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Abstract—In unknown cluttered and dynamic environments 
such as disaster scenes, mobile robots need to perform target-
driven navigation in order to find people or objects of interest, 
where the only information provided about these targets are 
images of the individual targets. In this paper, we introduce 
NavFormer, a novel end-to-end transformer architecture 
developed for robot target-driven navigation in unknown and 
dynamic environments. NavFormer leverages the strengths of 
both 1) transformers for sequential data processing and 2) self-
supervised learning (SSL) for visual representation to reason 
about spatial layouts and to perform collision-avoidance in 
dynamic settings. The architecture uniquely combines dual-visual 
encoders consisting of a static encoder for extracting invariant 
environment features for spatial reasoning, and a general encoder 
for dynamic obstacle avoidance. The primary robot navigation 
task is decomposed into two sub-tasks for training: single robot 
exploration and multi-robot collision avoidance. We perform 
cross-task training to enable the transfer of learned skills to the 
complex primary navigation task. Simulated experiments 
demonstrate that NavFormer can effectively navigate a mobile 
robot in diverse unknown environments, outperforming existing 
state-of-the-art methods. A comprehensive ablation study is 
performed to evaluate the impact of the main design choices of 
NavFormer. Furthermore, real-world experiments validate the 
generalizability of NavFormer. 
 
Index Terms—Dynamic and unknown environments, image-
guided search, target-driven robot navigation. 

I. INTRODUCTION 
obile robots can be used to search for potential victims in 
unknown environments including in urban disaster 

environments [1], [2], in buildings engulfed by fire [3], and/or 
unstructured outdoor environments [4]. Images of potential 
victims can be provided to the robots for them to search a 
disaster environment for these specific individuals, while 
avoiding collisions with rescue workers, victims, and other 
robots. In this paper, we address the problem of robot target-
driven navigation (TDN) in unknown and dynamic 
environments. This problem requires a mobile robot to navigate 
an unknown and dynamic environment using only an onboard 

RGB camera to search for a static target given its image.  
TDN in unknown and dynamic environments is a challenging 

problem as: 1) there are no global maps of the environment 
available, therefore, a robot needs to reason about the spatial 
layout of the environment based on its own partial observations 
to prevent deadlocks and redundant coverage [5], and 2) the 
presence of dynamic obstacles needs to be detected for collision 
avoidance [6] and for spatial reasoning of the environment [7]. 
In this paper, we assume that for each robot, the dynamic 
obstacles are other moving robots. 

 To-date, existing robot TDN methods for unknown 
environments have mainly used: 1) deep reinforcement learning 
(DRL) [5], [8]-[12] or 2) imitation learning (IL) [13]. Images of 
targets have consisted of either indoor scenes (e.g., kitchen, 
bedroom) [8] or household objects (e.g., chair, microwave) 
[10]. These methods take RGB images as observations and the 
target image as input into a convolutional neural network 
(CNN) to extract features (e.g., geometry, patterns) and encode 
them into a latent vector. Namely, for DRL methods, navigation 
actions are generated using either fully connected layers (FCL) 
[8], long short term memory (LSTM) [10], or attention-based 
memory retrieval [5] approaches. For IL methods [13], the 
robot action is generated by predicting the next expected 
observation (NEO) using an inverse dynamics model. These 
aforementioned TDN methods have mainly been applied to 
static environments. However, in dynamic environments, they 
may result in degraded performance due to the presence of 
moving obstacles that are treated as static. This may lead to 
misinterpretation of the spatial layout of the environment [7], 
which in turn can result in ineffective navigation decisions.  

In this paper, we propose NavFormer, a novel end-to-end DL 
architecture consisting of a dual-visual encoder module and a 
transformer-based navigation network to address for the first 
time the problem of TDN in unknown and dynamic 
environments. NavFormer utilizes a decoder-only transformer 
[14] to make navigation decisions conditioned on both the 
target image and robot trajectory history. To obtain high-quality 
datasets for navigation policy learning, we decompose the task 
of TDN in dynamic environments into two well-studied sub-
tasks in the literature: single-robot exploration, and multi-robot 
collision avoidance. Our main contributions in this paper 
include: 1) the development of the first end-to-end DL approach 
for robot target-driven navigation in unknown dynamic 
environments; 2) the incorporation of a dual-visual encoder 
system to extract static and general (i.e., static and dynamic) 
features for reasoning the spatial layouts of environments and 
collision avoidance, which is trained using self-supervised 
learning (SSL); and 3) the development of a cross-task training 
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strategy to train NavFormer on the two subtasks of single robot 
exploration and multi-robot collision avoidance.  

II. RELATED WORKS 
Herein, we discuss the pertinent literature on: 1) robot target-

driven navigation in static unknown environments, 2) robot 
navigation in dynamic environments, and 3) cross-task training. 

A. Robot Target-Driven Navigation in Static Environments 
Previous work has mainly used: 1) DRL [5], [8]-[12] or 2) IL 

[13] to address TDN tasks. These methods used Siamese CNN 
such as ResNet [15] to generate a joint embedding from robot 
image observations and the target image, and then they used this 
joint embedding to generate navigation actions. In [8], the 
Asynchronous Advantage Actor Critic (A3C) [16] was used to 
train scene-specific FCLs to generate navigation actions using 
joint embedding. Each environment required training on a set 
of scene-specific layers. In [9], object recognition was used to 
generate bounding boxes of the target object via two FCLs, and 
then used by an action prediction module to generate robot 
navigation actions. In [10], the Importance Weighted Actor-
Learner Architecture (IMPALA) [18] was used to train a 
navigation network with LSTM [17] to account for historical 
observations for robot navigation in 3D mazes. In [5], a 
memory buffer and an attention module were used to further 
improve a robot’s temporal reasoning via long-term memory 
for indoor navigation.  

