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Abstract
We address the problem of convex optimization
with dueling feedback, where the goal is to min-
imize a convex function given a weaker form of
dueling feedback. Each query consists of two
points and the dueling feedback returns a (noisy)
single-bit binary comparison of the function val-
ues of the two queried points. The translation
of the function values to the single comparison
bit is through a transfer function. This problem
has been addressed previously for some restricted
classes of transfer functions, but here we consider
a very general transfer function class which in-
cludes all functions that admit a series expansion
about the origin. Our main contribution is an effi-
cient algorithm with convergence rate of O(ϵ−4p)
for smooth convex functions, and an optimal rate
of Õ(ϵ−2p) when the objective is both smooth
and strongly convex, where p is the minimal de-
gree (with a non-zero coefficient) in the transfer’s
series expansion about the origin.

1. Introduction
Convex optimization algorithms are fundamental across
many fields, including machine learning. Most commonly,
convex optimization is studied in a first-order gradient or-
acle model, where the optimization algorithm may query
gradients of the objective function; or a more limited model
of zero-order oracle access, where the optimization algo-
rithm may only query function values. Such optimization
frameworks are well-studied in the literature (e.g., Nesterov,
2003). However, in recent days, relative/preference-based
query models gained much attention, which are common in
domains such as recommendation systems, online merchan-
dises, search engine optimization, crowd-sourcing, drug test-
ing, tournament ranking, social surveys, etc. (Hajek et al.,
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2014; Khetan and Oh, 2016).

Drawing motivation from the above, in this paper we study
a challenging convex optimization model where the access
to the objective function is through a noisy pairwise compar-
ison oracle. Namely, given an underlying convex objective
function f : Rd 7→ R, at each step the optimization algo-
rithm is allowed to query two points w,w′ in Rd, upon
which only a noisy 1-bit feedback ot ∈ {±1} is revealed,
whose expected value indicates their relative function values.
More specifically, the feedback signal ot is such that

E[ot | w,w′] = ρ(f(w)− f(w′)),

where ρ : R 7→ [−1, 1] is a (possibly nonlinear) transfer
function mapping difference in function values to a signed
preference signal, and ρ(f(w) − f(w′)) is interpreted as
the degree to which w should be preferred over w′, or vice
versa. Provided such access, our goal is to find a point
that approximately minimizes the objective f . Borrowing
terminology from the literature on dueling bandits, we call
our framework General Dueling Convex Optimization (G-
DCO) for general transfer functions.

Noisy pairwise comparison access could potentially be sig-
nificantly weaker than the already weak zero-order access.
Indeed, a special case of this framework has been studied by
Jamieson et al. (2012) who focused on polynomial transfer
functions of the form ρ(x) = c sign(x)|x|p and gave tight
upper and lower bounds in the pairwise comparison model
for strongly convex and smooth objectives. Their results
indicate that as p grows larger, the best achievable conver-
gence rate degrades quickly, and already when p > 1 this
rate becomes strictly inferior to that of zero-order optimiza-
tion. Much more recently, Saha et al. (2021b) considered a
similar pairwise comparison model with a different type of a
transfer function, namely the sign function ρ(x) = sign(x)
(i.e., p = 0), and established fast convergence rates for this
case exclusively.

These works point us to some fundamental questions: Can
we design algorithms for dueling convex optimization that
is able to leverage more general transfer functions? Can we
converge to a minimizer even when the transfer is unknown
to the algorithm? And what properties of the transfer func-
tion dictate the achievable optimization rates? We make
progress toward answering these questions:
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(i) We formalize a generalized dueling convex optimiza-
tion setting for convex optimization with pairwise-
preference feedback given by a general transfer func-
tion ρ, which is only assumed to be well-behaved
around the origin (see Section 2.1 for a precise def-
inition of the query model and optimization objective).
Our framework generalizes and significantly extends
two existing settings of optimization with compari-
son feedback of Jamieson et al. (2012) and Saha et al.
(2021b).

(ii) We give a novel algorithm for dueling convex opti-
mization with a general transfer function ρ, called Pro-
jected Dueling Descent (Algorithm 1). We prove that
when the optimization objective function is convex
and smooth, our algorithm needs an order of O(ϵ−4p)
queries to the pairwise-preference oracle for finding an
ϵ-optimal point (see Theorem 2); here, p can be thought
of the minimal non-zero degree in a series expansion
of the transfer ρ around zero.

(iii) We further show that our algorithm can achieve faster
convergence rates when the function is additionally
also strongly convex (Algorithm 2, Theorem 4). Con-
cretely, we show that in this case only Õ(ϵ−2p) pair-
wise queries are sufficient for ϵ-convergence. The latter
rate is shown to be tight as it matches existing lower
bounds (for certain transfer functions) for strongly con-
vex optimization with comparison feedback due to
Jamieson et al. (2015). We remark that this result does
not follow via a reduction to the general convex case, as
adding (strongly convex) regularization to the objective
breaks the comparison oracle access.1

We emphasize that, in fact, even the most well-studied trans-
fers, like the sigmoid, were not covered by the existing
literature. The goal of this paper is to fill in this gap, signifi-
cantly expanding the scope of comparison-based (dueling)
optimization to a variety of nonlinear transfer functions.

Our algorithmic results complement those of Saha et al.
(2021b), who only considered the sign transfer function.
Compared to the results of Jamieson et al. (2012), we are
able to handle both the convex and strongly convex cases
(while they only deal with the latter), and we only require
the transfer to be well-behaved around the origin (while
they rely on its global structure2). Thus, we are able to en-
compass a greater variety of transfer functions whose local
behavior around zero is approximated by a polynomial—this

1In other words, in general one cannot implement a comparison
oracle for f(x) + α

2
∥x∥2 given a black-box comparison oracle for

f .
2Indeed, their algorithm relies on a line-search procedure at

each step, employing the comparison oracle for implementing a
one-dimensional noisy binary search.

includes virtually all functions that admit a series expansion
around the origin.

