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Abstract

When communicating routes in natural lan-
guage, the concept of acquired spatial knowl-
edge is crucial for geographic information re-
trieval (GIR) as well as in spatial cognitive
research. However, NLP navigation studies
often overlook the impact of such acquired
knowledge on textual descriptions. Current
navigation studies concentrate on egocentric
local descriptions (e.g., ‘it will be on your
right’) that require reasoning over the agent’s
local perception. These instructions are typi-
cally given as a sequence of steps, with each
action-step explicitly mentioning and being
followed by a landmark that the agent can use
to verify they are on path (e.g., ‘turn right and
then you will see...”). In contrast, descriptions
based on knowledge acquired through a map
provide a complete view of the environment
and capture its overall structure. These instruc-
tions typically contain allocentric relations, are
non-sequential, with multiple spatial relations
and implicit actions, without any explicit ver-
ification (e.g., ‘it is south of Central Park and
a block north of a police station’). This pa-
per introduces the Rendezvous (RVS) task and
dataset, which includes 10,404 examples of
English geospatial instructions for reaching a
target location using map-knowledge. Our
analysis reveals that RVS exhibits a richer use
of spatial allocentric relations, and requires re-
solving more spatial relations simultaneously
compared to previous text-based navigation
benchmarks."

1 Introduction

In today’s world, cell phones with powerful map-
ping applications are widely used. However, even
with this technology at our fingertips, many people
still rely on geospatial instructions to arrange ren-
dezvous locations by providing natural language
descriptions that reference landmarks and their

"The data is available at https://github.com/anonymous
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DI’m pretty far away, almost all the way to Central Park,
Jjust 3-4 blocks from Columbus Circle. Walk north on
8th Ave. and I’m at a parking entrance a block north
of a police station.

Figure 1: An illustration example from the RVS dataset.
The RVS input consists of (1) a bird’s-eye instruction of
the goal location (shown at the bottom), (2) a starting
point (green marker) and a map representation of the
environment. The output is the goal point (red marker).

geospatial relation, e.g., ‘...a block north of a police
station’ (Figure 1). Retrieving locations and paths
from natural spatial descriptions is essential for
disaster areas (Hu et al., 2023), for the billions of
people without addresses (UPU, 2012), and for Ge-
ographic Information Retrieval (GIR), especially
from the web (Sanderson and Kohler, 2004).

In spatial cognitive research, it is widely ac-
cepted that spatial language is associated with cog-
nitive representations of the environment and orig-
inates from spatial memory (Hayward and Tarr,
1995). Thus, navigation instructions are affected
by the way individuals acquire spatial knowledge
over their environment (Tversky, 2005; Thorndyke
and Hayes-Roth, 1982; Kuipers, 1978). The domi-
nant theory for spatial knowledge acquisition, that
of Siegel and White (1975), describes three levels
of human knowledge about their environment: (i)
Landmark knowledge: the ability to describe the
characteristics of distinct objects, which may be



located along a route, without indicating the re-
lationship or path between those landmarks, (ii)
Route knowledge: includes sequential information
such as directions for navigation instructions, and
(iii) Survey knowledge, which involves understand-
ing the layout and composition of the environment
and describing landmarks in relation to each other
using an external reference system, such as the
directional relationships between landmarks.

Instructions based on survey knowledge contain
a bird’s-eye view perception of the environment.
These higher-level descriptions involve allocen-
tric relation and cardinal directions (‘east of”), are
non-sequential, with implicit actions and multiple
spatial relation without any verification (e.g., ‘3-4
blocks north of Columbus Circle and north of a
police station’). They require geospatial numerical
reasoning (‘two buildings from’), and understand-
ing of complex shapes such as ‘Y-shaped street’
(Jayannavar et al., 2020; Lachmy et al., 2022).
They contain a mix of indefinite descriptions refer-
encing salient landmarks (‘a building’), and proper
names (‘the empire state building’).

Despite the importance of geospatial instructions
in daily life, current NLP geospatial datasets lack
instructions that encompass all such levels of ac-
quired knowledge. While many NLP geolocation
tasks primarily involve instructions based on land-
mark knowledge, text-based navigation tasks focus
on the second level — route knowledge — with
step-by-step local perception. However, current
spatial datasets are missing the third level — sur-
vey knowledge — which involves global perception
and requires reasoning over multiple spatial rela-
tions simultaneously.

Here, we introduce the Rendezvous (RVS) task
to advance systems that can interpret high-level
survey-based knowledge navigation instructions
that require global spatial reasoning. The input
of the task is a starting point, a non-sequential in-
struction of a rendezvous location, and a map. The
goal is to retrieve the coordinates of the rendezvous
point. We crowdsourced 10,404 rendezvous in-
structions. To gather instructions based on sur-
vey knowledge, we presented participants with
a map that provided them with precise informa-
tion that would have otherwise required exten-
sive exploration of the environment (Thorndyke
and Hayes-Roth, 1982; Uttal, 2000; Plumert et al.,
2007; Tversky, 1996). We collected instructions
over three cities in the USA: Manhattan, Pittsburgh

and Philadelphia. The use of multiple cities allows
for a realistic zero-shot setup where a model is
trained on one city and tested on another unseen
city. This is also relevant for handling changing
environments (Zhang and Choi, 2021). This new
zero-shot setup is a challenging testbed for models’
ability to generalize to new environments. It is part
of our contribution to create a realistic and chal-
lenging setup and show that current models do not
suffice in addressing this multifaceted challenge.
Our linguistically-driven analysis shows that the
RVS task requires significantly more spatial allo-
centric reasoning, resolving more spatial relations
simultaneously, and with fewer explicit actions and
state verifications, compared with previous text-
based navigation benchmarks (Paz-Argaman and
Tsarfaty, 2019; Chen et al., 2019; Ku et al., 2020).

