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Abstract

When communicating routes in natural lan-001
guage, the concept of acquired spatial knowl-002
edge is crucial for geographic information re-003
trieval (GIR) as well as in spatial cognitive004
research. However, NLP navigation studies005
often overlook the impact of such acquired006
knowledge on textual descriptions. Current007
navigation studies concentrate on egocentric008
local descriptions (e.g., ‘it will be on your009
right’) that require reasoning over the agent’s010
local perception. These instructions are typi-011
cally given as a sequence of steps, with each012
action-step explicitly mentioning and being013
followed by a landmark that the agent can use014
to verify they are on path (e.g., ‘turn right and015
then you will see...’). In contrast, descriptions016
based on knowledge acquired through a map017
provide a complete view of the environment018
and capture its overall structure. These instruc-019
tions typically contain allocentric relations, are020
non-sequential, with multiple spatial relations021
and implicit actions, without any explicit ver-022
ification (e.g., ‘it is south of Central Park and023
a block north of a police station’). This pa-024
per introduces the Rendezvous (RVS) task and025
dataset, which includes 10,404 examples of026
English geospatial instructions for reaching a027
target location using map-knowledge. Our028
analysis reveals that RVS exhibits a richer use029
of spatial allocentric relations, and requires re-030
solving more spatial relations simultaneously031
compared to previous text-based navigation032

benchmarks.1033

1 Introduction034

In today’s world, cell phones with powerful map-035

ping applications are widely used. However, even036

with this technology at our fingertips, many people037

still rely on geospatial instructions to arrange ren-038

dezvous locations by providing natural language039

descriptions that reference landmarks and their040

1The data is available at https://github.com/anonymous

I’m pretty far away, almost all the way to Central Park,
just 3-4 blocks from Columbus Circle. Walk north on
8th Ave. and I’m at a parking entrance a block north
of a police station.

Figure 1: An illustration example from the RVS dataset.
The RVS input consists of (1) a bird’s-eye instruction of
the goal location (shown at the bottom), (2) a starting
point (green marker) and a map representation of the
environment. The output is the goal point (red marker).

geospatial relation, e.g., ‘...a block north of a police 041

station’ (Figure 1). Retrieving locations and paths 042

from natural spatial descriptions is essential for 043

disaster areas (Hu et al., 2023), for the billions of 044

people without addresses (UPU, 2012), and for Ge- 045

ographic Information Retrieval (GIR), especially 046

from the web (Sanderson and Kohler, 2004). 047

In spatial cognitive research, it is widely ac- 048

cepted that spatial language is associated with cog- 049

nitive representations of the environment and orig- 050

inates from spatial memory (Hayward and Tarr, 051

1995). Thus, navigation instructions are affected 052

by the way individuals acquire spatial knowledge 053

over their environment (Tversky, 2005; Thorndyke 054

and Hayes-Roth, 1982; Kuipers, 1978). The domi- 055

nant theory for spatial knowledge acquisition, that 056

of Siegel and White (1975), describes three levels 057

of human knowledge about their environment: (i) 058

Landmark knowledge: the ability to describe the 059

characteristics of distinct objects, which may be 060
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located along a route, without indicating the re-061