In [11], a DRL architecture combined with semantic scene 
priors was presented. It was constructed Using a knowledge 
graph to represent semantic relationships between objects in the 
scene.  An actor-critic network was used to generate actions. In 
[12], hierarchical policy learning with Intrinsic-Extrinsic 
Modeling (HIEM) was developed by using a high-level policy 
that generated sub-goals to guide target search and a low-level 
policy to generate navigation actions.  

In [13], a generative IL module was used to predict the NEO, 
which was then used by an action prediction module to predict 
the robot’s action. 

B. Robot Navigation in Dynamic Environments 
Robot navigation methods in dynamic environments can be 

categorized as: 1) classical methods [6], [19], [20], or 2) 
learning-based methods [21]-[25]. Learning-based methods 
include: 1) DRL methods [21]-[23], and 2) hybrid methods 
[24], [25] using both DRL and IL.  
1) Classical Methods: In [6], the Velocity Obstacle (VO) 
method was used for robot collision avoidance in 2D dynamic 
environments by generating a potential collision area based on 
the velocities, positions and sizes of a robot and its nearby 
moving obstacle (another robot), and then selecting a robot 
velocity that avoided this area. Reciprocal VO (RVO) [19] 
address issues in movement oscillation of VO and the Non-
Holonomic Optimal Reciprocal Collision Avoidance (NH-
ORCA) approach [20] extend VO methods for robots with non-
holonomic constraints. 
2) Learning-based Methods: In [21], a multi-robot collision 
avoidance architecture was developed by using a CNN to 
directly map laser scans to robot velocities. In [22], a Gated 
Recurrent Unit (GRU) [27] was incorporated in [21] to account 
for historical observations to improve temporal reasoning in 

unknown environments. In [23], RL-RVO used a set of 
sequential VO and RVO vectors representing the states of 
nearby obstacles and a Bidirectional GRU network to generate 
navigation velocity.  

In [24], a Hybrid CPU/GPU A3C for Collision Avoidance 
with DRL (GA3C-CADRL) method used a LSTM to encode 
spatial information of nearby obstacles and was trained using 
IL and then DRL. In [25], the Pathfinding via Reinforcement 
and Imitation Multi-Agent Learning (PRIMAL) was developed 
for multi-robot navigation by using a CNN to encode the local 
2D map and a LSTM to generate robot actions. During training, 
PRIMAL randomly switched between DRL and IL to learn a 
navigation policy that improved navigation performance. 

C. Cross-task Training 
Cross-task training considers training an agent on multiple 

tasks ranging from video games [18],[28] to robotic 
applications such as tracking [29] and navigation [10]. For 
example, in [18], an off-policy actor-critic architecture, 
IMPALA, was developed to train an RL agent to complete 
multiple tasks with decoupled acting and learning and off-
policy correction. In [29], an End-to-End Visual Active 
Tracking (E-VAT) method divided the VAT task into two 
sequential sub-tasks: exploration and tracking. The sub-tasks 
were trained concurrently using an asymmetric actor-critic 
architecture and IMPALA. In [10], the TDN task in static 
environments was addressed. Training was split into 
localization and navigation phases. The localization network 
was trained by self-supervised learning for target object 
localization, and the navigation policy was trained via IMPALA 
for target navigation. In [28], a Multi-Game Decision 
Transformer was utilized to train a single transformer model to 
play multiple video games by learning from a diverse offline 
dataset with both expert and non-expert data. 

D. Summary of Limitations 
The aforementioned TDN methods [5], [8]-[13] address the 

problem of a single robot navigating to a target location in an 
unknown static environment. However, these methods do not 
consider dynamic obstacles (i.e., other robots) in their 
environments, leading to inaccuracies in spatial reasoning and 
degraded navigation performance [7]. Robot navigation in 
dynamic environments has been achieved using classical 
methods [6], [19], [20], or learning-based methods [21]-[25]. 
These methods consist of only local planning schemes without 
considering global spatial layouts, resulting in robots that 
become trapped in local minima (e.g., dead ends) [31]. 
Furthermore, they cannot find a target provided in an RGB 
image without a given location. To address these limitations, 
we have developed NavFormer, the first DL method for robot 
TDN in unknown and dynamic environments. Our method 
utilizes cross-task training on a decision transformer 
architecture [32] developed for the TDN task, encompassing 
both exploration and multi-robot collision avoidance tasks. 

III. TARGET-DRIVEN NAVIGATION PROBLEM IN UNKNOWN AND 
DYNAMIC ENVIRONMENTS  

A. Problem Definition 
Robot target-driven navigation in unknown and dynamic 

environments describes the following problem: a mobile robot 
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𝓇 needs to navigate to a target 𝐼	utilizing only an RGB image 
of the target 𝑔  and visual observations 𝑜 ∈ Ω	 (i.e., RGB 
images) of the environment obtained from an onboard camera. 
The dynamic obstacles (i.e., other robots) in the environment 
are represented by a set 𝑀. There are no a priori global maps of 
the environment available and the 2D location of the static 
target object 𝑙! is unknown. The target object is defined by a 3D 
geometric shape 𝑏 ∈ 𝐵 and color 𝑐 ∈ 𝐶. The objective of the 
robot 𝓇 is to minimize the expected travel distance 𝑑 between 
the robot’s start location 𝑙"	and target location 𝑙!: 

