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Abstract

Encoder-decoder models have achieved remark-
able success in speech and text tasks, yet
efficiently adapting these models to diverse
uni/multi-modal scenarios remains an open
challenge. In this paper, we propose Whisper-
UT, a unified and efficient framework that
leverages lightweight adapters to enable seam-
less adaptation across tasks, including a multi-
modal machine translation (MMT) task that
explicitly conditions translation on both speech
and source language text inputs. By incorporat-
ing ASR hypotheses or ground-truth transcripts
as prompts, this approach not only enables the
system to process both modalities simultane-
ously but also enhances speech translation (ST)
performance through a 2-stage decoding strat-
egy. We demonstrate our methods using the
Whisper model, though in principle they are
general and could be applied to similar multi-
task models. We highlight the effectiveness of
cross-modal and cross-task fine-tuning, which
improves performance without requiring 3-way
parallel data. Our results underscore the flex-
ibility, efficiency, and general applicability of
the proposed framework for multi-modal trans-
lation.

1 Introduction

The task of speech-to-text translation (ST) encom-
passes converting spoken content from one lan-
guage to another, aiming to overcome language
barriers to communication. Traditionally, the task
involves an automatic speech recognition (ASR)
module to transcribe spoken words, followed by
a machine translation (MT) module to convert
the transcribed text into the target language in
a cascaded manner (Ney, 1999). The recent de-
velopment of end-to-end neural architectures and
large pre-trained models have substantially pro-
pelled advancements in downstream speech tasks,
via either self-supervised learning (SSL) (Baevski
et al., 2020; Hsu et al., 2021; Chen et al., 2022) or

fully supervised learning. Among the pre-trained
acoustic models, Whisper (Radford et al., 2022),
a transformer-based encoder-decoder multi-task
model trained with large-scale data in a supervised
manner, has exhibited good performance on vari-
ous ST corpora.

However, in real-world scenarios, input modal-
ities and data conditions vary widely. In of-
fline settings, for instance, translating conversa-
tional or dialectal speech—characterized by dis-
fluencies, code-switching, and noisy acoustic en-
vironments—poses significant challenges to end-
to-end models, often resulting in degraded perfor-
mance. Conversely, scenarios like business meet-
ings or translated media archives frequently pro-
vide both source-language speech and (manual or
ASR-generated) transcripts. Yet existing systems
fail to exploit this multi-modal synergy.

To address this, we systematically investigate
how multi-task encoder-decoder models—using
Whisper as a representative case study—can be ef-
ficiently adapted to these heterogeneous scenarios.
First, we examine fine-tuning strategies for conven-
tional ST (using 3-way parallel speech-transcript-
translation data), speech-to-text tasks (ASR-only
data), and MT, while also methods for multi-modal
translation where both speech and transcripts are
available. Our analysis reveals two key insights:

* Cross-task training induces synergistic bene-
fits—fine-tuning on in-domain ASR data im-
proves ST performance, while ST training
conversely enhances ASR accuracy, suggest-
ing mutual reinforcement between the ASR
and ST tasks even without 3-way parallel data;

* Multi-modal inputs (speech + text) consis-
tently enhance translation quality when fused,

even with imperfect ASR transcripts.

Building on these findings, we propose Whis-



per for Unified Translation!, or Whisper-UT, a
framework that transforms Whisper’s decoder into
a unified conditional generation model, capable of
dynamically conditioning on speech, text, or both
modalities. The framework repurposes Whisper’s
encoder-decoder architecture as a versatile multi-
modal interface through two innovations:

1 A multi-task learning paradigm with a stochas-
tic task-selection mechanism to adapt the sys-
tem across ASR, MT, ST, and multimodal
translation tasks using a single set of LoRA
parameters;

2 A two-stage decoding strategy, where the de-
coder first generates an ASR transcript from
speech, then reuses it as context for transla-
tion, perhaps emulating human thought pro-
cesses, even when a transcript is not provided.

Crucially, Whisper-UT requires no architectural
modifications—only fine-tuning—ensuring com-
patibility with any encoder-decoder model.

Experiments on CoVoST2’s (Wang et al.,
2020b) French-English (fr-en) and German-
English (de-en) subsets demonstrate strong per-
formance. Extended evaluations on conversa-
tional telephone speech (CTS) corpora—Fisher-
CallHome Spanish (Post et al., 2013), and BBN
Mandarin-English (Wotherspoon et al., 2024) fur-
ther confirm the robustness of our approach across
diverse domains. Notably, Whisper-UT outper-
forms the 1.3B-parameter NLLB model in multi-
modal settings (speech + ground-truth text) and
achieves superior speech-only translation via hy-
pothesis prompting.

Our work highlights the untapped potential of
multi-task models in adaptive translation systems.
By unifying modality handling and enabling effi-
cient task specialization, Whisper-UT bridges the
gap between rigid single-modality systems and the
dynamic needs of real-world applications.

2 Related Work
2.1 Whisper

Whisper is an end-to-end multi-task speech model
that adopts a transformer-like encoder-decoder ar-
chitecture. Its LARGE-V2 version is pre-trained
on 680,000 hours of speech data with multiple
supervision. As with the original transformer
model (Vaswani et al., 2023), the loss function
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Whisper used at its pre-training time is the cross-
entropy objective for all tasks.

Whisper’s decoder supports a prompting mecha-
nism, originally designed for better capturing long-
range dependencies of the transcripts/translations
to resolve local audio ambiguities. Particularly,
long utterances are segmented into chunks and the
decoder generates its hypothesis for the current
segment conditioning on the previous segment’s
transcripts. Inspired by the effectiveness of GPT-
like decoder-only models in machine translation,
we hypothesize that Whisper’s decoder, which may
be viewed as an audio-conditional language model,
is also capable of performing audio-augmented text
generation conditioning on both inputs. Our work
extends recent work showing that the Whisper can
be adapted via fine-tuning to perform a number of
novel tasks including, audio-visual speech recog-
nition (Rouditchenko et al., 2024), target-speaker
ASR (Guo et al., 2024; Polok et al., 2024; Ma et al.,
2024a), translation to non-English languages (Peng
et al., 2023), by showing that Whisper can be ex-
tended to enable multi-modal translation, i.e., using
either only text or both text and speech inputs si-
multaneously.