2 The RVS Task and Environment

In this work we address the task of following
geospatial instructions given in colloquial language
based on a dense urban map. The input to the RVS
task is as follows: (i) a map with rich details, given
as a knowledge graph (ii) an explicit starting point,
given in coordinates (latitude and longitude), and
(iii) a geospatial instruction describing the location
of the goal, in relation to the landmarks on the
map and the given starting point. The output of the
RVS task is the coordinates of the goal within the
boundaries of the map.

The map was created using OpenStreetMap
(OSM).2 We extracted landmarks and streets and
connected them to form a graph. To connect land-
marks that do not intersect with streets, we pro-
jected the landmarks onto the nearest streets (up to
four) and added the projected nodes and edges con-
necting the landmark and projection to the graph.

3 Data Collection

We frame the data collection process as an
instructor-follower task, where an instructor needs
to communicate to a follower the rendezvous loca-
tion in relation to the follower’s current location.
The process is divided into two crowdsourced tasks:
communicating the goal location in writing (here,
Instruction Writing), and following (here, Valida-
tion); corresponding to the two roles — instructor
and follower. Appendix D presents a display of the
online assignment’s user-interface (UI).

’OSM is a user-updated map of the world —
http://www.openstreetmap.org
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(a) Manhattan

(b) Pittsburgh

(c) Philadelphia

Figure 2: The RVS instructions are collected over three cities (a-c).

Task 1: Instruction Writing Using the RVS
map-graph (Section 2), we generated the starting
points and (within 2km) the goal points. The in-
structor could view the points on an interactive
map with geo-data from OSM, and displayed land-
marks along the route, near the goal, in the general
area and beyond the route. The goal and nearby
landmarks were not shown by their proper names,
e.g., instead of ‘St. Vincent de Paul Church’ the
marker displayed ‘a church’. The instructor could
zoom in/out and pan to view the environment. The
instructor was requested to describe the goal’s loca-
tion in relation to the starting point and landmarks,
without providing a step-by-step route description.
The instructor was not allowed to mention more
than one street by name.

Task 2: Validation In this task the follower is
asked to follow the instruction displayed, by pin-
ning the goal location on an interactive map. As
the map includes sign symbols of places (e.g, a
cross symbol to denote a church) the display would
include a legend with the equivalent symbol. An
instruction is qualified if the follower pins the goal
within 100m. This threshold is the maximum ra-
dius of a geoshape from Task 1’s generated goal.
Participants were also requested to flag problematic
instructions, i.e., that did not follow the rules in the
instruction writing task. To determine the agree-
ment rate among participants, 50% of the instruc-
tions were validated by at least two participants.

Instructor Training The main challenge of the
collection process is training instructors to write
high-quality instructions based on survey knowl-
edge rather than step-by-step route descriptions.
To address this challenge, the following procedure

was implemented: (1) The process starts by collect-
ing an initial seed of ‘well-formed’ survey-based
instructions written by a geospatial expert. (2) At
least three ‘well-formed’ survey-based knowledge
instructions were presented to an unqualified par-
ticipant one after the other, and the instructor was
requested to pinpoint the goal on a map. (3) Once
the instruction was written by the instructor, it was
reviewed by a geospatial expert who provided feed-
back. (4) If a participant successfully produced
three well-formed survey-based instructions in a
row, the instructor was considered qualified. Ev-
ery instruction given by a qualified instructor was
added to the bank of well-formed survey-based in-
structions and could be shown to other instructors
in training. As more instructors became qualified,
the variety of examples increased.

Quality Assessment We ensured instruction
quality by sampling instructions, discarding poor
ones, and giving feedback throughout the collec-
tion process based on the following criteria: (1)
participants who consistently received low distance
errors in the verification task (less than 30m aver-
age), as it might indicate they gave step-by-step
low-level instructions that are easier to follow; (2)
instructions that received high distance errors (at
least one verification over 2000m); and (3) instruc-
tions from participants who did not participate for
over a month. For participants who failed their
reviews (i.e., did not follow the instructions), we
reviewed their next three instructions.

4 Data Statistics and Analysis

The RVS dataset contains 10,404 validated instruc-
tions paired with start and goal coordinates.




