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Abstract

We find limits to the Transformer architecture for
language modeling and show it has a universal
prediction property in an information-theoretic
sense. We further analyze performance in non-
asymptotic data regimes to understand the role
of various components of the Transformer archi-
tecture, especially in the context of data-efficient
training. We validate our theoretical analysis with
experiments on both synthetic and real datasets.

1. Introduction
Language models that aim to predict the next token or word
to continue/complete a prompt have their origins in the work
of Shannon (1948; 1950; 1951). In recent years, neural lan-
guage models have taken the world by storm, especially the
Transformer architecture (Vaswani et al., 2017). Follow-
ing work on other neural network architectures (Cybenko,
1989), one can show that the Transformer architecture has a
universal approximation property for sequence-to-sequence
functions (Yun et al., 2020).

Transformer architectures have excellent performance and
parallelization capability on natural language processing
(NLP) tasks, becoming central to several state-of-the-art
models including GPT-4 (OpenAI, 2023) and PaLM 2 (Anil
et al., 2023). Such large language models (LLMs) are not
only very good at the statistical problem of predicting the
next token, but also have emergent capabilities in tasks
that seemingly require higher-level semantic ability (Wei
et al., 2022). Moreover, transformer-based architectures
have achieved tremendous attention on domains beyond
NLP, such as images (Dosovitskiy et al., 2020), audio (Li
et al., 2019), reinforcement learning (Chen et al., 2021), and
even multi-modal tasks (Jaegle et al., 2021). Transformers
also show cross-domain transfer learning capabilities, i.e.,
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models trained on NLP tasks show good performance when
fine-tuned for non-NLP tasks such as image processing. In
this sense, the Transformer architecture is said to have a uni-
versal computation property (Lu et al., 2021), reminiscent
of predictive coding hypotheses of the brain that posit one
basic operation in neurobiological information processing
(Golkar et al., 2022).

The basic predictive workings of Transformers and previ-
ous findings of universal approximation and computation
properties motivate us to ask whether they also have a uni-
versal prediction property in the information-theoretic sense
(Feder et al., 1992; Weissman & Merhav, 2001), which itself
is well-known to be intimately related to universal data com-
pression (Merhav & Feder, 1998). As far as we know, the
predictive capability of Transformers has not been studied in
an information-theoretic sense, cf. Gurevych et al. (2022).

We investigate not only the underlying mathematical prin-
ciples that govern the performance of Transformers, but
also aim to find limitations to their learning capabilities.
We show that Transformers are indeed universal predictors,
i.e. they can achieve information-theoretic limits asymptoti-
cally in the amount of data available. We also analyze their
performance in the finite-data regime by understanding the
role of various components of the Transformer architecture,
providing theoretical explanations wherever applicable.

To summarize our main results, we find the limits to perfor-
mance of Transformers and show they are optimal predictors.
Our limits only assume the Markov nature of data and are
otherwise universal. Moreover, we analyze the role of the
major components of a Transformer and provide better un-
derstanding and directions for their data-efficient training.
Finally, we validate our theoretical analysis by performing
experiments on both synthetic and real datasets.

2. Definitions and Preliminaries
2.1. Finite-State Markov Processes (FSMPs)

Let x = {x1, . . . xn} ∈ Xn be sequential data, where X
is some finite set. The state sequence of an FSMP, s =
{s1, . . . , sn−1}, is generated recursively according to si =
g(xi, . . . , x(i−k+1)+), where g(·) is the state function for
this FSMP, si ∈ S , and (i)+ = max {i, 1}. An FSMP has a
predictor function f(·) that outputs a probability distribution
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over possible values for xi+1, i.e. x̂i+1 = f(si) ∈ R|X |,∑
j f(si)j = 1. Hence, a FSMP is given by the pair (g, f).

2.2. Transformers

A Transformer architecture consist of three components
placed in a series: an input embedding layer, multiple atten-
tion layers, and an output projection matrix. Let us describe
each of the subcomponents of a Transformer.

Input embedding layer Let the input be sequential data
x = {x1, . . . xn−1} ∈ Xn−1. The embedding layer E
processes the input sequence individually to give a sequence
z = {z1, . . . zn−1} ∈ R(n−1)×din .

Attention layer The attention layer further consists of
two subcomponents: the self attention mechanism and the
position-wise feedforward network.