In terms of techniques, our approach starts by following stan-
dard lines in bandit and zero-order optimization (e.g., Flax-
man et al., 2005; Saha and Tewari, 2011), forming stochastic
estimates for the gradients of the underlying objective using
the available dueling access. However, unlike in the stan-
dard convex scenarios, the gradient estimates we are able to
construct in the dueling setting are substantially deteriorated
by the nonlinearity of the transfer: information about the
magnitude of the gradient is badly mutated by the feedback
process, and even further, the gradient estimates closer to
optimality are biased and thus hamper convergence. Our
analysis addresses the first issue by carefully analyzing how
the gradient estimates are skewed by the nonlinear transfer
function, through inspecting its behavior around the origin
and how it transforms the expected value of our estimates.
The second issue turns out to be even more challenging to
address technically, since the stochastic process induced by
the optimization trajectory incurs a “conditional drift” close
to where we would like to establish its convergence. We
circumvent this challenge through a stopping-time analysis
of a supermartingale related to this stochastic process, that
establishes its concentration with high probability.

2. Preliminaries
Notation. Let [n] = {1, 2, . . . n}, for any n ∈ N. Given
a set S, for any two items x, y ∈ S, we denote by x ≻ y
the event x is preferred over y. For any r > 0, let Bd(r)
and Sd(r) denote the ball and the surface of the sphere of
radius r in d dimensions, respectively. Id denotes the d× d
identity matrix. For any vector x ∈ Rd, ∥x∥2 denotes the
ℓ2 norm of vector x. We write Õ for the big O notation up
to logarithmic factors.

2.1. Problem Setup

We consider the problem of minimizing a convex function
f : Rd 7→ R over a bounded convex domain D ⊆ Rd. We
assume that f is G-Lipschitz and β-smooth over D, and
that D has Euclidean diameter bounded by D. We denote
by w∗ ∈ argminw∈D f(w) a point where f is minimized
over D.

Query model: Our access to the objective f is through a
noisy comparison oracle that upon input of a pair (w,w′)
of points in Rd, emits a random binary response o ∈ {±1}
such that

E[o | w,w′] = ρ(f(w)− f(w′)),

where ρ : R → [−1, 1] is a fixed transfer function map-
ping difference in function values to (signed) preferences,
unknown to the algorithm.
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For example, given ρ the query model could output a random
variable o such that o ∼ Ber±

(
ρ(f(w)− f(w′))

)
where

Ber± denotes a signed version of the Bernoulli distribution
(such that for a random variable X ∼ Ber±(p), we have
Pr(X = +1) = 1− Pr(X = −1) = p+1

2 ).

Transfer function: We assume throughout that the transfer
function ρ : R 7→ [−1, 1] is fixed and satisfies the following
assumptions:
Assumption 1. (i) The transfer ρ is differentiable, mono-
tonically non-decreasing and satisfies ρ(0) = 0; (ii) there
are constants r > 0, cρ > 0 and integer p ≥ 1 such that for
all x ∈ (−r, r) it holds that ρ′(x) ≥ cρp|x|p−1.

We discuss these assumptions in more detail in the subsec-
tion below, where we argue that they hold for essentially any
function ρ that admits a series expansion about the origin.

Optimization goal: The goal of the optimization process
is then, given ϵ > 0, to find a point w ∈ D such that
f(w)−f(w∗) ≤ ϵ while minimizing the number of queries
to the comparison oracle.

To formalize our optimization framework further, we now in-
troduce the notion of admissible transfer functions, a broad
class of comparison mechanisms characterized by smooth-
ness and monotonicity, which includes most functions ex-
pressible via a series expansion around the origin.

2.2. Admissible Transfer Functions

The second part of Assumption 1 is perhaps the most strin-
gent one; however, in the following lemma we demonstrate
that it is satisfied by a wide variety of natural transfer func-
tions: those that admit a series expansion about the origin
with uniformly bounded coefficients.
Lemma 1. Let ρ admit a series expansion ρ(x) =∑∞

n=p anx
n about x = 0 with minimal degree p ≥ 1 and ra-

dius of convergence δ > 0. Then, if ap > 0 and |nan| ≤M
for all n > p, we have that

|ρ′(x)| ≥ 1
2pap|x|

p−1 for |x| < min
{
δ,

pap
4M

}
.

Note that since we require ρ(0) = 0, it must be that a0 = 0
and the assumption p ≥ 1 holds naturally. Further, since
we would like ρ(x) > 0 to hold for x > 0, the first nonzero
coefficient must be positive, namely ap > 0. Thus, the
only non-trivial assumption is that the series coefficients
are uniformly bounded; however, this condition holds for
many natural transfer functions: e.g., for the sigmoidal
arctan(x), hyperbolic tangent tanh(x) and for the error
function erf(x), it holds simply with M = 1.

Proof of Lemma 1. On the interval of convergence (−δ, δ)
we have ρ′(x) =

∑∞
n=p nanx

n−1 as one can exchange

the order of summation and differentiation. Let us write
ρ′(x) = papx

p−1+R(x), where R(x) =
∑

n>p nanx
n−1.

Then, for |x| < δ ≤ 1
2 , we can show that: |R(x)| ≤

∑
n>p

|nan| |x|n−1 ≤M |x|p
∞∑

n=0

|x|n

= M |x|p 1

1− |x|
≤ 2M |x|p.

Thus, when |x| ≤ pap/4M we have |R(x)| ≤ 1
2pap|x|

p−1.
It follows that |ρ′(x)| ≥ pap|x|p−1−|R(x)| ≥ 1

2pap|x|
p−1

as claimed.

3. Dueling Convex Optimization with General
Transfer Functions

In this section we propose an optimization algorithm for
dueling optimization problem for a convex and β-smooth
objective f . The primary difficulty in designing an efficient
algorithm for the purpose lies in the fact that we cannot
hope to estimate the gradient of f for any general duel-
ing/pairwise preference model (i.e., any general ρ). Thus,
we cannot directly apply standard gradient estimation tech-
niques (e.g., Flaxman et al., 2005; Saha and Tewari, 2011)
to address this problem.

We get around the difficulty by noting that, though one may
not be able to estimate the exact gradient of f , ∇f(w), at
a given point of interest w ∈ D, we can hope to estimate
a ‘p-th order proxy of ∇f(w)’, called “relative gradient”
of f at w, from the 1-bit preference feedback generated
according to the transfer function (or pairwise preference
model) ρ. The following definition and the lemma describe
a more formal argument for this.

3.1. The Projected Dueling Descent algorithm

The crux of the idea lies in designing “relative gradient”
based algorithm (Algorithm 1), which is a generalized no-
tion of gradient descent-based optimization technique: The
algorithm proceeds sequentially, where at each step t, it
maintains a solution wt ∈ D, estimates the “relative gradi-
ent” of f at point wt using dueling feedback, and take a
small step in the negative direction of the estimated “relative
gradient” to reach the updated solution wt+1.