2.2 Multi-modal/-task Speech Systems

Recent developments in multi-modal and multi-
task systems, e.g., (Tang et al., 2021), are exploring
new ways to combine audio and text to improve
various language-related tasks. mSLAM (Bapna
et al., 2022), a multilingual speech and language
model, has emerged as a pioneering approach. It
aims to construct a shared representation space for
both speech and text through joint pre-training on
both self-supervised and supervised tasks with var-
ious loss objectives, including translation language
modeling (TLM) loss for ST.

SeamlessM4T (Communication et al., 2023) is
another innovative model that further refines the
integration of multi-modal inputs for speech and
text translation tasks. As a single model designed
for ASR, T2T translation, T2S translation, S2T
translation and S2S translation, it consists of mul-
tiple building blocks to leverage uni-modal data,
including a w2v-BERT (Chung et al., 2021) as
the speech encoder, a 1.3B NLLB model (Team
et al., 2022) as the text encoder and decoder,
a transformer-based text-to-unit encoder-decoder
model for speech, with a vocoder for converting
the unit-sequences to waveforms. These systems,
along with most existing methods, primarily seek



to simply align the representations of the text and
speech modalities, limiting the model to still accept
only one input modality at a time during inference,
which prevents exploitation of cross-modal cues.

More recently, speech-centric large language
models such as QWen-Audio (Chu et al., 2024)
have shown that a unified decoder can be fine-tuned
for a broad spectrum of text-conditioned speech
tasks—including contextual ASR (Xiao et al.,
2025)—but these approaches rely on massive pre-
trained text LLMs and demand extensive data and
compute during fine-tuning. This is a gap we aim
to fill.

A number of related works (Ma et al., 2024b;
Zhang et al., 2023; Liu and Niehues, 2024; Le et al.,
2024) have also demonstrated that multi-task learn-
ing can greatly improve speech translation perfor-
mance. Here, we focus on model fine-tuning and
demonstrate that training end-to-end models for
either ASR or ST alone improves performance on
the other task, enabling fine-tuning with data that
was not original annotated for the target domain

task.
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Figure 1: Overview of our approach. ASR-HYP refers
to the ASR hypothesis generated. When GT is used,
the task is MMT, otherwise it is referred as 2-Stage-ST.
The @ symbol refers to the XOR operation. Note that
special tokens are omitted to simplify illustration.

3 Methodology

Traditional translation systems treat ST, MT, and
ASR as distinct tasks, each requiring separate mod-
els or specialized architectures. In this work, we
propose a unified translation framework that uni-
fies these tasks under a single encoder-decoder
paradigm, treating all forms of language conver-
sion—including audio-to-text, text-to-text, and
multi-modal translation—as conditional generation

tasks. Our approach enables seamless adaptation to
various input modalities and data conditions with-
out requiring fundamental architectural changes.

At the core of our method is the insight that
ASR can be reformulated as a source-language
transcription task, ST as a direct speech-to-text
translation task, and MT as a standard text-to-text
translation task—all of which can be expressed as
instances of sequence-to-sequence learning. Ex-
tending this idea, we introduce a multi-modal
translation task, for which the model conditions on
both speech and its corresponding transcript (either
human-annotated or ASR-generated) to improve
translation quality. This formulation generalizes
the conventional ST and MT paradigms, leverag-
ing available transcripts to enhance translation in
scenarios where speech alone may be ambiguous
or error-prone.

3.1 Translation with Multi-modal Inputs

We first provide a formal definition of the multi-
modal translation (MMT) task, or more precisely,
the task of speech-and-text-conditioned translation.
Let X = (x1,x9, -+ ,x7) denote the speech sig-
nal of an utterance, Y = (y1, 42, - ,yar) denote
the ground-truth transcript of the utterance, and
Z = (z1,22, - ,zn) denote its corresponding
text translation. The goal of the task is then to
find the conditional distribution P(Z|X,Y). We
hypothesize that often H(Z|X,Y) < H(Z|Y) in
practice, where H denotes the information entropy.
In other words, the speech signal may contain addi-
tional information for a more accurate translation
of the utterance, as it may be able to aid resolving
ambiguities such as homographs, tonal variations,
and omitted content—such as repetitions and filler
words—that may be present in human-annotated
transcripts.

In light of the remarkable performance observed
with decoder-only language models in machine
translation, we presume that encoder-decoder mod-
els’ audio-conditioned decoder possesses the po-
tential for undertaking the audio-conditioned text
translation task. In particular, one may prompt the
decoder with source language text, generated either
by human annotators or any ASR system, in the
translation process, as shown in Figure 1(b). Con-
sequently, the resulting model is trained to learn
the distribution P(Z|X,Y).



3.2 Translation with Speech-only Inputs

The problem of speech translation can be directly
modeled as P (Z|X) or modeled by marginalizing
over an underlying latent variable, Y, representing
valid transcripts of the audio X:

P(Z|X) =) P(Z,Y'|X)
Yl
=Y P, X)PY'|IX) (1)
Y/

However, the summation over Y is generally in-
tractable. One common solution, also adopted by
cascaded approaches to speech translation, is to
approximate the summation with the single highest
weight term in the summation, i.e.,

> P(ZIY, X)P(Y'|X)
Y/
~ max P(Z|Y', X)P(Y'|X),

and furthermore to assume that the best transcript
is the most likely one:

Y = argmax P(Z|Y', X)P(Y'|X)
Y/

~ arg max P(Y'|X). ()
Y/
However, cascaded speech translation further
assumes that the translation is conditionally inde-
pendent of the audio given the transcript,

P(Z|Y, X) = P(Z]Y), 3)

which is practical in that it enables modular training
of components, i.e.,

P(Z|X)=P(Z|Y)P(Y|X), 4)

where P(Z|Y) and P(Y|X) can be trained sep-
arately, but it at the cost of a possible unneeded
additional approximation.

