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Abstract001

Encoder-decoder models have achieved remark-002
able success in speech and text tasks, yet003
efficiently adapting these models to diverse004
uni/multi-modal scenarios remains an open005
challenge. In this paper, we propose Whisper-006
UT, a unified and efficient framework that007
leverages lightweight adapters to enable seam-008
less adaptation across tasks, including a multi-009
modal machine translation (MMT) task that010
explicitly conditions translation on both speech011
and source language text inputs. By incorporat-012
ing ASR hypotheses or ground-truth transcripts013
as prompts, this approach not only enables the014
system to process both modalities simultane-015
ously but also enhances speech translation (ST)016
performance through a 2-stage decoding strat-017
egy. We demonstrate our methods using the018
Whisper model, though in principle they are019
general and could be applied to similar multi-020
task models. We highlight the effectiveness of021
cross-modal and cross-task fine-tuning, which022
improves performance without requiring 3-way023
parallel data. Our results underscore the flex-024
ibility, efficiency, and general applicability of025
the proposed framework for multi-modal trans-026
lation.027

1 Introduction028

The task of speech-to-text translation (ST) encom-029

passes converting spoken content from one lan-030

guage to another, aiming to overcome language031

barriers to communication. Traditionally, the task032

involves an automatic speech recognition (ASR)033

module to transcribe spoken words, followed by034

a machine translation (MT) module to convert035

the transcribed text into the target language in036

a cascaded manner (Ney, 1999). The recent de-037

velopment of end-to-end neural architectures and038

large pre-trained models have substantially pro-039

pelled advancements in downstream speech tasks,040

via either self-supervised learning (SSL) (Baevski041

et al., 2020; Hsu et al., 2021; Chen et al., 2022) or042

fully supervised learning. Among the pre-trained 043

acoustic models, Whisper (Radford et al., 2022), 044

a transformer-based encoder-decoder multi-task 045

model trained with large-scale data in a supervised 046

manner, has exhibited good performance on vari- 047

ous ST corpora. 048

However, in real-world scenarios, input modal- 049

ities and data conditions vary widely. In of- 050

fline settings, for instance, translating conversa- 051

tional or dialectal speech—characterized by dis- 052

fluencies, code-switching, and noisy acoustic en- 053

vironments—poses significant challenges to end- 054

to-end models, often resulting in degraded perfor- 055

mance. Conversely, scenarios like business meet- 056

ings or translated media archives frequently pro- 057

vide both source-language speech and (manual or 058

ASR-generated) transcripts. Yet existing systems 059

fail to exploit this multi-modal synergy. 060

To address this, we systematically investigate 061

how multi-task encoder-decoder models—using 062

Whisper as a representative case study—can be ef- 063

ficiently adapted to these heterogeneous scenarios. 064

First, we examine fine-tuning strategies for conven- 065

tional ST (using 3-way parallel speech-transcript- 066

translation data), speech-to-text tasks (ASR-only 067

data), and MT, while also methods for multi-modal 068

translation where both speech and transcripts are 069

available. Our analysis reveals two key insights: 070

• Cross-task training induces synergistic bene- 071

fits—fine-tuning on in-domain ASR data im- 072

proves ST performance, while ST training 073

conversely enhances ASR accuracy, suggest- 074

ing mutual reinforcement between the ASR 075

and ST tasks even without 3-way parallel data; 076

• Multi-modal inputs (speech + text) consis- 077

tently enhance translation quality when fused, 078

even with imperfect ASR transcripts. 079

Building on these findings, we propose Whis- 080
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per for Unified Translation1, or Whisper-UT, a081

framework that transforms Whisper’s decoder into082

a unified conditional generation model, capable of083

dynamically conditioning on speech, text, or both084

modalities. The framework repurposes Whisper’s085

encoder-decoder architecture as a versatile multi-086

modal interface through two innovations:087

1 A multi-task learning paradigm with a stochas-088

tic task-selection mechanism to adapt the sys-089

tem across ASR, MT, ST, and multimodal090

translation tasks using a single set of LoRA091

parameters;092

2 A two-stage decoding strategy, where the de-093

coder first generates an ASR transcript from094

speech, then reuses it as context for transla-095

tion, perhaps emulating human thought pro-096

cesses, even when a transcript is not provided.097

Crucially, Whisper-UT requires no architectural098

modifications—only fine-tuning—ensuring com-099

patibility with any encoder-decoder model.100

Experiments on CoVoST2’s (Wang et al.,101

2020b) French-English (fr-en) and German-102

English (de-en) subsets demonstrate strong per-103

formance. Extended evaluations on conversa-104

tional telephone speech (CTS) corpora—Fisher-105

CallHome Spanish (Post et al., 2013), and BBN106

Mandarin-English (Wotherspoon et al., 2024) fur-107

ther confirm the robustness of our approach across108

diverse domains. Notably, Whisper-UT outper-109

forms the 1.3B-parameter NLLB model in multi-110

modal settings (speech + ground-truth text) and111

achieves superior speech-only translation via hy-112

pothesis prompting.113

Our work highlights the untapped potential of114

multi-task models in adaptive translation systems.115

By unifying modality handling and enabling effi-116

cient task specialization, Whisper-UT bridges the117

gap between rigid single-modality systems and the118

dynamic needs of real-world applications.119

2 Related Work120

2.1 Whisper121

Whisper is an end-to-end multi-task speech model122

that adopts a transformer-like encoder-decoder ar-123

chitecture. Its LARGE-V2 version is pre-trained124

on 680,000 hours of speech data with multiple125

supervision. As with the original transformer126

model (Vaswani et al., 2023), the loss function127

1We open source our code at [link-hidden-for-review]