Cit Area Num. Landmarks Num. Avg. Path  Avg. Text Avg. Vocab.
1 . . . egs - .

y Size (km”2) in Graph Instructions Length (m) Length Entities® Size
Manhattan 325 5,287 8,103 1,098.94 43.73 3.99 6,365
Pittsburgh 34.5 22,921 1,023 960.52 41.95 3.93 2,195
Philadelphia 74.5 11,206 1,278 1,096.66 42.96 3.95 2,438

Table 1: Data Statistics of RVS: statistics over different cities.

RVS RUN RxR TOUCHDOWN

Phenomenon D I D I D o D o Example from RVS
Proper Names 100 2 100 596 0 0 0 0 ...Duane Reade pharmacy...
Descriptions 9% 248 8 0.12 100 83 100 9.2 ...There is a church across the street...
Coreference 64 088 40 048 64 53 60 1.1 ...dt’s on the same block as...
Count 28 036 8 008 32 044 36 04 ...Southwest of the school are two bicycle parkings.
Cardinal Direction 9% 22 16 02 0 0 0 0 Go southwest...
Complex shapes 60 1.08 44 076 20 02 8 0.8 ...a block west of the square shaped park...
Allocentric Relation 88 152 4 004 76 24 68 12 .0t is west of the bridge...
Egocentric Relation 4 0.04 76 136 60 23 92 3.6 You will pass an Ace Hardware on your left
Temporal Condition 8 008 72 156 52 08 84 19 ...Go straight south until you pass the library...
Explicit Actions 0 0 100 32 96 0.8 100 2.8 ...Turn left. Continue forward...
State Verification 20 02 56 064 84 31 72 15 ...you will see me at the alcohol shop.
Negative State Verification 4 0.04 4 0.04 0 0 0 0 ..If you see a bike parking, you have gone too far.
Spatial Knowledge Route 4 na 8 n/a 100 n/a 100 n/a ...turn right on the next street...
(Siegel and White, 1975) Survey 96 n/a 16 n/a 0 na 0 n/a Head east toward the river...

Table 2: Linguistic analysis: we analyze 25 randomly sampled instructions from RVS, RUN, RxR (only instruc-
tions given by speakers in the USA), and TOUCHDOWN (only the navigation task). p represents the % of instruc-

tions containing the phenomena, while p represents the average number of occurrences within each instruction.

FDR corrected
Feature p-value
p-value
Num. of entities" 0.00 0.00
Num. of tokens 0.00 0.00
Human distance error 0.56 0.56

Table 3: One-way analysis of variance (ANOVA) tests
were conducted to examine the correlations between
goal types and linguistic and human verification fea-
tures. The p-values were corrected for False Discov-
ery Rate (FDR). A p-value lower than 0.05 indicates a
correlation between goal type and a feature.

The locations are divided among three cities:
Manhattan, Pittsburgh, and Philadelphia (Figure 2
and Table 1). In the instruction writing task, 146
different participants provided survey-knowledge
instructions. In the validation task, 149 participants
completed 16,104 tasks. The human agreement
rate within a 100 meter threshold is 89%.

We conducted a qualitative linguistic analysis
of RVS to understand the type of geospatial rea-
soning required to solve the RVS task. In Table 2
we randomly sampled and annotated 25 examples
from the Manhattan and Pittsburgh areas of RVS
and compared them to previous datasets — RUN
(Paz-Argaman and Tsarfaty, 2019), TOUCHDOWN
(Chen et al., 2019) and RxR (Ku et al., 2020).
While TOUCHDOWN and RxR contain only men-
tions of indefinite descriptions, and RUN contains

almost exclusively proper names, the RVS dataset
contains a relatively balanced use of both descrip-
tions and proper names (not near the goal). This
creates a realistic challenge of handling the various
ways people refer to landmarks.

Crucially, instructions based on survey knowl-
edge use allocentric rather than egocentric spatial
relations. Since RxR and TOUCHDOWN rely on a
street/room-level view of the environment and their
participants have only a short time to become famil-
iar with the environment, the instructions contain
less spatial allocentric reasoning than RVS. The
RVS dataset displays more allocentric phenomena
than the RUN dataset, even though both datasets
include a map. This is because the RUN dataset
encourages participants to use egocentric relations
by displaying examples of egocentric relations. Ac-
cordingly, as shown in Table 2, geospatial mea-
sures found that RVS contains more survey-based
instruction in comparison to the other datasets.

On top of that, RUN, RXR, and Touchdown all
contain sequential instructions that include many
explicit actions and state verifications, making it
easier for the model to predict the correct action
and verify it after the action is taken by checking
for the existence of the verification. In contrast, the
new RVS dataset includes non-sequential instruc-
tions with relatively few state verifications and no



explicit actions.

Token Count Type
Carson 65 street and bridge
Forbes 62 avenue and sport stadium

Pittsburgh 54
Allegheny 29
Smallman 23

city, station and university
avenue
street

Table 4: Top-5 tokens in the Pittsburgh vocabulary that
are absent from the Manhattan vocabulary.

To prevent simple string-match solutions, the
goal location in RVS is always given by its type
(e.g., ‘restaurant’, ‘parking’ etc.) and not by its
proper name. In Table 3 we preform one-way anal-
ysis of variance (ANOVA) tests, to check if there
are entity types easier to locate than others, and if
the type affects the instructions. We found that the
number of entities and tokens in instructions varied
with goal type (p<0.05), but human distance error
did not, indicating that human ability to geolocate
the goal is not affected by its type.