End-to-end systems such as Whisper, however,
model the problem without explicitly condition-
ing on the ASR transcripts, Y. Its single-decoder
multi-task paradigm presumably captures a higher-
level abstract semantics of the speech signals, such
that the ST decoding process is implicitly entangled
with the model’s ASR ability.

We seek to combine the modeling advantages
of the cascaded and end-to-end systems and gen-
eralize the multi-modal translation setting to re-
formulate the system’s speech-only translation pro-
cess for approximating Equation 1. Specifically,

we relax the conditional independence assumption
of cascade approaches, by endowing end-to-end
speech translation models with the capacity to also
condition on either a ground-truth or hypothesized
transcript defined by Equation 2, i.e.:

P(Z|X) = P(ZIV, X)P(Y]X) ()

In our implementation, we carry out a two-stage
decoding process. In the first stage, the model is
used to produce the ASR hypotheses, and subse-
quently, in the second stage, the model conditions
on them to generate the translations.

An alternative perspective on this modeling is
that it fully leverages the system’s source-language
modeling capability. In end-to-end multi-task mod-
els, the decoder can be viewed as implicitly “par-
titioned” into two roles: source-language model-
ing and target-language generation. While these
functions share parameters and benefit from joint
optimization, they may still develop distinct com-
petencies. By conditioning translation on both
speech and textual transcripts, this approach ex-
plicitly harnesses a well-trained source-language
model—potentially even from an external ASR
system—allowing the decoder to generate more
accurate translations. This perspective highlights
how multi-modal conditioning can serve as a mech-
anism to refine and reinforce the system’s under-
standing of the source language, ultimately improv-
ing translation quality.

3.3 Translation with Text-only Inputs

Integrating MT functionality into a multi-modal
encoder-decoder model presents unique challenges.
In conventional encoder-decoder MT systems, the
source language text is processed through the en-
coder, which generates contextual representations
for the decoder to cross-attend to. However, often-
times the pre-trained encoder is designed specifi-
cally for processing speech features, making direct
text encoding potentially ineffective. Training the
encoder to handle text inputs would require a sig-
nificant amount of additional data and could lead
to catastrophic forgetting, where the model loses
its ability to process speech effectively.

Inspired by the success of decoder-only MT mod-
els such as GPT-like systems, we adopt an alter-
native strategy: instead of modifying the encoder
to accommodate text, we encode the source text
directly within the decoder, as illustrated in Fig-
ure 1(a). Specifically, we prepend the source text



as a prefix to the decoder input, leveraging the self-
attention mechanism to implicitly model source-
target dependencies. However, implementing this
method within an encoder-decoder framework re-
quires careful handling of the cross-attention mech-
anism. Since the decoder in our system is designed
to attend to encoded speech representations, di-
rectly bypassing the encoder would disrupt the
model’s expected structure. To address this, we
introduce a single learnable vector in the encoder,
serving as an indicator that informs the decoder
that text input is being processed. The remaining
encoder output is padded with zeros, and we mod-
ify the cross-attention mask such that the decoder
attends only to this learnable embedding. This de-
sign ensures that the model’s architecture remains
structurally intact while effectively repurposing the
decoder for text-based translation.

3.4 Whisper-UT: Unified Translation System

To achieve a unified translation framework that
encompasses multiple translation paradigms, we
propose Whisper-UT, a system designed to handle
ASR, ST, MT, and MMT within a single model.
Our approach is built on multi-task learning, lever-
aging 3-way parallel data and text-only MT data to
optimize multiple objectives in a stochastic fashion.

3.4.1 3-way Parallel Data Objectives

We formulate the learning process with six distinct
training objectives, categorized based on the avail-
ability of parallel data.

For the 3-way dataset that provide speech, tran-
scripts, and translations { X, Y, Z}, we define three
primary objectives:

ASR Objective. Learning the mapping X — Y,
i.e., predicting the source language transcript from
speech.

E2E-ST Objective. Directly predicting the target
language text Z from speech X.

MMT Objective. Predicting Z while attending to
both X (speech) and Y (source transcript).

3.4.2 Text-Only Data Objectives

Since 3-way parallel datasets are scarce in real-
ity, we incorporate text-only MT data {Y, Z} and
define additional objectives:

Source Language Modeling (SLM): Predicting
the next source token in Y, acting as an ASR sur-
rogate for text-only samples.

Target Language Modeling (TLM): Predicting
the next token in Z, improving the decoder’s target

language modeling ability.
MT: Translating Y — Z.

For MMT and MT objectives, we allow gradi-
ents to propagate back through the source language
tokens, implicitly enhancing the model’s source
language modeling ability.

3.4.3 Dynamic Loss Weighting

To balance the competing objectives, we employ
a stochastic task selection mechanism with beta-
distributed loss weighting inspired by (Zhang and
Patel, 2024):

a ~ Beta(f1, f2), 6)

which determines the final multi-task loss:

Log = (1—a)LSF +arlF, (7)

asr

where £{F is the ASR loss (or SLM loss for text-
only samples), and £ is either the ST loss or the
MMT loss, selected via stochastic task selection.
The stochastic weighting scheme is motivated by
empirical findings that equal task weighting leads
to gradient interference, degrading performance

across tasks.

3.4.4 Utterance-Level Task Selection

Each batch is sampled from a mixture of the 3-way
parallel data and text-only MT data. We define the
loss computation as follows:

* ASR Loss: Always computed for speech-
based samples; replaced with SLM loss for
text-only samples (zero-padded input except
for a learnable vector).

* ST vs. MMT Objective: With probability
q, apply standard ST loss; for text-only data,
this is equivalent to the TLM loss. With prob-
ability (1 — ¢), apply MMT loss, where the
decoder cross-attends to both speech features
and source text tokens; for text-only data, this
becomes the conventional MT loss.

