
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2024 1

NavFormer: A Transformer Architecture for Robot
Target-Driven Navigation in Unknown and Dynamic

Environments

Haitong Wang, Aaron Hao Tan, Student Member, IEEE and Goldie Nejat, Member, IEEE

Abstract—In unknown cluttered and dynamic environments
such as disaster scenes, mobile robots need to perform target-
driven navigation in order to find people or objects of interest,
where the only information provided about these targets are
images of the individual targets. In this paper, we introduce
NavFormer, a novel end-to-end transformer architecture
developed for robot target-driven navigation in unknown and
dynamic environments. NavFormer leverages the strengths of
both 1) transformers for sequential data processing and 2) self-
supervised learning (SSL) for visual representation to reason
about spatial layouts and to perform collision-avoidance in
dynamic settings. The architecture uniquely combines dual-visual
encoders consisting of a static encoder for extracting invariant
environment features for spatial reasoning, and a general encoder
for dynamic obstacle avoidance. The primary robot navigation
task is decomposed into two sub-tasks for training: single robot
exploration and multi-robot collision avoidance. We perform
cross-task training to enable the transfer of learned skills to the
complex primary navigation task. Simulated experiments
demonstrate that NavFormer can effectively navigate a mobile
robot in diverse unknown environments, outperforming existing
state-of-the-art methods. A comprehensive ablation study is
performed to evaluate the impact of the main design choices of
NavFormer. Furthermore, real-world experiments validate the
generalizability of NavFormer.

Index Terms—Dynamic and unknown environments, image-
guided search, target-driven robot navigation.

I. INTRODUCTION
obile robots can be used to search for potential victims in
unknown environments including in urban disaster

environments [1], [2], in buildings engulfed by fire [3], and/or
unstructured outdoor environments [4]. Images of potential
victims can be provided to the robots for them to search a
disaster environment for these specific individuals, while
avoiding collisions with rescue workers, victims, and other
robots. In this paper, we address the problem of robot target-
driven navigation (TDN) in unknown and dynamic
environments. This problem requires a mobile robot to navigate
an unknown and dynamic environment using only an onboard

RGB camera to search for a static target given its image.
TDN in unknown and dynamic environments is a challenging

problem as: 1) there are no global maps of the environment
available, therefore, a robot needs to reason about the spatial
layout of the environment based on its own partial observations
to prevent deadlocks and redundant coverage [5], and 2) the
presence of dynamic obstacles needs to be detected for collision
avoidance [6] and for spatial reasoning of the environment [7].
In this paper, we assume that for each robot, the dynamic
obstacles are other moving robots.

 To-date, existing robot TDN methods for unknown
environments have mainly used: 1) deep reinforcement learning
(DRL) [5], [8]-[12] or 2) imitation learning (IL) [13]. Images of
targets have consisted of either indoor scenes (e.g., kitchen,
bedroom) [8] or household objects (e.g., chair, microwave)
[10]. These methods take RGB images as observations and the
target image as input into a convolutional neural network
(CNN) to extract features (e.g., geometry, patterns) and encode
them into a latent vector. Namely, for DRL methods, navigation
actions are generated using either fully connected layers (FCL)
[8], long short term memory (LSTM) [10], or attention-based
memory retrieval [5] approaches. For IL methods [13], the
robot action is generated by predicting the next expected
observation (NEO) using an inverse dynamics model. These
aforementioned TDN methods have mainly been applied to
static environments. However, in dynamic environments, they
may result in degraded performance due to the presence of
moving obstacles that are treated as static. This may lead to
misinterpretation of the spatial layout of the environment [7],
which in turn can result in ineffective navigation decisions.

In this paper, we propose NavFormer, a novel end-to-end DL
architecture consisting of a dual-visual encoder module and a
transformer-based navigation network to address for the first
time the problem of TDN in unknown and dynamic
environments. NavFormer utilizes a decoder-only transformer
[14] to make navigation decisions conditioned on both the
target image and robot trajectory history. To obtain high-quality
datasets for navigation policy learning, we decompose the task
of TDN in dynamic environments into two well-studied sub-
tasks in the literature: single-robot exploration, and multi-robot
collision avoidance. Our main contributions in this paper
include: 1) the development of the first end-to-end DL approach
for robot target-driven navigation in unknown dynamic
environments; 2) the incorporation of a dual-visual encoder
system to extract static and general (i.e., static and dynamic)
features for reasoning the spatial layouts of environments and
collision avoidance, which is trained using self-supervised
learning (SSL); and 3) the development of a cross-task training

M

Manuscript received February 9, 2024; Revised May 8, 2024; Accepted
June 3, 2024. This paper was recommended for publication by Editor Pascal
Vasseur upon evaluation of the Associate Editor and Reviewers’ comments.
This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC), and in part by the Canada Research
Chairs program (CRC). (Corresponding author: Haitong Wang.)

The authors are with the Autonomous Systems and Biomechatronics
Laboratory (ASBLab), Department of Mechanical and Industrial
Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada (e-mail:
haitong.wang@mail.utoronto.ca;aaronhao.tan@utoronto.ca;
nejat@mie.utoronto.ca).

Digital Object Identifier (DOI): see top of this page.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2024

strategy to train NavFormer on the two subtasks of single robot
exploration and multi-robot collision avoidance.

II. RELATED WORKS
Herein, we discuss the pertinent literature on: 1) robot target-

driven navigation in static unknown environments, 2) robot
navigation in dynamic environments, and 3) cross-task training.

A. Robot Target-Driven Navigation in Static Environments
Previous work has mainly used: 1) DRL [5], [8]-[12] or 2) IL

[13] to address TDN tasks. These methods used Siamese CNN
such as ResNet [15] to generate a joint embedding from robot
image observations and the target image, and then they used this
joint embedding to generate navigation actions. In [8], the
Asynchronous Advantage Actor Critic (A3C) [16] was used to
train scene-specific FCLs to generate navigation actions using
joint embedding. Each environment required training on a set
of scene-specific layers. In [9], object recognition was used to
generate bounding boxes of the target object via two FCLs, and
then used by an action prediction module to generate robot
navigation actions. In [10], the Importance Weighted Actor-
Learner Architecture (IMPALA) [18] was used to train a
navigation network with LSTM [17] to account for historical
observations for robot navigation in 3D mazes. In [5], a
memory buffer and an attention module were used to further
improve a robot’s temporal reasoning via long-term memory
for indoor navigation.

