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Abstract001

Code debugging is a crucial task in software002
engineering, which attracts increasing atten-003
tion. While remarkable success has been made004
in the era of large language models (LLMs),005
current research still focuses on the simple no-006
library or single-library setting, ignoring the007
complex multi-library scenario in real-world008
applications. To address this limitation, we009
make the first attempt to introduce MLDebug-010
ging (Multi-Library Debugging), a comprehen-011
sive benchmark designed to assess debugging012
challenges within multi-library Python code.013
Specifically, MLDebugging encompasses 126014
distinct Python libraries, covering a wide range015
of multi-library code issues, categorized into016
seven distinct types. Furthermore, we con-017
duct a thorough evaluation of MLDebugging018
using both mainstream open-source and closed-019
source LLMs and highlight that current LLMs020
still struggle to correctly perform code debug-021
ging across multi-library scenarios. We hope022
this work can uncover the potential of LLMs023
in multi-library debugging scenario and offer024
insights for future research.025

1 Introduction026

Code debugging emerges a significant urge for code027

review, requiring bug location first and then fix the028

bug for correct functionality, which has garnered029

increasing attention for software engineering (Just030

et al., 2014; Lin et al., 2017). In light of the need031

to enhance the efficiency of code debugging and032

repair, a series of work consider adapt Automatic033

Code Debugging (ACD) techniques to serve as a034

fast and promising solution to the persistent issue035

of software defects (Austin et al., 2021; Chen et al.,036

2021; Li et al., 2024; Shi et al., 2024).037

With the advancement of large language models038

(LLMs), a considerable body of research has been039

dedicated to effective code debugging. Specifically,040

Berabi et al. (2021) was the first to reframe the code041

debugging task as a Text-to-Text problem. Tian042
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(a) Automatic code debugging for common buggy code

(b) Automatic code debugging for multi-library buggy code

Multi-Library 
Debugger

from sklearn.preprocessing import StandardScaler
import numpy as np
……
……
standardized_data = scaler.fit_transform(data)
data = standardized_data.astype(np.float32).tobytes()
encoded_data = base64.b64encode(data).decode('utf-8')

# Multi-Library Scenario

Original Code
for i in range(2, n):
    if n = i:
        return False
    return True

Debugged Code
for i in range(2, n):
    if n == i:
        return False
    return True

Original Code

Debug 
Failed

Figure 1: An example of a typical static bug code (a)
and our proposed multi-library bug code (b) is presented.
In (a), the error arises from using the assignment op-
erator ’=’ instead of the equality comparison operator
’==’, while (b) involves an issue of variable adaptation
between two library functions.

et al. (2024) introduced the first debugging dataset 043

specifically designed for LLMs, which leveraged 044

code snippets from the LeetCode (2025) platform. 045

Khan et al. (2024) proposed multiple debugging 046

sub-tasks, thereby expanding the code debugging 047

task to encompass multi-language and multi-task 048

scenarios. Furthermore, Liu et al. (2024b) further 049

extended this benchmark to include multilingual 050

debugging contexts, covering 18 programming lan- 051

guages. This expansion enables a more comprehen- 052

sive evaluation of LLM performance in debugging 053

across different languages. 054

Despite its success, as shown in Figure 1 (a), the 055

current researches are still limited to the simple no- 056

library or single-library setting, which which fails 057

to satisfy the requirements of some complex multi- 058

library scenario in a real-world applications. Actu- 059

ally, in real-world software development, the use 060
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Benchmark MLDebugging QuickBugs MdEval DebugBench HumanEval xCodeEval

Multiple Libray ✓ ✗ ✗ ✗ ✗ ✗
Test Case ✓ ✓ ✓ ✓ ✓ ✓
Referece Code ✓ ✗ ✓ ✓ ✓ ✓

Table 1: Compared to the previous Debug Benchmark work, our dataset focuses on Python multi-library.