3.4.5 Error Simulation in Multi-Modal
Translation

For MMT, we introduce an ASR error simulation
mechanism to enhance robustness. With probabil-
ity b, we perturb a batch by replacing the source
language tokens, sampled with probability ¢, with
a similar alternative sampled randomly from the
top-k nearest neighbors in the embeddings space.
To explicitly signal perturbed inputs, we prepend



a special token to the modified sequence, allowing
for the model to dynamically re-weight its reliance
on the noisy text prefix and the corresponding au-
dio input at inference time. This aims to simulate
real-world noise in transcripts (e.g., ASR errors,
omissions), encouraging the model to rely on both
modalities for translation.

3.5 Unified Training Framework

In summary, our unified training framework inte-
grates ASR, ST, MMT, and MT into a single multi-
task learning process. To achieve this, we first con-
catenate both speech-text and text-only datasets,
allowing for random sampling within each batch.
For every batch, we compute the ASR loss, which
corresponds to the source language modeling loss
when dealing with text-only samples. The ASR and
ST loss weights are dynamically balanced by sam-
pling a weight o from a Beta distribution. Next, we
stochastically determine whether the batch follows
the ST/TLM objective or the MMT/MT objective.
If the batch is selected for MMT training, ASR
error simulation is applied with a certain proba-
bility to mimic transcription imperfections and en-
hance robustness. By combining these components,
Whisper-UT serves as a unified model for ASR, ST,
MT, and MMT, leveraging both textual and speech
inputs efficiently.

4 Experiments

4.1 Tasks and Datasets

We test our approach on CoVoST2, a general-
domain speech translation benchmark, using its
French-English (180 hours) and German-English
(119 hours) subsets for training. To assess per-
formance on challenging conversational telephony
speech (CTS), we conduct experiments on the
Fisher-CallHome Spanish-to-English corpus (186
hours of spontaneous Spanish dialogues) and the
BBN Mandarin-to-English corpus (110 hours of
Mandarin-English telephony conversations). This
setup tests our method’s adaptability across both
general and domain-specific speech, with CTS pos-
ing unique challenges such as disfluencies, code-
switching, and informal dialogue structures.

4.2 Evaluation

For both ASR and ST, we normalize the text
by lower-casing all characters and removing all
punctuations before computing the metrics. For
the Fisher Spanish corpus, the BLEU score is

computed with multiple references using the
Moses (Koehn et al., 2007) toolkit as reported in
other work (Weiss et al., 2017a). The evaluation
script used is provided in the code.

4.3 Training

To demonstrate our proposed approach, we adopt
the LARGE-V2 version of Whisper with 1.6 billion
parameters as the base model and fine-tune it for
our unified translation modeling. To enable joint
training of speech-to-text and text-to-text transla-
tion within a single framework, we repurpose the
3-way parallel dataset by strategically replicating
its text pairs. Specifically, we create a duplicate
of the original dataset where the audio signals are
removed, retaining only the source-target text pairs.
This allows us to simulate text-only data without
introducing external resources, ensuring parity in
training scale across objectives.

4.4 Experimental Results

Table 1: Direct Whisper fine-tuning results on the Fisher-
Spanish and BBN-Mandarin datasets. The Objective
column specifies under which training objective the
model system is fine-tuned. None refers to the original
model. Underline highlights the cross-task synergy.

Dataset | Objective Task
ASR E2E-ST
(WER|) (BLEU?)
1 None 26.7 51.6
2  Fisher ASR 19.1 54.9
3 ST 20.3 61.2
4 None 32.2 13.0
5 BBN ASR 18.9 16.2
6 ST 23.1 16.8

4.4.1 Overview

Table 1 presents results from directly fine-tuning
Whisper, which reveals a cross-task synergy phe-
nomenon: optimizing for one task (e.g., ASR) not
only preserves but often enhances performance
on another (e.g., ST), as indicated by underlined
improvements across both datasets. Table 2 re-
ports Whisper-UT results on three corpora: CoV-
oST2 (French — English, German — English),
Fisher-Spanish, and BBN-Mandarin. Across all
settings, our proposed Whisper-UT variants demon-
strate consistent improvements in transcription ac-
curacy (WER|) and translation quality (BLEUT).



Table 2: Results on the test sets. MMT refers to the translation process that conditions on both the ground-truth
transcript and the speech signals, while 2-Stage-ST refers to the MMT process with ASR hypothesis.

Task Dataset Model Task
Metrics Results
1 Baseline (Wang et al., 2020b) 18.3121.4
2 frcé’nvl"ggfn Whisper-Large-V2 WER| 134170
3 Whisper-UT 8315.8
4 SeamlessM4T-Large 76.3
5 Whisper-Large-V2 26.7
6 ASR . . Seq2seq (Weiss et al., 2017b) 23.2
7 Fisher-Spanish /1" AGR (Inaguma et al, 2019)  WERY 22.9
8 STAC-ST (Zuluaga-Gomez et al., 2023) 18.8
9 Whisper-UT 16.3
10 SeamlessM4T-Large 52.6
11 BBN-Mandarin Whisper-Large-V2 WER| 32.2
12 Whisper-UT 17.4
13 Baseline (Wang et al., 2020b) 37.9128.2
14 frcé’:l"gffn NLLB-1.3B BLEUT 42.3131.0
15 Whisper-UT 36.5126.9
16 MT NLLB-1.3B 48.3
17 Fisher-Spanish Bi-NMT (Inaguma et al., 2019) BLEUtT 59.6
18 Whisper-UT 55.9
19 . NLLB-1.3B 8.7
20 BBN-Mandarin Whisper-UT BLEU?T 15.7
21 frcé’:l"gffn Whisper-UT BLEUT 46.2140.1
MMT
22 Fisher-Spanish Whisper-UT BLEUtT 70.4
23 BBN-Mandarin Whisper-UT BLEUT 26.0
24 Baseline (Wang et al., 2020b) 27.6121.0
25 SeamlessM4T-Large 33.1135.8
26 Whisper-Large-V2 36.7136.8
27 ;;’}X"jgfn QWen2-Audio (Chu et al., 2024) BLEU? 38.5135.2
28 Whisper-UT 40.8137.7
29 Whisper-UT-2-Stage 41.4138.1
30 SeamlessM4T-Large 14.7
31 Multi-ST (Inaguma et al., 2019) 45.2
32 ST Multi-task ST/ASR (Weiss et al., 2017b) 48.7
33 Fisher-Spanish Whisper-Large-V2 BLEU?T 51.6
34 STAC-ST (Zuluaga-Gomez et al., 2023) 52.6
35 Whisper-UT 62.0
36 Whisper-UT-2-Stage 62.1
37 SeamlessM4T-Large 7.0
38 . Whisper-Large-V2 13.0
39 BBN-Mandarin Whisper-UT BLEUT 198
40 Whisper-UT-2-Stage 21.6