More formally, the algorithm starts from an initial point
w1 ∈ D. At any round t = 1, 2, . . ., the algorithm queries
the dueling feedback on a pair of points (wt + γut,wt −
γut), where ut ∼ Unif(Sd(1)) is a random unit vector, and
γ is a perturbation scale parameter.3 Upon receiving the
1-bit preference feedback ot ∈ {±1}, it finds a “relative

3Recall that our setup allows for the oracle to process queries of
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gradient” an estimate of f at wt as gt := otut which gives
a valid descent direction on expectation. It then takes a
step, with stepsize η, along the negative direction of gt to
obtain the next iterate wt+1 := wt − ηgt (with a suitable
projection if necessary).

The details of the algorithm are presented in Algorithm 1.
Note that the algorithm itself is oblivious to the specific
transfer function ρ and does not require any knowledge
about it or its parameters.4

Algorithm 1 Projected Dueling Descent (PDD)
1: Input: Initial point: w1 ∈ D, Learning rate η, Pertur-

bation parameter γ, Query budget T
2: for t = 1, 2, 3, . . . , T do
3: Sample ut ∼ Unif(Sd(1))
4: Set x′

t := wt + γut, y′
t := wt − γut

5: Play the duel (x′
t,y

′
t), and observe ot ∈ ±1 such that

ot ∼ Ber±
(
ρ
(
f(x′

t)− f(y′
t)
))

.
6: Update: w̃t+1 = wt − ηgt, where gt = otut

7: Project: wt+1 = argminw∈D∥w − w̃t+1∥
8: end for

On a high level, following prior work (Saha et al., 2021b),
Algorithm 1 takes the approach of designing a gradient esti-
mator using the dueling feedback and using it for performing
gradient descent. However, our gradient estimation analysis
below is very different due to the generality and nonlinearity
of the transfer function in the feedback. This will be seen in
Lemma 3 and its proof, which analyzes the gradient estima-
tor in the case of nonlinear transfer: roughly, we inspect the
local polynomial behavior of the transfer around zero and
work out the effect of the polynomial transformation on the
expected value of the gradient estimator. In the estimation
process, the magnitude of the gradient gets distorted (see
the ∥∇f(wt)∥p−1 leading factor in the expected value) so
we can no longer use the standard subgradient descent anal-
ysis, which we replace with a different approach akin to the
analysis of normalized gradient descent.

3.2. Convergence analysis

We now state the main result of this section, which provides
a convergence guarantee for our algorithm for convex and
smooth objectives.

Theorem 2. Assume that the objective f is convex, β-

points that lie outside of the domain D (we assume f is defined on
the entire space, yet optimization is constrained to D). Technically,
we can limit queries to a slightly dilated version of the domain D;
we avoid these nuicanses here.

4That said, as our theorem below shows, the optimal tuning
of the learning rate η does depend on the underlying problem
parameters, but this is the case with essentially any optimization al-
gorithm with a learning rate parameter, including gradient descent,
stochastic gradient descent, etc.

smooth and G-Lipschitz over D. For any 0 < ϵ < ϵ̄ =
5βmin{dD2,

√
drD/G} and δ ∈ (0, 1), running Algo-

rithm 1 with

γ =
ϵ

10βD
√
d
, 0 < η ≤ cρpϵ

2p

βp(80D)2p−1dp+1/2
,

for T > 2(D2/η2 + 1) log(1/δ) steps, certifies that with
probability at least 1−δ, there is at least one step 1 ≤ t ≤ T
where f(wt) ≤ f(w∗) + ϵ.

Note that the theorem’s statement applies to sufficiently
small error ϵ < ϵ̄; for larger values the theorem can be used
with ϵ = ϵ̄, in which case the convergence rate only depends
on the problem parameters (and is independent of ϵ).

Theorem 2 gives a sample complexity bound of O(ϵ−4p)
for reaching ϵ-optimality, with high probability; put differ-
ently, it establishes an O(T−1/4p) convergence rate over T
steps. A notable limitation of the convergence guarantee,
however, is that it only implies that one of the points we
evaluate along the trajectory of the algorithm is ϵ-optimal
with high probability, rather than specifying a particular
point as output. (We note that this issue appears only in the
non-strongly-convex case: indeed, as we show in the next
section, in the strongly convex case our algorithm produces
a single ϵ-optimal point with high probability.)

We can address this issue and detect an ϵ-optimal point
using additional comparison queries to the noisy comparison
oracle. Specifically, given w1, . . . ,wT we can construct a
complete binary tree whose leaves are the T points; each
internal node in the tree evaluates the (noisy) min of its
descendants, requiring roughly ϵ−2p queries to the oracle.
Since errors accumulate only along the path from the root to
the true minimum, both the accuracy and confidence of the
entire comparison procedure will decrease by a log T factor.
Overall, the sample complexity for detecting an ϵ-optimal
point using this approach is still of order ϵ−Θ(p).

We proceed to prove Theorem 2. We denote by Ht

the history (i.e., filtration) generated by the randomness
{uτ , oτ}t−1

τ=1 before time t, and let Et[·] = E[ · | Ht] be the
respective conditional expectation. We first show that condi-
tioned onHt, if f(wt)− f(w∗) > ϵ then we can show that
wt+1 becomes strictly closer in ℓ2-norm to the minimum
w∗, in expectation. The precise statement is summarized in
the following:
Lemma 3 (round-wise progress). Assume the conditions
and choice of parameters η, γ in Theorem 2. Then at
any time t, conditioned on the history Ht, we have that
if f(wt)− f(w∗) > ϵ then

Et[∥wt+1 −w∗∥2] ≤ ∥wt −w∗∥2 − η2. (1)

Let us first show how our main Theorem 2 is proven using
Lemma 3. The idea of the proof is to recursively unravel

4



Dueling Convex Optimization with General Preferences

the round-wise progress guarantee, as long as the condi-
tion f(wt) − f(w∗) > ϵ is met, and note that this cannot
continue indefinitely since the norms ∥wt −w∗∥2 cannot
decrease without bound. Therefore, this can be used to
derive an upper bound on the number of steps until one
has f(wt) − f(w∗) ≤ ϵ, which is what we set to achieve.
However, one crucial challenge with this plan is that the
conditional expectations in Lemma 3 cannot be directly un-
folded recursively due to the additional conditioning on the
event f(wt) − f(w∗) > ϵ. Therefore, our analysis below
takes a different path instead: it inspects the random variable
indicating the first step where f(wt)−f(w∗) ≤ ϵ, and uses
the fact that it is a stopping time (with respect to the natural
filtration) to derive a bound on its expected value, using an
argument reminiscent of the proof of Wald’s Lemma (e.g.,
Durrett, 2019).