of multiple libraries is a common practice, as evi-061

denced by research (Feng et al., 2024), which em-062

phasizes the importance of multi-library scenarios063

for code debugging. Unlike the previous no-library064

or single-library scenarios, as illustrated in Figure 1065

(b), multi-library debugging natrually introduces066

two distinct challenges: (1) Understanding mul-067

tiple libraries for bug location and (2) Utilizing068

multiple libraries for bug fixing, which cannot be069

addressed by previous approaches.070

Motivated by this, in this work, we introduce071

MLDebugging (Multi-library Debugging), a bench-072

mark designed to evaluate debugging across 126073

libraries, comprising 1,175 samples. As shown in074

Table 1, the task involves providing a code snippet075

that integrates multiple libraries, along with de-076

scriptions of the required functionality, test cases,077

and reference code. Specifically, we use GPT-4o078

(Openai, 2024a) to generate erroneous code based079

on the multi-library code generation benchmark080

(Zhuo et al., 2024), which is then debugged by081

leveraging multiple LLMs. Next, we design a bug082

category balancing process, enabling the genera-083

tion of more stable and balanced bugs. Finally, we084

implement rigorous quality control to measure and085

validate the quality and authenticity of our dataset086

by comparing it with the distribution of real-world087

multi-library bugs.088

To assess the limitations of current LLMs, we089

conduct a thorough evaluation of both open- and090

closed-source LLMs using MLDebugging. Our091

experiments reveal the following insights: (1) Cur-092

rent LLMs excel at debugging method class errors093

but struggle with conceptual mistakes and missing094

imports. (2) The structured nature of the MLDe-095

bugging, widespread use of libraries, and access096

to complete runtime information, such as test cases097

and feedback, enhance LLM performance. (3) In098

MLDebugging, reasoning models like DeepSeek-099

r1(Guo et al., 2025), which rely solely on distilla-100

tion, fail to improve task performance.101

Our contributions are summarized as follows:102

(1) We introduce a complex scenario of multi-103

library code debugging, addressing challenges104

encountered in real-world development tasks. 105

(2) We construct a multi-library code debugging 106

benchmark with 1,175 samples, covering 126 107

commonly used libraries and categorized into 108

7 distinct bug types relevant to multi-library 109

environments. 110

(3) We conduct a comprehensive analysis of the 111

dataset’s performance across multiple mod- 112

els and provide detailed insights, with further 113

exploration following the experiment. 114

2 Task Formulation 115

Consider a complete library set L, an error code 116

CR,l that implements a particular requirement R, 117

and utilizes the subset of libraries l ⊆ L. Given an 118

ideal test case set T , the error code CR,l is defined 119

to satisfy the following condition: 120

∃t ∈ T ,exec(CR,l|t) = error, (1) 121

where exec(x|y) denotes the execution of code x 122

with input-output assertion y, returning error if 123

execution encounters a fault, or pass if the execu- 124

tion is successful without errors. 125

In the context of multi-library code debugging, 126

the task involves generating the correct code ĈR,l 127

based on the erroneous code CR,l. This process 128

can be formally expressed as: 129

ĈR,l = D(C|CR,l,R,L), (2) 130

where D represents the debugger, which utilizes 131

the library set L to correct the original code CR,l. 132

The resulting corrected code ĈR,l will pass all test 133

cases, satisfying the following condition: 134

∀t ∈ T ,exec(CR,l|t) = pass. (3) 135

3 Data Collection 136

3.1 Source Code Collection 137

To obtain realistic erroneous code, as shown in Fig- 138

ure 2, we collect practical source code errors as 139

follows: (1) First, to collect queries that involve 140

multiple libraries, we adapt BigCodeBench (Zhuo 141
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4. Human Verification

Original and 
Generated Dataset

1. Collecting Datasets

Multi-Library Code
Generate Datasets

Filtered Dataset 
Containing Bugs

GPT-4o Code 
Generation Task

Execute the 
Generated Code

2. Debug with LLM

Filtered Dataset 
Containing Bugs

Loop Debug with
different LLMs

Debugged Code

Bug Description

Bug Category

Unbalanced 
Dataset

3. Category Balance

Generated Multi-
Category Dataset

Unbalanced 
Dataset

Step1 AST Analysis

Step2 Implant
Implant BUGs 
Based on Shots

a. Variable transfer
b. Library Collaboration

Filte and Balance

Validate Category
& Description

Manual Bug 
Recheck & Fixing

MLDebugging
Benchmark

Figure 2: A pipeline diagram illustrating the dataset construction process.

Type Count

Type Mismatch (TM) 97
Data Transfer Issues (DTI) 127
Function Parameter Errors (FPE) 88
Parameter Configuration Errors (PCE) 60
Function Misuse (FM) 101
Requirement Misunderstanding (RM) 143
Import Errors (IE) 23

Table 2: The number of data instances for each category
in the unbalanced dataset. In the subsequent sections
of the article, we use the first letter shortened forms to
replace the full names of the categories (TM, DTI, PFE,
PCE, FM, RM, IE).