Whisper used at its pre-training time is the cross- 128

entropy objective for all tasks. 129

Whisper’s decoder supports a prompting mecha- 130

nism, originally designed for better capturing long- 131

range dependencies of the transcripts/translations 132

to resolve local audio ambiguities. Particularly, 133

long utterances are segmented into chunks and the 134

decoder generates its hypothesis for the current 135

segment conditioning on the previous segment’s 136

transcripts. Inspired by the effectiveness of GPT- 137

like decoder-only models in machine translation, 138

we hypothesize that Whisper’s decoder, which may 139

be viewed as an audio-conditional language model, 140

is also capable of performing audio-augmented text 141

generation conditioning on both inputs. Our work 142

extends recent work showing that the Whisper can 143

be adapted via fine-tuning to perform a number of 144

novel tasks including, audio-visual speech recog- 145

nition (Rouditchenko et al., 2024), target-speaker 146

ASR (Guo et al., 2024; Polok et al., 2024; Ma et al., 147

2024a), translation to non-English languages (Peng 148

et al., 2023), by showing that Whisper can be ex- 149

tended to enable multi-modal translation, i.e., using 150

either only text or both text and speech inputs si- 151

multaneously. 152

2.2 Multi-modal/-task Speech Systems 153

Recent developments in multi-modal and multi- 154

task systems, e.g., (Tang et al., 2021), are exploring 155

new ways to combine audio and text to improve 156

various language-related tasks. mSLAM (Bapna 157

et al., 2022), a multilingual speech and language 158

model, has emerged as a pioneering approach. It 159

aims to construct a shared representation space for 160

both speech and text through joint pre-training on 161

both self-supervised and supervised tasks with var- 162

ious loss objectives, including translation language 163

modeling (TLM) loss for ST. 164

SeamlessM4T (Communication et al., 2023) is 165

another innovative model that further refines the 166

integration of multi-modal inputs for speech and 167

text translation tasks. As a single model designed 168

for ASR, T2T translation, T2S translation, S2T 169

translation and S2S translation, it consists of mul- 170

tiple building blocks to leverage uni-modal data, 171

including a w2v-BERT (Chung et al., 2021) as 172

the speech encoder, a 1.3B NLLB model (Team 173

et al., 2022) as the text encoder and decoder, 174

a transformer-based text-to-unit encoder-decoder 175

model for speech, with a vocoder for converting 176

the unit-sequences to waveforms. These systems, 177

along with most existing methods, primarily seek 178
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to simply align the representations of the text and179

speech modalities, limiting the model to still accept180

only one input modality at a time during inference,181

which prevents exploitation of cross-modal cues.182

More recently, speech-centric large language183

models such as QWen-Audio (Chu et al., 2024)184

have shown that a unified decoder can be fine-tuned185

for a broad spectrum of text-conditioned speech186

tasks—including contextual ASR (Xiao et al.,187

2025)—but these approaches rely on massive pre-188

trained text LLMs and demand extensive data and189

compute during fine-tuning. This is a gap we aim190

to fill.191

A number of related works (Ma et al., 2024b;192

Zhang et al., 2023; Liu and Niehues, 2024; Le et al.,193

2024) have also demonstrated that multi-task learn-194

ing can greatly improve speech translation perfor-195

mance. Here, we focus on model fine-tuning and196

demonstrate that training end-to-end models for197

either ASR or ST alone improves performance on198

the other task, enabling fine-tuning with data that199

was not original annotated for the target domain200

task.201

Figure 1: Overview of our approach. ASR-HYP refers
to the ASR hypothesis generated. When GT is used,
the task is MMT, otherwise it is referred as 2-Stage-ST.
The ⊕ symbol refers to the XOR operation. Note that
special tokens are omitted to simplify illustration.

3 Methodology202

Traditional translation systems treat ST, MT, and203

ASR as distinct tasks, each requiring separate mod-204

els or specialized architectures. In this work, we205

propose a unified translation framework that uni-206

fies these tasks under a single encoder-decoder207

paradigm, treating all forms of language conver-208

sion—including audio-to-text, text-to-text, and209

multi-modal translation—as conditional generation210

tasks. Our approach enables seamless adaptation to 211

various input modalities and data conditions with- 212

out requiring fundamental architectural changes. 213

At the core of our method is the insight that 214

ASR can be reformulated as a source-language 215

transcription task, ST as a direct speech-to-text 216

translation task, and MT as a standard text-to-text 217

translation task—all of which can be expressed as 218

instances of sequence-to-sequence learning. Ex- 219

tending this idea, we introduce a multi-modal 220

translation task, for which the model conditions on 221

both speech and its corresponding transcript (either 222

human-annotated or ASR-generated) to improve 223

translation quality. This formulation generalizes 224

the conventional ST and MT paradigms, leverag- 225

ing available transcripts to enhance translation in 226

scenarios where speech alone may be ambiguous 227

or error-prone. 228

3.1 Translation with Multi-modal Inputs 229

We first provide a formal definition of the multi- 230

modal translation (MMT) task, or more precisely, 231

the task of speech-and-text-conditioned translation. 232

Let X = (x1, x2, · · · , xT ) denote the speech sig- 233

nal of an utterance, Y = (y1, y2, · · · , yM ) denote 234

the ground-truth transcript of the utterance, and 235

Z = (z1, z2, · · · , zN ) denote its corresponding 236

text translation. The goal of the task is then to 237

find the conditional distribution P (Z|X,Y ). We 238

hypothesize that often H(Z|X,Y ) < H(Z|Y ) in 239

practice, where H denotes the information entropy. 240

In other words, the speech signal may contain addi- 241

tional information for a more accurate translation 242

of the utterance, as it may be able to aid resolving 243

ambiguities such as homographs, tonal variations, 244

and omitted content—such as repetitions and filler 245

words—that may be present in human-annotated 246

transcripts. 247

In light of the remarkable performance observed 248

with decoder-only language models in machine 249

translation, we presume that encoder-decoder mod- 250

els’ audio-conditioned decoder possesses the po- 251

tential for undertaking the audio-conditioned text 252

translation task. In particular, one may prompt the 253

decoder with source language text, generated either 254

by human annotators or any ASR system, in the 255

translation process, as shown in Figure 1(b). Con- 256

sequently, the resulting model is trained to learn 257

the distribution P (Z|X,Y ). 258
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3.2 Translation with Speech-only Inputs259