Proof of Theorem 2. For all t, let At be the event that
f(wt) − f(w∗) ≤ ϵ, and define N to be the random vari-
able indicating the first step t where the event At occurs.
Note that N is a stopping time with respect to the filtra-
tion Ht, since {N ≤ t} ∈ Ht, i.e., the event that N ≤ t
is completely determined by all randomness before step t.
Lemma 3 then implies that, for all t:

E[∆t | Ht]⊮{N > t} ≤ −η2 ⊮{N > t}, (2)

where ∆t = ∥wt+1 −w∗∥2 − ∥wt −w∗∥2.

Next, we will prove that E[
∑N−1

t=1 ∆t] ≤ −η2(E[N ] − 1).
To see this, write

∑N−1
t=1 ∆t =

∑∞
t=1 ∆t⊮{N > t}. Thus,

E

[
N−1∑
t=1

∆t

]
=

∞∑
t=1

E
[
E[∆t⊮{N > t} | Ht]

]
=

∞∑
t=1

E
[
E[∆t | Ht]⊮{N > t}

]
≤ −η2

∞∑
t=1

Pr[N > t],

where the final inequality follows from Eq. (2). Thus, by
the tail sum formula,

E

[
N∑
t=1

∆t

]
≤ −η2

∞∑
t=1

Pr[N > t] = −η2(E[N ]− 1).

Finally, note that the left-hand side equals
E[∥wN+1 −w∗∥2 − ∥w1 −w∗∥2] ≥ −D2; we therefore
deduce that E[N ] ≤ D2/η2 +1. From Markov’s inequality,
we obtain that N ≤ 2(D2/η2 + 1) with probability
at least 1

2 , or in other words, that with probability at
least 1

2 , in at least one step t ≤ 2(D2/η2 + 1) it holds
that f(wt) − f(w∗) ≤ ϵ. Since this conclusion holds

true regardless of where the algorithm is initialized, we
can conclude that if we run the algorithm for at least
O((D2/η2) log(1/δ)) steps, the success probability is
amplified to 1− δ. This implies the theorem.

We now give a proof of our progress lemma. Roughly, the
proof argues that in expectation gt is a good progress direc-
tion at the point wt on step t, though it is not necessarily
aligned strongly with the gradient of f at wt. This argument
has to carefully take account of the nonlinearities introduced
by the transfer ρ and how they skew the stochastic gradient
estimates used by the algorithm, using the growth of transfer
around the origin as well as the smoothness condition of the
objective f .

Proof of Lemma 3. We first note that due to our update rule
and the fact that ∥gt∥ = 1,

Et[∥wt+1 −w∗∥2]

≤ ∥wt −w∗∥2 − 2ηEt[gt · (wt −w∗)] + η2.
(3)

We will proceed by lower bounding Et[gt · (wt −w∗)]. By
definition, the gradient estimator has:

Et[gt] = Et[ρ(f(wt + γut)− f(wt − γut)) ut].

By applying Lemma 9 on the right-hand side, we know that:

Et[gt]

=
γ

d
Et[ρ

′(f(wt + γvt)− f(wt − γvt))∇f(wt + γvt)]

+
γ

d
Et[ρ

′(f(wt + γvt)− f(wt − γvt))∇f(wt − γvt)],

where vt is a random vector uniform on the unit ball Bd,
and Et here and henceforth denotes the expectation over
this random variable (and conditioned over all randomness
before step t). Therefore:

Et[gt · (wt −w∗)]

=
γ

d
Et

[
ρ′(f(wt + γvt)− f(wt − γvt))·

(∇f(wt + γvt) +∇f(wt − γvt)) · (wt −w∗)

]
.

(4)

Next, we will show that, with probability one over the choice
of vt,

(∇f(wt + γvt) +∇f(wt − γvt)) · (wt −w∗)

≥ 2(f(wt)− f(w∗))− βγ2.
(5)

To see this, first note that since f is convex and β-smooth,
we have for any w,

0 ≤ f(w + γvt)− f(w)− γ∇f(w) · vt ≤ 1
2βγ

2;

0 ≤ f(w − γvt)− f(w) + γ∇f(w) · vt ≤ 1
2βγ

2.
(6)
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As a consequence, for any w,

2f(w) ≤ f(w + γvt) + f(w − γvt) ≤ 2f(w) + βγ2.

Using this with the convexity of w 7→ f(w+γvt)+f(w−
γvt), we obtain

(∇f(wt + γvt) +∇f(wt − γvt)) · (wt −w∗)

≥ f(wt + γvt) + f(wt − γvt)− f(w∗ + γvt)− f(w∗ − γvt)

≥ 2(f(wt)− f(w∗))− βγ2.

Put together, Eqs. (4) and (5) and the fact that ρ′ ≥ 0 imply
that

Et[gt · (wt −w∗)]

≥ 2γ

d
Et

[
ρ′(f(wt + γvt)− f(wt − γvt))

]
· (f(wt)− f(w∗)− 1

2βγ
2).

(7)

On the event f(wt)−f(w∗) > ϵ, we have on the right-hand
side above that f(wt) − f(w∗) − 1

2βγ
2 ≥ 1

2ϵ, since our
choice of γ satisfies γ2 ≤ ϵ/β. We therefore conclude in
this case the following:

Et[gt · (wt −w∗)]

≥ γϵ

d
Et

[
ρ′(f(wt + γvt)− f(wt − γvt))

]
.

(8)

We proceed to bounding the remaining conditional
expectation on the right-hand side. Note that
|f(wt + γvt)− f(wt − γvt)| ≤ 2Gγ < r due to
our setting of γ and since f is G-Lipschitz. Thus, from our
assumptions on ρ (cf. Assumption 1) and the convexity of
x 7→ xp−1 (for any integer p ≥ 1 and x ≥ 0), we have

Et

[
ρ′(f(wt + γvt)− f(wt − γvt))

]
≥ cρpEt

[∣∣f(wt + γvt)− f(wt − γvt)
∣∣p−1]

≥ cρp(Et

[∣∣f(wt + γvt)− f(wt − γvt)
∣∣])p−1

.

