
discuss equivariant world modeling, but are less precisely related to our own. Specifically,
(van der Pol et al., 2021) was one of the first works to build equivariant policy and value
networks for reinforcement learning, but not with respect to motion, instead with respect to
the symmetries of the environment (such as static rotations or translations). More recent
work (Park et al., 2022; Ghaemi et al., 2025) proposes to approach the goal of building
equivariant world models in a more approximate manner by conditioning or encouraging
equivariance through training losses, rather than our approach which builds it in explicitly.
Overall, we find all of these approaches to be complementary to our own and are excited
for their combined potential.

Appendix B. Dataset Details

Here, we describe dataset generation and parameter settings for our ablations on self-motion,
dynamics, and partial observability in the MNIST world setting. The subsets are succinctly
described in Table 2, and the generation parameters in Table 3. A subset is described as
partially observable if the world size is larger than the window size. We also scale the
number of digits by the size of the world. FEach dataset example has a video of shape
[num_frames, channels, height, width], where channels is 1; and an accompanying
actions list of shape [num frames, 2], for the x and y translation of the agent view at
each timestep. Each dataset subset contains 180,000 videos in the training set, and 8,000
videos in the validation set. The dynamic_fo_no_sm subset just has dynamics and is fully
observable; the dynamic_fo subset has dynamics and is fully observable, but also has self-
motion; the static_po subset is partially observable, and the agent has self-motion, but the
digits do not move; and finally, the dynamic_po subset includes partial observability, agent
movement, and dynamics. In the main text, we report all results on just the dynamic_po
subset. For all subsets with dynamics, each digit is given an integer velocity for x and y
in the digit velocity range (e.g., -2 to 2). For each dataset with self-motion, at each step
during the observation and prediction phase, a random integer is chosen in x and y to be
the agent’s view translation, bounded by the self-motion range (e.g., -10 to 10). For each
dataset, objects that move across the boundary reappear on the other side as a circular
pad. Results on each of these data subsets for FloWM and baseline models are described
in Appendix C.
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Data Subset Self-Motion Dynamics Partially Observable
dynamic_fo_no_sm No Yes No
dynamic_fo Yes Yes No
static_po Yes No Yes
dynamic_po Yes Yes Yes

Table 2: MNIST world data subsets demonstrating scaling difficulty in self-motion, dynam-
ics, and partial observability.

World Window . . Self-motion  Digit Velocity
Data Subset Size Size # Digits Range Range, x and y
dynamic_fo_no_sm 32 32 3 0 -2 to +2
dynamic_fo 32 32 3 10 -2 to +2
static_po 50 32 ) 10 0
dynamic_po 50 32 ) 10 -2 to 42

Table 3: Generation parameters for dataset subsets.
Appendix C. Additional Results

Here we report additional results on the MNIST World subsets described in Appendix B.
We evaluate the FloWM, DFoT, and FloWM ablations described in Appendix D.

The error (MSE) between the predicted future observations (rollout) and the ground
truth is plotted for each baseline in Figure 4 as a function of forward prediction timestep (x-
axis). The average MSE over the first 20 timesteps (the training length) and over the full 150
timesteps (length generalization) is summarized in Table 4. Due to being constructed with
a different number of digits, MSE between the data subsets are not necessarily directly
comparable. We provide the All-Black Baseline (model that only predicts 0 for future
observations) as a form of normalization for comparison.

All models are able to do reasonably well on the simplest fully observable dataset with no
self-motion; note here the DFoT is doing latent diffusion, so there is a small amount of MSE
error from the decoding step, around 0.02, see Appendix E.4 for more details. This setup
aligns with the typical setting of world modeling, where the information that the model
needs is expected to be in the attention window. The other dataset splits do not follow this
assumption, and the results align with expectations about the model’s capabilities. The
DFoT does relatively better on the static static_po compared to the dynamic_po dataset,
due to not having to model dynamics, but the model’s outputs still diverge from the ground
truth quickly.

For a dataset where the velocity channels are redundant, i.e. static_po, the FloWM
(no VC) does slightly better than FloWM. Further note that the FloWM (no VC) is able
to have low error on most of the tasks, though with a much higher value than FloWM
as errors accumulate due to not having the velocity channels to encode flow equivariantly.
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Figure 4: Rollout Error (MSE) vs. Forward Prediction Steps for all data subsets. The
dynamic subset is replicated from the main text for ease of comparison.

Table 4: Validation MSE. Columns show mean MSE over the first 20 frames (matches

training distribution) vs. 150 frames (length generalization). Models that ‘solve’ the task
are in bold (MSE < 0.05).