 minE [𝑑(𝑙", 𝑙!)]. (1) 
B. GC-POMDP for Robot Target-Driven Navigation 

We model the robot TDN problem as a goal-conditioned 
partially observable Markov decision process (GC-POMDP). 
GC-POMDP is described as a tuple (𝒮, ℊ,𝒜,𝒫,ℛ, Ω, 𝒪), where 
𝒮 denotes the state space, and ℊ is the set of target RGB images. 
Robot actions, 𝑎 ∈ 𝒜, are represented by a 2D vector of linear 
and angular velocity. 𝒫 	is the state transition function 
𝒫(𝑠, 𝑎, 𝑠′) = 𝑝(𝑠′|𝑠, 𝑎). ℛ is the reward function, 𝑟 = ℛ(𝑠, 𝑎).	 
Ω is the observation space and 𝒪 is the observation probability 
function 𝒪(𝑠#, 𝑎, 𝑜) = 𝑝(𝑜|𝑠#, 𝑎). At each time step, the robot 
observes the environment, takes an action, then transitions to 
the next state and receives a reward.  

The objective is to learn a policy 𝜋$(𝑎|𝑔, 𝜏)  that is 
conditioned on the target image 𝑔  and robot historical 
trajectory 𝜏 to maximize the expected return:	𝐸[∑ 𝑟%&

%'( ]. The 
robot historical trajectory 𝜏  consists of returns-to-go 𝑅J , 
observations	𝑜, and actions 𝑎: 

 τ% = L𝑅J(, 𝑜(, 𝑎(, 𝑅J), 𝑜), 𝑎), … , 𝑅J% , 𝑜%N, (2) 
where the return-to-go, 𝑅J%, is defined as the desired total sum 
of rewards to achieve from the current timestep	𝑡 to the terminal 
timestep 𝑇 of the episode [32]:  

 𝑅J% = ∑ 𝑟*&
*'% . (3) 

Return-to-go is used to generate actions conditioned on desired 
returns rather than past rewards. The return-to-go at the first 
timestep, 𝑅J(, is a user specified desired total rewards.  

Ⅳ. NAVFORMER ARCHITECTURE 
The proposed NavFormer TDN architecture, Fig. 1(a), 

consists of three subsystems: 1) Dataset collection: to obtain 

datasets containing robot trajectories for policy learning, and 
RGB image pairs for representation learning; 2) Training: to 
train both the NavFormer model using offline reinforcement 
learning and the dual-visual encoders (DVE) using self-
supervised learning, and 3) Inference: which uses the trained 
NavFormer model for the TDN task in unknown dynamic 
environments. 

In this section, we will discuss the development of the 
NavFormer structure, Fig. 1(b). NavFormer contains: 1) a 
Multi-modal Input Sequence containing the target image 𝑔 and 
robot trajectory 𝜏 , 2) a Dual-visual encoder module that 
separately extracts static and general (i.e., static and dynamic) 
features from visual observations, and 3) a transformer-based 
Navigation Network (NavN) that is conditioned on the multi-
modal input embeddings to generate navigation actions. 

A. Multi-Modal Input Sequence 
The multi-modal input sequence 𝓈𝓉  consists of the RGB 

image of the target 𝑔 and robot trajectory 𝜏%: 

The sequence is converted to embeddings of the same 
dimension 𝑑, = 128. We use a linear layer to project 𝑅J- and 𝑎- 
to embeddings 𝑒./,- 	and 𝑒1,- , respectively. These embeddings 
are combined with the embeddings output by the DVE and 
provided to the NavN. 

B. Dual-Visual Encoders 
Our architecture utilizes DVE for effective TDN: 1) the static 

encoder 𝑓"  extracts spatial features for environmental layout 
reasoning, which is essential for exploring the unknown 
environment, and 2) the general encoder 𝑓2 extracts obstacle-
specific features from nearby static and dynamic obstacles, 
facilitating collision avoidance during navigation. Two separate 
encoders are used to explicitly extract features specific to the 
two sub-tasks. Task-specific feature extraction has been shown 
to enhance policy learning in robot navigation [33].  

Each encoder consists of a CNN with three convolutional 
layers with a kernel size, stride, and output channel of (8, 4, 32), 
(4, 2, 64), (3, 2, 64) [34]. All images (i.e.,	𝑔 and 𝑜) are in the 
dimension of (84, 84, 3). Given an input sequence 𝓈𝓉, 𝑔 is used 
by 𝑓2  to generate a target embedding 𝑒2 . Furthermore, each 
observation 𝑜-  is used by 𝑓"  and 𝑓2  to generate a static 

 
(a) (b) 

Fig. 1. (a) NavFormer TDN architecture consisting of Dataset Collection, Training and Inference subsystems. (b) NavFormer structure consisting of multi-modal 
input sequence, dual-visual encoders, and navigation network. 