lationship or path between those landmarks, (ii)062

Route knowledge: includes sequential information063

such as directions for navigation instructions, and064

(iii) Survey knowledge, which involves understand-065

ing the layout and composition of the environment066

and describing landmarks in relation to each other067

using an external reference system, such as the068

directional relationships between landmarks.069

Instructions based on survey knowledge contain070

a bird’s-eye view perception of the environment.071

These higher-level descriptions involve allocen-072

tric relation and cardinal directions (‘east of’), are073

non-sequential, with implicit actions and multiple074

spatial relation without any verification (e.g., ‘3-4075

blocks north of Columbus Circle and north of a076

police station’). They require geospatial numerical077

reasoning (‘two buildings from’), and understand-078

ing of complex shapes such as ‘Y-shaped street’079

(Jayannavar et al., 2020; Lachmy et al., 2022).080

They contain a mix of indefinite descriptions refer-081

encing salient landmarks (‘a building’), and proper082

names (‘the empire state building’).083

Despite the importance of geospatial instructions084

in daily life, current NLP geospatial datasets lack085

instructions that encompass all such levels of ac-086

quired knowledge. While many NLP geolocation087

tasks primarily involve instructions based on land-088

mark knowledge, text-based navigation tasks focus089

on the second level — route knowledge — with090

step-by-step local perception. However, current091

spatial datasets are missing the third level — sur-092

vey knowledge — which involves global perception093

and requires reasoning over multiple spatial rela-094

tions simultaneously.095

Here, we introduce the Rendezvous (RVS) task096

to advance systems that can interpret high-level097

survey-based knowledge navigation instructions098

that require global spatial reasoning. The input099

of the task is a starting point, a non-sequential in-100

struction of a rendezvous location, and a map. The101

goal is to retrieve the coordinates of the rendezvous102

point. We crowdsourced 10,404 rendezvous in-103

structions. To gather instructions based on sur-104

vey knowledge, we presented participants with105

a map that provided them with precise informa-106

tion that would have otherwise required exten-107

sive exploration of the environment (Thorndyke108

and Hayes-Roth, 1982; Uttal, 2000; Plumert et al.,109

2007; Tversky, 1996). We collected instructions110

over three cities in the USA: Manhattan, Pittsburgh111

and Philadelphia. The use of multiple cities allows 112

for a realistic zero-shot setup where a model is 113

trained on one city and tested on another unseen 114

city. This is also relevant for handling changing 115

environments (Zhang and Choi, 2021). This new 116

zero-shot setup is a challenging testbed for models’ 117

ability to generalize to new environments. It is part 118

of our contribution to create a realistic and chal- 119

lenging setup and show that current models do not 120

suffice in addressing this multifaceted challenge. 121

Our linguistically-driven analysis shows that the 122

RVS task requires significantly more spatial allo- 123

centric reasoning, resolving more spatial relations 124

simultaneously, and with fewer explicit actions and 125

state verifications, compared with previous text- 126

based navigation benchmarks (Paz-Argaman and 127

Tsarfaty, 2019; Chen et al., 2019; Ku et al., 2020). 128

2 The RVS Task and Environment 129

In this work we address the task of following 130

geospatial instructions given in colloquial language 131

based on a dense urban map. The input to the RVS 132

task is as follows: (i) a map with rich details, given 133

as a knowledge graph (ii) an explicit starting point, 134

given in coordinates (latitude and longitude), and 135

(iii) a geospatial instruction describing the location 136

of the goal, in relation to the landmarks on the 137

map and the given starting point. The output of the 138

RVS task is the coordinates of the goal within the 139

boundaries of the map. 140

The map was created using OpenStreetMap 141

(OSM).2 We extracted landmarks and streets and 142

connected them to form a graph. To connect land- 143

marks that do not intersect with streets, we pro- 144

jected the landmarks onto the nearest streets (up to 145

four) and added the projected nodes and edges con- 146

necting the landmark and projection to the graph. 147

3 Data Collection 148

We frame the data collection process as an 149

instructor-follower task, where an instructor needs 150

to communicate to a follower the rendezvous loca- 151

tion in relation to the follower’s current location. 152

The process is divided into two crowdsourced tasks: 153

communicating the goal location in writing (here, 154

Instruction Writing), and following (here, Valida- 155

tion); corresponding to the two roles – instructor 156

and follower. Appendix D presents a display of the 157

online assignment’s user-interface (UI). 158

2OSM is a user-updated map of the world –
http://www.openstreetmap.org

2

http://www.openstreetmap.org
http://www.openstreetmap.org
http://www.openstreetmap.org


(a) Manhattan (b) Pittsburgh (c) Philadelphia

Figure 2: The RVS instructions are collected over three cities (a-c).

Task 1: Instruction Writing Using the RVS159

map-graph (Section 2), we generated the starting160

points and (within 2km) the goal points. The in-161

structor could view the points on an interactive162

map with geo-data from OSM, and displayed land-163

marks along the route, near the goal, in the general164

area and beyond the route. The goal and nearby165

landmarks were not shown by their proper names,166

e.g., instead of ‘St. Vincent de Paul Church’ the167

marker displayed ‘a church’. The instructor could168

zoom in/out and pan to view the environment. The169

instructor was requested to describe the goal’s loca-170

tion in relation to the starting point and landmarks,171

without providing a step-by-step route description.172

The instructor was not allowed to mention more173

than one street by name.174

Task 2: Validation In this task the follower is175

asked to follow the instruction displayed, by pin-176

ning the goal location on an interactive map. As177

the map includes sign symbols of places (e.g, a178

cross symbol to denote a church) the display would179

include a legend with the equivalent symbol. An180

instruction is qualified if the follower pins the goal181

within 100m. This threshold is the maximum ra-182

dius of a geoshape from Task 1’s generated goal.183

Participants were also requested to flag problematic184

instructions, i.e., that did not follow the rules in the185

instruction writing task. To determine the agree-186

ment rate among participants, 50% of the instruc-187

tions were validated by at least two participants.188

Instructor Training The main challenge of the189

collection process is training instructors to write190

high-quality instructions based on survey knowl-191

edge rather than step-by-step route descriptions.192

To address this challenge, the following procedure193

was implemented: (1) The process starts by collect- 194

ing an initial seed of ‘well-formed’ survey-based 195

instructions written by a geospatial expert. (2) At 196

least three ‘well-formed’ survey-based knowledge 197

instructions were presented to an unqualified par- 198

ticipant one after the other, and the instructor was 199

requested to pinpoint the goal on a map. (3) Once 200

the instruction was written by the instructor, it was 201

reviewed by a geospatial expert who provided feed- 202

back. (4) If a participant successfully produced 203

three well-formed survey-based instructions in a 204

row, the instructor was considered qualified. Ev- 205

ery instruction given by a qualified instructor was 206

added to the bank of well-formed survey-based in- 207

structions and could be shown to other instructors 208

in training. As more instructors became qualified, 209

the variety of examples increased. 210

Quality Assessment We ensured instruction 211

quality by sampling instructions, discarding poor 212

ones, and giving feedback throughout the collec- 213

tion process based on the following criteria: (1) 214

participants who consistently received low distance 215

errors in the verification task (less than 30m aver- 216

age), as it might indicate they gave step-by-step 217

low-level instructions that are easier to follow; (2) 218

instructions that received high distance errors (at 219

least one verification over 2000m); and (3) instruc- 220

tions from participants who did not participate for 221

over a month. For participants who failed their 222

reviews (i.e., did not follow the instructions), we 223

reviewed their next three instructions. 224

4 Data Statistics and Analysis 225

The RVS dataset contains 10,404 validated instruc- 226

tions paired with start and goal coordinates. 227
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City Area
Size (km^2)