Model dynamic_fo_no_sm dynamic_fo static_po dynamic_po
20 150 20 150 20 150 20 150
All-Black Baseline 0.2372 0.2372 0.2363 0.2363 0.1636 0.1636 0.1641 0.1641
FloWM (Ours) 0.00013 0.00117 0.00035 0.00249 0.00013 0.00509 0.00058 0.00294
(no VC) 0.00028 0.01460 0.00075 0.26493 0.00002 0.00004 0.00410 0.03380
(no SME) 0.00007 0.00179 0.15534  0.16063  0.12035  0.12947  0.12250  0.12909

(no SME, no VC) 0.00032 0.03198 0.15537  0.18079  0.12037  0.14079  0.12242  0.13072
(action concat) 0.00021 0.02070 0.13402  0.15452  0.09449  0.11827 0.11161  0.13438
DFoT 0.02321 0.04285 0.22805  0.29419  0.10658  0.22723  0.14874  0.21281

Taken together, the ablations suggest that self-motion equivariance is key to solving the
problem, and that input flow equivariance via velocity channels helps with exactness and
convergence time, with the tradeoff of a larger hidden state activation size.
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Appendix D. FloWM Experiment Details

In this work, we introduce the Flow Equivariant World Model (FloWM). The model is
built as a simple sequence-to-sequence RNN with small CNN encoders/decoders to model
MNIST digit features.

For completeness, we repeat the FloWM recurrence relation below:

hip1(v) = o (1(v — ar) - W by(v) + pad(U * f1)). (2)

D.1. Recurrence

The hidden state hy € RIVIXChiaXHuworaxWuworia has |V| velocity channels (indexed by the
elements v € V), and Cp;q = 64 hidden state channels. The spatial dimensions of the
hidden state are set to match the world size for each dataset. For the partially observed
world, this means Hyorig = Wioria = 50 (where the window size is set to 32 x 32), while for
the fully observed world, Hyorid = Wworia = 32. The hidden state is initialized to all zeros
for the first timestep, i.e. hg = 0.

The hidden state is processed between timesteps by a convolutional kernel WW. This
kernel has the potential to span between velocity channels, and therefore model acceleration
or more complex dynamics than static velocities. In this work, since our dataset has no
such dynamics (we only have constant object velocities), we safely ignore the inter-velocity
convolution terms, and simply set W to be a 3 x 3 convolutional kernel, with 64 input and
output channels, circular padding, and no bias. We refer the interested reader to Keller
(2025) for details on the form of the full flow-equivariant convolution that could be equally
used in this model. The hidden state is finally passed through a non-linearity o to complete
the update to the next timestep. In this work, we use a ReLU.

D.2. Velocity Channels

In this work, we add velocity channels up to +2 in both the X and Y dimensions of the
image. Explicitly, V = {(-2,-2),(-2,—1),...(0,0)...(2,2)}. Thus in total, |V| = 25 for
the FloWM. Each channel is flowed by its corresponding velocity field (defined by v (v)) at
each step. This is denoted by ¥ (v) - he(v).

The actions of the agent then induce an additional flow of the visual stimulus, as depicted
in Figure 2. In order to be equivariant with respect to this flow in addition to the flows in
V', we simply additionally flow each hidden state by the corresponding inverse of the action
flow ¥ (—a;). In total this gives the combined flow for each flow channel ¢;(v — a;). In
practice, this is implemented by performing a roll operation on the hidden state by exactly
(v — at) pixels.

D.3. Encoder

The ‘encoder’ is simply a single convolutional layer, with 3 x 3 kernel ¢/, 1 input channel, and
64 output channels. The convolution uses circular padding, and no bias. The observation at
timestep t (f;), is thus processed by the encoder (U x f;) yielding the processed observation
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of the agent. Given this observation is only a partial observation of the full world, we
must pad this observation to match the world size, and the size of the hidden state. We
denote this operation as ‘pad’ in the recurrence relation, and simply pad the boundary of
the output of the encoder with 0 to match the world-size (size of the hidden state).

D.4. Decoder

We learn the parameters of the FloWM by training it to predict future observations from its
hidden state and the corresponding sequence of future actions. To compute this prediction,
we take a consistent window _size crop from the center of the hidden state, corresponding
to the same location where the encoder ‘writes-in’. We denote this crop window(h¢11). To
then enable the model to predict each pixel’s velocity independently, we perform a pixel-
wise max-pool over the V' dimension (‘velocity channels’) before passing the result to a
decoder gg. Specifically: fir1 = go (ml?x (window(ht+1))). The decoder gy is a simple 2
layer convolutional neural network with 3 x 3 convolutional kernels, 64 hidden channels,
and a ReLLU non-linearity between the layers.