et al., 2024), a dataset consisting of code snippets142

that address real-world programming tasks using143

two or more Python libraries selected from a pool144

of 179 widely-used libraries. (2) Next, we leverage145

GPT-4o(Openai, 2024a) following the methodol-146

ogy in (Zhuo et al., 2024) to generate 1,038 code147

snippets involving multiple libraries, ensuring a148

broad range of real and diverse code errors. (3)149

Finally, we test all these generated code snippets150

using the provided test cases, which successfully151

identifies 609 buggy code snippets.152

To further enable a thorough analysis of the153

dataset, we examine a set of common multi-library154

bugs preliminary. As shown in Table 2, we classify155

these bugs into 7 categories, each based on one156

of three perspectives: variable transfer between li-157

braries, library function parameters, and function158

functionality comprehension. Based on this anal-159

ysis, we introduces a clearer and more analyzable160

classification framework for evaluating debugging161

in practice, enabling more precise assessments of162

debugging performance across different bug types. 163

3.2 Annotating & Debugging With LLM 164

As illustrated in Figure 2, based on the previous 165

classification, we manually provide detailed de- 166

scriptions and examples for each bug category. Us- 167

ing this bug category information, we instruct the 168

LLMs to classify each bug and generate a detailed 169

bug description for each code snippet. This process 170

is designed to assist and accelerate human annota- 171

tion and next model debugging. 172

To enhance diversity and improve debugging per- 173

formance, we employ three LLMs: GPT-4o (Ope- 174

nai, 2024a), DeepSeek-V3 (Liu et al., 2024a) and 175

Claude-3-5-sonnet (Anthropic, 2024), so that sys- 176

tematically collected the corrected code results for 177

subsequent comparative analysis. However, it is 178

worth noting that LLMs cannot always generate 179

and repair code correctly on the first attempt. In- 180

spired by the idea of test-time scaling (Wu et al., 181

2024; Chen et al., 2025), for any unsuccessful de- 182

bugging attempts, we conduct up to 5 additional 183

trials to obtain a correct repaired code. After that, 184

we obtain unbalanced dataset, each comprising the 185

bug category, corresponding correct and erroneous 186

code pairs, and relevant test cases. 187

3.3 Bug Category Balance 188

As shown in Table 2, an imbalance in bug category 189

distribution leads to evaluation bias, particularly for 190

less frequent errors. To address this, as illustrated 191

in Figure 2, we employ a balancing strategy. 192

Multi-Library Information Preparation Ana- 193

lyzing source code in isolation often fails to capture 194
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the abstract semantics of code that incorporates195

multiple libraries, limiting a deeper understanding196

of its functionality and hindering the generation197

of debugged code. To address this, we leverage198

the Abstract Syntax Tree (AST) to represent the199

program’s structure in a hierarchical format. Specif-200

ically, we prompt the LLM with the AST, ensuring201

it reflects variable transfers between libraries, the202

role of each library at each step, and how they col-203

laborate to accomplish the task.204

Category Balance Based on the Information205

Preparation for Multi-Library code, we select a spe-206

cific bug type from Table 2 and randomly extract207

corresponding bug instances from the unbalanced208

dataset. Specifically, we equally sample each unbal-209

anced category to generated more code with bugs210

and automatically generate debugged code based211

on strategies in Sec. 3.1 and Sec. 3.2. Next, we212

manually filter the generated samples, and finally213

keep sample size of all categories is left are close.214

This methodology allowed for the successful in-215

jection of 566 bugs, standardizing the number of216

instances per category to approximately 200.217

3.4 Quality Control218

To ensure the quality of MLDebugging, we imple-219

ment comprehensive manual quality control over220

the dataset.221

Manual Bug Recheck & Fixing Due to the222

model’s inability to resolve all bugs, a manual re-223

view and correction process is employed for the224

unresolved code. Specifically, 4 experienced pro-225

grammers, each with over 4 years of coding ex-226

perience, are assigned to the task of bug fixing.227

Prior to beginning their work, these programmers228

undergo training on 50 sample cases to ensure con-229

sistency in labeling and to standardize the review230

process. To ensure the reliability of the bug-fixing231

process, overlapping cross-checks are organized, al-232

lowing for multiple reviews of the same cases. Any233

discrepancies identify during these reviews are re-234

solved through collaborative discussions, ensuring235

accuracy and consistency in the final corrections.236

Category & Description Recheck Finally, we237

manually assess the correctness of bug categories238

and bug descriptions to ensure that MLDebugging239

can effectively evaluate the model’s ability to debug240

various types of bugs. Specifically, this process241

involves annotators comparing the fixed code with242

the buggy version to validate the correctness of the243

Criteria Correction Count

BUG Descreption 119
BUG Type 340
Manual Debugging 185

Table 3: The number of erroneous samples identified
through manual inspection at the quality control thresh-
old.

generated bug category and bug descriptions, as 244

discussed in Sec. 3.2. 245

As a result of these efforts, as detailed in Table 246

3, we corrected 119 bug descriptions, 340 classifi- 247

cations of multi-library bugs, and manually fixed 248

185 buggy samples. Additionally, we removed 356 249

unreasonable samples from the generated dataset. 250

4 Dataset Analysis 251

In this study, we design a series of distribution- 252

based experiments to evaluate the alignment be- 253

tween error distributions in our dataset and real- 254

world debugging scenarios. First, we extract 255

question-answer pairs focused on issues related to 256

multiple libraries from Stack Overflow (2025). We 257

then apply textual embeddings to the error descrip- 258

tions in both the MLDebugging and DebugBench 259

datasets. 260

To quantify the distributional similarity, we use 261

two key measures: (1) Centroid-Based Compar- 262

ison We calculate the centroids of bug descrip- 263

tion embedding vectors for MLDebugging, Debug- 264

Bench, and StackOverflow separately, then eval- 265

uate the cosine similarity and Euclidean distance 266

between them. (2) Real-World Proximity For 267

each sample, we measure its distance to the nearest 268

real-world sample from StackOverflow. Consider 269

the text embedding vector a from the benchmark 270

(MLDebugging, DebugBench) and the real bug de- 271

scription embedding vector b from StackOverflow. 272

We retain the bj points closest to ai and compute 273

the sum of their Euclidean distances to obtain the 274

Distribution Distance (DD) as: 275

DD =
m∑
i=1

min
j

∥ai − bj∥2. (4) 276

The results in Table 4 show that the cosine simi- 277

larity between our dataset and StackOverflow ex- 278

ceeds that between DebugBench and StackOver- 279

flow. Additionally, the overall distances for our 280

dataset are smaller than those for DebugBench, 281
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Comparison C Sim(↑) E Dist(↓) DD(↓)

ML and ST 0.731 0.376 46.68
DB and ST 0.660 0.432 56.46

Table 4: Comparison of the distances among MLDe-
bugging (ML), DebugBench (DB), and StackOverFlow
(ST), where C Sim represents the cosine similarity, and
E Dist represents the Euclidean distance.