(9)

To further lower bound, recall Eq. (6) which implies

2γ∇f(wt) · vt − 1
2βγ

2

≤ f(wt + γvt)− f(wt − γvt)

≤ 2γ∇f(wt) · vt +
1
2βγ

2,

thus∣∣f(wt + γvt)− f(wt − γvt)
∣∣ ≥ 2γ

∣∣∇f(wt) · vt

∣∣− 1
2βγ

2.

Taking conditional expectations and using Lemma 8, we
can further lower bound:

Et

[∣∣f(wt + γvt)− f(wt + γvt)
∣∣]

≥ 2γEt

[∣∣∇f(wt) · vt

∣∣]− 1
2βγ

2

≥ γ

40
√
d
∥∇f(wt)∥ − 1

2βγ
2

≥ γ

40D
√
d
(f(wt)− f(w∗))− 1

2βγ
2,

where the final inequality follows from convexity and bound-
edness of the optimization domain:

f(wt)− f(w∗) ≤ ∇f(wt) · (wt −w∗) ≤ D∥∇f(wt)∥.

Now, on the event f(wt)− f(w∗) > ϵ, and for our setting
of γ = ϵ

40βD
√
d

, we can further derive that

Et

[∣∣f(wt + γvt)− f(wt − γvt)
∣∣]

≥ γϵ

40D
√
d
− 1

2βγ
2

≥ ϵ2

802βD2d
.

Plugging this back into to Eq. (9) (and since x 7→ xp−1 is
monotonically increasing for x ≥ 0), we obtain that on the
event f(wt)− f(w∗) > ϵ it holds that

Et

[
ρ′(f(wt + γvt)− f(wt − γvt))

]
≥ cρp

(
ϵ2

802βD2d

)p−1

.

Together with Eq. (8) and our choice of γ, this gives

Et[gt · (wt −w∗)] ≥ cρpγϵ
2p−1

(802βD2)p−1dp

≥ cρpϵ
2p

βp(80D)2p−1dp+1/2
.

Plugging this back into to Eq. (3) and setting η to be at most
the right-hand side above, we obtain the lemma.

4. Improved Rates with Strong Convexity
In this section, we analyze an epoch-wise version of Pro-
jected Dueling Descent (Algorithm 1) which is shown to
yield better convergence guarantees for α-strongly convex
β-smooth functions. The key idea lies in noting that in or-
der to design an optimal algorithm for α-strongly convex
β-smooth functions, one can simply iteratively reuse any
β-smoothly convex optimization routine (e.g., we can use
our Algorithm 1) by running it as a black-box over a suc-
cessive number of epoch-wise warm-starts. Our resulting
convergence analysis in Theorem 4 below shows that in this
case, the algorithm can find an ϵ-optimal point upon query-
ing only Õ(ϵ−2p) pairwise comparisons (as opposed to the
O(ϵ−4p) sample complexity rate for the β-smooth case, in
Theorem 2). In fact, as discussed in the introduction, the
O(ϵ−2p) convergence has been shown to be information-
theoretically optimal in specific instances of the problem.

4.1. Algorithm

As motivated above, our proposed method Epoch-PDD (Al-
gorithm 2) uses an epoch-wise black-boxing of a smooth-
convex optimization routine with a warm-starting approach.
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For our purpose, we use the earlier proposed Projected Duel-
ing Descent (Algorithm 1) as the black box. More formally,
the algorithm starts with some initial point w1 and runs over
a sequence of K = O(log(1/ϵ)) epochs: inside each epoch
k, we call the Projected Dueling Descent(wk, ηk, γk, Tk)
subroutine with the initial (warm-start) iterate wk, suitably
tuned parameters ηk, γk and a query budget of Tk. The
final point reached by Projected Dueling Descent after Tk

steps is considered to the next iterate, setting wk+1 ← Pro-
jected Dueling Descent(wk, ηk, γk, tk) and we proceed to
the (k + 1)-th epoch, warm-starting it with wk+1.

The key idea behind the epoch-wise warm-start approach
exploits the fact that between any two consecutive epochs,
say k and k+1, the ℓ2 distance of wk from w∗ gets reduced
by a constant fraction in expectation; this is formalized in
Lemma 5. Thus, it can be shown that running the algo-
rithms for roughly K = O(log(1/ϵ)) epoch, would lead to
∥wK −w∗∥2 ≤ ϵ, which in turn imply the ϵ-convergence.
Details are given in Algorithm 2.

Algorithm 2 Epoch-PDD
1: Input: error ϵ > 0, diameter D, initial point: w1 ∈ D
2: Initialize , Phase count K = ⌈log2

βD2

2ϵ ⌉ , B =
1

cρp
(200β)pdp+1/2, D1 = D

3: for k = 1, 2, 3, . . . ,K do
4: Set ϵk = 1

16D
2
kα, ηk ←

ϵ2pk
BD2p−1

k

, γk ← ϵk
10βDk

√
d

,

Tk =
D2

k

η2
k
log K

δ , Dk+1 ← 1√
2
Dk.

5: Update wk+1 to be the final point reached by
PDD(wk, ηk, γk, Tk)

6: end for
7: Return w = wK+1

4.2. Convergence Analysis

Our main result regarding Algorithm 2 is the following.
Theorem 4. Assume that the objective f : Rd → R is α-
strongly convex, β-smooth and G-Lipschitz over a domain
D of diameter ≤ D. Further assume that for the global
minimizer of f over Rd, denoted w∗, we have w∗ ∈ D.
Then given any 0 < ϵ < 5βmin{dD2,

√
drD/G} and δ ∈

(0, 1), with probability at least 1− δ the point w returned
by Algorithm 2 satisfies f(w) − f(w∗) ≤ ϵ. Further, the
total number of pairwise comparisons the algorithm makes
is at most

Õ

(
O(β)2pd2p+1

c2ρp
2

· D4p

α2pϵ2p

)
.

The main step towards proving the theorem is a contrac-
tion argument, showing that the distance to optimality
∥wk −w∗∥ is reduced by a constant factor at each epoch
of the algorithm.

Lemma 5. With probability at least 1 − δ, we have for
all k ≤ K that the point wk+1 returned by k-th epoch of
Algorithm 2 satisfies ∥wk+1 −w∗∥ ≤ Dk+1.