4.4.2 Cross-task Synergy

Table 1 reveals that fine-tuning on one task does
not only improve performance on the target task
but also benefits other tasks as well. Notably, ASR
fine-tuning enhances ST performance (51.6 to 54.9
on Fisher and 13.0 to 16.2 on BBN), and ST fine-
tuning reciprocally benefits ASR (26.7 to 20.3 on
Fisher and 32.2 to 23.1 on BBN). This suggests that
cross-task fine-tuning may mutually reinforce ca-
pabilities without architectural changes, inspiring
Whisper-UT’s unified speech-text framework.

443 ASR

As shown in Table 2, on CoVoST2, Whisper-UT
reduces WER from 13.4/7.0 (Whisper) to 8.3/5.8.
Similar gains appear on Fisher (from 18.8 to 16.3)
and BBN (from 32.2 to 17.4). These improvements
suggest that our stochastic task-interleaving mech-
anism effectively mitigates catastrophic forgetting,
despite the addition of MT and MMT as new tasks.
This stability preserves modality-specific expertise
while introducing new tasks and enabling cross-
task synergy.



444 MT

In text-only translation, Whisper-UT—trained
without architectural modifications—narrowly
trails the 1.3B-parameter NLLB model on general-
domain CoVoST?2 (36.5/26.9 vs. 42.3/31.0 BLEU)
but surpasses it by +7.6 and +7.0 BLEU on domain-
specific Fisher-Spanish (55.9 vs. 48.3) and BBN-
Mandarin (15.7 vs. 8.7) benchmarks, despite using
fewer parameters and no dedicated MT pretraining.
This divergence highlights two key insights: (1)
Whisper’s decoder inherently functions as a mul-
tilingual language model, capable of text-to-text
translation with light-touch adaptation, and (2) its
cross-lingual transfer capabilities, honed during
speech-centric pretraining, generalize robustly to
textual MT in low-resource, domain-specific sce-
narios. Critically, these results validate our hypoth-
esis that minimal modifications—enabling joint
training on speech and text—can unlock Whisper’s
latent capacity for unified cross-modal translation,
bridging the gap between speech and text without
sacrificing architectural simplicity.

44.5 MMT

When translating with access to both speech
and ground-truth transcripts, =~ Whisper-UT
achieves 46.2/40.1 BLEU on CoVoST2, 70.4
BLEU on Fisher-Spanish, and 26.0 BLEU on
BBN-Mandarin—surpassing all MT baselines.
This substantial improvement underscores the
complementary nature of audio and text modalities:
acoustic cues (e.g., prosody, emotion, pauses,
repetitions) resolve ambiguities in noisy tran-
scripts, while lexical context sharpens alignment
of speech-derived semantics. By explicitly
modeling these mutually compensatory signals,
our unified architecture fuses audio and text
modalities, yielding more robust translations when
multi-modal information is available.

44.6 ST

In the ST setting, Whisper-UT achieves com-
petitive performance with single-pass end-to-
end decoding: 40.8/37.7 BLEU on CoVoST2
(fr-en/de-en), 62.0 BLEU on Fisher-Spanish, and
19.8 BLEU on BBN-Mandarin, surpassing QWen2-
Audio, SeamlessM4T, and STAC-ST by margins
of 2-8 BLEU points. Crucially, the 2-Stage infer-
ence variant yields systematic improvements over
promptless decoding: +0.6/+0.4 BLEU on CoV-
oST2 (41.4/38.1 vs. 40.8/37.7), +0.1 BLEU on
Fisher-Spanish (62.1 vs. 62.0), and +1.8 BLEU on

BBN-Mandarin (21.6 vs. 19.8). These improve-
ments are amplified in error-prone conditions, re-
flecting successful mitigation of ASR error propa-
gation—a key challenge in cascaded systems. By
prepending the special token during training (with
simulated ASR noise) and inference (for 2-Stage
decoding), the model learns to conditionally dis-
trust imperfect transcripts while retaining their par-
tial utility, rebalancing reliance on audio signals to
correct latent errors. These consistent incremental
gains validate the effectiveness of our two-stage
modeling, demonstrating that even imperfect in-
termediate transcripts enhance translation fidelity
through explicit cross-modal grounding when com-
bined with learned distrust mechanisms.

4.4.7 Summary

The unified Whisper-UT framework achieves ro-
bust performance across three key tasks: mono-
lingual ASR, text-only machine translation, and
speech translation. Improvements are most pro-
nounced in conversational Mandarin and Spanish
settings. Moreover, the 2-Stage decoding strategy
provides a reliable way to enhance translation in
fully end-to-end deployments. Overall, these re-
sults highlight Whisper-UT’s ability to unify cross-
modal and cross-lingual speech-text tasks within a
single architecture, offering a versatile solution for
scenarios requiring joint speech-text modeling.