Num. Landmarks
in Graph

Num.
Instructions

Avg. Path
Length (m)

Avg. Text
Length

Avg.
Entities3

Vocab.
Size

Manhattan 32.5 5,287 8,103 1,098.94 43.73 3.99 6,365
Pittsburgh 34.5 22,921 1,023 960.52 41.95 3.93 2,195
Philadelphia 74.5 11,206 1,278 1,096.66 42.96 3.95 2,438

Table 1: Data Statistics of RVS: statistics over different cities.

RVS RUN RxR TOUCHDOWN
Phenomenon p µ p µ p µ p µ Example from RVS
Proper Names 100 2 100 5.96 0 0 0 0 ...Duane Reade pharmacy...
Descriptions 96 2.48 8 0.12 100 8.3 100 9.2 ...There is a church across the street...
Coreference 64 0.88 40 0.48 64 5.3 60 1.1 ...It’s on the same block as...
Count 28 0.36 8 0.08 32 0.44 36 0.4 ...Southwest of the school are two bicycle parkings.
Cardinal Direction 96 2.2 16 0.2 0 0 0 0 Go southwest...
Complex shapes 60 1.08 44 0.76 20 0.2 8 0.8 ...a block west of the square shaped park...
Allocentric Relation 88 1.52 4 0.04 76 2.4 68 1.2 ...It is west of the bridge...
Egocentric Relation 4 0.04 76 1.36 60 2.3 92 3.6 You will pass an Ace Hardware on your left
Temporal Condition 8 0.08 72 1.56 52 0.8 84 1.9 ...Go straight south until you pass the library...
Explicit Actions 0 0 100 3.2 96 0.8 100 2.8 ...Turn left. Continue forward...
State Verification 20 0.2 56 0.64 84 3.1 72 1.5 ...you will see me at the alcohol shop.
Negative State Verification 4 0.04 4 0.04 0 0 0 0 ...If you see a bike parking, you have gone too far.
Spatial Knowledge
(Siegel and White, 1975)

Route 4 n/a 84 n/a 100 n/a 100 n/a ...turn right on the next street...
Survey 96 n/a 16 n/a 0 n/a 0 n/a Head east toward the river...

Table 2: Linguistic analysis: we analyze 25 randomly sampled instructions from RVS, RUN, RxR (only instruc-
tions given by speakers in the USA), and TOUCHDOWN (only the navigation task). p represents the % of instruc-
tions containing the phenomena, while µ represents the average number of occurrences within each instruction.

Feature p-value FDR corrected
p-value

Num. of entities1 0.00 0.00
Num. of tokens 0.00 0.00
Human distance error 0.56 0.56

Table 3: One-way analysis of variance (ANOVA) tests
were conducted to examine the correlations between
goal types and linguistic and human verification fea-
tures. The p-values were corrected for False Discov-
ery Rate (FDR). A p-value lower than 0.05 indicates a
correlation between goal type and a feature.

The locations are divided among three cities:228

Manhattan, Pittsburgh, and Philadelphia (Figure 2229

and Table 1). In the instruction writing task, 146230

different participants provided survey-knowledge231

instructions. In the validation task, 149 participants232

completed 16,104 tasks. The human agreement233

rate within a 100 meter threshold is 89%.234

We conducted a qualitative linguistic analysis235

of RVS to understand the type of geospatial rea-236

soning required to solve the RVS task. In Table 2237

we randomly sampled and annotated 25 examples238

from the Manhattan and Pittsburgh areas of RVS239

and compared them to previous datasets – RUN240

(Paz-Argaman and Tsarfaty, 2019), TOUCHDOWN241

(Chen et al., 2019) and RxR (Ku et al., 2020).242

While TOUCHDOWN and RxR contain only men-243

tions of indefinite descriptions, and RUN contains244

almost exclusively proper names, the RVS dataset 245

contains a relatively balanced use of both descrip- 246

tions and proper names (not near the goal). This 247

creates a realistic challenge of handling the various 248

ways people refer to landmarks. 249

Crucially, instructions based on survey knowl- 250

edge use allocentric rather than egocentric spatial 251

relations. Since RxR and TOUCHDOWN rely on a 252

street/room-level view of the environment and their 253

participants have only a short time to become famil- 254

iar with the environment, the instructions contain 255

less spatial allocentric reasoning than RVS. The 256

RVS dataset displays more allocentric phenomena 257

than the RUN dataset, even though both datasets 258

include a map. This is because the RUN dataset 259

encourages participants to use egocentric relations 260

by displaying examples of egocentric relations. Ac- 261

cordingly, as shown in Table 2, geospatial mea- 262

sures found that RVS contains more survey-based 263

instruction in comparison to the other datasets. 264

On top of that, RUN, RXR, and Touchdown all 265

contain sequential instructions that include many 266

explicit actions and state verifications, making it 267

easier for the model to predict the correct action 268

and verify it after the action is taken by checking 269

for the existence of the verification. In contrast, the 270

new RVS dataset includes non-sequential instruc- 271

tions with relatively few state verifications and no 272
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explicit actions.273

Token Count Type
Carson 65 street and bridge
Forbes 62 avenue and sport stadium
Pittsburgh 54 city, station and university
Allegheny 29 avenue
Smallman 23 street

Table 4: Top-5 tokens in the Pittsburgh vocabulary that
are absent from the Manhattan vocabulary.