The masked self-attention layer takes input X =
[x1, x2, . . . , xn−1]

T ∈ R(n−1)×din . Queries (Q), keys (K),
and values (V ) are computed from X by multiplying with
three corresponding matrices as Q = XWQ,K = XWK ,
and V = XWV , where each matrix WQ,WK , and WV is
of dimension din × dmodel. The output of the self-attention
layer, H(0) = [h

(0)
1 , h

(0)
2 , . . . , h

(0)
n−1] is given by

H(0)

= Attention(Q,K, V ) = softmax(mask−∞(
QKT

√
dmodel

))V,

where mask−∞ is the causal binary mask used to preserve
the auto-regressive property of language modeling by en-
suring h

(0)
i depends only on xj≤i by setting all the entries

in the matrix QKT corresponding to connections to xj>i to
−∞.

This attention mechanism is extended to multi-head atten-
tion with m heads by simply dividing the inputs of dimen-
sion dmodel into m sub-parts and computing attention sepa-
rately and then concatenating them.

Masked self-attention followed by position-wise feedfor-
ward network, FFN , gives a Transformer decoder layer
H(1) = [h

(1)
1 , h

(1)
2 , . . . , h

(1)
n−1].

Output projection matrix The output projection matrix
Wp takes as input a sequence of dimension R(n−1)×dmodel

and outputs probabilities on the output space of dimension
R(n−1)×|V|, where V is the vocabulary space.

An L-layered Transformer decoder consists of an embed-
ding layer, followed by L attention layers, followed by an
output projection matrix. A single-layered Transformer
decoder is shown in Fig. 1.

Figure 1. Single-layered Transformer decoder with attention span,
k, = 3.

3. Performance Limits of Transformers
Here we provide theoretical limits to the performance of
the Transformer architecture. First, we show that the Trans-
former architecture can be viewed as an approximate FSMP.

3.1. Transformers as approximate FSMPs

An FSMP as defined in Sec. 2.1 is given by a function pair
(g, f), where g is a state function that first aggregates certain
past observations (xj , . . . , xi−1), where j < (i − 1) is a
choice for the g function and f is a probability function
from the states given by g to R|V|.

In an L-layered Transformer, we model the g function by the
embedding layer E followed by a sequence of L attention
layers. The lth attention layer computes the weighted sum of
past observations (h(2l)

j , . . . , h
(2l)
i−1) followed by an FFN .

Note that the weighted sum in the attention mechanism is
performed in the higher dimension dmodel, which can retain
as much information as concatenation in lower dimension if
dmodel is large enough. The output of the embedding layer
followed by L-attention layers can be seen as approximating
the g function, call it ḡ.

This is followed by the output projection matrix WP , which
can be seen as approximating the output probability func-
tion f , call it f̄ . Fig. 2 shows a single-layer Transformer,
comparing its components with that of an FSMP.

3.2. Theoretical Limits

Here, we use the similarity between Transformers and
FSMPs to find the limits of the Transformer architecture.
First we provide the training setup and loss criterion for our
results. Note that the only assumption we use in the follow-
ing data generation process is of Markovity and hence, the
results obtained are general otherwise. We first describe the
dataset and the loss criterion.
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Figure 2. A single Transformer decoder layer with attention span
equals to three (k = 3) and its comparison to a finite-state
Markov predictor (FSMP). The output of the Transformer de-
coder, h1

i−1 can be interpreted as the output of the state function,
g(xi, xi−1, . . . , xi−k+1), of a FSMP. The matrix WP can be inter-
preted as the predictor function f(·) of a FSMP that takes the state
as input and outputs a probability distribution over the vocabulary
space. The embedding layer is ignored for brevity.

Dataset We consider the train dataset DTrain =
{x1, . . . , xn; y1, . . . , yn} of size n and test dataset DTest =
{xn+1, . . . , xn+m; yn+1, . . . , yn+m} of size m. In the
datasets, {xi}n+m

i=1 is an arbitrary sequence with distribu-
tion p(x1, . . . , xn+m) and yi is generated conditioned on
g(xi, . . . , x(i−l+1)+), where g is a state function.Thus, we
consider a sequence of Markov order l. For our theoretical
analysis, we use binary vocabulary, i.e. xi, yi ∈ {0, 1}, and
will let m → ∞.

Loss criterion A model is trained on DTrain with some
state function ḡ to obtain an order k stationary Markov
estimator pnθk(·), which is the f function in the context of
an FSMP.

The train loss on DTrain is given by L(l,k,n)
Train (DTrain) =

− 1
n

∑n
i=1 log (p

n
θk
(yi|ḡ(x≤i))).