Our out-of-vocabulary (OOV) analysis shows
that, unlike previous navigation datasets (Chen
et al., 2019; Ku et al., 2020; Anderson et al., 2018;
MacMabhon et al., 2006), RVS presents a challenge
with novel entities in a city-split setup, training
on one city and testing on a different unseen city.
Specifically, our analysis of the vocabularies of
two different cities — Manhattan and Pittsburgh
— shows that 36.85% of the Pittsburgh vocabulary
is OOV, i.e., the tokens do not appear in the Man-
hattan vocabulary. Table 4 shows the top-5 OOV
tokens in Pittsburgh. 68% of OOV tokens are com-
monly used (82% of the OOV occurrences) city-
specific named entities, like ‘Carson street’. Thus,
a city-split creates a profound OOV grounding chal-
lenge for previously unseen entities.

5 Models for RVS

As RVS presents a new multimodal task with
unique challenges, we aimed to provide a strong
baseline based on our insights from Section 4. We
model RVS as a sequence-to-sequence problem,
where we map the sequence of tokens in the in-
struction to a sequence of S2-Cells.*

We describe two models: (1) a TS5 Transformer-
based model with an encoder-decoder architecture

?Extracted using ChatGPT - https://chat.openai.com

*S2Cells are based on S2-geometry, a hierarchical dis-
cretization of the Earth’s surface (Hilbert, 1935).

that uses a text-to-text format (Raffel et al., 2020);
and (2) the T5+GRAPH model, which builds upon
model (1) by incorporating a graph representation
of the environment (Section 5).

Encoder The encoder encodes the instruction
and the starting point’s representation. Inspired by
Lu et al. (2022), who converted pixels to text-based
axis locations, we transformed the map’s S2-grid
into a two-dimension discrete coordinate system
(‘locX, locY’). The starting point’s coordinate is as-
signed to the S2-Cell containing its geometry. The
S2-Cell is linked to an axis position, so the starting
position is also assigned an axis position.

Decoder Since this is essentially a navigation
task without a step-by-step path, we train our model
to generate a high-level path, consisting of a se-
quence of locations starting with the starting point,
followed by prominent landmarks ordered by their
directional position from the goal, and ending with
the goal. We extracted the prominent landmarks
based on the RVS map-graph. As in the encoder,
we represent the location in a ‘locX, locY’ format.

The World as a Graph A location can be rep-
resented by its position (where the location is) or
by its semantics (what is present at the location,
e.g., ‘a bar’). Semantic knowledge is crucial for
grounding mentioned entities to their physical ref-
erences in the environment. To this end, we aim
to represent the semantics via the RVS map-graph.
We use the RVS map-graph and connect each node
to its corresponding S2-cells. As the S2-geometry
is a hierarchical structure, we allow for multiple
levels of S2-cells connections. Also there are edges
between neighboring S2-cells at a given level (see
bottom part in Figure 3). To learn an embedding
for each S2-cell in the environment, we compute
random walks on the graph using node2vec algo-
rithm (Grover and Leskovec, 2016). Following Yu
et al. (2021), we use linear projection to cluster the
graph embeddings into K categories using the k-
means algorithm with cosine similarity distance. A
new token is assigned to each category and added
to the tokenizer’s vocabulary. We perform multi-
ple clusters and pass the graph’s tokens with the
instruction’s tokens to the transformer encoder.

6 Experimental Setup

Evaluation We use six evaluation metrics: (1)
100m accuracy, the task is considered completed
if the agent is within a 100m distance from the
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Figure 3: The RVS model based on a TS transformer and a graph representation of the environment.

goal; (2) 250m accuracy for coarse-grained accu-
racy evaluation; (3) mean distance error; (4) me-
dian distance error; (5) maximum distance error;
and (6) area under the curve (AUC) distance error.

Setup and Data-Split We use a zero-shot (ZS)
city-based split, where we train on one city, val-
idate on a second city, and test on a third city.
Specifically, RVS’s setup consists of (i) a training-
set containing 7,000 instructions from Manhat-
tan; (ii) a seen-city development-set containing
1,103 instructions from Manhattan; (iii) an unseen-
city development-set containing 1,023 instruc-
tions from Pittsburgh; and (iv) a test-set containing
1,278 instructions from Philadelphia. The ZS split
raises profound challenges (e.g., OOV), at infer-
ence time, as described in Section 4.

Learning We use supervised learning by maxi-
mizing the log-likelihood of high-level paths. We
train the model with AdamW (Loshchilov and Hut-
ter, 2017) for optimization. Details of the learning
and hyperparameters are provided in Appendix B.1.