Ours

StackOverflow

DebugBench

Figure 3: The t-SNE visualization of document embed-
dings for three datasets in a two-dimensional space.

indicating that, at the script level, MLDebugging282

more accurately reflects the real-world bug distri-283

bution on StackOverflow. Moreover, as shown in284

Figure 3, the dimensionality reduction visualiza-285

tions further reveal that our dataset forms more286

compact clusters, more closely aligning with real-287

world samples and emphasizing its practical rele-288

vance for multi-library code debugging.289

5 Experiment290

5.1 Experimental Settings291

Model Settings We conducted experiments on292

extensive models covering both open-source and293

closed-source ones, aiming to provide a compre-294

hensive understanding in multi-libtrary code debug-295

ging. Specifically, we choose open-source models296

including Qwen2.5 (Yang et al., 2024a), Qwen2.5-297

Coder (Hui et al., 2024), LLama3.1 (AI, 2024),298

Mistral (Jiang et al., 2024), Deepseek (DeepSeek,299

2024) and closed-source models including the GPT300

series (Openai, 2024b), Claude (Anthropic, 2024).301

Additionally, we evaluate emerging reasoning mod-302

els to explore how reasoning capabilities enhance303

debugging performance, Deepseek-R1-Distill se-304

ries (Guo et al., 2025) and QwQ (Team, 2024).305

Metric Settings The pass rate represents the pro- 306

portion of code that pass all test cases. Given test 307

cases Ti and the code Ĉi
R,l for i-th sample, the pass 308

rate can be calculated as: 309

P =
1

n

n∑
i=1

(
∧
t∈Ti

[
exec(Ĉi

R,l|t) = pass
]
), (5) 310

where n denotes the number of codes in benchmark. 311

Here,
∧

t∈T [∗] denotes the logical “and” operation 312

across all t ∈ T . This expression returns 1 if all 313

test cases pass, and 0 otherwise. 314

5.2 Main Results 315

We evaluate MLDebugging with different LLMs 316

varying in size, including closed- and open-source 317

LLMs ranging from 7B to 72B. 318

All LLMs face challenges in MLDebugging. To 319

assess the debugging capabilities of LLM in multi- 320

library scenarios, we conduct an in-depth evalua- 321

tion of various models’ performances on MLDe- 322

bugging. As shown in Table 5, none of the LLMs 323

demonstrate a significantly high pass rate in ML de- 324

bugging. Specifically, the highest performance ob- 325

served on the DeepSeek-V3 dataset is only 58.7%, 326

which indicates that all LLMs face substantial chal- 327

lenges in MLDebugging. This result also highlights 328

significant room for improvement in the models’ 329

multi-library debugging capabilities. 330

LLMs with increasing parameter sizes exhibit di- 331

minishing returns in MLDebugging. To under- 332

stand the impact of varying model sizes on our 333

benchmark, we evaluate a series of LLMs with 334

different parameter counts. As shown in Table 5, 335

model performance improves significantly from 7B 336

to 32B parameters. However, from 32B to 72B, the 337

performance gain levels off and may even decline. 338

This suggests that our benchmark cannot be fully 339

addressed by scaling alone and presents unique 340

challenges inherent to multi-library tasks, which 341

require further investigation. 342

LLMs exhibit varying capabilities across differ- 343

ent multi-library debugging categories in MLDe- 344

bugging. To evaluate the debugging abilities of 345

LLMs on different types of bugs, we conduct a de- 346

tailed experiment based on the classification in Ta- 347

ble 2. Table 5 presents the performance of various 348

models on MLDebugging. While LLMs are some- 349

what effective for addressing certain bug types, 350

multi-library debugging continues to pose signif- 351

icant challenges. Specifically, the categories TM 352
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Category 7B+ 14B+

Qwen2.5 Qwen2.5-coder Llama3.1 Mistral DS Qwen DS Llama Qwen2.5 Qwen2.5-coder DS Qwen DS-coder-Lite

TM 47.6 40.0 39.7 28.8 18.8 33.5 50.0 54.1 42.4 30.0
DTI 36.1 33.8 30.5 22.7 15.7 20.5 40.7 43.1 30.6 25.5
PFE 48.4 48.8 43.2 29.1 23.5 26.2 56.8 62.0 49.8 34.7
PCE 57.6 58.0 49.8 42.4 33.1 43.0 66.1 63.8 57.6 40.1
FM 38.2 40.4 38.8 26.8 20.2 23.0 44.1 53.6 35.5 31.7
RM 12.6 7.0 5.6 8.4 2.8 7.5 15.4 16.1 11.2 4.9
IE 26.1 8.7 13.0 4.3 3.3 19.0 30.4 30.0 17.4 17.4
AVG. 42.7 40.6 36.7 28.0 20.6 27.6 48.6 51.4 40.2 29.9

Category 32B+ 72B MOE

Qwen2.5 Qwen2.5-Coder DS Qwen QwQ Qwen2.5 Llama3.1 DS-V3 Claude GPT3.5 GPT-4

TM 58.8 56.5 56.5 46.5 52.9 53.5 60.0 45.9 50.0 55.3
DTI 50.0 50.5 45.8 42.6 47.2 54.1 52.8 39.8 37.5 49.1
PFE 62.0 59.2 59.6 54.5 62.9 45.4 67.0 43.7 54.9 67.1
PCE 70.4 71.5 67.3 58.8 70.4 62.4 76.3 52.1 60.3 70.4
FM 55.9 54.6 50.5 42.6 53.8 68.9 56.2 41.5 44.8 53.0
RM 20.3 18.2 20.3 19.6 16.1 21.7 23.8 25.2 9.1 21.0
IE 26.1 30.4 21.7 30.4 26.1 30.4 34.8 21.7 21.7 30.4
AVG. 55.7 54.8 52.6 46.5 53.7 53.5 58.7 43.0 45.7 55.6