 𝓈𝓉 = L𝑔, 𝑅J(, 𝑜(, 𝑎(, 𝑅J), 𝑜), 𝑎), … , 𝑅J% , 𝑜%N . (4) 
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embedding 𝑒3,-"  and a general embedding 𝑒3,-41, respectively. 𝑒3,-"  
and 𝑒3,-41 are then combined with the embedding of returns-to-go 
𝑒./,- and actions 𝑒1,- from Section Ⅳ.A. Thus, 𝓈𝓉 is converted 
into a sequence of embeddings 𝐸𝓈,6 which is then used by the 
NavN to generate navigation actions: 

 𝐸𝓈,6 = L𝑒2, 𝑒.̂,(, 𝑒3,(" , 𝑒3,(41 , 𝑒1,(, … , 𝑒.̂,% , 𝑒3,%" , 𝑒3,%41N. (5) 
1) Training Loss: In order to train the two visual encoders, the 
Bootstrap Your Own Latent (BYOL) [35] self-supervised 
learning method is used. For each encoder, BYOL uses two 
neural networks, Fig. 2: 1) an online network parameterized by 
𝜙 that consists of an encoder (𝑓", 9 ,	𝑓2, 9 ), a projector (𝑔",9 , 
𝑔2,9 ), and a predictor (𝑞",9 , 𝑞2,9 ); and 2) a target network 
parameterized by 𝜉 that consists of an encoder (𝑓", :,	𝑓2, :), and 
a projector (𝑔",:, 𝑔2,:). Herein, we represent these parameters 
in general as (𝑓9 , 𝑔9 , 𝑞9 , 𝑓: , 𝑔:) as the training of 𝑓"  and 𝑓2 
follow the same procedure. The online network and the target 
network share the same architecture for the encoder and the 
projector. The projector and the predictor are represented by a 
multiple-layer perceptron (MLP). The weights of the target 
network are an exponential moving average of the online 
network weights.  

Two distributions of image augmentations including random 
resizing, cropping, color jittering were applied to obtain two 
augmented views 𝑣 and 𝑣# from the input observation image 𝑜. 
The online network takes 𝑣 as input, and outputs representation 
𝑦9 = 𝑓9(𝑣) , projection 𝑧9 = 𝑔9L𝑦9N , and a prediction 
𝑞9L𝑧9N . The target network takes as input 𝑣# , and outputs 
representation 𝑦:# = 𝑓:(𝑣#)  and projection 𝑧:# = 𝑔:L𝑦:#N . The 
loss function is defined as the mean squared error (MSE) 
between the normalized online prediction and target projection:  

 ℒ9,: = ∥ ;!<=!>

∥;!<=!>∥"
−

=#
$

∥=#
$∥"
∥)). (6) 

BYOL uses a symmetrical loss by swapping 𝑣  and 𝑣#  as 
input to the online and target networks again to compute ℒ]9,:: 

	 ℒ9,:@ABC = ℒ9,: + ℒ]9,: .	 (7) 
The final BYOL loss is the summation of the loss for 𝑓" ,  

ℒ",D,E@ABC and the loss for 𝑓2, ℒ2,D,E@ABC: 
	 ℒ@ABC = ℒ",D,E@ABC + ℒ2,D,E@ABC.	 (8) 

To ensure that the static encoder learns only the static 
features from the environment, we modified the standard 
BYOL procedure [35] by generating the two augmented views 

(𝑣, 𝑣#) from two different images (𝑜", 𝑜F) of the same view of 
the scene. 𝑜F  denotes an RGB image that contains dynamic 
obstacles (i.e., other robots) while 𝑜"  denotes an image that 
contains only static obstacles. Therefore, the static encoder 
learns only the common static obstacle features shared between 
the images (𝑜", 𝑜F). For the general encoder, we follow the 
standard BYOL procedure [42] and generate two different 
augmented views from the same image 𝑜F.  

C. Navigation Network 
The NavN is used to generate the robot’s action 𝑎%G( given 

the sequence of embeddings 𝐸𝓈,6 . Our NavN uses a causal 
transformer (CT) model based on the Generative Pre-trained 
Transformer 2 (GPT-2) [14]. We use CT as its self-attention 
mechanism can effectively utilize sequential memory of past 
static embeddings 𝑒3", enabling the network to reason about the 
spatial layout of the environment based on the robot trajectory 
𝜏% . The CT can also implicitly infer the motion of dynamic 
obstacles by dynamically adjusting the weight of each general 
embedding eHIJ from consecutive image observations via self-
attention layers.  

The structure of our NavN consists of three stacked 
transformer blocks, and a linear layer. To understand the 
temporal and multi-modal nature of the input data, positional 
encodings are introduced as learnable embeddings for each 
timestep and modality, which are added to 𝐸𝓈,6.  

Dropout is applied to the 𝐸𝓈 to prevent overfitting [36]. 𝐸𝓈 is 
then sent into 𝑁 =  3 stacked transformer blocks, each 
consisting of a masked multi-head attention (MMHA) 
submodule and a MLP submodule. The context length of each 
transformer block is 1024. In the MMHA submodule, the 
embeddings 𝐸𝓈 are linearly projected into ℎ = 2 heads of keys 
𝐾, queries 𝑄 and values 𝑉 in the dimension of 𝑑* =	64 for self-
attention. The MMHA submodule is connected to a MLP that 
has a hidden layer and residual connection. The last transformer 
block outputs a sequence of hidden states 𝐻𝓈: 

 𝐻𝓈 = Lℎ2, ℎ./,(, ℎ3,(" , ℎ3,(41 , … , ℎ./,% , ℎ3,%" , ℎ3,%41N. (9) 
We concatenate the target hidden state ℎ2  with the 

observation hidden state ℎ3,-41  and provide fℎ2; ℎ3,%41 h into a linear 
layer to predict the next navigation action 𝑎i-. This hidden state 
concatenation helps the CT to implicitly detect the target; 
thereby, improving the navigation policy.  
1) Training Loss: We utilize the Decision Transformer [32] 
offline RL method for training the NavN. The loss of the NavN 
is computed using the MSE between the predicted actions 𝑎i- 
and ground-truth actions 𝑎-: 
 ℒK& = (