D.5. Ablation: No Velocity Channels

To construct the ablated version of the FloWM with no velocity channels, we simply set
V = {(0,0)}. Since the original FloWM model simply max-pools over velocity channels,
the decoder already only takes a single velocity channel as input, so no other portions of
the model need to change. We note that this model is identical to a simple convolutional
recurrent neural network with self-motion equivariance. Explicitly:

hip1 = o (V1(—a) - W hy + pad(U * f1)). (3)

D.6. Ablation: No Self~-Motion Equivariance

To construct the ablated version of the FloWM with no self-motion equivariance, we simply
remove the term —a; from the flow of the recurrence relation. Explicitly:

hip1(v) = o(1(v) - W he(v) + pad(U * f1)). (4)

We note that this is equivalent to the original FERNN model with the addition of the
partial-observability modifications (padding the input and windowing the hidden state for
readout).

D.7. Ablation: No Velocity Channels 4+ No Self-Motion Equivariance

To ablate both velocity channels and self-motion equivariance, we reach a simple convolu-
tional RNN:

ht+1 = O'(W*ht —i—pad(U*ft)) (5)
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D.8. Ablation: Conv-RNN + Action Concat

In the appendix, we additionally include a version of the model with no velocity channels,
no self-motion equivariance, but with action conditioning for both the input and hidden
state. Specifically, we concatenate the current action to the hidden state vector and the
input image as two additional channels (corresponding to the x and y components of the
action translation vector), and change the number of input channels for both convolutions
correspondingly. Explicitly:

hi11 = o (W * concat(hy, at) + pad(U * concat(f¢, ar))). (6)

Empirically, we find that this additional conditioning marginally improves the model
performance; however, the model is still clearly unable to learn the precise equivariance
that the FloWM has built-in.

D.9. Training Details

To train the FloWM, as well as the ablated versions, we provide the model with 50 obser-
vation frames as input, and train the model to predict the next 20 observations conditioned
on the corresponding action sequence. Specifically, we minimize the mean squared error
(MSE) between the output of the model and the ground truth sequence, averaged over the
20 frames (from frame 50 to 70):

| o0 )
Luse = 55 > s — fills- (7)

t=50

The models are trained with the Adam optimizer with a learning rate of le — 4, a batch
size of 32, and gradient clipping by norm with a value of 1.0. They are each trained for 50
epochs, or until converged. Some models, such as the FloWM with self-motion equivariance
but no velocity channels, took longer than 50 epochs to converge, and thus training was
extended to 100 epochs. All FloWM models (and ablations) have roughly 75K trainable
parameters.

Appendix E. Video Diffusion Transformer Baseline Details
E.1. Video Diffusion Transformers

Diffusion Transformer based video generation models are the most prominent so-called world
models today (Peebles and Xie, 2023; Brooks et al., 2024). Training follows a similar formula
with diffusion image generation pipelines, requiring attention over the temporal dimension
to retain temporal consistency. For video data, diffusion models are typically trained within
the latent space of a variational autoencoder (VAE) (Rombach et al., 2022; Gupta et al.,
2023), where raw video frames are first compressed into compact latent representation.

The ability for these video diffusion models to generate impressively realistic videos has
led to an increased interest for their use as world models, and there is a growing focus
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in ensuring the spatiotemporal consistency of these models as world simulators. Due to
the size complexity of the input token space, to generate long videos, researchers have
turned to autoregressive sampling and sliding window attention; though ubiquitously used,
we speculate that the drawbacks of this method for inference, where there is no hidden
state passed between generation rounds after the window shifts, is a major reason that DiT
baselines fails on the simple task presented in this work.

E.2. Diffusion Forcing Transformer Baseline

Due to its claims of long term consistency and flexible inference abilities, for our baseline
we chose a History-guided Diffusion Forcing training scheme, using latent diffusion with a
CogVideoX-style transformer backbone, which we will call here DFoT (Song et al., 2025;
Chen et al., 2024; Yang et al., 2025; Rombach et al., 2022). Models for state of the art
video world modeling today have similar training formulas and architectures for the back-
bone (Xiang et al., 2024; Ball et al., 2025; Decart et al., 2024; Agarwal et al., 2025). We
first trained a spatial downsampling VAE on frames of the MNIST-world data subsets, then
pass input video frames through the VAE to form a latent representation before it reaches
the diffusion model.

Following the standard diffusion forcing training scheme, each frame during training is
corrupted with independent gaussian noise, and the training target is to predict some form
of the ground truth from these noisy frames. Song et al. (2025) showed that using this
training schedule allows for the history image frames to be prepended to the noisy frames
as context in the same self attention window, with zero (or some minimal) noise level, called
History Guidance.