Table 5: The table presents the results of various models in the MLDebugging benchmark, including Qwen2.5,
Qwen2.5-Coder, Llama3.1, Mistral, closed-source models, and the Deepseek(DS) R1 Distill series(The models we
use are all based on the Instruct version). Bolded numbers indicate the highest pass rate achieved within models of
the same parameter size.The Category column represents the initials of the category names listed in Table2

& DTI, which involve parameter-level debugging353

with variable types and specific forms, and the fol-354

lowing categories (PFE, PCE, & FM), which focus355

on function-level debugging, demonstrate relatively356

better performance. In contrast, the last two cat-357

egories (RM & IE), which require reasoning and358

debugging at the library-level, show notably lower359

performance, with a gap of nearly 20% in pass360

rates. This disparity underscores the varying capa-361

bilities of LLMs across different multi-library de-362

bugging tasks and highlights the need for targeted363

improvements, particularly in handling debugging364

challenges of different complexity.365

5.3 Analysis366

In this section, we analyze the detailed behaviors367

of LLMs, particularly in investigating the impact368

from library perspective.369

5.3.1 Impact of Library Usage Scenario370

To gain a comprehensive understanding of the371

LLMs’ debugging performance across various li-372

braries, we adopt the scenario classification from373

BigCodeBench (Zhuo et al., 2024). Figure 4 illus-374

trates the debugging pass rates for representative375

libraries within each scenario. The experimental376

results indicate that the LLMs’ debugging perfor-377

mance varies across different types of libraries, re-378

vealing the following insights:379

(a) The pass rate distribution of various libraries 
on GPT-4
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Figure 4: The usage scenarios of Python libraries are
categorized into eight distinct domains, several of the
most representative libraries are selected.

LLMs perform well in commonly well-regularized 380

and structured libraries. As illustrated in Fig- 381

ure 4, models perform well in structured and well- 382

regularized libraries covering general algorithms 383

(General), data processing (Computation), and 384

tasks related to encryption and visualization (Vi- 385

sualization). Specifically, they achieve high pass 386

rates in libraries like itertools (0.641), collections 387

(0.570), sklearn (0.654), base64 (0.724), and PIL 388

(0.714) on GPT-4. This strong performance is 389

likely due to the well-structure and clear definition 390

of tasks in large-scale corpora, which allow LLMs 391

to effectively learn and apply general debugging. 392

LLMs struggle with dynamic and unstructured 393

multi-library debugging. As shown in Figure 4, 394

LLMs underperform in tasks involving network 395
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Variable Correlation P-Value

lines of code -0.0071 0.9654
library count -0.2113 0.1906
prevalence 0.4094 0.0087

Table 6: The table presents the point-biserial correlation
coefficients and p-values between these three factors
(lines of code, library count, and library prevalence) and
the pass/fail outcomes.

communication (NetWork) and time processing396

(Time), particularly when using libraries like bs4397

(0.286), urllib (0.375), and nltk (0.167) on GPT-4.398

These deficiencies in time-related libraries high-399

light the model’s limitations in dynamic debugging,400

specifically in its understanding of time logic and401

cross-timezone processing. This results in chal-402

lenges when trying to accurately detect anomalous403

behaviors in dynamic environments.404

5.3.2 Impact of Library Prevalence405

High prevalence of libraries elicits the models’406

capacity on MLDebugging. In the experiments407

presented in Table 5, LLMs demonstrate poor per-408

formance in MLDebugging. To explore the under-409

lying causes of these difficulties, we hypothesized410

that the challenges in debugging are associated with411

factors such as the number of lines of code, the412

quantity of libraries used, and the prevalence of413

LLMs encountered on the internet corpus. To test414

this hypothesis, we computed the correlation be-415

tween each of these factors and the pass rate. As416

shown in Table 6, we find that the prevalence of417

libraries exhibits the strongest correlation with the418

debugging difficulty, suggesting that models tend419

to perform better when handling libraries that are420

more commonly encountered.421

5.3.3 Exploration422

Both test cases and runtime error messages are423

essential for MLDebugging. Execution feedback424

always serves as a crucial source of information and425

plays a pivotal role in the debugging process(Zhong426

et al., 2024). To explore its impact, we introduce427

detailed test case and runtime error message infor-428

mation separately into prompts to validate the effec-429

tiveness for multi-library debugging. As illustrated430

in Figure 5, the results illustrate the debugging sce-431

narios based on test cases, runtime feedback, and432

their combined use. The results demonstrate that433

providing either test cases or runtime feedback in-434

dividually offers additional information, thereby435

TM FM FPE

Base Test_case Feedback

(a) GPT-4 (b) GPT-3.5

Test+Feedback

20

40
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80

TM FM FPE

Figure 5: The debugging effect achieved by incorporat-
ing runtime information for different bug categories in
Table 2.
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The Impact of Inference Ability on Debugging
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Figure 6: The results of various models under baseline
conditions, with CoT prompts, and following R1 Distill
training.