&
∑ ∥ 𝑎% − 𝑎i% ∥)&
%'( . (10) 

Ⅴ. DATASET COLLECTION 
We collected three datasets in 3D simulated environments 

from mobile robots to train NavFormer, Fig. 1(a): 1) Robot 
Exploration Dataset, 𝒟ℯ, 2) Collision Avoidance Dataset, 𝒟𝒸𝒶, 
and 3) Representation Learning Dataset, 𝒟𝓈𝓈ℓ . The target 
objects include various geometric shapes (sphere, box) and 
colors (green, red, white, yellow, blue). 
Exploration Dataset 𝓓𝓮: This dataset comprises 3,496 robot 
trajectories and the corresponding target RGB images, totaling 
342,954 timesteps for a single robot exploration task in 3D 

Fig. 2. BYOL procedure for the static and general encoder.  
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environment with only static obstacles (i.e., walls). Each robot 
trajectory was obtained in a different random environment with 
size ranging from 5m × 5m to 17.5m × 17.5m. The trajectory 
𝜏 consists of returns-to-go 𝑅J, observations 𝑜, and actions 𝑎. To 
generate this dataset, the Frontier Exploration method in [38] 
was used to select the nearest frontier location for the robot. The 
robot planned a global path using A* and followed this path 
using DWA [30] as the local planner. 𝒟ℯ  is used to train 
NavFormer to learn the skill of exploration. 
Collision Avoidance Dataset 𝓓𝓬𝓪 : This dataset comprises 
7,467 robot trajectories collected using NH-ORCA [20] and the 
corresponding target images, totaling 469,378 timesteps for the 
task of multi-robot collision avoidance in dynamic 
environments. Each trajectory was obtained in a 12.5 m × 12.5 
m environment with the number of dynamic obstacles ranging 
from 2 to 8. 𝒟𝒸𝒶 was used to learn collision avoidance. 
Representation Learning Dataset 𝓓𝓼𝓼𝓵 : This dataset, 
consisting of 98,000 image pairs taken in 3D mazes with 
dynamic obstacles, was collected across 1,000 randomly 
generated environments, varying in size from 5 m × 5 m to 17.5 
m × 17.5 m and containing 4 to 25 dynamic obstacles. Each 
image pair contained two RGB images L𝑜-", 𝑜-FN taken by the 
robot’s onboard camera. To collect this dataset: 1) we randomly 
placed all dynamic obstacles in different locations, and 
recorded their observations (i.e., 𝑜-F ) and locations; and 2) a 
single robot was placed at all previous locations and its own 
observations were captured (i.e., 𝑜-"). We aligned each 𝑜-" with 
its corresponding 𝑜-F  based on the locations where 𝑜-"  and 𝑜-F 
were taken. 𝒟𝓈𝓈ℓ was used for the representation learning. 

Ⅵ. TRAINING 
We used a cross-task training approach for the policy 

learning of NavFormer. Namely, we decomposed the robot 
TDN task into the two sub-tasks of: 1) single robot exploration, 
and 2) multi-robot collision avoidance. NavFormer was trained 
on 𝒟ℯ  and 𝒟𝒸𝒶  to learn exploration and collision avoidance 
skills. To compute ℒK&(10), we alternated between 𝒟ℯ	and	𝒟𝒸𝒶 
during each training iteration to sample trajectories. To train the 
DVE, we use 𝒟𝓈𝓈ℓ to sample image pairs to compute ℒ@ABC, 
(8). The final loss is: 

 ℒ = ℒ@ABC + ℒUV. (11) 
Training was performed using an RTX3070 GPU, an AMD 

Ryzen Threadripper 3960X CPU and 128GB of memory. The 
training of the DVE utilized a batch size of 512. The Adam 
optimizer [39] used 0.0004 for the learning rate and weight 
decay. NavFormer was trained with a batch size of 25 and 150 
for trajectory sampling from 𝒟ℯ	and 𝒟𝒸𝒶, respectively. We used 
different batch sizes for trajectory sampling to balance the total 

number of frames in each batch as trajectories in 𝒟ℯ  were 
longer than trajectories in 𝒟𝒸𝒶. Dropout of 0.1 is applied to the 
CT. The AdamW optimizer [40] was used to train the 
NavFormer with a learning rate of 0.0002 and weight decay of 
0.0001, over a span of 10,000 iterations. 

Ⅶ. SIMULATED EXPERIMENTS 
We conducted two sets of experiments to evaluate the overall 

performance of our NavFormer architecture: 1) a comparison 
study with our approach and state-of-the-art (SOTA) learning 
methods to compare TDN strategies on: i) unseen 3D maze 
environments, ii) unseen photorealistic 3D environments, and 
iii) unseen dynamic obstacles; and 2) an ablation study to 
investigate the contributions of the design choices of 
NavFormer. 