To prevent simple string-match solutions, the274

goal location in RVS is always given by its type275

(e.g., ‘restaurant’, ‘parking’ etc.) and not by its276

proper name. In Table 3 we preform one-way anal-277

ysis of variance (ANOVA) tests, to check if there278

are entity types easier to locate than others, and if279

the type affects the instructions. We found that the280

number of entities and tokens in instructions varied281

with goal type (p<0.05), but human distance error282

did not, indicating that human ability to geolocate283

the goal is not affected by its type.284

Our out-of-vocabulary (OOV) analysis shows285

that, unlike previous navigation datasets (Chen286

et al., 2019; Ku et al., 2020; Anderson et al., 2018;287

MacMahon et al., 2006), RVS presents a challenge288

with novel entities in a city-split setup, training289

on one city and testing on a different unseen city.290

Specifically, our analysis of the vocabularies of291

two different cities — Manhattan and Pittsburgh292

— shows that 36.85% of the Pittsburgh vocabulary293

is OOV, i.e., the tokens do not appear in the Man-294

hattan vocabulary. Table 4 shows the top-5 OOV295

tokens in Pittsburgh. 68% of OOV tokens are com-296

monly used (82% of the OOV occurrences) city-297

specific named entities, like ‘Carson street’. Thus,298

a city-split creates a profound OOV grounding chal-299

lenge for previously unseen entities.300

5 Models for RVS301

As RVS presents a new multimodal task with302

unique challenges, we aimed to provide a strong303

baseline based on our insights from Section 4. We304

model RVS as a sequence-to-sequence problem,305

where we map the sequence of tokens in the in-306

struction to a sequence of S2-Cells.4307

We describe two models: (1) a T5 Transformer-308

based model with an encoder-decoder architecture309

3Extracted using ChatGPT – https://chat.openai.com
4S2Cells are based on S2-geometry, a hierarchical dis-

cretization of the Earth’s surface (Hilbert, 1935).

that uses a text-to-text format (Raffel et al., 2020); 310

and (2) the T5+GRAPH model, which builds upon 311

model (1) by incorporating a graph representation 312

of the environment (Section 5). 313

Encoder The encoder encodes the instruction 314

and the starting point’s representation. Inspired by 315

Lu et al. (2022), who converted pixels to text-based 316

axis locations, we transformed the map’s S2-grid 317

into a two-dimension discrete coordinate system 318

(‘locX, locY’). The starting point’s coordinate is as- 319

signed to the S2-Cell containing its geometry. The 320

S2-Cell is linked to an axis position, so the starting 321

position is also assigned an axis position. 322

Decoder Since this is essentially a navigation 323

task without a step-by-step path, we train our model 324

to generate a high-level path, consisting of a se- 325

quence of locations starting with the starting point, 326

followed by prominent landmarks ordered by their 327

directional position from the goal, and ending with 328

the goal. We extracted the prominent landmarks 329

based on the RVS map-graph. As in the encoder, 330

we represent the location in a ‘locX, locY’ format. 331

The World as a Graph A location can be rep- 332

resented by its position (where the location is) or 333

by its semantics (what is present at the location, 334

e.g., ‘a bar’). Semantic knowledge is crucial for 335

grounding mentioned entities to their physical ref- 336

erences in the environment. To this end, we aim 337

to represent the semantics via the RVS map-graph. 338

We use the RVS map-graph and connect each node 339

to its corresponding S2-cells. As the S2-geometry 340

is a hierarchical structure, we allow for multiple 341

levels of S2-cells connections. Also there are edges 342

between neighboring S2-cells at a given level (see 343

bottom part in Figure 3). To learn an embedding 344

for each S2-cell in the environment, we compute 345

random walks on the graph using node2vec algo- 346

rithm (Grover and Leskovec, 2016). Following Yu 347

et al. (2021), we use linear projection to cluster the 348

graph embeddings into K categories using the k- 349

means algorithm with cosine similarity distance. A 350

new token is assigned to each category and added 351

to the tokenizer’s vocabulary. We perform multi- 352

ple clusters and pass the graph’s tokens with the 353

instruction’s tokens to the transformer encoder. 354

6 Experimental Setup 355

Evaluation We use six evaluation metrics: (1) 356

100m accuracy, the task is considered completed 357

if the agent is within a 100m distance from the 358
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Figure 3: The RVS model based on a T5 transformer and a graph representation of the environment.