Systems We evaluate three non-learning base-
lines: (1) STOP: predicts the starting point as the
goal location; (2) CENTER: predicts the closest
location towards the center of the region within

a 1000 meters radius from the starting point; (3)
LANDMARK : predicts the location of a prominent
landmark in the map within a radius of 1000 meters.
A landmark is considered prominent if it has one of
the following tags (appearing in a descending order
of importance): (a) Wikipedia page; (b) Wikidata
page; (c) a part of a brand; (d) a tourist attraction;
(e) an amenity; and (f) a shop.

e also evaluate two learning models described in
Section 5. The first model is based on TS, and the
second model T5+GRAPH, is based on TS5 with
an addition of a graph-based representation of the
environment. This representation is described in
Section 5 and appears in Figure 3.

7 Results

Table 5 shows seen-city development, and unseen-
city ZS results for our six evaluation metrics. The
human performance provides an upper bound for
the RVS task performance, while the simple STOP
is a simple lower bound baseline. Although the
T5+GRAPH outperforms the non-learning base-
lines (STOP, CENTER, and LANDMARK) in the
seen-city split, there is still a gap of 58.72% and
40.97% in the 100m and 250 accuracies, respec-
tively. The LANDMARK model outperforms other
non-learning models, suggesting that the goal lo-



Method 100m Accuracy 250m Accuracy Mean Error Median Error Max Error AUC of Error
Manhattan Seen-city Development Results
HUMAN 88.12 95.64 74 4 2,996 0.10
Stor 0.00 1.54 1,084 1,124 1,929 0.41
CENTER 0.27 1.45 930 998 1,000 0.40
LANDMARK 0.54 5.26 776 815 1,384 0.39
T5 27.92 (0.39) 52.63 (0.45) 362 (9) 231 (3) 2,957 (641) 0.32 (0.00)
T5+GRAPH 29.40 (1.18) 54.67 (1.04) 357 (1) 216 (8) 3,889 (826) 0.31 (0.01)
Pittsburgh Unseen-Development Results
HUMAN 86.94 92.94 99 7 2,951 0.13
STOP 0.00 2.05 960 954 1,912 0.40
CENTER 0.00 0.10 992 999 999 0.41
LANDMARK 1.47 9.48 677 691 1,345 0.38
T5 0.49 (1.47) 2.34 (1.44) 1,171 24) 1,107 (14) 4,701 (101) 0.41 (0.00)
T5+GRAPH 0.49 (1.01) 291 (1.37) 1,067 (77) 1,039 (56) 4,102 (727) 0.40 (0.00)
Philadelphia Unseen-city Zero-shot Results
HUMAN 93.64 97.97 27 3 2,708 0.05
Stop 0.00 1.80 1,096 1,135 1,958 0.41
CENTER 0.16 0.47 942 998 1,000 0.41
LANDMARK 1.02 7.90 707 713 1,384 0.38
TS 0.26 (0.05) 1.80 (0.27) 1,362 43) 1,308 (35) 6,911 (454) 0.42 (0.00)
T5+GRAPH 0.31 (0.05) 1.93 (0.20) 1,140 (16) 1,161 (8) 5,277 (372) 0.41 (0.00)

Table 5: Results over the test and development sets. The distance errors are presented in meters. For the learning
models we report the mean over three random initializations and the standard-deviation (STD) is in brackets.

Split p Minc Maxc Avg c Example from RVS
Seen-City 61 3 9 5.4 I am northeast of you at a toilet near the corner of Bayard Street. To
Unseen-City 13 2 8 5.05  its south is a park and the Louis J. Lefkowitz State Office Building...

Table 6: Spatial relations analysis of 20 samples. c and p represents the number and percentage of spatial relations
to the location predicted by TS+GRAPH that match those mentioned in the text, respectively. In the examples the

matched relations are underlined, and the unmatched relations are double underlined.

Type of Pred. and True Goal Relation p

tial relations and new entities in the environment.

On the same S2-Cell 25 This can be seen in the learning-model’s ability to
Same cardinal-direction from start point 95 generalize from seen to unseen environment, result-
On the same street 45 ing in low performance, even underperforming the
Have the same type of entity 50 non-learning LANDMARK baseline.

Table 7: Error analysis of 20 instructions and their cor-
responding T5+GRAPH results in the seen-city split. p
is the % of the instructions that contain the types of
relation between predicted goal and the true goal.

cation is more likely to be around prominent land-
marks than in other areas.

Despite the 2km maximum distance between the
start and goal, we did not constrain our models or
teach them S2-Cell distances. So the maximum
error of the learned models was greater than 2km.
The improved performance of the T5+GRAPH over
the T5 indicates that the added graph can capture
semantic geospatial information.

The novel ZS city-split setup we introduced pro-
vides a profound challenge for natural language
understanding due to the appearance of new spa-

Tables 6 and 7 show an error analysis of 20 ex-
amples of the TS+GRAPH’s results in seen-city and
unseen-city splits. As shown in Table 6, the model
must consider multiple spatial relations to handle
RVS.’ However, it only successfully manages 61%
and 13% of these relations in the seen-city and
unseen-city splits, respectively. Table 7 shows that
in the seen-city split, the model correctly identi-
fies the cardinal direction in most cases. In half
the cases, the model correctly identifies the type of
entity. The model correctly identified the street in
45% of cases, and in 88.89% of those cases, the
street was mentioned by name in the text. This
is lower than the 90% of all sampled instructions
that mentioned street names, suggesting that sim-
ply mentioning a street by name is not sufficient for
the model to correctly produce a location on that

SFor comparison, RXR



street. In 25% of the cases, the granularity of the
S2-Cells is not high enough to distinguish between
the predicted and true goal, suggesting that a higher
level of S2-Cell could reduce these cases.
Following Table 3, we conducted an ANOVA
test and found no correlation between goal type
and distance error for T5+Graph (p-value = 0.34).