A. Comparison Study in Unseen Maze Environments 
We used three performance metrics for these experiments: 1) 

mean success rate (SR) of robots reaching target objects, 2) 
Success weighted by normalized inverse Path Length (SPL) 
which measures the efficiency of the navigation method [41]: 

 SPL = (
W%
∑ 𝑆-

ℓ𝒾
XJY(𝓅𝒾 ,ℓ𝒾)

W%
-'( , (12) 

where 𝑁] is the number of robot trials, 𝑆- is a binary indicator 
of success in trial 𝑖. ℓ𝒾 is the shortest path length from the start 
location of the robot to the target location, and 𝓅𝒾 is the actual 
robot path length, and 3) mean collision rate (CR), CR =
(
W%
∑ W',)

W*,)

W%
-'( , where𝑁4,- is the number of collisions in trial 𝑖, 𝑁,,- 

denotes the total number of timesteps in trial 𝑖. 
We randomly generated a total of 54 new 3D environments in 

Gazebo consisting of static obstacles, target objects, and 
dynamic obstacles (robots). For all the methods, the test 
environments were unseen during training. The sizes of these 
environments were 7.5 m × 7.5 m, 12.5 m × 12.5 m, and 17.5 
m × 17.5 m, Fig. 3. Each robot had a different target object to 
navigate to. The target objects were randomly generated with 
different geometric shapes and colors, and locations. We 
deployed 2, 4 and 6 Jackal robots in each environment. 

 1) Comparison Methods: We benchmarked our NavFormer 
method against the following comparison methods: 
Velocity Random Walk (VRW): The velocity random walk 
policy randomly samples robot actions from a uniform 
distribution. VRW is chosen as a lower bound approach. 
Deep Siamese Actor-Critic (DSAC) [8]: The Deep Siamese 
Actor-Critic model consists of Siamese CNN layers and scene-
specific FCLs. We use the procedure in [13] to adapt DSAC to 
use a single set of scene-specific layers across all training 
environments in order to generalize to unseen environments. 

TABLE I 
 COMPARISON BETWEEN NAVFORMER AND SOTA METHODS FOR UNSEEN MAZE ENVIRONMENTS 

Setup VRW  DSAC MA-TDN DT FCA NavFormer (ours) 

Env size (m) # of 
robots SR SPL CR SR SPL CR SR SPL CR SR SPL CR SR SPL CR SR SPL CR 

7.5 × 7.5 
2 39.17% 0.287 0.691 53.33% 0.377 0.316 61.67% 0.315 0.314 57.50% 0.419 0.405 94.17% 0.653 0.044 80.83% 0.562 0.228 
4 33.33% 0.220 0.694 47.08% 0.353 0.395 46.67% 0.248 0.542 47.92% 0.395 0.529 80.83% 0.598 0.142 66.25% 0.465 0.325 
6 32.78% 0.187 0.711 42.78% 0.337 0.493 43.06% 0.234 0.559 40.28% 0.332 0.608 76.11% 0.580 0.101 54.44% 0.435 0.430 

12.5 × 12.5 
2 16.67% 0.100 0.678 24.17% 0.179 0.324 30.00% 0.159 0.387 39.17% 0.258 0.372 85.00% 0.599 0.070 53.33% 0.374 0.251 
4 15.83% 0.104 0.680 19.17% 0.133 0.460 23.33% 0.137 0.394 26.25% 0.201 0.430 73.33% 0.482 0.096 48.89% 0.378 0.223 
6 13.61% 0.101 0.716 23.89% 0.18 0.550 23.06% 0.118 0.488 31.94% 0.231 0.530 60.28% 0.454 0.071 48.75% 0.359 0.355 

17.5 × 17.5 
2 5.83% 0.053 0.666 10.00% 0.084 0.371 20.83% 0.117 0.342 34.17% 0.222 0.352 57.50% 0.395 0.068 44.17% 0.316 0.279 
4 5.00% 0.032 0.622 10.00% 0.085 0.472 13.75% 0.078 0.494 22.08% 0.151 0.449 47.50% 0.331 0.100 38.33% 0.279 0.204 
6 5.83% 0.032 0.585 10.56% 0.092 0.538 16.39% 0.098 0.554 22.50% 0.169 0.546 40.83% 0.296 0.081 35.56% 0.272 0.350 
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Memory-Augmented Target-Driven Navigation (MA-TDN) 
[5]: MA-TDN uses an attention module to retrieve the memory 
of past robot observations to generate navigation actions.  
Decision Transformer (DT) [32]: The decision transformer 
uses only one visual encoder for feature extraction from visual 
observations. The navigation action is generated using the 
hidden state of the observation embedding.  
Frontier + NH-ORCA (FCA): FCA uses frontier exploration 
as a high-level planner to explore the environment and uses 
NH-ORCA as local controller to avoid collisions with other 
obstacles. This method is chosen as an upper bound approach 
as it uses extra information unavailable to NavFormer and other 
SOTA learning methods, including point clouds and map, other 
robots’ states (i.e., velocities, positions, sizes), and specific 
target locations. It should be noted that as FCA utilizes the 
above additional information, it does not directly address the 
TDN problem in dynamic environments using only visual 
observations as defined in this paper. 

For both DSAC and MA-TDN, we convert their discrete 
action space to continuous space by outputting a mean and 
variance to define a Gaussian distribution for action sampling. 
Training of DSAC and MA-TDN were achieved with PPO [26] 
using the same 3D maze training environments and number of 
robots as NavFormer. DT was trained on 𝒟ℯ and 𝒟𝒸𝒶 using Eq. 
(10). For DT and NavFormer, 𝑅J( is initialized to be 1. The robot 
only receives a positive reward of 1 when it successfully 
navigates to the target object. 

2) Experimental Procedure: At the beginning of each trial, 
robots were randomly located in the environment and assigned 
an RGB image of a target 𝑔. A robot found a target when the 
distance between the target and robot was within 1.5m. A trial 
terminated when either all robots found their corresponding 
targets or the total timesteps exceeded 500. Each timestep is 
0.2s. A new environment was randomly generated every 10 
trials. 60 trials were conducted for each experiment setup. 