The problem of speech translation can be directly260

modeled as P (Z|X) or modeled by marginalizing261

over an underlying latent variable, Y ′, representing262

valid transcripts of the audio X:263

P (Z|X) =
∑
Y ′

P (Z, Y ′|X)264

=
∑
Y ′

P (Z|Y ′, X)P (Y ′|X) (1)265

However, the summation over Y ′ is generally in-266

tractable. One common solution, also adopted by267

cascaded approaches to speech translation, is to268

approximate the summation with the single highest269

weight term in the summation, i.e.,270 ∑
Y ′

P (Z|Y ′, X)P (Y ′|X)271

≈ max
Y ′

P (Z|Y ′, X)P (Y ′|X),272

and furthermore to assume that the best transcript273

is the most likely one:274

Ŷ = argmax
Y ′

P (Z|Y ′, X)P (Y ′|X)275

≈ argmax
Y ′

P (Y ′|X). (2)276

However, cascaded speech translation further277

assumes that the translation is conditionally inde-278

pendent of the audio given the transcript,279

P (Z|Ŷ , X) = P (Z|Ŷ ), (3)280

which is practical in that it enables modular training281

of components, i.e.,282

P (Z|X) = P (Z|Ŷ )P (Ŷ |X), (4)283

where P (Z|Y ) and P (Y |X) can be trained sep-284

arately, but it at the cost of a possible unneeded285

additional approximation.286

End-to-end systems such as Whisper, however,287

model the problem without explicitly condition-288

ing on the ASR transcripts, Y ′. Its single-decoder289

multi-task paradigm presumably captures a higher-290

level abstract semantics of the speech signals, such291

that the ST decoding process is implicitly entangled292

with the model’s ASR ability.293

We seek to combine the modeling advantages294

of the cascaded and end-to-end systems and gen-295

eralize the multi-modal translation setting to re-296

formulate the system’s speech-only translation pro-297

cess for approximating Equation 1. Specifically,298

we relax the conditional independence assumption 299

of cascade approaches, by endowing end-to-end 300

speech translation models with the capacity to also 301

condition on either a ground-truth or hypothesized 302

transcript defined by Equation 2, i.e.: 303

P (Z|X) = P (Z|Ŷ , X)P (Ŷ |X) (5) 304

In our implementation, we carry out a two-stage 305

decoding process. In the first stage, the model is 306

used to produce the ASR hypotheses, and subse- 307

quently, in the second stage, the model conditions 308

on them to generate the translations. 309

An alternative perspective on this modeling is 310

that it fully leverages the system’s source-language 311

modeling capability. In end-to-end multi-task mod- 312

els, the decoder can be viewed as implicitly “par- 313

titioned” into two roles: source-language model- 314

ing and target-language generation. While these 315

functions share parameters and benefit from joint 316

optimization, they may still develop distinct com- 317

petencies. By conditioning translation on both 318

speech and textual transcripts, this approach ex- 319

plicitly harnesses a well-trained source-language 320

model—potentially even from an external ASR 321

system—allowing the decoder to generate more 322

accurate translations. This perspective highlights 323

how multi-modal conditioning can serve as a mech- 324

anism to refine and reinforce the system’s under- 325

standing of the source language, ultimately improv- 326

ing translation quality. 327

3.3 Translation with Text-only Inputs 328

Integrating MT functionality into a multi-modal 329

encoder-decoder model presents unique challenges. 330

In conventional encoder-decoder MT systems, the 331

source language text is processed through the en- 332

coder, which generates contextual representations 333

for the decoder to cross-attend to. However, often- 334

times the pre-trained encoder is designed specifi- 335

cally for processing speech features, making direct 336

text encoding potentially ineffective. Training the 337

encoder to handle text inputs would require a sig- 338

nificant amount of additional data and could lead 339

to catastrophic forgetting, where the model loses 340

its ability to process speech effectively. 341

Inspired by the success of decoder-only MT mod- 342

els such as GPT-like systems, we adopt an alter- 343

native strategy: instead of modifying the encoder 344

to accommodate text, we encode the source text 345

directly within the decoder, as illustrated in Fig- 346

ure 1(a). Specifically, we prepend the source text 347
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as a prefix to the decoder input, leveraging the self-348

attention mechanism to implicitly model source-349

target dependencies. However, implementing this350

method within an encoder-decoder framework re-351

quires careful handling of the cross-attention mech-352

anism. Since the decoder in our system is designed353

to attend to encoded speech representations, di-354

rectly bypassing the encoder would disrupt the355

model’s expected structure. To address this, we356

introduce a single learnable vector in the encoder,357

serving as an indicator that informs the decoder358

that text input is being processed. The remaining359

encoder output is padded with zeros, and we mod-360

ify the cross-attention mask such that the decoder361

attends only to this learnable embedding. This de-362

sign ensures that the model’s architecture remains363

structurally intact while effectively repurposing the364

decoder for text-based translation.365

3.4 Whisper-UT: Unified Translation System366

To achieve a unified translation framework that367

encompasses multiple translation paradigms, we368

propose Whisper-UT, a system designed to handle369

ASR, ST, MT, and MMT within a single model.370

Our approach is built on multi-task learning, lever-371

aging 3-way parallel data and text-only MT data to372

optimize multiple objectives in a stochastic fashion.373

3.4.1 3-way Parallel Data Objectives374

We formulate the learning process with six distinct375

training objectives, categorized based on the avail-376

ability of parallel data.377

For the 3-way dataset that provide speech, tran-378

scripts, and translations {X,Y, Z}, we define three379

primary objectives:380

ASR Objective. Learning the mapping X → Y ,381

i.e., predicting the source language transcript from382

speech.383

E2E-ST Objective. Directly predicting the target384

language text Z from speech X .385

MMT Objective. Predicting Z while attending to386

both X (speech) and Y (source transcript).387

3.4.2 Text-Only Data Objectives388

Since 3-way parallel datasets are scarce in real-389

ity, we incorporate text-only MT data {Y,Z} and390

define additional objectives:391

Source Language Modeling (SLM): Predicting392

the next source token in Y , acting as an ASR sur-393

rogate for text-only samples.394

Target Language Modeling (TLM): Predicting395

the next token in Z, improving the decoder’s target396

language modeling ability. 397

MT: Translating Y → Z. 398

For MMT and MT objectives, we allow gradi- 399

ents to propagate back through the source language 400

tokens, implicitly enhancing the model’s source 401

language modeling ability. 402

3.4.3 Dynamic Loss Weighting 403

To balance the competing objectives, we employ 404

a stochastic task selection mechanism with beta- 405

distributed loss weighting inspired by (Zhang and 406

Patel, 2024): 407

α ∼ Beta(β1, β2), (6) 408

which determines the final multi-task loss: 409

Lmtl = (1− α)LCE
asr + αLCE

st , (7) 410

where LCE
asr is the ASR loss (or SLM loss for text- 411

only samples), and LCE
st is either the ST loss or the 412

MMT loss, selected via stochastic task selection. 413

The stochastic weighting scheme is motivated by 414

empirical findings that equal task weighting leads 415

to gradient interference, degrading performance 416

across tasks. 417

3.4.4 Utterance-Level Task Selection 418

Each batch is sampled from a mixture of the 3-way 419

parallel data and text-only MT data. We define the 420

loss computation as follows: 421

• ASR Loss: Always computed for speech- 422

based samples; replaced with SLM loss for 423

text-only samples (zero-padded input except 424

for a learnable vector). 425

• ST vs. MMT Objective: With probability 426

q, apply standard ST loss; for text-only data, 427

this is equivalent to the TLM loss. With prob- 428

ability (1 − q), apply MMT loss, where the 429

decoder cross-attends to both speech features 430

and source text tokens; for text-only data, this 431

becomes the conventional MT loss. 432

3.4.5 Error Simulation in Multi-Modal 433

Translation 434

For MMT, we introduce an ASR error simulation 435

mechanism to enhance robustness. With probabil- 436

ity b, we perturb a batch by replacing the source 437

language tokens, sampled with probability t, with 438

a similar alternative sampled randomly from the 439

top-k nearest neighbors in the embeddings space. 440

To explicitly signal perturbed inputs, we prepend 441
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a special token to the modified sequence, allowing442