For DFoT models, unlike FloWM recurrent models, during training we make no dis-
tinction between observation and prediction frames, and train on length 70 sequences in
the self-attention window, where each frame’s tokens receive independent gaussian noise.
During inference, we utilize History Guidance with 70 frames in the attention window to
provide image context for consistent generation. Specifically, the 50 observation frames are
given minimal noise, and the 20 prediction frames all begin at full noise; then the entire set
of frames is passed through the model multiple times according to the scheduler to complete
denoising the target frames to get clean frames as outputs. Specifically, each latent frame
in the sequence x; € x, is assigned an independent noise level k; € [0,1]. Each frame
(more precisely, each collection of spatial tokens corresponding to a single frame) is noised
according to the following equation:

Xi' = agpx) +ope, e~ N(0,1), (8)

where ay, and oy, denote the signal and noise scaling factors, respectively, determined by
the chosen variance schedule. The diffusion model ¢y takes in as input a sequence of noise
levels, k., and the sequence of independently noised inputs x77. The model is trained to
minimize the following diffusion loss:

€r — €p (xﬁf, k:T> H2] . (9)

IEk’-r » X167 |:
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For more information on diffusion models in general, please see Chan (2025).

To run inference for generation of longer videos (as in the length extrapolation exper-
iments), we use a sliding window approach, matching the number of frames seen during
training in the self-attention window. Specifically, we keep 50 context frames, shift the win-
dow ahead by 20 frames after each chunk is done denoising, and use the newly generated
frames as context for the next generation round.

E.3. DFoT Training Details

We train a separate DFoT model for each data subset to separate out its abilities. We
embed actions, which are dimension 2, using a simple MLP embedder, and concatenate it
to the video tokens, following CogVideoX. Our 96M parameter DFoT’s validation loss and
validation metrics converge after 240k steps on 1 NVIDIA L40S 48GB GPU with a batch
size of 128. More training hyperparameters are reported in Table 5.

E.4. VAE Training Details

Following standard practice, we use a VAE to perform latent diffusion; doing diffusion on
pixels instead could offer perceptually different results, but we do not believe it would alter
the results of the model. We train our 8x spatial downsampling VAE on sample frames from
a mix of all of the data subsets, such that all combinations of overlapping MNIST digits
are within the training distribution. Our 20M parameter VAE’s validation loss converges
at about 90k steps, using an effective batch size of 256 across 4 NVIDIA L40S 48GB GPUs
with a learning rate of 4e-4. We utilize a Masked Autoencoder Vision Transformer based
VAE (He et al., 2021). We directly apply the VAE code from Oasis (Decart et al., 2024),
including an additional discriminator loss that helps with visual quality; please refer to their
work for more details. The reconstruction MSE accuracy reaches 0.02, so any DFoT MSE
can be expected to be 0.02 higher than if trained on pixels; we believe this should not affect
convergence behavior of the DFoT models on the downstream task. During diffusion train-
ing, for our VAE with latent dimension 4, and spatial downsampling ratio 8, input videos
of shape [num_frames, channels, height, width] are converted to shape [num frames,
4, height // 8, width // 8]. More training hyperparameters are reported in Table 6.
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Table 5: DFoT configurations. Classifier-free guidance (Ho and Salimans, 2022) for con-
ditions is not used during inference; though the models have been trained to allow for it,
we find their instruction following ability not to be a limiting factor. Loss weighting uses
sigmoid reweighting proposed by Kingma and Gao (2023) and adopted by Hoogeboom et al.
(2024). History guidance follows the stablized conditional method (level = 0.02) from Song
et al. (2025); please refer to their code base for details.

Section Key Value
Effective batch size 128
Learning rate 2e-4 with linear warmup
Warmup steps 2,000
Weight decay le-3
Training  Training epochs 175
GPU usage 1xL40S
Optimizer Adam, betas=(0.9, 0.99)
Training strategy Distributed Data Parallel
Precision Bfloat16
Objective v-prediction
Diffusion Sampling steps 50
Noise schedule cosine
Loss weighting sigmoid
Total parameters 95.3 M
# attention heads 12
Model Head dimension 64
# layers 10
Time embed dimension 256
Condition embed dimension 768
History guidance stablized conditional (level = 0.02)
Inference Context frames 50
Sampler DDIM
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Table 6: VAE configurations. The input size from the dataset is 32 x 32.

FLow EQUIVARIANT WORLD MODELS

Component Option Value
Training Learning rate 4e-4
Effective batch size 256
Precision Float16 mixed precision
Strategy Distributed Data Parallel
Warmup steps 10,000
Training epochs 172
GPU usage 4xL40S
Optimizer (AE) Adam, betas=(0.5, 0.9)
Optimizer (Disc) Adam, betas=(0.5, 0.9)
Model Total parameters 19.7 M
Encoder dim 384
Encoder depth 4
Encoder heads 12
Decoder dim 384
Decoder depth 7
Decoder heads 12
Patch size 8
Latent Latent dim 4
Temporal downsample 1
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