In [11], a DRL architecture combined with semantic scene
priors was presented. It was constructed Using a knowledge
graph to represent semantic relationships between objects in the
scene. An actor-critic network was used to generate actions. In
[12], hierarchical policy learning with Intrinsic-Extrinsic
Modeling (HIEM) was developed by using a high-level policy
that generated sub-goals to guide target search and a low-level
policy to generate navigation actions.

In [13], a generative IL module was used to predict the NEO,
which was then used by an action prediction module to predict
the robot’s action.

B. Robot Navigation in Dynamic Environments
Robot navigation methods in dynamic environments can be

categorized as: 1) classical methods [6], [19], [20], or 2)
learning-based methods [21]-[25]. Learning-based methods
include: 1) DRL methods [21]-[23], and 2) hybrid methods
[24], [25] using both DRL and IL.
1) Classical Methods: In [6], the Velocity Obstacle (VO)
method was used for robot collision avoidance in 2D dynamic
environments by generating a potential collision area based on
the velocities, positions and sizes of a robot and its nearby
moving obstacle (another robot), and then selecting a robot
velocity that avoided this area. Reciprocal VO (RVO) [19]
address issues in movement oscillation of VO and the Non-
Holonomic Optimal Reciprocal Collision Avoidance (NH-
ORCA) approach [20] extend VO methods for robots with non-
holonomic constraints.
2) Learning-based Methods: In [21], a multi-robot collision
avoidance architecture was developed by using a CNN to
directly map laser scans to robot velocities. In [22], a Gated
Recurrent Unit (GRU) [27] was incorporated in [21] to account
for historical observations to improve temporal reasoning in

unknown environments. In [23], RL-RVO used a set of
sequential VO and RVO vectors representing the states of
nearby obstacles and a Bidirectional GRU network to generate
navigation velocity.

In [24], a Hybrid CPU/GPU A3C for Collision Avoidance
with DRL (GA3C-CADRL) method used a LSTM to encode
spatial information of nearby obstacles and was trained using
IL and then DRL. In [25], the Pathfinding via Reinforcement
and Imitation Multi-Agent Learning (PRIMAL) was developed
for multi-robot navigation by using a CNN to encode the local
2D map and a LSTM to generate robot actions. During training,
PRIMAL randomly switched between DRL and IL to learn a
navigation policy that improved navigation performance.

C. Cross-task Training
Cross-task training considers training an agent on multiple

tasks ranging from video games [18],[28] to robotic
applications such as tracking [29] and navigation [10]. For
example, in [18], an off-policy actor-critic architecture,
IMPALA, was developed to train an RL agent to complete
multiple tasks with decoupled acting and learning and off-
policy correction. In [29], an End-to-End Visual Active
Tracking (E-VAT) method divided the VAT task into two
sequential sub-tasks: exploration and tracking. The sub-tasks
were trained concurrently using an asymmetric actor-critic
architecture and IMPALA. In [10], the TDN task in static
environments was addressed. Training was split into
localization and navigation phases. The localization network
was trained by self-supervised learning for target object
localization, and the navigation policy was trained via IMPALA
for target navigation. In [28], a Multi-Game Decision
Transformer was utilized to train a single transformer model to
play multiple video games by learning from a diverse offline
dataset with both expert and non-expert data.

D. Summary of Limitations
The aforementioned TDN methods [5], [8]-[13] address the

problem of a single robot navigating to a target location in an
unknown static environment. However, these methods do not
consider dynamic obstacles (i.e., other robots) in their
environments, leading to inaccuracies in spatial reasoning and
degraded navigation performance [7]. Robot navigation in
dynamic environments has been achieved using classical
methods [6], [19], [20], or learning-based methods [21]-[25].
These methods consist of only local planning schemes without
considering global spatial layouts, resulting in robots that
become trapped in local minima (e.g., dead ends) [31].
Furthermore, they cannot find a target provided in an RGB
image without a given location. To address these limitations,
we have developed NavFormer, the first DL method for robot
TDN in unknown and dynamic environments. Our method
utilizes cross-task training on a decision transformer
architecture [32] developed for the TDN task, encompassing
both exploration and multi-robot collision avoidance tasks.

III. TARGET-DRIVEN NAVIGATION PROBLEM IN UNKNOWN AND
DYNAMIC ENVIRONMENTS

A. Problem Definition
Robot target-driven navigation in unknown and dynamic

environments describes the following problem: a mobile robot

WANG et al.: NAVFORMER: ROBOT TARGET-DRIVEN NAVIGATION IN UNKNOWN AND DYNAMIC ENVIRONMENTS 3

𝓇 needs to navigate to a target 𝐼	utilizing only an RGB image
of the target 𝑔 and visual observations 𝑜 ∈ Ω	 (i.e., RGB
images) of the environment obtained from an onboard camera.
The dynamic obstacles (i.e., other robots) in the environment
are represented by a set 𝑀. There are no a priori global maps of
the environment available and the 2D location of the static
target object 𝑙! is unknown. The target object is defined by a 3D
geometric shape 𝑏 ∈ 𝐵 and color 𝑐 ∈ 𝐶. The objective of the
robot 𝓇 is to minimize the expected travel distance 𝑑 between
the robot’s start location 𝑙"	and target location 𝑙!:

 minE [𝑑(𝑙", 𝑙!)]. (1)
B. GC-POMDP for Robot Target-Driven Navigation

We model the robot TDN problem as a goal-conditioned
partially observable Markov decision process (GC-POMDP).
GC-POMDP is described as a tuple (𝒮, ℊ,𝒜,𝒫,ℛ, Ω, 𝒪), where
𝒮 denotes the state space, and ℊ is the set of target RGB images.
Robot actions, 𝑎 ∈ 𝒜, are represented by a 2D vector of linear
and angular velocity. 𝒫 	is the state transition function
𝒫(𝑠, 𝑎, 𝑠′) = 𝑝(𝑠′|𝑠, 𝑎). ℛ is the reward function, 𝑟 = ℛ(𝑠, 𝑎).	
Ω is the observation space and 𝒪 is the observation probability
function 𝒪(𝑠#, 𝑎, 𝑜) = 𝑝(𝑜|𝑠#, 𝑎). At each time step, the robot
observes the environment, takes an action, then transitions to
the next state and receives a reward.