3) Results: The SR, SPL, and CR results for NavFormer and 
the comparison methods across the different environment sizes 
and number of robots are presented in Table I. In general, 
NavFormer consistently outperformed VRW, DSAC, MA-
TDN and DT. As the environment size increased, SR and SPL 
decreased and CR increased for all methods due to the: 1) 
increased level of difficulty introduced by more static obstacles 
in the larger environments, and 2) longer travel distance 
between start and target location with the allocated time. 
NavFormer had higher SR and SPL and lower CR than VRW, 

DSAC, MA-TDN, DT across all the three environments and 
number of robots. NavFormer was able to achieve accurate 
spatial layout representation from invariant features extracted 
by the static encoder, minimizing the need for redundant 
coverage of an environment. Target hidden state concatenation 
enabled NavFormer to achieve improved implicit target 
detection during navigation by directly conditioning on the 
target hidden states. This aids the robot to recognize and reach 
the target object when it is within robot’s camera view, thereby 
facilitating task completion. FCA had higher performance than 
NavFormer across all environments as it used additional 
information such as the map of the environment to select 
frontiers to explore, ground-truth state information of other 
robots to avoid collisions.  

B. Comparison Study in Unseen Photorealistic Environments 
We conducted experiments in three 3D photorealistic 

environments which included a bookstore (14.3 m × 15.6 m), a 
two-room cafe (9.3 m × 23.1 m), and a single-floor multi-room 
house (19.0 m ×  11.0 m), as shown in Fig. 4. These 
environments represent unseen out-of-distribution 
environments with different configurations and appearances 
from our 3D maze environments used during training. The same 
target objects were used as in Section Ⅶ.A. Three Jackal 
robots were deployed in each environment. Both robot start and 
target object locations were randomly chosen. We performed 
30 trials in each environment type for all methods. 

1) Results: The results are presented in Table II. NavFormer 
achieved lower performance in unseen out-of-distribution 
photorealistic environments compared to its performance in 
unseen 3D mazes (Table I) as expected. This is similar to other 
visual tracking methods such as E-VAT [29]. However, 
NavFormer still outperformed VRW, DSAC, MA-TDN and DT  
in all three metrics. This is due to the data augmentation 
techniques utilized by NavFormer during the training of DVE, 
which allow for visual feature extraction to be robust to 
environmental changes. In turn, NavFormer has better 
generalization capabilities than these methods. As FCA uses 
additional sensory information about the environment and 
target, it is less sensitive to environmental variability. 

C. Comparison Study with Unseen Dynamic Obstacles 
We conducted simulated experiments with unseen dynamic 

obstacles to compare the robustness of the learned policy 
between NavFormer and other SOTA methods. During the 
dataset collection and training phases, only the Jackal robots 
were used as dynamic obstacles. To consider unseen dynamic 
obstacles during testing, we included mobile TurtleBot3 robots. 
The experiments were conducted in 3D mazes (12.5 m × 12.5 
m), with a total of four robots deployed per trial: one Jackal 
robot, and three dynamic obstacles. Namely, we explored two 

    
(a) (b) (c) (d) 

Fig. 3. Robot environments: (a) 7.5 m × 7.5 m with 2 robots, (b) 12.5 m × 12.5 
m with 4 robots, (c) 17.5 m × 17.5 m with 6 robots, and (d) a mobile robot and 
a target object.  

TABLE II 
 COMPARISON BETWEEN NAVFORMER AND SOTA METHODS FOR UNSEEN 

PHOTOREALISTIC ENVIRONMENTS 
 VRW DSAC MA-TDN DT FCA NavFormer 

SR 8.89% 11.11% 17.78% 22.22% 82.22% 36.67% 
SPL 0.062 0.081 0.122 0.148 0.612 0.269 
CR 0.612 0.620 0.590 0.510 0.092 0.412 

   
(a)  (b) (c) 

Fig. 4. Photorealistic environments with three jackal robots and eight target 
objects: (a) a bookstore, (b) a two-room cafe, and (c) a single floor house with 
multiple rooms. 
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scenarios, where: 1) all dynamic obstacles are Jackal robots, 
and 2) all dynamic obstacles are TurtleBot3 robots. Sixty trials 
were conducted for each scenario, with a new maze randomly 
generated every 10 trials. As in Section VII.A, we used the same 
target objects, however, both robot starting and target object 
locations were randomly chosen. 

1) Results: The results are shown in Table III. As expected, 
NavFormer’s performance decreased slightly in the presence of 
unseen dynamic obstacles. However, NavFormer still 
outperformed the other SOTA methods, showcasing the 
robustness of its learned policy against other TDN SOTA 
methods for unseen dynamic obstacles. This is due to the CT 
network in NavFormer using the self-attention layers to 
dynamically adjust the weights of input robot historical 
trajectory that contain consecutive frames of visual 
observations. Thus, enabling the network to implicitly identify 
and adjust to the movement patterns of dynamic obstacles even 
when they have not been seen during training. FCA explicitly 
utilized ground-truth state information of other robots, therefore 
it achieved better performance than NavFormer. 