While this argument is mostly standard, a key step in-
volves establishing that once a run of Projected Dueling
Descent reaches near w∗, it keeps its distance to w∗ up
to constant factors and does not deviates away; this is for-
malized our next lemma below. Unlike in standard convex
optimization scenarios, here our gradient estimates are bi-
ased close to optimality and might steer the algorithm away
from w∗, which makes this step in the proof significantly
more challenging.

Lemma 6. Fix ϵ, δ > 0 and assume that Projected
Dueling Descent (Algorithm 1) is initialized such that
∥w1 −w∗∥2 ≤ 2ϵ/α and runs for T steps on an α-strongly
convex objective f using a stepsize

0 < η ≤ min

{
1

12
,
8ϵ

α
,

1

10
√
T log(T/δ)

}
.

Then with probability at least 1 − δ, it holds that
max1≤t≤T ∥wt −w∗∥2 ≤ 8ϵ

α .

The proof considers the stochastic process {Zt} where
Zt = ∥wt −w∗∥2 and upper bounds the maximal devi-
ation of Zt from the initial value Z1, which we assume
is at most Z1 ≤ z0 = 2ϵ/α. Note that {Zt} is almost a
supermartingale, but not quite so, because the conditional
expectation EtZt+1 may be larger than Zt if the suboptimal-
ity gap f(wt) − f(w∗) is small. The crucial observation
in our analysis is that, roughly speaking, when restricted
to intervals where Zt > z0, the process becomes a super-
martingale and therefore amenable to strong concentration
bounds (and elsewhere the process is trivially bounded by
z0).

Proof. Fix ϵ > 0, z0 = 2ϵ/α, and let Zt = ∥wt −w∗∥2
for all t. Then Z1 ≤ z0, and the process {Zt} measurable
with respect to the filtration {Ht}. We start by observing
that

max
1≤t≤T

Zt ≤ max

{
z0,max

i
max

τ ′
i<t≤τi

Zt

}
, (10)

where τ ′i and τi are the i’th up-crossing and down-crossing
of z0 = 2ϵ/α, respectively, for i = 1, 2, . . . , T (if there
there are less than T of those, define τ ′i = T or τi = T
respectively). Indeed, if the maximal value of {Zt} is more
than z0, it must be attained in an interval between an up-
crossing of z0 and the subsequent down-crossing.

To analyze this process in each such interval, let us restart
indexing so as τ ′i = 1 to simplify notation; then we have
Z1 > z0 (after the i’th up-crossing). Fix z1 = 4z0 and
consider the stopping time τ defined as the first step t where

7
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the value of Zt leaves the interval (z0, z1]. We will proceed
by examining the stopped process {Z ′

t}, defined via Z ′
t =

Zt∧τ for all t (here a ∧ b denotes min{a, b}).

We claim that the stopped process is a supermartingale. In-
deed, notice that Z ′

t+1 = Z ′
t + ⊮[τ > t](Zt+1 − Zt); since

τ is a stopping time the random variable ⊮[τ > t] is de-
terministic given Ht−1, thus Et[Z

′
t+1] = Et[Z

′
t] + ⊮[τ >

t](Et[Zt+1]− Zt). Now recall that, crucially, on the event
τ > t we know that Et[Zt+1] ≤ Zt; this is given by
Lemma 3, since on this event we have due to strong convex-
ity that f(wt) − f(w∗) ≥ 1

2α∥wt −w∗∥2 > 1
2αz0 = ϵ.

Plugging in, we conclude that Et[Z
′
t+1] ≤ Et[Z

′
t], namely,

that {Z ′
t} is a supermartingale.

We can now use Azuma-Hoeffding to bound the process
{Z ′

t}. Notice that the magnitude of the increments is
bounded (almost surely) via Eq. (3) as follows:

|Z ′
t+1 − Z ′

t| ≤ |Zt+1 − Zt|
≤ |2ηgt · (wt −w∗) + η2|
≤ 2η∥wt −w∗∥+ η2

≤ 2ηz1 + η2 ≤ 3ηz1,

since we assume that η ≤ z1. Here we used the fact
that ∥wt −w∗∥ ≤ z1 as long as the process has not been
stopped (once it is stopped the increments are anyway zero).
The Azuma-Hoeffding inequality then states that, for any
fixed 1 ≤ t ≤ T and λ ≥ 0,

Pr(Z ′
t ≥ Z ′

1 + λ) ≤ exp

(
− 2λ2

9η2z21t

)
≤ exp

(
− λ2

9η2z21T

)
,

and through a union bound, we have with probability at least
1− δ/T that

max
t≤T

Z ′
t < Z ′

1 + 3ηz1

√
T log

T 2

δ

≤ Z1 + 5ηz1

√
T log

T

δ
.

Since Z1 is the value right after an up-crossing of z0 and
since the increments of the process are bounded by 3ηz1,
we know that Z1 ≤ z0 + 3ηz1 ≤ z1/2 since z0 ≤ z1/4
and η ≤ 1/12. Also, for our choice of parameters we have
5η

√
T log(T/δ) ≤ 1

2 . Therefore, with probability at least
1 − δ/T we have that maxt≤T Z ′

t ≤ z1. Returning to the
original indexing, we proved that for any interval [τ ′i , τi]
we have with probability at least 1 − δ/T , it holds that
maxτ ′

i<t≤τi Zt ≤ z1. Therefore, through a union bound
over i, we obtain from Eq. (10) (and since z1 > z0) that
max1≤t≤T Zt ≤ z1 with probability at least 1 − δ, which
is precisely the statement of the lemma.

Having established the key Lemma 6, the proofs of Lemma 5
and Theorem 4 are straightforward.

Proof of Lemma 5. The proof proceeds by induction on k,
showing that ∥wk −w∗∥ ≤ Dk; for the initial point w1,
this holds by assumption. By our setting of the parameters
ηk, γk, Tk we are guaranteed, that with probability 1−δ/K,
that one of the points w during the k-th run of the procedure
Projected Dueling Descent will have function value f(w)−
f(w∗) ≤ ϵk. Then due to strong convexity ∥w −w∗∥2 ≤
2ϵk/α, and by Lemma 6 we are guaranteed that the final
point of reached by Projected Dueling Descent, namely
wk+1, will have ∥wk+1−w∗∥2 ≤ 8ϵk/α = 1

2D
2
k = D2

k+1.
(Technically, we also need that ηk is small enough to certify
the conditions of Lemma 6; this can always be guaranteed
by an appropriate scaling so as to make the diameter D
small enough.) The lemma follows by a union bound over
the success probabilities.