The objective is to learn a policy 𝜋$(𝑎|𝑔, 𝜏) that is
conditioned on the target image 𝑔 and robot historical
trajectory 𝜏 to maximize the expected return:	𝐸[∑ 𝑟%&

%'(]. The
robot historical trajectory 𝜏 consists of returns-to-go 𝑅J ,
observations	𝑜, and actions 𝑎:

 τ% = L𝑅J(, 𝑜(, 𝑎(, 𝑅J), 𝑜), 𝑎), … , 𝑅J% , 𝑜%N, (2)
where the return-to-go, 𝑅J%, is defined as the desired total sum
of rewards to achieve from the current timestep	𝑡 to the terminal
timestep 𝑇 of the episode [32]:

 𝑅J% = ∑ 𝑟*&
*'% . (3)

Return-to-go is used to generate actions conditioned on desired
returns rather than past rewards. The return-to-go at the first
timestep, 𝑅J(, is a user specified desired total rewards.

Ⅳ. NAVFORMER ARCHITECTURE
The proposed NavFormer TDN architecture, Fig. 1(a),

consists of three subsystems: 1) Dataset collection: to obtain

datasets containing robot trajectories for policy learning, and
RGB image pairs for representation learning; 2) Training: to
train both the NavFormer model using offline reinforcement
learning and the dual-visual encoders (DVE) using self-
supervised learning, and 3) Inference: which uses the trained
NavFormer model for the TDN task in unknown dynamic
environments.

In this section, we will discuss the development of the
NavFormer structure, Fig. 1(b). NavFormer contains: 1) a
Multi-modal Input Sequence containing the target image 𝑔 and
robot trajectory 𝜏 , 2) a Dual-visual encoder module that
separately extracts static and general (i.e., static and dynamic)
features from visual observations, and 3) a transformer-based
Navigation Network (NavN) that is conditioned on the multi-
modal input embeddings to generate navigation actions.

A. Multi-Modal Input Sequence
The multi-modal input sequence 𝓈𝓉 consists of the RGB

image of the target 𝑔 and robot trajectory 𝜏%:

The sequence is converted to embeddings of the same
dimension 𝑑, = 128. We use a linear layer to project 𝑅J- and 𝑎-
to embeddings 𝑒./,- 	and 𝑒1,- , respectively. These embeddings
are combined with the embeddings output by the DVE and
provided to the NavN.

B. Dual-Visual Encoders
Our architecture utilizes DVE for effective TDN: 1) the static

encoder 𝑓" extracts spatial features for environmental layout
reasoning, which is essential for exploring the unknown
environment, and 2) the general encoder 𝑓2 extracts obstacle-
specific features from nearby static and dynamic obstacles,
facilitating collision avoidance during navigation. Two separate
encoders are used to explicitly extract features specific to the
two sub-tasks. Task-specific feature extraction has been shown
to enhance policy learning in robot navigation [33].

Each encoder consists of a CNN with three convolutional
layers with a kernel size, stride, and output channel of (8, 4, 32),
(4, 2, 64), (3, 2, 64) [34]. All images (i.e.,	𝑔 and 𝑜) are in the
dimension of (84, 84, 3). Given an input sequence 𝓈𝓉, 𝑔 is used
by 𝑓2 to generate a target embedding 𝑒2 . Furthermore, each
observation 𝑜- is used by 𝑓" and 𝑓2 to generate a static

(a) (b)

Fig. 1. (a) NavFormer TDN architecture consisting of Dataset Collection, Training and Inference subsystems. (b) NavFormer structure consisting of multi-modal
input sequence, dual-visual encoders, and navigation network.

 𝓈𝓉 = L𝑔, 𝑅J(, 𝑜(, 𝑎(, 𝑅J), 𝑜), 𝑎), … , 𝑅J% , 𝑜%N . (4)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2024

embedding 𝑒3,-" and a general embedding 𝑒3,-41, respectively. 𝑒3,-"
and 𝑒3,-41 are then combined with the embedding of returns-to-go
𝑒./,- and actions 𝑒1,- from Section Ⅳ.A. Thus, 𝓈𝓉 is converted
into a sequence of embeddings 𝐸𝓈,6 which is then used by the
NavN to generate navigation actions:

 𝐸𝓈,6 = L𝑒2, 𝑒.̂,(, 𝑒3,(" , 𝑒3,(41 , 𝑒1,(, … , 𝑒.̂,% , 𝑒3,%" , 𝑒3,%41N. (5)
1) Training Loss: In order to train the two visual encoders, the
Bootstrap Your Own Latent (BYOL) [35] self-supervised
learning method is used. For each encoder, BYOL uses two
neural networks, Fig. 2: 1) an online network parameterized by
𝜙 that consists of an encoder (𝑓", 9 ,	𝑓2, 9), a projector (𝑔",9 ,
𝑔2,9), and a predictor (𝑞",9 , 𝑞2,9); and 2) a target network
parameterized by 𝜉 that consists of an encoder (𝑓", :,	𝑓2, :), and
a projector (𝑔",:, 𝑔2,:). Herein, we represent these parameters
in general as (𝑓9 , 𝑔9 , 𝑞9 , 𝑓: , 𝑔:) as the training of 𝑓" and 𝑓2
follow the same procedure. The online network and the target
network share the same architecture for the encoder and the
projector. The projector and the predictor are represented by a
multiple-layer perceptron (MLP). The weights of the target
network are an exponential moving average of the online
network weights.