for the model to dynamically re-weight its reliance443

on the noisy text prefix and the corresponding au-444

dio input at inference time. This aims to simulate445

real-world noise in transcripts (e.g., ASR errors,446

omissions), encouraging the model to rely on both447

modalities for translation.448

3.5 Unified Training Framework449

In summary, our unified training framework inte-450

grates ASR, ST, MMT, and MT into a single multi-451

task learning process. To achieve this, we first con-452

catenate both speech-text and text-only datasets,453

allowing for random sampling within each batch.454

For every batch, we compute the ASR loss, which455

corresponds to the source language modeling loss456

when dealing with text-only samples. The ASR and457

ST loss weights are dynamically balanced by sam-458

pling a weight α from a Beta distribution. Next, we459

stochastically determine whether the batch follows460

the ST/TLM objective or the MMT/MT objective.461

If the batch is selected for MMT training, ASR462

error simulation is applied with a certain proba-463

bility to mimic transcription imperfections and en-464

hance robustness. By combining these components,465

Whisper-UT serves as a unified model for ASR, ST,466

MT, and MMT, leveraging both textual and speech467

inputs efficiently.468

4 Experiments469

4.1 Tasks and Datasets470

We test our approach on CoVoST2, a general-471

domain speech translation benchmark, using its472

French-English (180 hours) and German-English473

(119 hours) subsets for training. To assess per-474

formance on challenging conversational telephony475

speech (CTS), we conduct experiments on the476

Fisher-CallHome Spanish-to-English corpus (186477

hours of spontaneous Spanish dialogues) and the478

BBN Mandarin-to-English corpus (110 hours of479

Mandarin-English telephony conversations). This480

setup tests our method’s adaptability across both481

general and domain-specific speech, with CTS pos-482

ing unique challenges such as disfluencies, code-483

switching, and informal dialogue structures.484

4.2 Evaluation485

For both ASR and ST, we normalize the text486

by lower-casing all characters and removing all487

punctuations before computing the metrics. For488

the Fisher Spanish corpus, the BLEU score is489

computed with multiple references using the 490

Moses (Koehn et al., 2007) toolkit as reported in 491

other work (Weiss et al., 2017a). The evaluation 492

script used is provided in the code. 493

4.3 Training 494

To demonstrate our proposed approach, we adopt 495

the LARGE-V2 version of Whisper with 1.6 billion 496

parameters as the base model and fine-tune it for 497

our unified translation modeling. To enable joint 498

training of speech-to-text and text-to-text transla- 499

tion within a single framework, we repurpose the 500

3-way parallel dataset by strategically replicating 501

its text pairs. Specifically, we create a duplicate 502

of the original dataset where the audio signals are 503

removed, retaining only the source-target text pairs. 504

This allows us to simulate text-only data without 505

introducing external resources, ensuring parity in 506

training scale across objectives. 507

4.4 Experimental Results 508

Table 1: Direct Whisper fine-tuning results on the Fisher-
Spanish and BBN-Mandarin datasets. The Objective
column specifies under which training objective the
model system is fine-tuned. None refers to the original
model. Underline highlights the cross-task synergy.

Dataset Objective Task
ASR E2E-ST

(WER↓) (BLEU↑)

1
Fisher

None 26.7 51.6
2 ASR 19.1 54.9
3 ST 20.3 61.2

4
BBN

None 32.2 13.0
5 ASR 18.9 16.2
6 ST 23.1 16.8

4.4.1 Overview 509

Table 1 presents results from directly fine-tuning 510

Whisper, which reveals a cross-task synergy phe- 511

nomenon: optimizing for one task (e.g., ASR) not 512

only preserves but often enhances performance 513

on another (e.g., ST), as indicated by underlined 514

improvements across both datasets. Table 2 re- 515

ports Whisper-UT results on three corpora: CoV- 516

oST2 (French → English, German → English), 517

Fisher-Spanish, and BBN-Mandarin. Across all 518

settings, our proposed Whisper-UT variants demon- 519

strate consistent improvements in transcription ac- 520

curacy (WER↓) and translation quality (BLEU↑). 521
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Table 2: Results on the test sets. MMT refers to the translation process that conditions on both the ground-truth
transcript and the speech signals, while 2-Stage-ST refers to the MMT process with ASR hypothesis.

Task Dataset Model Task
Metrics Results

1

ASR

CoVoST2
fr-en | de-en

Baseline (Wang et al., 2020b)
WER↓

18.3 | 21.4
2 Whisper-Large-V2 13.4 | 7.0
3 Whisper-UT 8.3 | 5.8

4

Fisher-Spanish

SeamlessM4T-Large

WER↓

76.3
5 Whisper-Large-V2 26.7
6 Seq2seq (Weiss et al., 2017b) 23.2
7 Multi-ASR (Inaguma et al., 2019) 22.9
8 STAC-ST (Zuluaga-Gomez et al., 2023) 18.8
9 Whisper-UT 16.3

10
BBN-Mandarin

SeamlessM4T-Large
WER↓

52.6
11 Whisper-Large-V2 32.2
12 Whisper-UT 17.4

13

MT

CoVoST2
fr-en | de-en

Baseline (Wang et al., 2020b)
BLEU↑

37.9 | 28.2
14 NLLB-1.3B 42.3 | 31.0
15 Whisper-UT 36.5 | 26.9

16
Fisher-Spanish

NLLB-1.3B
BLEU↑

48.3
17 Bi-NMT (Inaguma et al., 2019) 59.6
18 Whisper-UT 55.9

19 BBN-Mandarin NLLB-1.3B BLEU↑ 8.7
20 Whisper-UT 15.7

21
MMT

CoVoST2
fr-en | de-en Whisper-UT BLEU↑ 46.2 | 40.1

22 Fisher-Spanish Whisper-UT BLEU↑ 70.4

23 BBN-Mandarin Whisper-UT BLEU↑ 26.0

24

ST

CoVoST2
fr-en | de-en

Baseline (Wang et al., 2020b)