Denote the loss on DTest by L(l,k,m,n)
Test (DTest) =

− 1
m

∑m
i=1 log (p

n
θk
(yi+n|ḡ(x≤i+n))). Following (Man-

ning & Schutze, 1999), we consider languages to show
stationary, ergodic properties. Now, taking m → ∞, and
using stationarity of p(·), we define L(l,k,n)

Test (DTest) =

limm→∞ L(l,k,m,n)
Test (DTest) to get

L(l,k,n)
Test (DTest) =

−
∑

(yk,xk,...,x1)∈{0,1}k

p(yk, xk . . . , x1) log (p
n
θk
(yk|ḡ(xk, . . . , x1))).

(1)

For fixed data Markov order l with known state function g
and estimator Markov order k, suppose the minimum loss is

obtained by an estimator pn,∗θk
. Then, this minimum loss is

L(l,k,n),∗
Test (DTest) =

−
∑

(yk,xk,...,x1)∈{0,1}k+1

p(yk, xk, . . . , x1) log (p
n,∗
θk

(yk|g(xk, . . . , x1))).

(2)

Bayesian estimator An order-k Bayesian estimator with
a given state function g is of the form

pnθk(Yk+i = yk|g(Xk+i, . . . , X1+i) = g(xk, . . . , x1))

=

{
N(yk;g(xk,...,x1))
N(g(xk,...,x1))

if k > 0,
N(y0)

n if k = 0,

(3)

where N(yk; g(xk, . . . , x1)) denotes the number of counts
of Yk+i = yk and g(Xk+i, . . . , X1+i) = g(xk, . . . , x1)
for 0 ≤ i ≤ (n − k) in the train set, DTrain. Similarly,
N(g(xk, . . . , x1)) is the number of occurrences of the sub-
sequence g(Xk+i, . . . , X1+i) = g(xk, . . . , x1), N(y0) is
the number of occurrences of Yi = y0 for 0 ≤ i ≤ (n− k),
and n is the size of the train dataset. Note that the order
l and the state function g of the source is unknown to the
estimator, hence it is not obvious what k and g should be
chosen for best test performance.

Now we state and prove the theorem giving limits to the test
loss obtained by any Transformer architecture with attention
span k. Thereafter we show the obtained limits are indeed
optimal. Proofs are in Appendix A.

Theorem 3.1. Let {DTrain,DTest} be an order-l Markov
dataset with some state function g. Let ḡ be the state func-
tion of a Transformer such that H(Ym|g(Xm, . . . , X1)) =
H(Ym|ḡ(Xm, . . . , X1)) for m = k, l, e.g. choose ḡ as the
identity function and let pnθk be the order-k Bayesian esti-

mator in (3) with state function ḡ. Let L(l,k,n)
Test (DTest) be

the corresponding test loss of the Transformer.

Then, if l ≤ k,

lim
n→∞

L(l,k,n),∗
Test (DTest) = H(Yl|Xl, . . . , X1), (4)

whereas, if l > k,

lim
n→∞

L(l,k,n),∗
Test (DTest) = H(Yk|Xk, . . . , X1). (5)

Here H(Ym|Xm, . . . , X1) is the conditional entropy of the
distribution p(ym|xm, . . . , x1) for m = l, k.

Moreover, L(l,k,n)
Test (DTest) → L(l,k,n),∗

Test (DTest) with con-
vergence error O( |S|

n ) in expectation in both the cases, (4),
(5), where S is the range of the state function ḡ.

Now, we show that the limits obtained in Thm. 3.1 are
optimal.
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Figure 3. Performance of Finite State Markov Predictor on a
Boolean synthetic dataset, where the output is 1 if the sum of
previous l observations is greater than a threshold, else 0. Plot
illustrates the nature of the obtained limit in Thm. 3.1. Smaller
values of k converges faster but to a higher value of test loss com-
pared to larger values.

Theorem 3.2. Let {DTrain,DTest} be an order-l Markov
dataset with some state function g. Then, let h be some arbi-
trary function taking as input (Xi, . . . , Xi+k), and outputs
some probability h(Yi+k|Xi, . . . , Xi+k) over the space of
Yi+k. Then, the optimal cross-entropy loss obtained by h,∑

(yk,xk,...,x1)∈{0,1}k p(yk, xk . . . , x1) log (h(yk|xk . . . , x1))

is greater than or equal to H(Yl|Xl, . . . , X1) if l ≤ k, else,
greater than or equal to H(Yk|Xk, . . . , X1).