Two distributions of image augmentations including random
resizing, cropping, color jittering were applied to obtain two
augmented views 𝑣 and 𝑣# from the input observation image 𝑜.
The online network takes 𝑣 as input, and outputs representation
𝑦9 = 𝑓9(𝑣) , projection 𝑧9 = 𝑔9L𝑦9N , and a prediction
𝑞9L𝑧9N . The target network takes as input 𝑣# , and outputs
representation 𝑦:# = 𝑓:(𝑣#) and projection 𝑧:# = 𝑔:L𝑦:#N . The
loss function is defined as the mean squared error (MSE)
between the normalized online prediction and target projection:

 ℒ9,: = ∥ ;!<=!>

∥;!<=!>∥"
−

=#
$

∥=#
$∥"
∥)). (6)

BYOL uses a symmetrical loss by swapping 𝑣 and 𝑣# as
input to the online and target networks again to compute ℒ]9,::

	 ℒ9,:@ABC = ℒ9,: + ℒ]9,: .	 (7)
The final BYOL loss is the summation of the loss for 𝑓" ,

ℒ",D,E@ABC and the loss for 𝑓2, ℒ2,D,E@ABC:
	 ℒ@ABC = ℒ",D,E@ABC + ℒ2,D,E@ABC.	 (8)

To ensure that the static encoder learns only the static
features from the environment, we modified the standard
BYOL procedure [35] by generating the two augmented views

(𝑣, 𝑣#) from two different images (𝑜", 𝑜F) of the same view of
the scene. 𝑜F denotes an RGB image that contains dynamic
obstacles (i.e., other robots) while 𝑜" denotes an image that
contains only static obstacles. Therefore, the static encoder
learns only the common static obstacle features shared between
the images (𝑜", 𝑜F). For the general encoder, we follow the
standard BYOL procedure [42] and generate two different
augmented views from the same image 𝑜F.

C. Navigation Network
The NavN is used to generate the robot’s action 𝑎%G(given

the sequence of embeddings 𝐸𝓈,6 . Our NavN uses a causal
transformer (CT) model based on the Generative Pre-trained
Transformer 2 (GPT-2) [14]. We use CT as its self-attention
mechanism can effectively utilize sequential memory of past
static embeddings 𝑒3", enabling the network to reason about the
spatial layout of the environment based on the robot trajectory
𝜏% . The CT can also implicitly infer the motion of dynamic
obstacles by dynamically adjusting the weight of each general
embedding eHIJ from consecutive image observations via self-
attention layers.

The structure of our NavN consists of three stacked
transformer blocks, and a linear layer. To understand the
temporal and multi-modal nature of the input data, positional
encodings are introduced as learnable embeddings for each
timestep and modality, which are added to 𝐸𝓈,6.

Dropout is applied to the 𝐸𝓈 to prevent overfitting [36]. 𝐸𝓈 is
then sent into 𝑁 = 3 stacked transformer blocks, each
consisting of a masked multi-head attention (MMHA)
submodule and a MLP submodule. The context length of each
transformer block is 1024. In the MMHA submodule, the
embeddings 𝐸𝓈 are linearly projected into ℎ = 2 heads of keys
𝐾, queries 𝑄 and values 𝑉 in the dimension of 𝑑* =	64 for self-
attention. The MMHA submodule is connected to a MLP that
has a hidden layer and residual connection. The last transformer
block outputs a sequence of hidden states 𝐻𝓈:

 𝐻𝓈 = Lℎ2, ℎ./,(, ℎ3,(" , ℎ3,(41 , … , ℎ./,% , ℎ3,%" , ℎ3,%41N. (9)
We concatenate the target hidden state ℎ2 with the

observation hidden state ℎ3,-41 and provide fℎ2; ℎ3,%41 h into a linear
layer to predict the next navigation action 𝑎i-. This hidden state
concatenation helps the CT to implicitly detect the target;
thereby, improving the navigation policy.
1) Training Loss: We utilize the Decision Transformer [32]
offline RL method for training the NavN. The loss of the NavN
is computed using the MSE between the predicted actions 𝑎i-
and ground-truth actions 𝑎-:
 ℒK& = (

&
∑ ∥ 𝑎% − 𝑎i% ∥)&
%'(. (10)

Ⅴ. DATASET COLLECTION
We collected three datasets in 3D simulated environments

from mobile robots to train NavFormer, Fig. 1(a): 1) Robot
Exploration Dataset, 𝒟ℯ, 2) Collision Avoidance Dataset, 𝒟𝒸𝒶,
and 3) Representation Learning Dataset, 𝒟𝓈𝓈ℓ . The target
objects include various geometric shapes (sphere, box) and
colors (green, red, white, yellow, blue).
Exploration Dataset 𝓓𝓮: This dataset comprises 3,496 robot
trajectories and the corresponding target RGB images, totaling
342,954 timesteps for a single robot exploration task in 3D

Fig. 2. BYOL procedure for the static and general encoder.

WANG et al.: NAVFORMER: ROBOT TARGET-DRIVEN NAVIGATION IN UNKNOWN AND DYNAMIC ENVIRONMENTS 5

environment with only static obstacles (i.e., walls). Each robot
trajectory was obtained in a different random environment with
size ranging from 5m × 5m to 17.5m × 17.5m. The trajectory
𝜏 consists of returns-to-go 𝑅J, observations 𝑜, and actions 𝑎. To
generate this dataset, the Frontier Exploration method in [38]
was used to select the nearest frontier location for the robot. The
robot planned a global path using A* and followed this path
using DWA [30] as the local planner. 𝒟ℯ is used to train
NavFormer to learn the skill of exploration.
Collision Avoidance Dataset 𝓓𝓬𝓪 : This dataset comprises
7,467 robot trajectories collected using NH-ORCA [20] and the
corresponding target images, totaling 469,378 timesteps for the
task of multi-robot collision avoidance in dynamic
environments. Each trajectory was obtained in a 12.5 m × 12.5
m environment with the number of dynamic obstacles ranging
from 2 to 8. 𝒟𝒸𝒶 was used to learn collision avoidance.
Representation Learning Dataset 𝓓𝓼𝓼𝓵 : This dataset,
consisting of 98,000 image pairs taken in 3D mazes with
dynamic obstacles, was collected across 1,000 randomly
generated environments, varying in size from 5 m × 5 m to 17.5
m × 17.5 m and containing 4 to 25 dynamic obstacles. Each
image pair contained two RGB images L𝑜-", 𝑜-FN taken by the
robot’s onboard camera. To collect this dataset: 1) we randomly
placed all dynamic obstacles in different locations, and
recorded their observations (i.e., 𝑜-F) and locations; and 2) a
single robot was placed at all previous locations and its own
observations were captured (i.e., 𝑜-"). We aligned each 𝑜-" with
its corresponding 𝑜-F based on the locations where 𝑜-" and 𝑜-F
were taken. 𝒟𝓈𝓈ℓ was used for the representation learning.