goal; (2) 250m accuracy for coarse-grained accu-359

racy evaluation; (3) mean distance error; (4) me-360

dian distance error; (5) maximum distance error;361

and (6) area under the curve (AUC) distance error.362

Setup and Data-Split We use a zero-shot (ZS)363

city-based split, where we train on one city, val-364

idate on a second city, and test on a third city.365

Specifically, RVS’s setup consists of (i) a training-366

set containing 7,000 instructions from Manhat-367

tan; (ii) a seen-city development-set containing368

1,103 instructions from Manhattan; (iii) an unseen-369

city development-set containing 1,023 instruc-370

tions from Pittsburgh; and (iv) a test-set containing371

1,278 instructions from Philadelphia. The ZS split372

raises profound challenges (e.g., OOV), at infer-373

ence time, as described in Section 4.374

Learning We use supervised learning by maxi-375

mizing the log-likelihood of high-level paths. We376

train the model with AdamW (Loshchilov and Hut-377

ter, 2017) for optimization. Details of the learning378

and hyperparameters are provided in Appendix B.1.379

Systems We evaluate three non-learning base-380

lines: (1) STOP: predicts the starting point as the381

goal location; (2) CENTER: predicts the closest382

location towards the center of the region within383

a 1000 meters radius from the starting point; (3) 384

LANDMARK : predicts the location of a prominent 385

landmark in the map within a radius of 1000 meters. 386

A landmark is considered prominent if it has one of 387

the following tags (appearing in a descending order 388

of importance): (a) Wikipedia page; (b) Wikidata 389

page; (c) a part of a brand; (d) a tourist attraction; 390

(e) an amenity; and (f) a shop. 391

e also evaluate two learning models described in 392

Section 5. The first model is based on T5, and the 393

second model T5+GRAPH, is based on T5 with 394

an addition of a graph-based representation of the 395

environment. This representation is described in 396

Section 5 and appears in Figure 3. 397

7 Results 398

Table 5 shows seen-city development, and unseen- 399

city ZS results for our six evaluation metrics. The 400

human performance provides an upper bound for 401

the RVS task performance, while the simple STOP 402

is a simple lower bound baseline. Although the 403

T5+GRAPH outperforms the non-learning base- 404

lines (STOP, CENTER, and LANDMARK) in the 405

seen-city split, there is still a gap of 58.72% and 406

40.97% in the 100m and 250 accuracies, respec- 407

tively. The LANDMARK model outperforms other 408

non-learning models, suggesting that the goal lo- 409
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Method 100m Accuracy 250m Accuracy Mean Error Median Error Max Error AUC of Error
Manhattan Seen-city Development Results

HUMAN 88.12 95.64 74 4 2,996 0.10
STOP 0.00 1.54 1,084 1,124 1,929 0.41
CENTER 0.27 1.45 930 998 1,000 0.40
LANDMARK 0.54 5.26 776 815 1,384 0.39
T5 27.92 (0.39) 52.63 (0.45) 362 (9) 231 (3) 2,957 (641) 0.32 (0.00)

T5+GRAPH 29.40 (1.18) 54.67 (1.04) 357 (7) 216 (8) 3,889 (826) 0.31 (0.01)

Pittsburgh Unseen-Development Results
HUMAN 86.94 92.94 99 7 2,951 0.13
STOP 0.00 2.05 960 954 1,912 0.40
CENTER 0.00 0.10 992 999 999 0.41
LANDMARK 1.47 9.48 677 691 1,345 0.38
T5 0.49 (1.47) 2.34 (1.44) 1,171 (24) 1,107 (14) 4,701 (101) 0.41 (0.00)

T5+GRAPH 0.49 (1.01) 2.91 (1.37) 1,067 (77) 1,039 (56) 4,102 (727) 0.40 (0.00)

Philadelphia Unseen-city Zero-shot Results
HUMAN 93.64 97.97 27 3 2,708 0.05
STOP 0.00 1.80 1,096 1,135 1,958 0.41
CENTER 0.16 0.47 942 998 1,000 0.41
LANDMARK 1.02 7.90 707 713 1,384 0.38
T5 0.26 (0.05) 1.80 (0.27) 1,362 (43) 1,308 (35) 6,911 (454) 0.42 (0.00)

T5+GRAPH 0.31 (0.05) 1.93 (0.20) 1,140 (16) 1,161 (8) 5,277 (372) 0.41 (0.00)

Table 5: Results over the test and development sets. The distance errors are presented in meters. For the learning
models we report the mean over three random initializations and the standard-deviation (STD) is in brackets.

Split p Min c Max c Avg. c Example from RVS
Seen-City 61 3 9 5.4 I am northeast of you at a toilet near the corner of Bayard Street. To

its south is a park and the Louis J. Lefkowitz State Office Building...Unseen-City 13 2 8 5.05

Table 6: Spatial relations analysis of 20 samples. c and p represents the number and percentage of spatial relations
to the location predicted by T5+GRAPH that match those mentioned in the text, respectively. In the examples the
matched relations are underlined, and the unmatched relations are double underlined.