8 Related Work

As people move they perceive their surroundings
and acquire knowledge of the space, known as cog-
nitive mapping (Tolman, 1948). One influential
cognitive mapping theory Siegel and White (1975)
divides cognitive mapping ability into three lev-
els. Landmark knowledge, consisting of landmarks
(e.g., mountains and buildings) and their attributes
(e.g., location, size, color), Route knowledge, al-
tered by the traveller’s changing viewpoint (Tay-
lor and Tversky, 1992a,b, 1996)and coded directly
(e.g., “turn right, then straight” (Tlauka and Wilson,
1994)), or as condition-action rules based on land-
mark-direction associations (e.g., “turn right at the
church, then straight” (Kuipers, 1978; Thorndyke,
1981)), and Survey knowledge, where people form
a ‘cognitive map’ of the environment, an overview
of the geospatial layout, and gain awareness of rela-
tionships between different geospatial components,
even outside the route. Survey knowledge is inde-
pendent of a person’s own position, and enables her
to form different routes, refer to cardinal directions,
describe landmarks at different resolution levels,
and describe complex shapes of abstract features
such as ‘blocks’. Such information is less likely
to be acquired from direct experience in the envi-
ronment, but is portrayed on maps (Thorndyke and
Hayes-Roth, 1982). Thus, instructions based on
such knowledge mirror the complex understanding
of the environment.

In grounded NLP tasks, participants acquire
knowledge over an environment provided with the
task. This environment can be based on different
sources, most commonly visual sensors with real
(Qi et al., 2020; Blukis et al., 2018; Wang et al.,
2018) or synthetic imagery (Yan et al., 2018; Misra
et al., 2018; Shridhar et al., 2020). In a visual
environment, participants travel through the envi-
ronment, view it from a point on the ground that is
on the same plane as the objects, and acquire route
knowledge. Thorndyke and Hayes-Roth (1982)
found that subjects who learned an environment
by walking through it were limited to route-based

knowledge and used egocentric spatial relation ex-
pressions (e.g., ‘on your right’) in their instruc-
tions. This observation was reinforced by Chen
et al. (2019) analysis of TOUCHDOWN (Chen et al.,
2019) and R2R (Anderson et al., 2018) — two
navigation tasks with walk-through environments.

Another type of environment uses maps (Ander-
son et al., 1991; Paz-Argaman and Tsarfaty, 2019;
Vogel and Jurafsky, 2010; Levit and Roy, 2007; Va-
sudevan et al., 2021; de Vries et al., 2018), where
instructors can view the environment from above
and gain survey knowledge of global geospatial re-
lations. However, previous works with maps have
either presented small, simplistic environments
(Anderson et al., 1991; de Vries et al., 2018) or the
task’s setup has encouraged participants to give ego-
centric sequential instructions limited to the route
(Paz-Argaman and Tsarfaty, 2019; de Vries et al.,
2018; Vasudevan et al., 2021). In contrast, RVS
focuses on instructions that encode survey knowl-
edge and require configurational and allocentric
reasoning over a large, entity-dense environment.

There are sharp differences between indoor (Ku
et al., 2020; Anderson et al., 2018) and outdoor
(Chen et al., 2019; Paz-Argaman and Tsarfaty,
2019; de Vries et al., 2018; Vasudevan et al., 2021;
Anderson et al., 1991) navigation instructions. In-
door environments contain many entities referred
to as definite descriptions (e.g., ‘the chair’) and few
landmarks that can be referred to by their proper
name (‘The Blue Room in the White House’). In
outdoor environments, people tend to mix the use
of proper names (e.g., ‘the Empire State build-
ing’) and definite descriptions (e.g., ‘the school’).
However, previous outdoor navigation tasks ei-
ther contain only definite descriptions (Chen et al.,
2019; Vasudevan et al., 2021) or almost exclusively
proper names (Paz-Argaman and Tsarfaty, 2019).
RVS contains a balanced amount of both.

9 Conclusion

This work presents the RVS task and dataset that fo-
cus on understanding geospatial instructions based
on survey knowledge of urban environments. Our
analysis shows that the data presents profound
spational-reasoning challenges such as allocentric
relations, multiple relations, cardinal directions,
and more, requiring models with novel environ-
mental representation. Our results show that our
zero-shot city split presents a major challenge, leav-
ing ample space for future work on this task.