Ⅵ. TRAINING
We used a cross-task training approach for the policy

learning of NavFormer. Namely, we decomposed the robot
TDN task into the two sub-tasks of: 1) single robot exploration,
and 2) multi-robot collision avoidance. NavFormer was trained
on 𝒟ℯ and 𝒟𝒸𝒶 to learn exploration and collision avoidance
skills. To compute ℒK&(10), we alternated between 𝒟ℯ	and	𝒟𝒸𝒶
during each training iteration to sample trajectories. To train the
DVE, we use 𝒟𝓈𝓈ℓ to sample image pairs to compute ℒ@ABC,
(8). The final loss is:

 ℒ = ℒ@ABC + ℒUV. (11)
Training was performed using an RTX3070 GPU, an AMD

Ryzen Threadripper 3960X CPU and 128GB of memory. The
training of the DVE utilized a batch size of 512. The Adam
optimizer [39] used 0.0004 for the learning rate and weight
decay. NavFormer was trained with a batch size of 25 and 150
for trajectory sampling from 𝒟ℯ	and 𝒟𝒸𝒶, respectively. We used
different batch sizes for trajectory sampling to balance the total

number of frames in each batch as trajectories in 𝒟ℯ were
longer than trajectories in 𝒟𝒸𝒶. Dropout of 0.1 is applied to the
CT. The AdamW optimizer [40] was used to train the
NavFormer with a learning rate of 0.0002 and weight decay of
0.0001, over a span of 10,000 iterations.

Ⅶ. SIMULATED EXPERIMENTS
We conducted two sets of experiments to evaluate the overall

performance of our NavFormer architecture: 1) a comparison
study with our approach and state-of-the-art (SOTA) learning
methods to compare TDN strategies on: i) unseen 3D maze
environments, ii) unseen photorealistic 3D environments, and
iii) unseen dynamic obstacles; and 2) an ablation study to
investigate the contributions of the design choices of
NavFormer.

A. Comparison Study in Unseen Maze Environments
We used three performance metrics for these experiments: 1)

mean success rate (SR) of robots reaching target objects, 2)
Success weighted by normalized inverse Path Length (SPL)
which measures the efficiency of the navigation method [41]:

 SPL = (
W%
∑ 𝑆-

ℓ𝒾
XJY(𝓅𝒾 ,ℓ𝒾)

W%
-'(, (12)

where 𝑁] is the number of robot trials, 𝑆- is a binary indicator
of success in trial 𝑖. ℓ𝒾 is the shortest path length from the start
location of the robot to the target location, and 𝓅𝒾 is the actual
robot path length, and 3) mean collision rate (CR), CR =
(
W%
∑ W',)

W*,)

W%
-'(, where𝑁4,- is the number of collisions in trial 𝑖, 𝑁,,-

denotes the total number of timesteps in trial 𝑖.
We randomly generated a total of 54 new 3D environments in

Gazebo consisting of static obstacles, target objects, and
dynamic obstacles (robots). For all the methods, the test
environments were unseen during training. The sizes of these
environments were 7.5 m × 7.5 m, 12.5 m × 12.5 m, and 17.5
m × 17.5 m, Fig. 3. Each robot had a different target object to
navigate to. The target objects were randomly generated with
different geometric shapes and colors, and locations. We
deployed 2, 4 and 6 Jackal robots in each environment.

 1) Comparison Methods: We benchmarked our NavFormer
method against the following comparison methods:
Velocity Random Walk (VRW): The velocity random walk
policy randomly samples robot actions from a uniform
distribution. VRW is chosen as a lower bound approach.
Deep Siamese Actor-Critic (DSAC) [8]: The Deep Siamese
Actor-Critic model consists of Siamese CNN layers and scene-
specific FCLs. We use the procedure in [13] to adapt DSAC to
use a single set of scene-specific layers across all training
environments in order to generalize to unseen environments.

TABLE I
 COMPARISON BETWEEN NAVFORMER AND SOTA METHODS FOR UNSEEN MAZE ENVIRONMENTS

Setup VRW DSAC MA-TDN DT FCA NavFormer (ours)

Env size (m) # of
robots SR SPL CR SR SPL CR SR SPL CR SR SPL CR SR SPL CR SR SPL CR

7.5 × 7.5
2 39.17% 0.287 0.691 53.33% 0.377 0.316 61.67% 0.315 0.314 57.50% 0.419 0.405 94.17% 0.653 0.044 80.83% 0.562 0.228
4 33.33% 0.220 0.694 47.08% 0.353 0.395 46.67% 0.248 0.542 47.92% 0.395 0.529 80.83% 0.598 0.142 66.25% 0.465 0.325
6 32.78% 0.187 0.711 42.78% 0.337 0.493 43.06% 0.234 0.559 40.28% 0.332 0.608 76.11% 0.580 0.101 54.44% 0.435 0.430

12.5 × 12.5
2 16.67% 0.100 0.678 24.17% 0.179 0.324 30.00% 0.159 0.387 39.17% 0.258 0.372 85.00% 0.599 0.070 53.33% 0.374 0.251
4 15.83% 0.104 0.680 19.17% 0.133 0.460 23.33% 0.137 0.394 26.25% 0.201 0.430 73.33% 0.482 0.096 48.89% 0.378 0.223
6 13.61% 0.101 0.716 23.89% 0.18 0.550 23.06% 0.118 0.488 31.94% 0.231 0.530 60.28% 0.454 0.071 48.75% 0.359 0.355

17.5 × 17.5
2 5.83% 0.053 0.666 10.00% 0.084 0.371 20.83% 0.117 0.342 34.17% 0.222 0.352 57.50% 0.395 0.068 44.17% 0.316 0.279
4 5.00% 0.032 0.622 10.00% 0.085 0.472 13.75% 0.078 0.494 22.08% 0.151 0.449 47.50% 0.331 0.100 38.33% 0.279 0.204
6 5.83% 0.032 0.585 10.56% 0.092 0.538 16.39% 0.098 0.554 22.50% 0.169 0.546 40.83% 0.296 0.081 35.56% 0.272 0.350

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2024

Memory-Augmented Target-Driven Navigation (MA-TDN)
[5]: MA-TDN uses an attention module to retrieve the memory
of past robot observations to generate navigation actions.
Decision Transformer (DT) [32]: The decision transformer
uses only one visual encoder for feature extraction from visual
observations. The navigation action is generated using the
hidden state of the observation embedding.
Frontier + NH-ORCA (FCA): FCA uses frontier exploration
as a high-level planner to explore the environment and uses
NH-ORCA as local controller to avoid collisions with other
obstacles. This method is chosen as an upper bound approach
as it uses extra information unavailable to NavFormer and other
SOTA learning methods, including point clouds and map, other
robots’ states (i.e., velocities, positions, sizes), and specific
target locations. It should be noted that as FCA utilizes the
above additional information, it does not directly address the
TDN problem in dynamic environments using only visual
observations as defined in this paper.