improving the model’s performance in most cases. 436

However, in certain experiments involving only test 437

case feedback or only runtime feedback, we incor- 438

porate both information to the LLMs’ inputs, lead- 439

ing to better and more robust performance. This 440

suggests that supplying both comprehensive test 441

cases and runtime error messages is essential for 442

ensuring stable performance improvements in de- 443

bugging tasks. 444

CoT achieves superior performance in MLDe- 445

bugging. The Chain-of-Thought (CoT) prompt- 446

based approach has been shown to exhibit en- 447

hanced reasoning capabilities in various tasks (Wei 448

et al., 2022; Chen et al., 2024). To investigate this 449

effectiveness for MLDebugging, we adopt the ap- 450

proach introduced by Kojima et al. (2022), wherein 451

the prompt “Let’s think step by step” is used to 452

trigger LLMs to generate a CoT reasoning pro- 453

cess. Specifically, we assess the performance of 454

contemporary LLMs with parameter sizes ranging 455

from 7B to 32B, including Qwen2.5 and LLaMA 456

3.1. As shown in Figure 6, the CoT prompt-based 457

approach consistently demonstrates a significant 458

improvement in reasoning capabilities, particularly 459

in debugging tasks. These enhanced logical reason- 460

ing skills prove to be crucial for improving perfor- 461

mance in multi-library debugging scenarios. 462
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Reasoning models based solely on distillation fail463

to improve task performance. Recent advance-464

ments suggest that reasoning models with test-time465

scaling significantly enhance the performance of466

LLMs (Snell et al., 2024; Jaech et al., 2024; Guo467

et al., 2025; Chen et al., 2025). Motivated by468

this insight, we evaluated the Deepseek-R1-Distill469

models. However, as shown in Figure 6, although470

CoT demonstrates improved performance, reason-471

ing models trained with distilled long CoT data472

exhibit worse performance. We attribute it to the473

fact that the use of supervised fine-tuning (SFT)474

with distilled data alone may not sufficiently en-475

hance the model’s capabilities. To achieve a more476

substantial improvement, further exploration of al-477

ternative strategies, such as reinforcement learning478

(RL), is warranted.479

5.4 Error Analysis480

To understand the key challenges in MLDebugging481

task, we conduct a comprehensive review of the482

debugged code output by the LLMs. We attribute483

the primary causes to the following two factors:484

Absence of library knowledge A key challenge485

of large language models (LLMs) is their limited486

knowledge (Huang et al., 2024). To examine this487

issue in the context of multi-library debugging,488

we conduct a detailed manual analysis of LLM-489

generated outputs, with particular emphasis on their490

use of specialized knowledge. As demonstrated in491

Case 1 of Error Analysis, LLM fails to understand492

the “virtual memory” method in the psutil library,493

leading to a misidentification that hindered its abil-494

ity to extract the relevant attributes. This highlights495

a major limitation of LLMs: a superficial or incom-496

plete understanding of specialized libraries. As a497

result, effectively localizing errors and reconstruct-498

ing faulty code with a sufficient grasp of the rele-499

vant libraries present significant challenges in the500

field of MLDebugging.501

Requirements for efficient cross-library debug-502

ging When dealing with interactions between503

multiple libraries, the inherent complexities intro-504

duce significant challenges. As illustrated in Case 2505

in Error Analysis, the model’s inability to compre-506

hend cross-library variables impedes its capacity to507

detect redundant operations on the dataframe. The508

variation in variable types across libraries, such as509

differing classes and structures, prevents the model510

from performing fine-grained debugging, resulting511

in inaccuracies when handling task-specific details.512

As a result, effectively correct code with cross- 513

library interaction also show great challenges in 514

MLDebugging. 515

6 Related Work 516

The emergence of large language models (LLMs) 517

has also exerted a significant impact on Auto- 518

mated Code Debugging (ACD) tasks, as previ- 519

ous datasets have been vulnerable to data leakage 520

risks (Just et al., 2014; Lin et al., 2017). To facili- 521

tate a smoother transition from traditional datasets 522

to those suited for LLM evaluations, numerous 523

remarkable contributions have surfaced. Debug- 524

Bench Tian et al. (2024) stands as the first dataset 525

designed specifically to assess the debugging ca- 526

pabilities of large models. This work collects data 527

from LeetCode, subsequently introducing bugs via 528

model injection. In the realm of APR, xCodeEval 529

Khan et al. (2024) has proposed three distinct sub- 530

tasks, spanning multiple programming languages, 531

to comprehensively evaluate a mopdel’s ability to 532

repair code. Meanwhile, MdEval (Liu et al., 2024b) 533

adopts a multi-language approach, encompassing 534

a benchmark across 18 programming languages. 535

In addition, the challenges presented by specific 536

real-world scenarios have prompted research into 537

niche areas, with several efforts concentrating on 538

executable code, data processing, and other spe- 539

cialized contexts (Yang et al., 2024b; Prenner and 540

Robbes, 2023; Galimzyanov et al., 2024). 541

These advancements have undeniably propelled 542

the field forward. However, the majority of these 543

datasets are sourced from algorithmic competition 544

platforms, often overlooking the need for Python 545

multi-library scenarios. Therefore, we have con- 546

structed a benchmark specifically aimed at evaluat- 547

ing the debugging abilities of models in the context 548

of multiple libraries, providing an in-depth assess- 549

ment of their proficiency in both static knowledge 550

comprehension and multi-library code interaction. 551

7 Conclusion 552

This work introduces MLDebugging, a benchmark 553

designed to assess debugging challenges in multi- 554

library code. We conduct a comprehensive analysis 555

on MLDebugging and the experimental results re- 556

veal that the current LLMs still struggle in in multi- 557

library scenario. This work emphasizes the need 558

for further research to improve LLM performance 559

in multi-library settings and provides insights to 560

guide future developments in this field. 561
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Limitations562