BLEU↑

27.6 | 21.0
25 SeamlessM4T-Large 33.1 | 35.8
26 Whisper-Large-V2 36.7 | 36.8
27 QWen2-Audio (Chu et al., 2024) 38.5 | 35.2
28 Whisper-UT 40.8 | 37.7
29 Whisper-UT-2-Stage 41.4 | 38.1

30

Fisher-Spanish

SeamlessM4T-Large

BLEU↑

14.7
31 Multi-ST (Inaguma et al., 2019) 45.2
32 Multi-task ST/ASR (Weiss et al., 2017b) 48.7
33 Whisper-Large-V2 51.6
34 STAC-ST (Zuluaga-Gomez et al., 2023) 52.6
35 Whisper-UT 62.0
36 Whisper-UT-2-Stage 62.1

37

BBN-Mandarin

SeamlessM4T-Large

BLEU↑
7.0

38 Whisper-Large-V2 13.0
39 Whisper-UT 19.8
40 Whisper-UT-2-Stage 21.6

4.4.2 Cross-task Synergy522

Table 1 reveals that fine-tuning on one task does523

not only improve performance on the target task524

but also benefits other tasks as well. Notably, ASR525

fine-tuning enhances ST performance (51.6 to 54.9526

on Fisher and 13.0 to 16.2 on BBN), and ST fine-527

tuning reciprocally benefits ASR (26.7 to 20.3 on528

Fisher and 32.2 to 23.1 on BBN). This suggests that529

cross-task fine-tuning may mutually reinforce ca-530

pabilities without architectural changes, inspiring531

Whisper-UT’s unified speech-text framework.532

4.4.3 ASR 533

As shown in Table 2, on CoVoST2, Whisper-UT 534

reduces WER from 13.4/7.0 (Whisper) to 8.3/5.8. 535

Similar gains appear on Fisher (from 18.8 to 16.3) 536

and BBN (from 32.2 to 17.4). These improvements 537

suggest that our stochastic task-interleaving mech- 538

anism effectively mitigates catastrophic forgetting, 539

despite the addition of MT and MMT as new tasks. 540

This stability preserves modality-specific expertise 541

while introducing new tasks and enabling cross- 542

task synergy. 543
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4.4.4 MT544

In text-only translation, Whisper-UT—trained545

without architectural modifications—narrowly546

trails the 1.3B-parameter NLLB model on general-547

domain CoVoST2 (36.5/26.9 vs. 42.3/31.0 BLEU)548

but surpasses it by +7.6 and +7.0 BLEU on domain-549

specific Fisher-Spanish (55.9 vs. 48.3) and BBN-550

Mandarin (15.7 vs. 8.7) benchmarks, despite using551

fewer parameters and no dedicated MT pretraining.552

This divergence highlights two key insights: (1)553

Whisper’s decoder inherently functions as a mul-554

tilingual language model, capable of text-to-text555

translation with light-touch adaptation, and (2) its556

cross-lingual transfer capabilities, honed during557

speech-centric pretraining, generalize robustly to558

textual MT in low-resource, domain-specific sce-559

narios. Critically, these results validate our hypoth-560

esis that minimal modifications—enabling joint561

training on speech and text—can unlock Whisper’s562

latent capacity for unified cross-modal translation,563

bridging the gap between speech and text without564

sacrificing architectural simplicity.565

4.4.5 MMT566

When translating with access to both speech567

and ground-truth transcripts, Whisper-UT568

achieves 46.2/40.1 BLEU on CoVoST2, 70.4569

BLEU on Fisher-Spanish, and 26.0 BLEU on570

BBN-Mandarin—surpassing all MT baselines.571

This substantial improvement underscores the572

complementary nature of audio and text modalities:573

acoustic cues (e.g., prosody, emotion, pauses,574

repetitions) resolve ambiguities in noisy tran-575

scripts, while lexical context sharpens alignment576

of speech-derived semantics. By explicitly577

modeling these mutually compensatory signals,578

our unified architecture fuses audio and text579

modalities, yielding more robust translations when580

multi-modal information is available.581

4.4.6 ST582

In the ST setting, Whisper-UT achieves com-583

petitive performance with single-pass end-to-584

end decoding: 40.8/37.7 BLEU on CoVoST2585

(fr-en/de-en), 62.0 BLEU on Fisher-Spanish, and586

19.8 BLEU on BBN-Mandarin, surpassing QWen2-587

Audio, SeamlessM4T, and STAC-ST by margins588

of 2–8 BLEU points. Crucially, the 2-Stage infer-589

ence variant yields systematic improvements over590

promptless decoding: +0.6/+0.4 BLEU on CoV-591

oST2 (41.4/38.1 vs. 40.8/37.7), +0.1 BLEU on592

Fisher-Spanish (62.1 vs. 62.0), and +1.8 BLEU on593

BBN-Mandarin (21.6 vs. 19.8). These improve- 594

ments are amplified in error-prone conditions, re- 595

flecting successful mitigation of ASR error propa- 596

gation—a key challenge in cascaded systems. By 597

prepending the special token during training (with 598

simulated ASR noise) and inference (for 2-Stage 599

decoding), the model learns to conditionally dis- 600

trust imperfect transcripts while retaining their par- 601

tial utility, rebalancing reliance on audio signals to 602

correct latent errors. These consistent incremental 603

gains validate the effectiveness of our two-stage 604

modeling, demonstrating that even imperfect in- 605

termediate transcripts enhance translation fidelity 606

through explicit cross-modal grounding when com- 607

bined with learned distrust mechanisms. 608

4.4.7 Summary 609

The unified Whisper-UT framework achieves ro- 610

bust performance across three key tasks: mono- 611

lingual ASR, text-only machine translation, and 612

speech translation. Improvements are most pro- 613

nounced in conversational Mandarin and Spanish 614

settings. Moreover, the 2-Stage decoding strategy 615

provides a reliable way to enhance translation in 616

fully end-to-end deployments. Overall, these re- 617

sults highlight Whisper-UT’s ability to unify cross- 618

modal and cross-lingual speech-text tasks within a 619

single architecture, offering a versatile solution for 620

scenarios requiring joint speech-text modeling. 621

5 Conclusion 622

In this paper, we introduced Whisper-UT, a uni- 623

fied translation framework that integrates ASR, ST, 624

MT, and MMT within a single multi-task learning 625

paradigm. In addition to this unified framework, we 626

propose an explicit modeling approach for speech 627

translation that conditions on both speech signals 628

and textual prompts, effectively leveraging ASR 629

hypotheses or ground-truth transcripts. Our train- 630

ing strategy, incorporating stochastic task selection 631

and modality-aware error simulation, ensures ef- 632

fective multi-task learning while mitigating catas- 633

trophic forgetting. Experimental results show that 634

Whisper-UT achieves strong performance across 635

various translation tasks, demonstrating the bene- 636

fits of cross-task synergy. Future work will explore 637

scaling to more languages and extending to broader 638

multi-modal scenarios. 639
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6 Limitations and Ethical Considerations640