For both DSAC and MA-TDN, we convert their discrete
action space to continuous space by outputting a mean and
variance to define a Gaussian distribution for action sampling.
Training of DSAC and MA-TDN were achieved with PPO [26]
using the same 3D maze training environments and number of
robots as NavFormer. DT was trained on 𝒟ℯ and 𝒟𝒸𝒶 using Eq.
(10). For DT and NavFormer, 𝑅J(is initialized to be 1. The robot
only receives a positive reward of 1 when it successfully
navigates to the target object.

2) Experimental Procedure: At the beginning of each trial,
robots were randomly located in the environment and assigned
an RGB image of a target 𝑔. A robot found a target when the
distance between the target and robot was within 1.5m. A trial
terminated when either all robots found their corresponding
targets or the total timesteps exceeded 500. Each timestep is
0.2s. A new environment was randomly generated every 10
trials. 60 trials were conducted for each experiment setup.

3) Results: The SR, SPL, and CR results for NavFormer and
the comparison methods across the different environment sizes
and number of robots are presented in Table I. In general,
NavFormer consistently outperformed VRW, DSAC, MA-
TDN and DT. As the environment size increased, SR and SPL
decreased and CR increased for all methods due to the: 1)
increased level of difficulty introduced by more static obstacles
in the larger environments, and 2) longer travel distance
between start and target location with the allocated time.
NavFormer had higher SR and SPL and lower CR than VRW,

DSAC, MA-TDN, DT across all the three environments and
number of robots. NavFormer was able to achieve accurate
spatial layout representation from invariant features extracted
by the static encoder, minimizing the need for redundant
coverage of an environment. Target hidden state concatenation
enabled NavFormer to achieve improved implicit target
detection during navigation by directly conditioning on the
target hidden states. This aids the robot to recognize and reach
the target object when it is within robot’s camera view, thereby
facilitating task completion. FCA had higher performance than
NavFormer across all environments as it used additional
information such as the map of the environment to select
frontiers to explore, ground-truth state information of other
robots to avoid collisions.

B. Comparison Study in Unseen Photorealistic Environments
We conducted experiments in three 3D photorealistic

environments which included a bookstore (14.3 m × 15.6 m), a
two-room cafe (9.3 m × 23.1 m), and a single-floor multi-room
house (19.0 m × 11.0 m), as shown in Fig. 4. These
environments represent unseen out-of-distribution
environments with different configurations and appearances
from our 3D maze environments used during training. The same
target objects were used as in Section Ⅶ.A. Three Jackal
robots were deployed in each environment. Both robot start and
target object locations were randomly chosen. We performed
30 trials in each environment type for all methods.

1) Results: The results are presented in Table II. NavFormer
achieved lower performance in unseen out-of-distribution
photorealistic environments compared to its performance in
unseen 3D mazes (Table I) as expected. This is similar to other
visual tracking methods such as E-VAT [29]. However,
NavFormer still outperformed VRW, DSAC, MA-TDN and DT
in all three metrics. This is due to the data augmentation
techniques utilized by NavFormer during the training of DVE,
which allow for visual feature extraction to be robust to
environmental changes. In turn, NavFormer has better
generalization capabilities than these methods. As FCA uses
additional sensory information about the environment and
target, it is less sensitive to environmental variability.

C. Comparison Study with Unseen Dynamic Obstacles
We conducted simulated experiments with unseen dynamic

obstacles to compare the robustness of the learned policy
between NavFormer and other SOTA methods. During the
dataset collection and training phases, only the Jackal robots
were used as dynamic obstacles. To consider unseen dynamic
obstacles during testing, we included mobile TurtleBot3 robots.
The experiments were conducted in 3D mazes (12.5 m × 12.5
m), with a total of four robots deployed per trial: one Jackal
robot, and three dynamic obstacles. Namely, we explored two

(a) (b) (c) (d)

Fig. 3. Robot environments: (a) 7.5 m × 7.5 m with 2 robots, (b) 12.5 m × 12.5
m with 4 robots, (c) 17.5 m × 17.5 m with 6 robots, and (d) a mobile robot and
a target object.

TABLE II
 COMPARISON BETWEEN NAVFORMER AND SOTA METHODS FOR UNSEEN

PHOTOREALISTIC ENVIRONMENTS
 VRW DSAC MA-TDN DT FCA NavFormer

SR 8.89% 11.11% 17.78% 22.22% 82.22% 36.67%
SPL 0.062 0.081 0.122 0.148 0.612 0.269
CR 0.612 0.620 0.590 0.510 0.092 0.412

(a) (b) (c)

Fig. 4. Photorealistic environments with three jackal robots and eight target
objects: (a) a bookstore, (b) a two-room cafe, and (c) a single floor house with
multiple rooms.

WANG et al.: NAVFORMER: ROBOT TARGET-DRIVEN NAVIGATION IN UNKNOWN AND DYNAMIC ENVIRONMENTS 7

scenarios, where: 1) all dynamic obstacles are Jackal robots,
and 2) all dynamic obstacles are TurtleBot3 robots. Sixty trials
were conducted for each scenario, with a new maze randomly
generated every 10 trials. As in Section VII.A, we used the same
target objects, however, both robot starting and target object
locations were randomly chosen.

1) Results: The results are shown in Table III. As expected,
NavFormer’s performance decreased slightly in the presence of
unseen dynamic obstacles. However, NavFormer still
outperformed the other SOTA methods, showcasing the
robustness of its learned policy against other TDN SOTA
methods for unseen dynamic obstacles. This is due to the CT
network in NavFormer using the self-attention layers to
dynamically adjust the weights of input robot historical
trajectory that contain consecutive frames of visual
observations. Thus, enabling the network to implicitly identify
and adjust to the movement patterns of dynamic obstacles even
when they have not been seen during training. FCA explicitly
utilized ground-truth state information of other robots, therefore
it achieved better performance than NavFormer.