We propose MLDebugging, the first multi-library563

code debugging benchmark, yet there are still two564

main limitations: (1) Although the analysis results565

indicate that the data distribution of MLDebugging566

closely resembles real-world data, most of the data567

in MLDebugging are automatically generated by568

models, which means there will still be some differ-569

ences compared to real data. In the future, we con-570

sider incorporating more real-world data to further571

enhance the realism and usability of MLDebugging.572

(2) Despite that our experiments comprehensively573

evaluate various models and error categories, the574

entire evaluation process can be cumbersome due575

to the need to configure several external dependen-576

cies and complex environments, which consumes a577

significant amount of time.578
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Appendix749

A Dataset Construction Details750

A.1 Prompts for Dataset Construction751

This appendix includes the prompts used during752

both the dataset construction phase and the evalua-753

tion phase.754

In the second stage of dataset construction, the755

prompts provided to the model for debugging tasks756

include several key components: the instruction,757

the buggy code, the test case, the correct code from758

the original dataset, and the error message. The759

model is then required to format and output the760

solution accordingly.we present the prompts used761

during the second stage of dataset construction,762

which are provided to the model for debugging763

tasks.764

We will provide a Python code snippet, task_func,
which involves multiple libraries and contains bugs.
Your task is to debug the code, identify the issues
across the libraries, and categorize the bugs. Please
follow these steps: Review the requirements of the
code and thoroughly analyze the task_func.
Using the provided test cases and error messages,
identify and list the bugs in the code, along with a
description of each issue. Correct each identified
bug, provide the updated code, and categorize the
bugs according to the relevant multi-library issue
types. The following information is provided for
debugging:
<instruct>: The task of this code segment.
<bug_code>: The code that needs debugging.
<canonical_solution>: The corrected version of the
code.
<test_case>: Sample test cases for validation.
<error>: Relevant error messages.

The identified bugs are categorized as follows:
Please output each identified bug in the following
format, Write each part’s content with only one tag,
Each part must be included:
<bug_des>
Detailed description of the bug </bug_des>
<code> # Import necessary package(s) and provide
the refined function
code without comments
import . . . . . .
def task_func(
</code>
<category> Only output the category names from the
seven categories mentioned above </category>
Few-Shot:

765

we include the prompts employed during the766

data generation process, covering the analysis and767

bug injection phases.768

You will receive a piece of code that is a function de-
signed with multiple packages, and its corresponding
multi-library AST structure is also provided. Your
tasks are as follows:
(1) Analyze the relationships between multiple li-
braries from the perspective of variable passing,
based on the provided code and its corresponding
multi-library AST (Abstract Syntax Tree) structure.
(2) Inject a specific type of bug, provide a description
of the bug, and the code where the bug is injected (do
not include any comments). Type Description:
The input format is as follows:
<Instruction> Code Requirements </Instruction>
<Original_Code> Correct Implementation </Origi-
nal_Code>
<AST> Abstract Syntax Tree </<AST>
The output format is as follows:
<AST_analysis> Analyze the relationships between
multiple libraries, focusing on variable passing, Ana-
lyze the relationships between multiple libraries from
the perspective of variable passing, based on the pro-
vided code and its corresponding multi-library AST
(Abstract Syntax Tree) structure.based on the pro-
vided code and its corresponding multi-library AST
(Abstract Syntax Tree) structure.
</AST_analysis>
<bug_des> This is a description of multi-database
bugs for the specific category required.
</bug_des>
<bug_code> # Import the necessary packages and
provide the bug-implanted
code without comments
import . . . . . .
def task_func(
</bug_code>

769

Finally, we outline the various prompts utilized 770

during the testing phase. Standard evaluation 771

prompt: 772

There is an important info hidden inside a lot of ir-
relevant text. Find it and memorize them. I will quiz
you about the important information there.
Please review the task_func function for errors. Begin
by reading the provided instructions to understand
the intended behavior of the function. Ensure the
code aligns with the requirements and identify any
issues. Correct any errors found and provide the re-
vised code.
Input format:
<instruct>: Code requirements and expected
functionality
<bug _ code>: The original (bugged) version of the
code.

Please output only the debugged code under the la-
bel <corrected_code>, without any additional text or
comments:
Output Format Example
<corrected_code>
import . . . . . .
def task_func(. . . . . .
</corrected_code>

773

Reasoning model prompt 774
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Please review the task_func function for errors. Begin
by reading the provided instructions to understand
the intended behavior of the function. Ensure the
code aligns with the requirements and identify any
issues. Correct any errors found and provide the
revised code.
Input format <instruct>: Code requirements and
expected functionality <bug_code>: The original
(bugged) version of the code.
Please output the final answer at the end, enclosed
in markdown format, without any additional text or
comments. Final answer output Format Example:
“‘python import . . . . . . def task_func(. . . . . . “‘

775

CoT prompt776

Please review the task_func function for errors.
Begin by reading the provided instructions to
understand the intended behavior of the function.
Ensure the code aligns with the requirements and
identify any issues. Correct any errors found and
provide the revised code.