Type of Pred. and True Goal Relation p

On the same S2-Cell 25
Same cardinal-direction from start point 95
On the same street 45
Have the same type of entity 50

Table 7: Error analysis of 20 instructions and their cor-
responding T5+GRAPH results in the seen-city split. p
is the % of the instructions that contain the types of
relation between predicted goal and the true goal.

cation is more likely to be around prominent land-410

marks than in other areas.411

Despite the 2km maximum distance between the412

start and goal, we did not constrain our models or413

teach them S2-Cell distances. So the maximum414

error of the learned models was greater than 2km.415

The improved performance of the T5+GRAPH over416

the T5 indicates that the added graph can capture417

semantic geospatial information.418

The novel ZS city-split setup we introduced pro-419

vides a profound challenge for natural language420

understanding due to the appearance of new spa-421

tial relations and new entities in the environment. 422

This can be seen in the learning-model’s ability to 423

generalize from seen to unseen environment, result- 424

ing in low performance, even underperforming the 425

non-learning LANDMARK baseline. 426

Tables 6 and 7 show an error analysis of 20 ex- 427

amples of the T5+GRAPH’s results in seen-city and 428

unseen-city splits. As shown in Table 6, the model 429

must consider multiple spatial relations to handle 430

RVS. 5 However, it only successfully manages 61% 431

and 13% of these relations in the seen-city and 432

unseen-city splits, respectively. Table 7 shows that 433

in the seen-city split, the model correctly identi- 434

fies the cardinal direction in most cases. In half 435

the cases, the model correctly identifies the type of 436

entity. The model correctly identified the street in 437

45% of cases, and in 88.89% of those cases, the 438

street was mentioned by name in the text. This 439

is lower than the 90% of all sampled instructions 440

that mentioned street names, suggesting that sim- 441

ply mentioning a street by name is not sufficient for 442

the model to correctly produce a location on that 443

5For comparison, RXR
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street. In 25% of the cases, the granularity of the444