Limitations

In the data collection process (described in Sec-
tion 3) we showed participants an interactive map
with the start and goal points, as well as landmarks
along the route, near the goal, and in the general
area beyond the route. One of our guidelines for
collecting the data is to allow participants to use a
mix of proper-names and definite descriptions but
without giving the location of the goal by mention-
ing proper names adjacent to it, so that a named
entity recognition (NER) system would not be able
to locate the goal. To enforce this guideline, we
displayed the landmarks with different levels of
information: for landmarks near the goal (less than
200m), we displayed partial information, excluding
the proper name; for landmarks far from the goal
(more than 200m), we displayed all the informa-
tion. For example, for a landmark of a restaurant
with the tag name ‘Kofoo‘, we displayed multiple
tags without the tag name if it was located near
the goal: ‘amenity: restaurant, cuisine: korean‘.
This allowed the participant to refer to ‘Kofoo* as a
‘restaurant‘ or a ‘korean restaurant‘. To achieve this,
we displayed pop-up markers of the landmarks and
requested the participants to provide the instruc-
tions using only descriptions of landmarks in the
pop-up markers (see Appendix ??). To avoid infor-
mation overload for the participants, we displayed
up to 40 landmarks on the map. We picked land-
marks by their prominence, including landmarks
with the tags: ‘wikipedia’, ‘wikidata’, ‘brand’,
‘tourism’, ‘amenity’, ‘shop’, ‘leisure’. However,
this choice to present not all the landmarks limits
the users’ choice of landmarks.
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A Data Collection Details

Participants We collected the RVS dataset using
Amazon Mechanical Turk (MTurk). We did not col-
lect any information that could be used to identify
the participants. We presented the task to the par-
ticipants as part of a research on navigation instruc-
tions. We worked with both past MTurk workers
and new workers who had a 99% percentage assign-
ment approval rate and at least 500 approved HITs.
Only English speakers were allowed to participate.
The base pay was $0.40 for writing instructions
and $0.15 for completing a validation task. Instead
of giving bonuses based on successful validation,
we rewarded workers who generated high quality
instructions based on survey-knowledge that met
our criteria, such as not mentioning more than one
street by name. After evaluating worker perfor-
mance through random sampling of instructions,
we offered bonuses ranging from $0.5 to $2.0 to
those who performed well.

Instructions vs. Descriptions Although our ‘in-
structions’ non-sequential and thus differ from typ-
ical instructions in previous navigation tasks (Paz-
Argaman and Tsarfaty, 2019; Chen et al., 2019; Ku
et al., 2020), we choose the term ‘instruction’ and
not ‘description’ for the following reasons: (1) The
term ‘descriptions’ is used in a geolocation task
where place descriptions are given. Unlike RVS,
in geolocation tasks there is no assumption for a
starting point. In RVS we give instructions on how
to find point B given point A as a starting point. (2)
Instructions are usually sequential, but they don’t
have to be (e.g., a set of assembly instructions for a
toy is non-sequential because the steps can be fol-
lowed in any order and still result in a completed

toy).

Choice of Cities The study selected three cities
to create a realistic scenario where training is done
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on one city and testing is done on another. Man-
hattan was selected as the training set because
it is the most entity-dense environment and will
allow for maximum unique paths. Additionally,
Manbhattan and Pittsburgh were chosen because the
StreetLearn dataset (Mirowski et al., 2019) released
Google Street View imagery for these areas, which
might allow future integration of images.

B T5-based models

The Graph Embedding The graph was con-
structed using three levels of S2-Cells: 15, 16,
and 17. At level 16, each sub-graph consisting
of four neighboring S2-Cells was fully connected.
All S2-Cells in the graph were linked to their parent
S2-Cell based on the S2-geometry’s hierarchy (i.e.,
level 17 S2-Cells were connected to level 16 S2-
Cells and level 16 S2-Cells were connected to level
15 S2-Cells). Extracted entities from OSM and
Wikidata were linked to the smallest level 17 S2-
Cell that encompassed their geometry. The node of
the entity included additional data such as their ge-
ometry, type and name of entity. Random walks on
the graph were performed using node2vec (Grover
and Leskovec, 2016).

Experimental Setup Details For both T5-base
models we use a pre-trained “T5-Base’ model from
Hugging Face Hub, which is licensed under the
Apache License 2.0. The T5 model was trained
on the Colossal Clean Crawled Corpus (C4, Raf-
fel et al. (2020)). The cross-entropy loss function
was optimized with AdamW optimizer (Loshchilov
and Hutter, 2017). The hyperparameter tuning is
based on the average results run with three different
seeds. We used a learning rate of 1e-4. The S2-cell
level was searched in [15, 16, 17, 18] and 16 was
chosen. The number of clusters for the quantiza-
tion process was searched in [50, 100, 150, 200,
250] and 150 was chosen. We used 2 quantization
layers. Number of epochs for early stopping was
based on their average learning curve. We used the
following parameters for the node2vec algorithm:
an embedding size of 1024, a walk length of 20,
200 walks, a context window size of 10, a word
batch of 4, and 5 epochs.