D. Ablation Study
We conducted an ablation study to investigate the impact of

the design choices on the training methods and architecture
design of NavFormer. Namely, we considered:
 (1) NavFormer without SSL: It was trained using only the
loss of ℒUV, Eq. (10), (2) NavFormer without Training on 𝝉𝒆:
When computing ℒUV, Eq. (10), robot exploration trajectories
𝜏, from 𝒟ℯ were not included, (3) NavFormer without
Training on 𝛕𝒄𝒂 : When computing ℒUV , Eq. (10), robot
collision avoidance trajectories τ41 from 𝒟𝒸𝒶 were not
included, (4) NavFormer without Target Hidden States
Concatenation (THSC): The feed-forward layer of NavN
includes input only from the hidden state of the observation ℎ3,%41
to generate 𝑎i% , (5) NavFormer without Static Encoder 𝒇𝒔:
We removed the static encoder during training, (6) NavFormer
without General Encoder 𝒇𝒈 : We removed the dynamic
encoder during training, (7) NavFormer with ResNet18: We
replaced the DVE with a single pre-trained ResNet18 [15].

We conducted 60 trials in 6 maze environments of 12.5 m ×
12.5 m with 4 Jackal robots for each variant. A new
environment is randomly generated every 10 trials.

1) Results: The results of the ablation study are presented in
Table IV. NavFormer achieved the highest SR and SPL and the
lowest CR among all variants. We found that NavFormer w/o
𝑓" achieved overall the second highest performance when
compared to NavFormer, showing the significant role of the
general encoder in extracting obstacle-specific features that are
important for navigation. NavFormer with ResNet18 achieved
the lowest performance among all variants due to the domain
gap between the test environments (i.e., simulated 3D mazes)
and ImageNet (i.e., web-scale object-centric images) [42]. The
pretrained visual representations do not generalize to domain-
specific robot navigation task, leading to the decrease in
performance [43]. We also found that NavFormer w/o τ41
achieved better performance than NavFormer w/o τ, . We
postulate that this is due to the skill of exploration being more
important for the completion of the TDN task. NavFormer
inherently acquires the skill of collision avoidance with static
obstacles during the learning of exploration skills, diminishing
the incremental benefit of learning from τ41.

VIII. REAL-WORLD EXPERIMENTS
We conducted real-world experiments in a 9.0 m by 10.0 m

office environment, Fig. 5. Two Jackal robots were deployed
with each having a ZED 2 camera for obtaining image
observations. Eight target objects with varying geometric
shapes (i.e., box, ball) and colors (i.e., blue, green, orange,
yellow) were used. The same three datasets as described in
Section V were collected: with 1) 50 single robot trajectories
for exploration, 2) 100 two-robot trajectories for collision
avoidance, and 3) 500 image pairs containing one image with
dynamic obstacles and one image with only static obstacles. We
finetuned NavFormer on these real-world datasets using the
same set of hyperparameters as in Section VI and trained for
2,000 iterations. For testing, 15 trials were conducted with
randomly placed target objects and robot starting locations.

NavFormer achieved an SR of 63.33%, SPL of 0.406, and
CR of 0.229, respectively. This is comparable to the results in
Table I for the small-mid-size environments. A video of our
NavFormer method addressing the TDN problem in both the
simulated and real-world environments is provided on our
YouTube channel at https://youtu.be/PSVsLM1eGXo.

IX. CONCLUSION
In this paper, we present the development of a novel end-to-

end DL model, NavFormer, to address the challenging problem
of robot target-driven navigation in unknown and dynamic
environments. Our approach uniquely combines a Dual-Visual

TABLE III
 COMPARISON STUDY WITH SEEN AND UNSEEN DYNAMIC OBSTACLES

 Metrics VRW DSAC MA-TDN DT FCA NavFormer
Seen

Dynamic
Obstacles

SR 15.83% 19.17% 23.33% 26.25% 73.33% 48.89%
SPL 0.104 0.133 0.137 0.201 0.482 0.378
CR 0.680 0.460 0.394 0.430 0.096 0.223

Unseen
Dynamic
Obstacles

SR 13.33% 16.67% 21.67% 21.67% 75.00% 41.67%
SPL 0.101 0.131 0.157 0.190 0.442 0.322
CR 0.591 0.606 0.552 0.501 0.086 0.301

Fig. 5. Top view of the real-world office environment with two mobile
robots and eight target objects with zoomed in views of the different
regions.

TABLE IV
 ABLATION STUDY

Methods SR SPL CR
NavFormer 48.89% 0.378 0.223
NavFormer w/o SSL 39.58% 0.272 0.376
NavFormer w/o THSC 32.08% 0.261 0.500
NavFormer w/o τ! 12.08% 0.109 0.280
NavFormer w/o τ"# 40.83% 0.256 0.237
NavFormer w/o 𝑓$ 41.25% 0.289 0.230
NavFormer w/o 𝑓% 38.33% 0.273 0.396
NavFormer w ResNet18 7.92% 0.080 0.765

https://youtu.be/PSVsLM1eGXo

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2024

Encoder system with a transformer-based Navigation Network.
The former is trained via self-supervised learning, while the
latter uses offline reinforcement learning. Extensive simulated
experiments were conducted with varying environment sizes
and different number of dynamic obstacles. The results show
that NavFormer outperformed state-of-the-art learning-based
methods in successfully navigating to targets. Both
photorealistic simulated experiments and real-world
experiments validated the generalizability of NavFormer to
effectively solve the TDN problem in dynamic unknown
complex environments. An ablation study further validated our
design choices of NavFormer. Future work will expand our
architecture by incorporating object recognition backbones for
common objects and different dynamic obstacles in everyday
environments.

REFERENCES
[1] A. H. Tan, F. P. Bejarano, Y. Zhu, R. Ren, and G. Nejat, “Deep

Reinforcement Learning for Decentralized Multi-Robot Exploration
With Macro Actions,” IEEE Robot. Autom. Lett., vol. 8, no. 1, pp. 272–
279, Jan. 2023.

[2] A. Fung, B. Benhabib, and G. Nejat, “Robots Autonomously Detecting
People: A Multimodal Deep Contrastive Learning Method Robust to
Intraclass Variations,” IEEE Robot. Autom. Lett., vol. 8, no. 6, pp. 3550–
3557, Jun. 2023.