Input format
<instruct>: Code requirements and expected
functionality
<bug_code>: The original (bugged) version of the
code.

Let’s think Step by Step to Solve this problem. Please
output the final answer at the end, enclosed in mark-
down format, without any additional text or com-
ments.
Final answer Output Format Example
“‘python
import . . . . . .
def task_func(. . . . . .
“‘

777

A.2 The Details of Manual Annotation778

To ensure the quality of the dataset, we provided779

training for the data annotate team using a sample780

of 50 entries and established a structured workflow781

for dataset annotation:782

(1) Each annotator is assigned an equal portion783

of the dataset for labeling, with overlapping784

data specifically included for cross-checking785

purposes.786

(2) Each annotator first reviews 50 labeled sam-787

ples, subsequently following the established788

guidelines for further annotation.789

(3) It is imperative that the data reviewed each day790

meets the criteria, with the bug code match-791

ing both its category and description, and792

the "Golden" code passing corresponding test793

cases.794

(4) Any unresolved issues are addressed through795

consensus within the annotator group.796

The guidelines for the annotate process are as fol- 797

lows: 798

Instruction
To construct a Code Debug dataset, we first need
to debug the code containing bugs. The debugging
process involves a thorough examination of both the
model and the corrected code. The dataset includes
the following information: the code’s instructions,
the bug categories, the buggy code, the golden code,
and testcase. These elements provide essential sup-
port for subsequent debugging and model evaluation.
Workflow
The provided files contain a jsonl file, which can be
processed using the check.py script to generate a con-
solidated output file for easier inspection. The Check
folder holds the necessary information for performing
code debugging, while the RUN folder offers conve-
nient debugging support for code testing. During the
debugging process:

(1) It is essential to verify whether the buggy code
aligns with the bug description and to assess
it according to the classification standards pro-
vided in the accompanying materials. If dis-
crepancies are found, corrections must be made
accordingly.

(2) The golden code must be executed, and its cor-
rectness verified through the corresponding test
cases. If it fails to pass the test cases, manual
corrections are required.

(3) The correction process for each data entry
should be thoroughly documented to ensure
traceability of the modifications.

799

B Error Analysis 800

Case 1 801

In the first example, the model fails to locate and 802

refactor the code due to a lack of knowledge re- 803

garding the virtual_memory method in the psutil 804

library. As a result, the outputted repair version 805

remains unchanged. 806

Buggy Code:
import psutil
import platform
def task_func():
system_info = {}
system_info['OS'] = platform.

↪→ system()
system_info['Architecture'] =

↪→ platform.architecture()[0]
memory = psutil.virtual_memory()
system_info['Memory Usage'] = f"{

↪→ memory.percent}%"
return system_info

807
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Repaired Code:
import psutil
import platform
def task_func():

system_info = {}
system_info['OS'] = platform.

↪→ system()
system_info['Architecture'] =

↪→ platform.architecture()[0]
memory = psutil.virtual_memory()
system_info['Memory Usage'] = f"{

↪→ memory.percent}%"
return system_info

808

Golden Code:
import psutil
import platform
def task_func():

system_info = {}

system_info['OS'] = platform.
↪→ system()

system_info['Architecture'] =
↪→ platform.architecture()[0]

total_memory = psutil.
↪→ virtual_memory().total

used_memory = psutil.
↪→ virtual_memory().used

system_info['Memory Usage'] = f'{
↪→ used_memory/total_memory
↪→ *100:.2f}%'

return system_info

809

Case 2810

In the following example, the model fails to recog-811

nize the interaction between Pandas and Matplotlib,812

leading to the omission of redundant operations,813

such as the removal of missing values and reindex-814

ing.815

Buggy Code:
import pandas as pd
import matplotlib.pyplot as plt
def task_func(data_list):
df = pd.DataFrame(data_list)
fig, ax = plt.subplots()
for column in df:

ax.plot(df[column].dropna().
↪→ reset_index(drop=True),
↪→ label=column)

ax.set_title("Student Scores over
↪→ Tests")

ax.set_xlabel("Test Number")
ax.set_ylabel("Score")

return ax

816

Repaired Code:
import pandas as pd
import matplotlib.pyplot as plt
def task_func(data_list):
df = pd.DataFrame(data_list)
fig, ax = plt.subplots()
for column in df:
ax.plot(df[column].dropna().

↪→ reset_index(drop=True),
↪→ label=column)

ax.set_title("Student Scores over
↪→ Tests")

ax.set_xlabel("Test Number")
ax.set_ylabel("Score")
ax.legend()
return ax

817

Golden Code:
import pandas as pd
import matplotlib.pyplot as plt
def task_func(data_list):
df = pd.DataFrame(data_list)
fig, ax = plt.subplots()
for column in df:
ax.plot(df[column], label=column)
ax.set_title("Student Scores over

↪→ Tests")
ax.set_xlabel("Test Number")
ax.set_ylabel("Score")

return ax

818
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