S2-Cells is not high enough to distinguish between445

the predicted and true goal, suggesting that a higher446

level of S2-Cell could reduce these cases.447

Following Table 3, we conducted an ANOVA448

test and found no correlation between goal type449

and distance error for T5+Graph (p-value = 0.34).450

8 Related Work451

As people move they perceive their surroundings452

and acquire knowledge of the space, known as cog-453

nitive mapping (Tolman, 1948). One influential454

cognitive mapping theory Siegel and White (1975)455

divides cognitive mapping ability into three lev-456

els. Landmark knowledge, consisting of landmarks457

(e.g., mountains and buildings) and their attributes458

(e.g., location, size, color), Route knowledge, al-459

tered by the traveller’s changing viewpoint (Tay-460

lor and Tversky, 1992a,b, 1996)and coded directly461

(e.g., “turn right, then straight” (Tlauka and Wilson,462

1994)), or as condition-action rules based on land-463

mark–direction associations (e.g., “turn right at the464

church, then straight” (Kuipers, 1978; Thorndyke,465

1981)), and Survey knowledge, where people form466

a ‘cognitive map’ of the environment, an overview467

of the geospatial layout, and gain awareness of rela-468

tionships between different geospatial components,469

even outside the route. Survey knowledge is inde-470

pendent of a person’s own position, and enables her471

to form different routes, refer to cardinal directions,472

describe landmarks at different resolution levels,473

and describe complex shapes of abstract features474

such as ‘blocks’. Such information is less likely475

to be acquired from direct experience in the envi-476

ronment, but is portrayed on maps (Thorndyke and477

Hayes-Roth, 1982). Thus, instructions based on478

such knowledge mirror the complex understanding479

of the environment.480

In grounded NLP tasks, participants acquire481

knowledge over an environment provided with the482

task. This environment can be based on different483

sources, most commonly visual sensors with real484

(Qi et al., 2020; Blukis et al., 2018; Wang et al.,485

2018) or synthetic imagery (Yan et al., 2018; Misra486

et al., 2018; Shridhar et al., 2020). In a visual487

environment, participants travel through the envi-488

ronment, view it from a point on the ground that is489

on the same plane as the objects, and acquire route490

knowledge. Thorndyke and Hayes-Roth (1982)491

found that subjects who learned an environment492

by walking through it were limited to route-based493

knowledge and used egocentric spatial relation ex- 494

pressions (e.g., ‘on your right’) in their instruc- 495

tions. This observation was reinforced by Chen 496

et al. (2019) analysis of TOUCHDOWN (Chen et al., 497

2019) and R2R (Anderson et al., 2018) — two 498

navigation tasks with walk-through environments. 499

Another type of environment uses maps (Ander- 500

son et al., 1991; Paz-Argaman and Tsarfaty, 2019; 501

Vogel and Jurafsky, 2010; Levit and Roy, 2007; Va- 502

sudevan et al., 2021; de Vries et al., 2018), where 503

instructors can view the environment from above 504

and gain survey knowledge of global geospatial re- 505

lations. However, previous works with maps have 506

either presented small, simplistic environments 507

(Anderson et al., 1991; de Vries et al., 2018) or the 508

task’s setup has encouraged participants to give ego- 509

centric sequential instructions limited to the route 510

(Paz-Argaman and Tsarfaty, 2019; de Vries et al., 511

2018; Vasudevan et al., 2021). In contrast, RVS 512

focuses on instructions that encode survey knowl- 513

edge and require configurational and allocentric 514

reasoning over a large, entity-dense environment. 515

There are sharp differences between indoor (Ku 516

et al., 2020; Anderson et al., 2018) and outdoor 517

(Chen et al., 2019; Paz-Argaman and Tsarfaty, 518

2019; de Vries et al., 2018; Vasudevan et al., 2021; 519

Anderson et al., 1991) navigation instructions. In- 520

door environments contain many entities referred 521

to as definite descriptions (e.g., ‘the chair’) and few 522

landmarks that can be referred to by their proper 523

name (‘The Blue Room in the White House’). In 524

outdoor environments, people tend to mix the use 525

of proper names (e.g., ‘the Empire State build- 526

ing’) and definite descriptions (e.g., ‘the school’). 527

However, previous outdoor navigation tasks ei- 528

ther contain only definite descriptions (Chen et al., 529

2019; Vasudevan et al., 2021) or almost exclusively 530

proper names (Paz-Argaman and Tsarfaty, 2019). 531

RVS contains a balanced amount of both. 532

9 Conclusion 533

This work presents the RVS task and dataset that fo- 534

cus on understanding geospatial instructions based 535

on survey knowledge of urban environments. Our 536

analysis shows that the data presents profound 537

spational-reasoning challenges such as allocentric 538

relations, multiple relations, cardinal directions, 539

and more, requiring models with novel environ- 540

mental representation. Our results show that our 541

zero-shot city split presents a major challenge, leav- 542

ing ample space for future work on this task. 543
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Limitations544

In the data collection process (described in Sec-545

tion 3) we showed participants an interactive map546

with the start and goal points, as well as landmarks547

along the route, near the goal, and in the general548

area beyond the route. One of our guidelines for549

collecting the data is to allow participants to use a550

mix of proper-names and definite descriptions but551

without giving the location of the goal by mention-552

ing proper names adjacent to it, so that a named553

entity recognition (NER) system would not be able554

to locate the goal. To enforce this guideline, we555

displayed the landmarks with different levels of556

information: for landmarks near the goal (less than557

200m), we displayed partial information, excluding558

the proper name; for landmarks far from the goal559

(more than 200m), we displayed all the informa-560

tion. For example, for a landmark of a restaurant561

with the tag name ‘Kofoo‘, we displayed multiple562

tags without the tag name if it was located near563

the goal: ‘amenity: restaurant, cuisine: korean‘.564

This allowed the participant to refer to ‘Kofoo‘ as a565

‘restaurant‘ or a ‘korean restaurant‘. To achieve this,566

we displayed pop-up markers of the landmarks and567

requested the participants to provide the instruc-568

tions using only descriptions of landmarks in the569

pop-up markers (see Appendix ??). To avoid infor-570

mation overload for the participants, we displayed571

up to 40 landmarks on the map. We picked land-572

marks by their prominence, including landmarks573

with the tags: ‘wikipedia’, ‘wikidata’, ‘brand’,574

‘tourism’,‘amenity’, ‘shop’, ‘leisure’. However,575

this choice to present not all the landmarks limits576

the users’ choice of landmarks.577
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A Data Collection Details767