5 Conclusion

In this paper, we introduced Whisper-UT, a uni-
fied translation framework that integrates ASR, ST,
MT, and MMT within a single multi-task learning
paradigm. In addition to this unified framework, we
propose an explicit modeling approach for speech
translation that conditions on both speech signals
and textual prompts, effectively leveraging ASR
hypotheses or ground-truth transcripts. Our train-
ing strategy, incorporating stochastic task selection
and modality-aware error simulation, ensures ef-
fective multi-task learning while mitigating catas-
trophic forgetting. Experimental results show that
Whisper-UT achieves strong performance across
various translation tasks, demonstrating the bene-
fits of cross-task synergy. Future work will explore
scaling to more languages and extending to broader
multi-modal scenarios.



6 Limitations and Ethical Considerations

While our approach demonstrates strong improve-
ments, several limitations remain. To ensure fair
comparisons, we kept training steps consistent
across models, meaning our best-performing sys-
tem may not have reached its full potential with
extended training.

Due to resource constraints, we fine-tuned Whis-
per rather than training from scratch, which might
limit the full integration of the objectives. Ideally,
to demonstrate cross-task fine-tuning, we would
start from a pretrained model that natively sup-
port each of our tasks, (MT, MMT, ST, ASR), but
building state-of-the-art, or close to state-of-the-art
systems requires building from existing models,
such as Whisper, and adapting to Whisper to addi-
tionally perform these tasks, while a contribution
in its own right, ultimately requires a two-stage
fine-tuning approach that complicates analysis of
the effectiveness of cross-task fine-tuning. Further-
more, while we believe our method to be general,
i.e., it could be applied to similar models such as
the OWSM model (Peng et al., 2024), we have only
demonstrated our results using the Whisper model.

Training of machine learning models is a costly,
energy-intensive process, so our method, which in-
troduces a novel means of efficiently adapting exist-
ing large pre-trained models to new tasks, may mit-
igate the ethical concerns about the costs, financial,
environmental, or other, associated with training
ML models. Furthermore, the success of our ap-
proach, specifically cross-task fine-tuning, implies
that speech translation systems can be more easily
trained for new domains, including languages with
limited training resources.
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A Training Detail

A.1 Parameter Efficient Fine-tuning

To efficiently adapt the model to these conversa-
tional scenarios without overfitting or incurring
excessive computational cost, we leverage several
parameter-efficient fine-tuning (PEFT) techniques.

In order to fit the base model into our hardware,
we adopt a list of strategies:

¢ Low-Rank Adaptation (LoRA). LoRA (Hu
et al., 2021) introduces a trainable adapter
comprised of rank decomposition matrices on
top of the fixed pre-trained model’s weight
matrices in specified layers so that the number
of trainable parameters can be considerably
reduced.

Gradient checkpointing. Gradient check-
pointing (Chen et al., 2016) stores intermedi-
ate activations in the forward pass, and re-
computes the remaining activations during
back-propagation.

Zero Redundancy Optimizer (ZeRO).
ZeRO (Rajbhandari et al., 2020) is an algo-
rithm that partitions data, optimizer states,
gradients, and parameters for speeding up the
training of large neural models with low com-
munication costs.

A.2 Hyperparameter Settings

Table 3 presents the hyperparameter configurations
used for training our Whisper-UT model.

Hyperparameter Value
LoRA Rank 200
LoRA Alpha 400
LoRA Dropout 0.1
Max Training Steps 10000
Batch Size 64
Gradient Accumulation Steps 1
Warmup Steps 500
Learning Rate le™®
Weight Decay 5e~4
SpecAug Mask Feature Probability 0.1
SpecAug Mask Time Probability 0.05

Table 3: Hyperparameter configurations used for train-
ing.

Experiments in this work are conducted with
8 V100-32GB GPUs. However, PEFT methods
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outlined in Section A.1 render the use of 8 GPUs
redundant, yet they are deployed to accelerate the
training process.

A.3 Data Augmentation

We apply the conventional speed perturbation (Ko
et al., 2015) with parameters 0.9, 1.0, 1.1 to the
speech prior to the training stage. Additionally,
we adopt SpecAug (Park et al., 2019) to randomly
mask extracted speech features during training.

B CTS Data Detail

B.1 Pre-processing

CTS corpora usually consist of short utterances seg-
mented from a full recording, reflecting the alter-
nating speech of participants during conversations.
However, we found empirically that fine-tuning on
such segments, presumably due to a mismatch in
sample lengths compared to Whisper’s pre-training
data, leads to significant performance degradation.
The resulting model tends to repetitively produce
frequent filler words in the training corpus at in-
ference time regardless of the input. Therefore,
we re-segmented the utterances by merging them
chronologically, with durations (in seconds) sam-
pled from a Gaussian distribution, e.g. N(15,52).
As Whisper’s feature extractor automatically pads
the features up to 30 seconds, such re-segmentation
also significantly reduced the training cost in terms
of memory and time.

B.2 BBN-Mandarin Data Specification

The BBN Mandarin-English conversational tele-
phony speech (CTS) corpus used in our experi-
ments comprises two primary components:

« HKUST Mandarin ASR Dataset (90.1
hours): Mandarin conversational speech from

telephony interactions, originally designed for
ASR research (Fung et al., 2005).

e CallHome Mandarin ASR Dataset (20.5
hours): Informal Mandarin dialogues cu-
rated for ASR study (Canavan and Zipperlen,
1996).

The BBN team (Wotherspoon et al., 2024) trans-
lated these into English to create parallel speech-
to-text translation pairs. While our experiments uti-
lized a pre-publication version provided directly by
the BBN authors, minor discrepancies (e.g., data
splits, preprocessing, or translation refinements)



Table 4: Code-switching example with system outputs.

REF-ASR:
HYP-ASR:
REF-MT:
HYP-E2E-ST:
HYP-2-Stage-ST:
HYP-MMT:

U MASTER RV i%Z1R POPULAR BLXT T ARMZAR

LA B9 master N iZ 218 popular HUXT T 1R 1ZAR

MASTER degree of computer science it should be very POPULAR it should be
The computer should be very popular, should be very

The computer’s master should be very popular that’s right very should be very
The computer’s MASTER should be very popular that’s right very should be very

may exist compared to the final published version.
Nevertheless, the corpus retains its core charac-
teristics: conversational telephony domain focus,
code-switching prevalence, and disfluency patterns.