While our approach demonstrates strong improve-641

ments, several limitations remain. To ensure fair642

comparisons, we kept training steps consistent643

across models, meaning our best-performing sys-644

tem may not have reached its full potential with645

extended training.646

Due to resource constraints, we fine-tuned Whis-647

per rather than training from scratch, which might648

limit the full integration of the objectives. Ideally,649

to demonstrate cross-task fine-tuning, we would650

start from a pretrained model that natively sup-651

port each of our tasks, (MT, MMT, ST, ASR), but652

building state-of-the-art, or close to state-of-the-art653

systems requires building from existing models,654

such as Whisper, and adapting to Whisper to addi-655

tionally perform these tasks, while a contribution656

in its own right, ultimately requires a two-stage657

fine-tuning approach that complicates analysis of658

the effectiveness of cross-task fine-tuning. Further-659

more, while we believe our method to be general,660

i.e., it could be applied to similar models such as661

the OWSM model (Peng et al., 2024), we have only662

demonstrated our results using the Whisper model.663

Training of machine learning models is a costly,664

energy-intensive process, so our method, which in-665

troduces a novel means of efficiently adapting exist-666

ing large pre-trained models to new tasks, may mit-667

igate the ethical concerns about the costs, financial,668

environmental, or other, associated with training669

ML models. Furthermore, the success of our ap-670

proach, specifically cross-task fine-tuning, implies671

that speech translation systems can be more easily672

trained for new domains, including languages with673

limited training resources.674
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A Training Detail915

A.1 Parameter Efficient Fine-tuning916

To efficiently adapt the model to these conversa-917

tional scenarios without overfitting or incurring918

excessive computational cost, we leverage several919

parameter-efficient fine-tuning (PEFT) techniques.920

In order to fit the base model into our hardware,921

we adopt a list of strategies:922

• Low-Rank Adaptation (LoRA). LoRA (Hu923

et al., 2021) introduces a trainable adapter924

comprised of rank decomposition matrices on925

top of the fixed pre-trained model’s weight926

matrices in specified layers so that the number927

of trainable parameters can be considerably928

reduced.929

• Gradient checkpointing. Gradient check-930

pointing (Chen et al., 2016) stores intermedi-931

ate activations in the forward pass, and re-932

computes the remaining activations during933

back-propagation.934

• Zero Redundancy Optimizer (ZeRO).935

ZeRO (Rajbhandari et al., 2020) is an algo-936

rithm that partitions data, optimizer states,937

gradients, and parameters for speeding up the938

training of large neural models with low com-939

munication costs.940

A.2 Hyperparameter Settings941

Table 3 presents the hyperparameter configurations942

used for training our Whisper-UT model.943

Hyperparameter Value

LoRA Rank 200
LoRA Alpha 400
LoRA Dropout 0.1

Max Training Steps 10000
Batch Size 64
Gradient Accumulation Steps 1
Warmup Steps 500
Learning Rate 1e−5

Weight Decay 5e−4

SpecAug Mask Feature Probability 0.1
SpecAug Mask Time Probability 0.05

Table 3: Hyperparameter configurations used for train-
ing.

Experiments in this work are conducted with944

8 V100-32GB GPUs. However, PEFT methods945

outlined in Section A.1 render the use of 8 GPUs 946

redundant, yet they are deployed to accelerate the 947

training process. 948

A.3 Data Augmentation 949

We apply the conventional speed perturbation (Ko 950

et al., 2015) with parameters 0.9, 1.0, 1.1 to the 951

speech prior to the training stage. Additionally, 952

we adopt SpecAug (Park et al., 2019) to randomly 953

mask extracted speech features during training. 954

B CTS Data Detail 955

B.1 Pre-processing 956

CTS corpora usually consist of short utterances seg- 957

mented from a full recording, reflecting the alter- 958

nating speech of participants during conversations. 959

However, we found empirically that fine-tuning on 960

such segments, presumably due to a mismatch in 961

sample lengths compared to Whisper’s pre-training 962

data, leads to significant performance degradation. 963

The resulting model tends to repetitively produce 964

frequent filler words in the training corpus at in- 965

ference time regardless of the input. Therefore, 966

we re-segmented the utterances by merging them 967

chronologically, with durations (in seconds) sam- 968

pled from a Gaussian distribution, e.g. N (15, 52). 969

As Whisper’s feature extractor automatically pads 970

the features up to 30 seconds, such re-segmentation 971

also significantly reduced the training cost in terms 972

of memory and time. 973

B.2 BBN-Mandarin Data Specification 974

The BBN Mandarin-English conversational tele- 975

phony speech (CTS) corpus used in our experi- 976

ments comprises two primary components: 977

• HKUST Mandarin ASR Dataset (90.1 978

hours): Mandarin conversational speech from 979

telephony interactions, originally designed for 980

ASR research (Fung et al., 2005). 981

• CallHome Mandarin ASR Dataset (20.5 982

hours): Informal Mandarin dialogues cu- 983

rated for ASR study (Canavan and Zipperlen, 984

1996). 985

The BBN team (Wotherspoon et al., 2024) trans- 986

lated these into English to create parallel speech- 987

to-text translation pairs. While our experiments uti- 988

lized a pre-publication version provided directly by 989

the BBN authors, minor discrepancies (e.g., data 990

splits, preprocessing, or translation refinements) 991

13



Table 4: Code-switching example with system outputs.