Proof of Theorem 4. By Lemma 5, with probability at
least 1 − δ the output point of the algorithm satisfies
∥w −w∗∥2 ≤ D2

K+1 ≤ 2−KD2 ≤ 2ϵ/β. Hence, by
β-smoothness (and since ∇f(w∗) = 0), it holds with the
same probability that f(w)−f(w∗) ≤ 1

2β∥w −w∗∥2 ≤ ϵ.
It remains to bound the overall sample complexity, which
up to logarithmic factors is given by:

K∑
k=1

Tk =

K∑
k=1

D2
k

η2k
log

K

δ

= B2 log
K

δ

K∑
k=1

D4p
k

ϵ4pk

= B2 log
K

δ

K∑
k=1

ϵ−2p
k α−2p28p

≤ α−2p28pB2 log
K

δ
22p(K+1)ϵ−2p

1

= B2 log
K

δ

(
32βD2

1

α

)2p
1

ϵ2p
.

We conclude the proof by setting the value of B as in the
algorithm.

5. Conclusion
We considered the problem of convex optimization under
the general class of pairwise preferences (dueling feedback).
The primary difficulty in designing an efficient algorithm
for this problem is that we can not hope to estimate the
gradient of f for any general dueling/pairwise preference
model. Thus we can not apply the standard gradient descent
based techniques to address this problem. We get around
with the difficulty by estimating a p-th order proxy of the
gradient, called “relative gradient”. The crux of the idea lies
in designing Projected Dueling Descent based algorithm
(Algorithm 1), which is a generalized notion of gradient
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descent-based optimization technique. Using this we design
an efficient algorithm with a convergence rate of Õ(ϵ−4p)
for a smooth convex objective function, and an optimal
rate of Õ(ϵ−2p) when the objective is smooth and strongly
convex.

Future work. Although the derived convergence rate for
the strongly convex setting is information-theoretically tight,
the exact convergence lower bound is unclear for the class
of smooth functions, which might be an interesting prob-
lem to pursue independently. Another direction could be
to analyze this problem beyond the smoothness assump-
tion. Considering a regret minimization objective instead
of the optimization perspective, as well as understanding
the information-theoretic regret performance limit would be
interesting as well. One can also consider generalizing the
optimization framework to subsets preferences, instead of
just pairwise (dueling) feedback. It might also be useful to
extend our setup for contextual scenarios, adversarial prefer-
ences or non-stationary function sequences and understand
the scopes of feasible solutions as well as the impossibility
results.
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A. Additional Related work
Dueling Bandits. Due to the widespread applicability and ease of data collection with relative feedback, learning from
preferences has gained much popularity in the machine learning community and widely studied as the problem of Dueling-
Bandits over last decade (Ailon et al., 2014; Yue et al., 2012; Zoghi et al., 2014a;b; 2015; Saha et al., 2021a; Gajane
et al., 2015; Bengs et al., 2021), which is an online learning framework that generalizes the standard multi-armed bandit
(MAB) (Auer et al., 2002) setting for identifying a set of ‘good’ arms from a fixed decision-space (set of items) by querying
preference feedback of actively chosen item-pairs.

Limitations of Existing Dueling Bandit techniques. Although the relative feedback variants of stochastic MAB problem
have been widely studied in the literature, the majority of the existing techniques are restricted to finite decision spaces and
stochastic settings which primarily rely on estimating the entries of the underlying preference matrix. These settings, though
important as basic steps, are mostly impractical for all real-world scenarios which often involve large (or potentially infinite)
decision spaces, where lies one of the primary motivations of this work. On the other hand, from an optimization point
of view, our work is a key step toward analyzing the fundamental performance limits of function minimization using the
weaker form of 0/1 bit relative preferences.

Dueling Bandits in continuous spaces. Surprisingly, following the same spirit of extending standard multi-armed bandits
(MAB) to continuous decision spaces (as in linear or GP-bandits), there has not been much work on the continuous extension
of the Dueling Bandit problem for large (and structured) decision spaces. The works in (Sui et al., 2017; González et al.,
2017) did attempt a similar objective, however, without any satisfactory theoretical performance guarantees. In another
recent work, (Brost et al., 2016) address the problem of regret minimization in continuous Dueling Bandits, however without
any finite time regret guarantee of their proposed algorithms. Recently, (Oh and Iyengar, 2019; Saha, 2021) consider
the problem of regret minimization from k-subsetwise preference feedback (k = 2 boils down to the dueling setup) on
structured decision spaces, although their underlying utility function is assumed to be only linear, unlike any general convex
function considered in our work; moreover, their preference model is restricted only to the class of Multinomial Logit (MNL)
based random utility model, unlike the general link function based preference feedback class that we considered. (Dudík
et al., 2015; Saha and Krishnamurthy, 2022) represents another line of dueling bandit work, which incorporates context
specific dueling preference model. Specifically, their algorithms are designed to compete against an abstract policy set of
context-to-action mappings w.r.t. ‘minimax-regret’. Their algorithms are also designed to handle potentially large decision
spaces, although, the regret objectives are focused to identifying the von-Neumann distribution of the underlying preference
models, which is very different from the function minimization with dueling feedback point of view that we considered.

Optimization for dueling feedback. Along the line of optimization for dueling feedback, (Yue and Joachims, 2009) is the
first to address the regret minimization problem for fixed functions f (arm rewards) with preference feedback, although
their techniques are majorly restricted to the class of smooth and differentiable preference functions that allows gradient
estimation. This is the main reason they could directly apply the classical one-point gradient estimation based Bandit
Gradient Descent (BGD) algorithm of (Flaxman et al., 2005) for the setting, unlike us. Moreover, another limitation of their
framework is their optimization objective is defined in terms of the ‘preferences’ which are directly observable and hence
easier to optimize, as opposed to defining it w.r.t. f as considered in this work. Following up (Yue and Joachims, 2009),
(Kumagai, 2017) considers the similar problem of dueling bandits on continuous arm set but under rather restrictive sets of
assumptions: Twice continuously differentiable, Lipschitz, strongly convex and smooth score/reward function, which are
often impractical for modeling real-world preference feedback.