C Qualitative Analysis of Code-Switching

The code-switching example presented in Table 4
demonstrates two critical insights:

* ASR Preservation of Linguistic Salience:
The 2-Stage decoding system successfully re-
tains the code-switched terms “master” and
“popular” (WER =~ 0% for these tokens), while
E2E-ST completely omits “master”. This sug-
gests that: 1) direct audio-to-translation map-
ping struggles with lexical disambiguation of
homophones (“master” vs. contextually ex-
pected “computer’), and 2) explicit interme-
diate ASR provides discrete textual anchors
that guide translation decisions.

Cross-Modal Faithfulness: While the ref-
erence MT (REF-MT) omits the final “{R”
(translated as "very") from the source utter-
ance “fR N 1% 1R”, our ASR transcript pre-
serves all repetitions. This discrepancy high-
lights how audio-derived prosodic cues (e.g.,
emphatic stress on the final “fR”) enable
2Stage-ST and MMT to retain pragmatic em-
phasis (“...that’s right very should be very”)
where text-only MT truncates for conciseness.
By aligning acoustic signals (stress patterns)
with textual redundancy, our framework dis-
tinguishes intentional repetition—a discourse
marker of conviction in Mandarin—from su-
perficial noise, demonstrating superior faith-
fulness to both linguistic content and prag-
matic intent compared to E2E ST pipelines.

The example validates our hypothesis that two-
stage processing particularly benefits scenarios
where: 1) ASR can reliably capture linguistically
salient content (code-switches, proper nouns), and
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2) Audio signals contain complementary paralin-
guistic information (prosodic boundaries, empha-
sis) that each modality alone cannot convey. This
dual-modality advantage explains 2-Stage-ST’s per-
formance gain over E2E-ST on BBN-Mandarin
despite identical model parameters.

D Ablation Study

We conduct ablation experiments presented in Ta-
ble 5 on the two CTS datasets (Fisher-Spanish
and BBN-Mandarin), as their domain-specific chal-
lenges—disfluencies, code-switching, and sponta-
neous dialogue—diverged significantly from Whis-
per’s pretraining data. This allows us to isolate our
framework’s adaptability beyond pretraining biases
and quantify its efficacy in resource-constrained,
real-world scenarios.

D.1 Text-only MT Training and Its Effects

Rows 7 and 17 show the results of the MT-only
fine-tuning experiment, demonstrating that the
model achieves strong text translation performance
even with limited in-domain data—BLEU 63.4
on Fisher-Spanish and 16.0 on BBN-Mandarin.
This outperforms the original NLLB-1.3B model,
though it remains modestly behind its fine-tuned
counterpart. This suggests that Whisper’s decoder
inherently possesses some text translation capabil-
ities or at least has sufficiently strong source and
target language modeling abilities such that mini-
mal adaptation enables it to perform the MT task.
Interestingly, this MT training also gives the sys-
tem MMT ability, as suggested by the 61.1/20.4
(Fisher/BBN) BLEU score, despite MMT being
a novel objective that the model was not explic-
itly trained on. In fact, on the BBN corpus, the
MT-trained model exhibits MMT capabilities that
surpass its original training objective, achieving
a BLEU score of 20.4 (MMT) compared to 16.0
(MT). This finding reinforces our earlier observa-
tion of cross-task synergy.



Table 5: Ablation studies on the CTS test sets. The Objective column specifies under which training objective the
model system is fine-tuned. The UT objective refers to the unified-translation objective described in section 3.5.
The Task column specifies the target inference task. E2E-ST refers to the promptless E2E speech translation setting,
MMT refers to the translation process that conditions on both the ground-truth transcript and the speech signals,
while 2-Stage-ST refers to the MMT process which conditions on the model’s own ASR hypotheses.

Dataset Model Objective Task (num_beams = 1)
ASR E2E-ST MT MMT  2-Stage-ST
(WER]) (BLEU?) (BLEU?) (BLEU?T) (BLEUY)

1 None - - 48.3 - -

5 NLLB-13B | /o ) ) 673 ) )

3 None 26.7 51.6 - - -

4 ASR 19.1 54.9 - - -

5  Fisher ST 20.3 61.2 - - -

6 Whisper ASR + ST 16.3 62.2 - - -

7 MT 60.3 51.0 63.4 61.1 52.4
8 MMT 16.4 57.4 1.4 67.5 58.6
9 UT-OOD 16.0 61.5 44.2 70.0 61.6
10 UT-CTS 16.3 62.0 55.9 70.4 62.1
11 None - - 8.7 - -
12 NLLB-1.3B MT i i 297 i i
13 None 32.2 13.0 - - -
14 ASR 18.9 16.2 - - -
15 BBN ST 23.1 16.8 - - -
16 Whisper ASR + ST 18.5 20.2 - - -
17 MT 37.7 12.7 16.0 20.4 15.5
18 MMT 17.5 19.5 1.0 25.2 20.6
19 UT-O0D 17.5 20.6 11.1 25.3 21.5
20 UT-CTS 17.4 19.8 15.7 26.0 21.6

D.2 Effectiveness of Multi-task Learning

In rows 6 and 16, we conduct straightforward multi-
task fine-tuning experiments by duplicating the
speech dataset with both ASR and ST supervision,
concatenating the datasets, and employing random
sampling within each batch. These experiments
confirm that multi-task training is beneficial, as it
enhances BLEU score from 61.2 to 62.2 and WER
is reduced from 20.3 to 16.3 on the Fisher-Spanish
corpus. A similar trend is observed on the BBN
set as well. This suggests that jointly optimizing
multiple relevant objectives allows the model to
better capture linguistic patterns and improve gen-
eralization across tasks.