REF-ASR: 电脑的MASTER应该是很 POPULAR就对了很应该很
HYP-ASR: 电脑的 master应该是很 popular就对了很应该很
REF-MT: MASTER degree of computer science it should be very POPULAR it should be
HYP-E2E-ST: The computer should be very popular, should be very
HYP-2-Stage-ST: The computer’s master should be very popular that’s right very should be very
HYP-MMT: The computer’s MASTER should be very popular that’s right very should be very

may exist compared to the final published version.992

Nevertheless, the corpus retains its core charac-993

teristics: conversational telephony domain focus,994

code-switching prevalence, and disfluency patterns.995

C Qualitative Analysis of Code-Switching996

The code-switching example presented in Table 4997

demonstrates two critical insights:998

• ASR Preservation of Linguistic Salience:999

The 2-Stage decoding system successfully re-1000

tains the code-switched terms “master” and1001

“popular” (WER ≈ 0% for these tokens), while1002

E2E-ST completely omits “master”. This sug-1003

gests that: 1) direct audio-to-translation map-1004

ping struggles with lexical disambiguation of1005

homophones (“master” vs. contextually ex-1006

pected “computer”), and 2) explicit interme-1007

diate ASR provides discrete textual anchors1008

that guide translation decisions.1009

• Cross-Modal Faithfulness: While the ref-1010

erence MT (REF-MT) omits the final “很”1011

(translated as "very") from the source utter-1012

ance “很应该很”, our ASR transcript pre-1013

serves all repetitions. This discrepancy high-1014

lights how audio-derived prosodic cues (e.g.,1015

emphatic stress on the final “很”) enable1016

2Stage-ST and MMT to retain pragmatic em-1017

phasis (“...that’s right very should be very”)1018

where text-only MT truncates for conciseness.1019

By aligning acoustic signals (stress patterns)1020

with textual redundancy, our framework dis-1021

tinguishes intentional repetition—a discourse1022

marker of conviction in Mandarin—from su-1023

perficial noise, demonstrating superior faith-1024

fulness to both linguistic content and prag-1025

matic intent compared to E2E ST pipelines.1026

The example validates our hypothesis that two-1027

stage processing particularly benefits scenarios1028

where: 1) ASR can reliably capture linguistically1029

salient content (code-switches, proper nouns), and1030

2) Audio signals contain complementary paralin- 1031

guistic information (prosodic boundaries, empha- 1032

sis) that each modality alone cannot convey. This 1033

dual-modality advantage explains 2-Stage-ST’s per- 1034

formance gain over E2E-ST on BBN-Mandarin 1035

despite identical model parameters. 1036

D Ablation Study 1037

We conduct ablation experiments presented in Ta- 1038

ble 5 on the two CTS datasets (Fisher-Spanish 1039

and BBN-Mandarin), as their domain-specific chal- 1040

lenges—disfluencies, code-switching, and sponta- 1041

neous dialogue—diverged significantly from Whis- 1042

per’s pretraining data. This allows us to isolate our 1043

framework’s adaptability beyond pretraining biases 1044

and quantify its efficacy in resource-constrained, 1045

real-world scenarios. 1046

D.1 Text-only MT Training and Its Effects 1047

Rows 7 and 17 show the results of the MT-only 1048

fine-tuning experiment, demonstrating that the 1049

model achieves strong text translation performance 1050

even with limited in-domain data—BLEU 63.4 1051

on Fisher-Spanish and 16.0 on BBN-Mandarin. 1052

This outperforms the original NLLB-1.3B model, 1053

though it remains modestly behind its fine-tuned 1054

counterpart. This suggests that Whisper’s decoder 1055

inherently possesses some text translation capabil- 1056

ities or at least has sufficiently strong source and 1057

target language modeling abilities such that mini- 1058

mal adaptation enables it to perform the MT task. 1059

Interestingly, this MT training also gives the sys- 1060

tem MMT ability, as suggested by the 61.1/20.4 1061

(Fisher/BBN) BLEU score, despite MMT being 1062

a novel objective that the model was not explic- 1063

itly trained on. In fact, on the BBN corpus, the 1064

MT-trained model exhibits MMT capabilities that 1065

surpass its original training objective, achieving 1066

a BLEU score of 20.4 (MMT) compared to 16.0 1067

(MT). This finding reinforces our earlier observa- 1068

tion of cross-task synergy. 1069
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Table 5: Ablation studies on the CTS test sets. The Objective column specifies under which training objective the
model system is fine-tuned. The UT objective refers to the unified-translation objective described in section 3.5.
The Task column specifies the target inference task. E2E-ST refers to the promptless E2E speech translation setting,
MMT refers to the translation process that conditions on both the ground-truth transcript and the speech signals,
while 2-Stage-ST refers to the MMT process which conditions on the model’s own ASR hypotheses.

Dataset Model Objective Task (num_beams = 1)
ASR E2E-ST MT MMT 2-Stage-ST

(WER↓) (BLEU↑) (BLEU↑) (BLEU↑) (BLEU↑)

1

Fisher

NLLB-1.3B None - - 48.3 - -
2 MT - - 67.3 - -

3

Whisper

None 26.7 51.6 - - -
4 ASR 19.1 54.9 - - -
5 ST 20.3 61.2 - - -
6 ASR + ST 16.3 62.2 - - -
7 MT 60.3 51.0 63.4 61.1 52.4
8 MMT 16.4 57.4 1.4 67.5 58.6
9 UT-OOD 16.0 61.5 44.2 70.0 61.6
10 UT-CTS 16.3 62.0 55.9 70.4 62.1

11

BBN

NLLB-1.3B None - - 8.7 - -
12 MT - - 22.7 - -

13

Whisper

None 32.2 13.0 - - -
14 ASR 18.9 16.2 - - -
15 ST 23.1 16.8 - - -
16 ASR + ST 18.5 20.2 - - -
17 MT 37.7 12.7 16.0 20.4 15.5
18 MMT 17.5 19.5 1.0 25.2 20.6
19 UT-OOD 17.5 20.6 11.1 25.3 21.5
20 UT-CTS 17.4 19.8 15.7 26.0 21.6