’Wikidata is a free and open knowledge base that acts
as central storage for structured data of its Wikimedia sis-
ter projects, including Wikipedia, Wikivoyage, Wiktionary,
Wikisource, and others


https://www.mturk.com/
https://www.wikidata.org
https://huggingface.co/transformers/v3.0.2/_modules/transformers/modeling_tf_t5.html#TFT5ForConditionalGeneration

Model 100m Accuracy 250m Accuracy Mean Error Median Error Max Error AUC of Error
Train on Pittsburgh
TS 0.00 1.09 1,085 1,119 1,969 0.41
T5+GRAPH 0.18 2.45 1,219 1,172 5,954 0.41
Train on Philadelphia
TS5 0.00 1.54 1,085 1,124 1,929 0.41
T5+GRAPH 0.27 1.72 1,869 1,232 7,436 0.42

Table 8: Results for testing on Manhattan using different training sets from Pittsburgh or Philadelphia.

B.1 S2-Geometry

S2Cells are a hierarchical discretization of the
Earth’s surface, used for representing and com-
puting with geospatial data. S2Cells are based
on S2-geometry a mathematical framework for
representing and computing with shapes on the
sphere (Hilbert, 1935). Each cell is a quadrilateral
bounded by four geodesics (shortest path between
two points on a curved surface). The top level of
the hierarchy is obtained by projecting the six faces
of a cube onto the unit sphere, and lower levels are
obtained by subdividing each cell into four children
recursively. S2Cells are globally uniform, i.e., all
of the cells at the same level have the same size and
shape, regardless of where they are located on the
Earth’s surface. The level is defined as the number
of times the cell has been subdivided (starting with
a face cell). Cells levels range from O to 30. The
smallest cells at level 30 are called leaf cells; there
are 6 * 439 of them in total, each about 1cm across
on the Earth’s surface.

C Results on Alternative Splits

In Table 5 we showed the results on a split that was
trained on Manhattan with Pittsburgh as the devel-
opment set and Philadelphia as the test set. How-
ever, Manhattan is demographically different from
Pittsburgh and Philadelphia and contains more en-
tities on the map. In Table 8 we show results
over different permutation of the cities — testing
on Manhattan and training on either Pittsburgh or
Philadelphia. However, as the development Pitts-
burgh set and test Philadelphia sets contain few
instructions (1,103 and 1,278 instructions, respec-
tively), it seems they do not contain enough data to
support learning. This claim is supported in Table
8 which shows the results for testing on Manhattan
with different training sets. The TS5 model, in both
splits learns to predict close locations to the start-
ing point, or even the exact location as the starting
point. It therefore does not go over the limited
range of 2K distance and has a very low accuracy.
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The T5+GRAPH model has a higher accuracy but
the model also predicts location over the limited
range, resulting in a very high mean error distance.
Additionally, the results for all models trained on
Pittsburgh were slightly better than the ones trained
on Philadelphia, which might be due to the size of
the region, Philadelphia being more than twice as
large as Pittsburgh, the T5+GRAPH model strug-
gles to learn connections — i.e., grounding. —
between text and the environment.

D Participant Application Interface

The tasks are performed via an online assignment
application, depicted in Figures 4 and 5.



Navigation Map
Map Instructions:
* You can zoom in and out by clicking on the +/- button.

* You can click on the markers to display their names/description (e.g., ‘theater’).

* Reminder: Green marker = Start point and Red marker = Goal.

VR e W T T
Wy N x ¥ yser
’\\3// Goal: restaurant y
& Ly,

€ e

amenity: restaurant
branch: Upper East Side
cuising: thai
cocklails: yes
drink beer yes
drink wing: yes

7,
b
y < / /J
el
Uppérgkast v
s /ST g
s £ £ 4 S 5
7. LY 4 77ch Sureet
£ &, e A
Ay
y & //

Vi A
&

IR FOR
& ,»—‘_ s

¢ [
= Leaflet | Data by ® OpenStreetMap, under ODbL.

P

4
7

Navigation Description

Your task: A friend of yours is at the location indicated by the green marker, and you
would like to meet your friend at the location marked in red. You need to
communicate the meeting location quickly, so you must describe it precisely using
only information about the meeting point (e.g. that it is a “bicycle rental”) and
descriptions of a few significant landmarks that you are familiar with (black markers),
and that relate your friend's location and the meeting point.

Task Instructions:

¢ Note that the description you give will be verified by another worker, so
make sure it is specific enough to locate the goal.

¢ Please describe the route from a bird's-eye view using relative language, not
step-by-step.

* Please do not mention more than one street by its name.

¢ Please use for the goal and landmarks the description in the marker and not
the name which appears in the map.

* Please mention at least once the goal based on the description.

* You may use cardinal directions.

* You may mention the neighborhood\districts of the goal.

Figure 4: Participant Interface: the instruction writing task.

Navigation Map

Map Instructions:
® You can zoom in and out by clicking on the +/- button.
® You can press and hold to move on the map.
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Navigation Description

Your task is to read the following navigation instructions and pin the goal on the map:

I'm at the fire station across the river and south of you. It's on the south side of

Haverford Avenue, between a community centre and a library.
Hint the goal's icon is most likely: ¢

Task Instructions:
e The green marker is the start point of the instructions.
® You can click on the map to pin a red marker for the goal.
® You can click on a different place on the map to move the goal.
® Once you finish click on the submit button.

O There is a problem with the description

Submit and go to next task

Figure 5: Participant Interface: the validation task.
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