D.3 MMT-Multi-task Training and Its
Implications

Rows 8 and 18 evaluate MM T-multi-task fine-tuned
models, that is, the model is trained with ¢ = 0 and
b = 0. Notably, the MMT inference results outper-
form even the strong fine-tuned NLLB-1.3B base-
line in MT performance, 70.4 vs. 67.4 on Fisher
and 26.0 vs. 22.7 on BBN— demonstrating that
MMT provides tangible benefits over traditional
cascaded MT approaches.

However, a gap remains between different MMT
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settings. Specifically, when using the ASR hypoth-
esis as input instead of the ground-truth transcript,
i.e., the 2-Stage-ST decoding, performance drops
from 67.5 to 58.6 on Fisher and from 25.2 to 20.6
on BBN. While this still exceeds the results from
direct ST (52.4 vs. 51.0 on Fisher and 20.6 vs. 19.5
on BBN), he model tends to over-rely on the tran-
script in the absence of explicit modeling. Specif-
ically, without the special tag to signal potential
errors, the model treats the input transcript as fully
reliable ground truth—an assumption that breaks
down when using ASR outputs, which may contain
recognition errors. These highlight both the effec-
tiveness of explicit modeling and the limitations
introduced by ASR errors.

D.4 Unified Translation (UT) Training
D.4.1 Overview

Finally, the UT-trained system (Row 10 and 20)
achieves the best MMT and 2-Stage-ST results,
with MMT reaching 70.4/26.0 BLEU and 62.1/21.6
BLEU, respectively, on the Fisher-Spanish and
BBN-Mandarin corpora, proving the method’s ef-
fectiveness. Applying the error simulation strategy
in this training scheme improves the robustness
of the two-stage approach, narrowing the perfor-



mance gap between MMT and 2-Stage-ST decod-
ing. Specifically, on Fisher, the gap decreases from
8.9 to 8.3 BLEU (rows 8 vs. 10), and on BBN,
from 4.6 to 4.4 BLEU (rows 18 vs. 20), indicat-
ing more stable performance under ASR-transcript
input.

D.4.2 Analysis of Transcript-Conditioning

On the Fisher test set, the 2-Stage-ST decoding
strategy of the Whisper-UT model actually falls
slightly behind the simpler ASR+ST multi-task
E2E-ST model. Direct multi-task training of
ASR and ST (row 6) achieves a BLEU of 62.2,
whereas conditioning on ASR hypotheses under the
unified-translation objective (row 10, 2-Stage-ST)
yields 62.1—a 0.1 BLEU drop. Through manual
inspection, we found this gap is driven largely by
inconsistent translation of filler words: the same
Spanish filler (e.g., “eh,” “um”) in ASR transcripts
is rendered inconsistently in output, magnifying
ASR transcript “errors” during translation. More-
over, because Whisper’s ASR and ST performance
on Fisher Spanish are both strong already (WER
~ 16, BLEU = 60), there is little mismatch for
transcript conditioning to resolve, so the transcript
signal offers marginal benefit.

In contrast, on the BBN corpus, the UT model
demonstrates a clear advantage. The ASR+ST
multi-task E2E-ST model (row 16) scores 20.2
BLEU, while the Whisper-UT 2-Stage-ST de-
coder (row 20) jumps to 21.6 BLEU—a significant
1.4-point gain. This larger benefit arises because
BBN combines relatively low WER (= 18) with
much lower translation quality (BLEU =~ 20), in-
dicating that the model’s ST ability lags behind its
ASR competence. In this scenario, explicitly lever-
aging ASR transcripts helps fill the performance
gap, yielding more accurate translations under the
unified objective.

D.5 Impact of Out-of-Domain Text Data

D.5.1 Dataset Setup

To evaluate the robustness of our unified frame-
work to domain shifts in text data, we replace
the in-domain machine translation (MT) pairs (de-
rived from CTS audio transcripts, as described in
Section 4.3) with out-of-domain (OOD) text pairs.
Specifically:

Spanish: We use 197 hours of text pairs from three
sources:

* CoVoST 2 (Wang et al., 2020b) (diverse web-
mined speech),
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* mTEDx (Salesky et al., 2021) (TED talk sub-
titles), and

* Europarl-ST (Koehn, 2005) (parliamentary
proceedings).

Mandarin: We include 130 hours from:

* CoVoST (Wang et al., 2020a) (multilingual
web content),

* GALE (Song et al., 2016) (broadcast news
and interviews), and

* proprietary in-house datasets (mixed genres).

The OOD sets contrast sharply with CTS data in
domain (e.g., formal talks vs. casual dialogues) and
lexical style. To isolate the effect of data domain
(not scale), we match the total training steps to our
baseline CTS experiments, ensuring comparable
optimization cycles. This setup tests whether cross-
modal alignment generalizes to heterogeneous text
distributions.

D.5.2 Analysis of OOD Text Data Injection

Injecting out-of-domain text under the unified ob-
jective appears to have limited benefit and in some
cases even disrupted established behaviors. On
Fisher, UT-OOD (row 9) lags behind UT-CTS
across every translation metric—most notably MT
accuracy, which jumps from 44.2 BLEU with
OOD data to 55.9 BLEU when text is drawn from
the CTS domain. This suggests that the linguis-
tic and stylistic mismatch of web-mined, TED
talk, and parliamentary text fails to reinforce the
speech-to-text alignment learned on conversational
telephone speech, and may inject conflicting pat-
terns that the model struggles to reconcile.

A similar story unfolds on BBN. On BBN, the
impact of injecting OOD text is most pronounced
in the MT task. Under UT-OOD (row 19), the
model’s MT performance barely improves over
the base unified setting and remains far below the
CTS-matched variant—rising only to 11.1 BLEU
compared with 15.7 BLEU for UT-CTS (row 20).
In contrast, UT-CTS (row 20) consistently lifts MT
and MMT performance by several BLEU points
and slightly improves ASR quality. Together, these
findings imply that substituting in-domain tran-
scripts with heterogeneous text corpora does not
generalize well in a cross-modal training regime
and can inadvertently weaken the model’s ability
to leverage the unified translation objective.
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