D.2 Effectiveness of Multi-task Learning1070

In rows 6 and 16, we conduct straightforward multi-1071

task fine-tuning experiments by duplicating the1072

speech dataset with both ASR and ST supervision,1073

concatenating the datasets, and employing random1074

sampling within each batch. These experiments1075

confirm that multi-task training is beneficial, as it1076

enhances BLEU score from 61.2 to 62.2 and WER1077

is reduced from 20.3 to 16.3 on the Fisher-Spanish1078

corpus. A similar trend is observed on the BBN1079

set as well. This suggests that jointly optimizing1080

multiple relevant objectives allows the model to1081

better capture linguistic patterns and improve gen-1082

eralization across tasks.1083

D.3 MMT-Multi-task Training and Its1084

Implications1085

Rows 8 and 18 evaluate MMT-multi-task fine-tuned1086

models, that is, the model is trained with q = 0 and1087

b = 0. Notably, the MMT inference results outper-1088

form even the strong fine-tuned NLLB-1.3B base-1089

line in MT performance, 70.4 vs. 67.4 on Fisher1090

and 26.0 vs. 22.7 on BBN— demonstrating that1091

MMT provides tangible benefits over traditional1092

cascaded MT approaches.1093

However, a gap remains between different MMT1094

settings. Specifically, when using the ASR hypoth- 1095

esis as input instead of the ground-truth transcript, 1096

i.e., the 2-Stage-ST decoding, performance drops 1097

from 67.5 to 58.6 on Fisher and from 25.2 to 20.6 1098

on BBN. While this still exceeds the results from 1099

direct ST (52.4 vs. 51.0 on Fisher and 20.6 vs. 19.5 1100

on BBN), he model tends to over-rely on the tran- 1101

script in the absence of explicit modeling. Specif- 1102

ically, without the special tag to signal potential 1103

errors, the model treats the input transcript as fully 1104

reliable ground truth—an assumption that breaks 1105

down when using ASR outputs, which may contain 1106

recognition errors. These highlight both the effec- 1107

tiveness of explicit modeling and the limitations 1108

introduced by ASR errors. 1109

D.4 Unified Translation (UT) Training 1110

D.4.1 Overview 1111

Finally, the UT-trained system (Row 10 and 20) 1112

achieves the best MMT and 2-Stage-ST results, 1113

with MMT reaching 70.4/26.0 BLEU and 62.1/21.6 1114

BLEU, respectively, on the Fisher-Spanish and 1115

BBN-Mandarin corpora, proving the method’s ef- 1116

fectiveness. Applying the error simulation strategy 1117

in this training scheme improves the robustness 1118

of the two-stage approach, narrowing the perfor- 1119
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mance gap between MMT and 2-Stage-ST decod-1120

ing. Specifically, on Fisher, the gap decreases from1121

8.9 to 8.3 BLEU (rows 8 vs. 10), and on BBN,1122

from 4.6 to 4.4 BLEU (rows 18 vs. 20), indicat-1123

ing more stable performance under ASR-transcript1124

input.1125

D.4.2 Analysis of Transcript-Conditioning1126

On the Fisher test set, the 2-Stage-ST decoding1127

strategy of the Whisper-UT model actually falls1128

slightly behind the simpler ASR+ST multi-task1129

E2E-ST model. Direct multi-task training of1130

ASR and ST (row 6) achieves a BLEU of 62.2,1131

whereas conditioning on ASR hypotheses under the1132

unified-translation objective (row 10, 2-Stage-ST)1133

yields 62.1—a 0.1 BLEU drop. Through manual1134

inspection, we found this gap is driven largely by1135

inconsistent translation of filler words: the same1136

Spanish filler (e.g., “eh,” “um”) in ASR transcripts1137

is rendered inconsistently in output, magnifying1138

ASR transcript “errors” during translation. More-1139

over, because Whisper’s ASR and ST performance1140

on Fisher Spanish are both strong already (WER1141

≈ 16, BLEU ≈ 60), there is little mismatch for1142

transcript conditioning to resolve, so the transcript1143

signal offers marginal benefit.1144

In contrast, on the BBN corpus, the UT model1145

demonstrates a clear advantage. The ASR+ST1146

multi-task E2E-ST model (row 16) scores 20.21147

BLEU, while the Whisper-UT 2-Stage-ST de-1148

coder (row 20) jumps to 21.6 BLEU—a significant1149

1.4-point gain. This larger benefit arises because1150

BBN combines relatively low WER (≈ 18) with1151

much lower translation quality (BLEU ≈ 20), in-1152

dicating that the model’s ST ability lags behind its1153

ASR competence. In this scenario, explicitly lever-1154

aging ASR transcripts helps fill the performance1155

gap, yielding more accurate translations under the1156

unified objective.1157

D.5 Impact of Out-of-Domain Text Data1158

D.5.1 Dataset Setup1159

To evaluate the robustness of our unified frame-1160

work to domain shifts in text data, we replace1161

the in-domain machine translation (MT) pairs (de-1162

rived from CTS audio transcripts, as described in1163

Section 4.3) with out-of-domain (OOD) text pairs.1164

Specifically:1165

Spanish: We use 197 hours of text pairs from three1166

sources:1167

• CoVoST 2 (Wang et al., 2020b) (diverse web-1168

mined speech),1169

• mTEDx (Salesky et al., 2021) (TED talk sub- 1170

titles), and 1171

• Europarl-ST (Koehn, 2005) (parliamentary 1172

proceedings). 1173

Mandarin: We include 130 hours from: 1174

• CoVoST (Wang et al., 2020a) (multilingual 1175

web content), 1176

• GALE (Song et al., 2016) (broadcast news 1177

and interviews), and 1178

• proprietary in-house datasets (mixed genres). 1179

The OOD sets contrast sharply with CTS data in 1180

domain (e.g., formal talks vs. casual dialogues) and 1181

lexical style. To isolate the effect of data domain 1182

(not scale), we match the total training steps to our 1183

baseline CTS experiments, ensuring comparable 1184

optimization cycles. This setup tests whether cross- 1185

modal alignment generalizes to heterogeneous text 1186

distributions. 1187

D.5.2 Analysis of OOD Text Data Injection 1188

Injecting out-of-domain text under the unified ob- 1189

jective appears to have limited benefit and in some 1190

cases even disrupted established behaviors. On 1191

Fisher, UT-OOD (row 9) lags behind UT-CTS 1192

across every translation metric—most notably MT 1193

accuracy, which jumps from 44.2 BLEU with 1194

OOD data to 55.9 BLEU when text is drawn from 1195

the CTS domain. This suggests that the linguis- 1196

tic and stylistic mismatch of web-mined, TED 1197

talk, and parliamentary text fails to reinforce the 1198

speech-to-text alignment learned on conversational 1199

telephone speech, and may inject conflicting pat- 1200

terns that the model struggles to reconcile. 1201

A similar story unfolds on BBN. On BBN, the 1202

impact of injecting OOD text is most pronounced 1203

in the MT task. Under UT-OOD (row 19), the 1204

model’s MT performance barely improves over 1205

the base unified setting and remains far below the 1206

CTS-matched variant—rising only to 11.1 BLEU 1207

compared with 15.7 BLEU for UT-CTS (row 20). 1208

In contrast, UT-CTS (row 20) consistently lifts MT 1209

and MMT performance by several BLEU points 1210

and slightly improves ASR quality. Together, these 1211

findings imply that substituting in-domain tran- 1212

scripts with heterogeneous text corpora does not 1213

generalize well in a cross-modal training regime 1214

and can inadvertently weaken the model’s ability 1215

to leverage the unified translation objective. 1216
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