[3] R. R. Murphy, “Activities of the rescue robots at the World Trade Center
from 11-21 september 2001,” IEEE Robot. Autom. Mag., vol. 11, no. 3,
pp. 50–61, Sep. 2004.

[4] A. H. Tan, S. Narasimhan, and G. Nejat, “4CNet: A Confidence-Aware,
Contrastive, Conditional, Consistency Model for Robot Map Prediction
in Multi-Robot Environments,” arXiv:2402.17904, 2024.

[5] L. Mezghan et al., “Memory-Augmented Reinforcement Learning for
Image-Goal Navigation,” in Proc. IEEE Int. Conf. Intell Robots Syst,
2022, pp. 3316–3323.

[6] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–772,
Jul. 1998.

[7] C. Yu et al., “DS-SLAM: A Semantic Visual SLAM towards Dynamic
Environments,” in Proc. IEEE Int. Conf. Intell. Robot Syst., 2018, pp.
1168–1174.

[8] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Aumomat.,
2017, pp. 3357–3364.

[9] X. Ye, Z. Lin, H. Li, S. Zheng, and Y. Yang, “Active Object Perceiver:
Recognition-guided Policy Learning for Object Searching on Mobile
Robots,” in Proc. IEEE Int. Conf. Intell. Robots Syst., 2018, pp. 6857-
6863.

[10] A. Devo, G. Mezzetti, G. Costante, M. L. Fravolini, and P. Valigi,
“Towards Generalization in Target-Driven Visual Navigation by Using
Deep Reinforcement Learning,” IEEE Trans. Robot., vol. 36, no. 5, pp.
1546–1561, Oct. 2020.

[11] W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mottaghi, “Visual
Semantic Navigation using Scene Priors,” arXiv:1810.06543, 2018.

[12] X. Ye and Y. Yang, “Efficient Robotic Object Search Via HIEM:
Hierarchical Policy Learning With Intrinsic-Extrinsic Modeling,” IEEE
Robot. Autom. Lett., vol. 6, no. 3, pp. 4425–4432, Jul. 2021.

[13] Q. Wu, X. Gong, K. Xu, D. Manocha, J. Dong, and J. Wang, “Towards
Target-Driven Visual Navigation in Indoor Scenes via Generative
Imitation Learning,” IEEE Robot. Autom. Lett., vol. 6, no. 1, pp. 175–
182, Jan. 2021.

[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language Models are Unsupervised Multitask Learners,” OpenAI blog,
2019.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 770–778.

[16] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement
Learning,” in Proc. Int. Conf. Mach. Learn., 2016, vol. 48, pp. 1928–
1937.

[17] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[18] L. Espeholt et al., “IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures,” in Proc. Int. Conf.
Mach. Learn., Jul. 2018, pp. 1407–1416.

[19] J. D. Van Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles
for real-time multi-agent navigation,” in Proc. IEEE Int. Conf. Robot.
Automat., 2008, pp. 1928–1935.

[20] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R.
Siegwart, “Optimal reciprocal collision avoidance for multiple non-
holonomic robots,” in Distrib. Auton. Robot. Syst., Springer, 2013, pp.
203–216.

[21] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep
reinforcement learning,” in Proc. IEEE Int. Conf. Robot. and Automat.,
2018, pp. 6252–6259.

[22] J. Zeng, R. Ju, L. Qin, Y. Hu, Q. Yin, and C. Hu, “Navigation in
Unknown Dynamic Environments Based on Deep Reinforcement
Learning,” Sensors, vol. 19, no. 18, Art. no. 18, Jan. 2019.

[23] R. Han et al., “Reinforcement Learned Distributed Multi-Robot
Navigation With Reciprocal Velocity Obstacle Shaped Rewards,” IEEE
Robot. Autom. Lett., vol. 7, no. 3, pp. 5896–5903, Jul. 2022.

[24] M. Everett, Y. F. Chen, and J. P. How, “Motion Planning among
Dynamic, Decision-Making Agents with Deep Reinforcement
Learning,” in Proc. IEEE Int. Conf. Intell. Robots Syst., Dec. 2018, pp.
3052–3059.

[25] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and
Imitation Multi-Agent Learning,” IEEE Robot. Autom. Lett., vol. 4, no.
3, pp. 2378–2385, 2019.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” pp. 1–12, 2017.

[27] K. Cho et al., “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” 2014, arXiv:1406.1078.

[28] K.-H. Lee et al., “Multi-Game Decision Transformers,” Adv. Neural Inf.
Process. Syst., pp. 27921-27936, 2022.

[29] A. Dionigi, A. Devo, L. Guiducci, and G. Costante, “E-VAT: An
Asymmetric End-to-End Approach to Visual Active Exploration and
Tracking,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4259–4266, Apr.
2022.

[30] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
1997.

[31] W. Khaksar, S. Vivekananthen, K. S. M. Saharia, M. Yousefi, and F. B.
Ismail, “A review on mobile robots motion path planning in unknown
environments,” Proc. IEEE Int. Symp. Robot. Intell. Sens., pp. 295–300,
Apr. 2016.

[32] L. Chen et al., “Decision Transformer: Reinforcement Learning via
Sequence Modeling,” 2021, arXiv:2106.01345.

[33] P. Mirowski et al., “Learning to navigate in complex environments,”
Proc. Int. Conf. Learn. Representations, 2017.

[34] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[35] J.-B. Grill et al., “Bootstrap Your Own Latent - A New Approach to Self-
Supervised Learning,” in Adv. Neural Inf. Process. Syst, pp. 21271–
21284, 2020.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting,” J. Mach. Learn. Res., pp. 1929–1958, 2014.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction,
Second edition. in Adaptive Comput. Mach. Learn. Ser., Cambridge,
Massachusetts: The MIT Press, 2018.

[38] B. Yamauchi, “Frontier-based approach for autonomous exploration,” in
Proc. IEEE Int. Symp. Compt. Intell. Robot. Automat., 1997.

[39] D. P. Kingma and J. Lei, “Adam: A Method for Stochastic
Optimization,” 2015, arXiv:1412.6980.

[40] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
2019, arXiv:1711.05101.

[41] P. Anderson et al., “On Evaluation of Embodied Navigation Agents,”
2018, arXiv:1807.06757.

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[43] A. Majumdar et al., “Where are we in the search for an Artificial Visual
Cortex for Embodied Intelligence?” arXiv:2303.18240, 2024.