Participants We collected the RVS dataset using768

Amazon Mechanical Turk (MTurk). We did not col-769

lect any information that could be used to identify770

the participants. We presented the task to the par-771

ticipants as part of a research on navigation instruc-772

tions. We worked with both past MTurk workers773

and new workers who had a 99% percentage assign-774

ment approval rate and at least 500 approved HITs.775

Only English speakers were allowed to participate.776

The base pay was $0.40 for writing instructions777

and $0.15 for completing a validation task. Instead778

of giving bonuses based on successful validation,779

we rewarded workers who generated high quality780

instructions based on survey-knowledge that met781

our criteria, such as not mentioning more than one782

street by name. After evaluating worker perfor-783

mance through random sampling of instructions,784

we offered bonuses ranging from $0.5 to $2.0 to785

those who performed well.786

Instructions vs. Descriptions Although our ‘in-787

structions’ non-sequential and thus differ from typ-788

ical instructions in previous navigation tasks (Paz-789

Argaman and Tsarfaty, 2019; Chen et al., 2019; Ku790

et al., 2020), we choose the term ‘instruction’ and791

not ‘description’ for the following reasons: (1) The792

term ‘descriptions’ is used in a geolocation task793

where place descriptions are given. Unlike RVS,794

in geolocation tasks there is no assumption for a795

starting point. In RVS we give instructions on how796

to find point B given point A as a starting point. (2)797

Instructions are usually sequential, but they don’t798

have to be (e.g., a set of assembly instructions for a799

toy is non-sequential because the steps can be fol-800

lowed in any order and still result in a completed801

toy).802

Choice of Cities The study selected three cities803

to create a realistic scenario where training is done804

on one city and testing is done on another. Man- 805

hattan was selected as the training set because 806

it is the most entity-dense environment and will 807

allow for maximum unique paths. Additionally, 808

Manhattan and Pittsburgh were chosen because the 809

StreetLearn dataset (Mirowski et al., 2019) released 810

Google Street View imagery for these areas, which 811

might allow future integration of images. 812

B T5-based models 813

The Graph Embedding The graph was con- 814

structed using three levels of S2-Cells: 15, 16, 815

and 17. At level 16, each sub-graph consisting 816

of four neighboring S2-Cells was fully connected. 817

All S2-Cells in the graph were linked to their parent 818

S2-Cell based on the S2-geometry’s hierarchy (i.e., 819

level 17 S2-Cells were connected to level 16 S2- 820

Cells and level 16 S2-Cells were connected to level 821

15 S2-Cells). Extracted entities from OSM and 822

Wikidata were linked to the smallest level 17 S2- 823

Cell that encompassed their geometry. The node of 824

the entity included additional data such as their ge- 825

ometry, type and name of entity. Random walks on 826

the graph were performed using node2vec (Grover 827

and Leskovec, 2016). 828

Experimental Setup Details For both T5-base 829

models we use a pre-trained ‘T5-Base’ model from 830

Hugging Face Hub, which is licensed under the 831

Apache License 2.0. The T5 model was trained 832

on the Colossal Clean Crawled Corpus (C4, Raf- 833

fel et al. (2020)). The cross-entropy loss function 834

was optimized with AdamW optimizer (Loshchilov 835

and Hutter, 2017). The hyperparameter tuning is 836

based on the average results run with three different 837

seeds. We used a learning rate of 1e-4. The S2-cell 838

level was searched in [15, 16, 17, 18] and 16 was 839

chosen. The number of clusters for the quantiza- 840

tion process was searched in [50, 100, 150, 200, 841

250] and 150 was chosen. We used 2 quantization 842

layers. Number of epochs for early stopping was 843

based on their average learning curve. We used the 844

following parameters for the node2vec algorithm: 845

an embedding size of 1024, a walk length of 20, 846

200 walks, a context window size of 10, a word 847

batch of 4, and 5 epochs. 848

5Wikidata is a free and open knowledge base that acts
as central storage for structured data of its Wikimedia sis-
ter projects, including Wikipedia, Wikivoyage, Wiktionary,
Wikisource, and others
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Model 100m Accuracy 250m Accuracy Mean Error Median Error Max Error AUC of Error
Train on Pittsburgh

T5 0.00 1.09 1,085 1,119 1,969 0.41
T5+GRAPH 0.18 2.45 1,219 1,172 5,954 0.41

Train on Philadelphia
T5 0.00 1.54 1,085 1,124 1,929 0.41
T5+GRAPH 0.27 1.72 1,869 1,232 7,436 0.42

Table 8: Results for testing on Manhattan using different training sets from Pittsburgh or Philadelphia.

B.1 S2-Geometry849

S2Cells are a hierarchical discretization of the850

Earth’s surface, used for representing and com-851

puting with geospatial data. S2Cells are based852

on S2-geometry a mathematical framework for853

representing and computing with shapes on the854

sphere (Hilbert, 1935). Each cell is a quadrilateral855

bounded by four geodesics (shortest path between856

two points on a curved surface). The top level of857

the hierarchy is obtained by projecting the six faces858

of a cube onto the unit sphere, and lower levels are859

obtained by subdividing each cell into four children860

recursively. S2Cells are globally uniform, i.e., all861

of the cells at the same level have the same size and862

shape, regardless of where they are located on the863

Earth’s surface. The level is defined as the number864

of times the cell has been subdivided (starting with865

a face cell). Cells levels range from 0 to 30. The866

smallest cells at level 30 are called leaf cells; there867

are 6 ∗ 4
30 of them in total, each about 1cm across868

on the Earth’s surface.869

C Results on Alternative Splits870

In Table 5 we showed the results on a split that was871

trained on Manhattan with Pittsburgh as the devel-872

opment set and Philadelphia as the test set. How-873

ever, Manhattan is demographically different from874

Pittsburgh and Philadelphia and contains more en-875

tities on the map. In Table 8 we show results876

over different permutation of the cities – testing877

on Manhattan and training on either Pittsburgh or878

Philadelphia. However, as the development Pitts-879

burgh set and test Philadelphia sets contain few880

instructions (1,103 and 1,278 instructions, respec-881

tively), it seems they do not contain enough data to882

support learning. This claim is supported in Table883

8 which shows the results for testing on Manhattan884

with different training sets. The T5 model, in both885

splits learns to predict close locations to the start-886

ing point, or even the exact location as the starting887

point. It therefore does not go over the limited888

range of 2K distance and has a very low accuracy.889

The T5+GRAPH model has a higher accuracy but 890

the model also predicts location over the limited 891

range, resulting in a very high mean error distance. 892

Additionally, the results for all models trained on 893

Pittsburgh were slightly better than the ones trained 894

on Philadelphia, which might be due to the size of 895

the region, Philadelphia being more than twice as 896

large as Pittsburgh, the T5+GRAPH model strug- 897

gles to learn connections — i.e., grounding. — 898

between text and the environment. 899

D Participant Application Interface 900

The tasks are performed via an online assignment 901

application, depicted in Figures 4 and 5. 902
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Figure 4: Participant Interface: the instruction writing task.

Figure 5: Participant Interface: the validation task.
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