Closest to our work in spirit are (Jamieson et al., 2012) and (Saha et al., 2021b), both of which precisely focus on function
optimization with relative pairwise preference feedback. The latter however is designed to work only under sign-based
relative feedback which reveals the exact information of which of the two queried points have a smaller function value. We
instead consider a very general class of polynomial-based preference functions (see Section 2) which generalizes the sign-
feedback model of (Saha et al., 2021b) as a special case. While the first, although gives provably optimal convergence rates,
their guarantees are restricted to the ‘well behaved’ class of strongly-convex and smooth functions (with bounded Lipschitz
gradient). The assumptions and consequently their techniques are hence quite restrictive: A major hindrance towards
generalizing their algorithmic ideas to a general function class is owning to their line-search-based coordinate descent
algorithm which is known to fail without strong-convexity. On the other hand, our algorithm is shown to yield optimal
convergence guarantees for a more general class of smooth-convex functions. Additionally we match the convergence rate
of (Jamieson et al., 2012) with the additional strong convexity assumption which shows the generality of our analysis for a
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large class of dueling feedback based optimization (G-DCO) problems.

B. Advantage of Gradient Descent Methods
Gradient-based methods have multiple advantages compared to confidence-based methods: (1) GD/OMD handle high-
dimensional problems efficiently due to their reliance on gradient information: (2) They are suitable for both stochastic
and adversarial environments, making the gradient-based methods robust to changing data distributions or the underlying
loss/reward functions which is often more practical for modeling real-world problems, (3) These methods can optimize
a wide range of objective functions, including non-linear, non-convex, and constrained problems, (4) Gradient descent
algorithms are simple to implement, even seamlessly integrate with modern deep learning frameworks, making these
methods computationally efficient, unlike many UCB and TS based methods which often do not have a closed form solution
(Saha et al., 2023; Das et al., 2024) or sampling from the posteriors could be complicated (Novoseller et al., 2020), and (5)
Gradient descent techniques are inherently robust to model misspecification and smoothly integrate with differential privacy
techniques.

C. Auxiliary technical results
We require two results about random vectors in the unit sphere in Rd. The first result is standard; we include a proof
(extracted from Saha et al., 2021b) for completeness.

Lemma 7. For a given vector g ∈ Rd and a random unit vector u ∈ Rd drawn uniformly from the unit sphere Sd, we have

∥g∥
20
√
d
≤ E

u∼Sd

[|g · u|] ≤ ∥g∥√
d
.

Proof. Without loss of generality we can assume ∥g∥ = 1, since one can divide through by ∥g∥ without affecting the claim.
Now to bound E[|g · u|], note that since u is drawn uniformly from Sd(1), by rotation invariance this equals E[|u1|]. For an
upper bound, observe that by symmetry E[u2

1] =
1
dE[

∑d
i=1 u

2
i ] =

1
d and thus

E[|u1|] ≤
√

E[u2
1] =

1√
d
.

We turn to prove a lower bound on E[|g · u|]. If u were a Gaussian random vector with i.i.d. entries ui ∼ N (0, 1/d), then
from standard properties of the (truncated) Gaussian distribution we would have gotten that E[|u1|] =

√
2/πd. For u

uniformly distributed on the unit sphere, ui is distributed as v1/∥v∥ where v is Gaussian with i.i.d. entries N (0, 1/d). We
then can write

Pr

(
|u1| ≥

ϵ√
d

)
= Pr

(
|v1|
∥v∥

≥ ϵ√
d

)
≥ Pr

(
|v1| ≥

1√
d

and ∥v∥ ≤ 1

ϵ

)
≥ 1− Pr

(
|v1| <

1√
d

)
− Pr

(
∥v∥ > 1

ϵ

)
.

Since
√
dv1 is a standard Normal, we have

Pr

(
|v1| <

1√
d

)
= Pr

(
−1 <

√
dv1 < 1

)
= 2Φ(1)− 1 ≤ 0.7,

and since E[∥v∥2] = 1 an application of Markov’s inequality gives

Pr
(
∥v∥ > 1

ϵ

)
= Pr

(
∥v∥2 >

1

ϵ2
)
≤ ϵ2E[∥v∥2] = ϵ2.

For ϵ = 1
4 this implies that Pr

(
|u1| ≥ 1/4

√
d
)
≥ 1

5 , whence E[|g · u|] = E[|u1|] ≥ 1/20
√
d.

We will also need a version of the same lemma for random vectors drawn from the unit ball rather than the unit sphere.
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Lemma 8. For a given vector g ∈ Rd and a random vector v ∈ Rd drawn uniformly from the unit ball Bd, we have

∥g∥
80
√
d
≤ E

v∼Bd

[|g · v|] ≤ ∥g∥√
d
.

Proof. We will prove that

1

4
E

u∼Sd

[|g · u|] ≤ E
v∼Bd

[|g · v|] ≤ E
u∼Sd

[|g · u|],

and the lemma will then follow from Lemma 7. First, since the normalized vector u = v/∥v∥ is uniformly distributed over
the unit sphere, we have

E
v∼Bd

[|g · v|] ≤ E
v∼Bd

[∣∣∣∣g · v

∥v∥

∣∣∣∣] = E
u∼Sd

[|g · u|].

For the lower bound, note that

E
v∼Bd

[|g · v|] ≥ E
v∼Bd

[
1

2

∣∣∣∣g · v

∥v∥

∣∣∣∣ ∣∣∣ ∥v∥ ≥ 1
2

]
Pr(∥v∥ ≥ 1

2 ) ≥
1

4
E

u∼Bd

[|g · u|],

where we have used the standard fact the marginal distribution of the norm of a random vector is monotonically increasing,
so the norm of v is greater than 1/2 with probability at least 1/2.

Finally, we give a lemma relating expectations over Sd to expectations over Bd, which can be extracted from Flaxman et al.
(2005).

Lemma 9. Let g : Rd → R be continuously differentiable, u be a random vector uniform on the unit sphere Sd, and v be a
random vector uniform in the unit ball Bd. Then

E
u∼Sd

[g(u)u] =
1

d
E

v∼Bd

[∇g(v)].

Proof. The claim follows from Lemma 1 of (Flaxman et al., 2005) which shows that for any differentiable function
f : Rd → R and any x ∈ Rd and δ > 0,

E
u∼Sd

[f(x+ δu)u] =
δ

d
∇ E

v∼Bd

[f(x+ δv)] =
δ

d
E

v∼Bd

[∇f(x+ δv)].

Fix x = 0 and substitute f(z) = g(δ−1z). Then ∇f(z) = δ−1∇g(δ−1z), and we obtain:

E
u∼Sd

[g(u)u] =
1

d
E

v∼Bd

[∇g(v)].
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