D. Ablation Study 
We conducted an ablation study to investigate the impact of 

the design choices on the training methods and architecture 
design of NavFormer. Namely, we considered:  
 (1) NavFormer without SSL: It was trained using only the 
loss of ℒUV, Eq. (10), (2) NavFormer without Training on 𝝉𝒆: 
When computing ℒUV, Eq. (10), robot exploration trajectories 
𝜏,  from 𝒟ℯ  were not included, (3) NavFormer without 
Training on 𝛕𝒄𝒂 : When computing ℒUV , Eq. (10), robot 
collision avoidance trajectories τ41  from 𝒟𝒸𝒶  were not 
included, (4) NavFormer without Target Hidden States 
Concatenation (THSC): The feed-forward layer of NavN 
includes input only from the hidden state of the observation ℎ3,%41  
to generate 𝑎i% , (5) NavFormer without Static Encoder 𝒇𝒔: 
We removed the static encoder during training, (6) NavFormer 
without General Encoder 𝒇𝒈 : We removed the dynamic 
encoder during training, (7) NavFormer with ResNet18: We 
replaced the DVE with a single pre-trained ResNet18 [15]. 

We conducted 60 trials in 6 maze environments of 12.5 m × 
12.5 m with 4 Jackal robots for each variant. A new 
environment is randomly generated every 10 trials. 

1) Results: The results of the ablation study are presented in 
Table IV. NavFormer achieved the highest SR and SPL and the 
lowest CR among all variants. We found that NavFormer w/o 
𝑓"  achieved overall the second highest performance when 
compared to NavFormer, showing the significant role of the 
general encoder in extracting obstacle-specific features that are 
important for navigation. NavFormer with ResNet18 achieved 
the lowest performance among all variants due to the domain 
gap between the test environments (i.e., simulated 3D mazes) 
and ImageNet (i.e., web-scale object-centric images) [42]. The 
pretrained visual representations do not generalize to domain-
specific robot navigation task, leading to the decrease in 
performance [43]. We also found that NavFormer w/o τ41 
achieved better performance than NavFormer w/o τ, . We 
postulate that this is due to the skill of exploration being more 
important for the completion of the TDN task. NavFormer 
inherently acquires the skill of collision avoidance with static 
obstacles during the learning of exploration skills, diminishing 
the incremental benefit of learning from τ41. 

VIII. REAL-WORLD EXPERIMENTS 
We conducted real-world experiments in a 9.0 m by 10.0 m 

office environment, Fig. 5. Two Jackal robots were deployed 
with each having a ZED 2 camera for obtaining image 
observations. Eight target objects with varying geometric 
shapes (i.e., box, ball) and colors (i.e., blue, green, orange, 
yellow) were used. The same three datasets as described in 
Section V were collected: with 1) 50 single robot trajectories 
for exploration, 2) 100 two-robot trajectories for collision 
avoidance, and 3) 500 image pairs containing one image with 
dynamic obstacles and one image with only static obstacles. We 
finetuned NavFormer on these real-world datasets using the 
same set of hyperparameters as in Section VI and trained for 
2,000 iterations. For testing, 15 trials were conducted with 
randomly placed target objects and robot starting locations.  

NavFormer achieved an SR of 63.33%, SPL of 0.406, and 
CR of 0.229, respectively. This is comparable to the results in 
Table I for the small-mid-size environments. A video of our 
NavFormer method addressing the TDN problem in both the 
simulated and real-world environments is provided on our 
YouTube channel at https://youtu.be/PSVsLM1eGXo. 

IX. CONCLUSION 
In this paper, we present the development of a novel end-to-

end DL model, NavFormer, to address the challenging problem 
of robot target-driven navigation in unknown and dynamic 
environments. Our approach uniquely combines a Dual-Visual 

TABLE III 
 COMPARISON STUDY WITH SEEN AND UNSEEN DYNAMIC OBSTACLES 

 Metrics VRW DSAC MA-TDN DT FCA NavFormer 
Seen 

Dynamic 
Obstacles 

SR 15.83% 19.17% 23.33% 26.25% 73.33% 48.89% 
SPL 0.104 0.133 0.137 0.201 0.482 0.378 
CR 0.680 0.460 0.394 0.430 0.096 0.223 

Unseen 
Dynamic 
Obstacles 

SR 13.33% 16.67% 21.67% 21.67% 75.00% 41.67% 
SPL 0.101 0.131 0.157 0.190 0.442 0.322 
CR 0.591 0.606 0.552 0.501 0.086 0.301 

 
Fig. 5.  Top view of the real-world office environment with two mobile 
robots and eight target objects with zoomed in views of the different 
regions. 

TABLE IV 
  ABLATION STUDY 

Methods SR SPL CR 
NavFormer 48.89% 0.378 0.223 
NavFormer w/o SSL 39.58% 0.272 0.376 
NavFormer w/o THSC 32.08% 0.261 0.500 
NavFormer w/o τ! 12.08% 0.109 0.280 
NavFormer w/o τ"# 40.83% 0.256 0.237 
NavFormer w/o 𝑓$ 41.25% 0.289 0.230 
NavFormer w/o 𝑓% 38.33% 0.273 0.396 
NavFormer w ResNet18 7.92% 0.080 0.765 

https://youtu.be/PSVsLM1eGXo
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Encoder system with a transformer-based Navigation Network. 
The former is trained via self-supervised learning, while the 
latter uses offline reinforcement learning. Extensive simulated 
experiments were conducted with varying environment sizes 
and different number of dynamic obstacles. The results show 
that NavFormer outperformed state-of-the-art learning-based 
methods in successfully navigating to targets. Both 
photorealistic simulated experiments and real-world 
experiments validated the generalizability of NavFormer to 
effectively solve the TDN problem in dynamic unknown 
complex environments. An ablation study further validated our 
design choices of NavFormer. Future work will expand our 
architecture by incorporating object recognition backbones for 
common objects and different dynamic obstacles in everyday 
environments. 
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