3.3. Understanding the limits

From the limits in Thm. 3.1, we know that for k < l,
increasing the value of k improves the obtained limit.
This is because conditioning reduces entropy and hence
using the stationarity property H(Yk|Xk, . . . , X1) ≤
H(Yk−1|Xk−1, . . . , X1) (Cover & Thomas, 1999). But,
for k > l, H(Yl|Xl, . . . , X1) = H(Yk|Xk, . . . , X1). To

better understand the limits in Thm. 3.1, we show the per-
formance of an FSMP with the aggregation function g as
the identity function with span of the input k, and the output
probability function f is set as the Bayesion predictor in
(3). We test the performance of the FSMP on a synthetic
Boolean dataset, where the input is randomly generated bi-
nary values and the output at position i is 1 if the sum of
the past l observations is greater than a threshold, else, 0.
The main observation to note from Fig. 3 is that for smaller
values of k, the convergence is faster compared to larger
values, but, the value the losses converge to is much worse
than for larger values of k.

The limits in Thm. 3.1 gives us two important design choices
for efficiently designing and training Transformers. First,
the choice of the state function ḡ and its attention span k.
Second, the amount of data, n, to train on.

The choice of ḡ and k must be such that it does
not lose any information important to the output, i.e.
H(Ym|g(Xm, . . . , X1)) = H(Ym|ḡ(Xm, . . . , X1)). One
such ḡ can be simply the identity function. The correspond-
ing k must be chosen large enough, i.e. k ≥ l. Note that
for all such ḡ and k the optimal value remains the same as
n → ∞, but, in the finite data regime, one needs to choose
appropriate ḡ and k to get the best performance. In par-
ticular, one needs to choose ḡ and k that has the smallest
range S while also satisfying H(Ym|g(Xm, . . . , X1)) =
H(Ym|ḡ(Xm, . . . , X1)). Thus, it indicates the need for
sparsity in the design.

For the second choice, n, while it may seem obvious that
training on larger data would give better performance, we
show that with increase in data, the improvement in perfor-
mance is significant, even with training for the same number
of training steps. Moreover, this also motivates an augmen-
tation technique that helps statistically explain the benefit
gained from using relative positional encodings (Shaw et al.,
2018).

In Appendix B, we further aim to understand Transformers
and data-efficient training. In Appendix C, we provide
further experiments on real-world data.

4. Conclusion
Here, we prove that the Transformer architecture yields uni-
versal predictors in the information-theoretic sense, which
may help explain why this architecture seems to be a kind
of state-of-the-art universal computation system. We further
analyzed the different components of the Transformer archi-
tecture, such as attention weights and positional encodings.

Going forward, it may be of interest to take inspiration from
information-theoretic work in universal prediction (Merhav
& Feder, 1998) to inspire novel neural architectures.
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A. Proofs
Lemma A.1. H(Yl|g(Xl, . . . , X1)) = H(Yl|Xl, . . . , X1) for the data generation process in Sec. 3.

Proof. We know Yl − g(Xl, . . . , X1)− (Xl, . . . , X1) forms a Markov chain, hence, H(Yl|g(Xl, . . . , X1), Xl, . . . , X1) =
H(Yl|g(Xl, . . . , X1)), But, since g(Xl, . . . , X1) is a function of (Xl, . . . , X1), we have
H(Yl|g(Xl, . . . , X1), Xl, . . . , X1) = H(Yl|Xl, . . . , X1).

Thm. 3.1. First we consider the case where l = 0, k = 0 and understand the behavior of L(l,k,n)
Test (DTest) and

L(l,k,n),∗
Test (DTest) as a function of n. Then, we will use the results from these cases to understand more general cases varying

both l and k.

Case l = 0, k = 0 Consider order 0 estimator in (3). We first compute L(0,0,n),∗
Test (DTest) by writing

L(0,0,n)
Test (DTest) =

∑
y0∈{0,1}

p(y0) log
1

p(y0)
+D(p||pθn

0
), (6)

where D(p||pθn
0
) =

∑
y0∈{0,1} p(y0) log

p(y0)
pθn0

(y0)
is the KL divergence between p and pθn

0
. Further, from basic information-

theoretic inequalities we know that D(p||q) ≥ 0 with the equality holding only when p = q (Cover & Thomas, 1999).
Thus, we have L(0,0,n),∗

Test (DTest) = H(Y0), where H(Y0) =
∑

y0∈{0,1} p(y0) log
1

p(y0)
is the entropy of the distribution

{p(y0) : y0 ∈ {0, 1}}. Moreover, we have pn,∗θ0
(y0) = p(y0) for y0 ∈ {0, 1}.

Now, we show that D(p||pθn
0
) → 0 as n → ∞ and further analyze its convergence rate. Using concentration inequalities, it

follows that pθn
0
→ p(y0) with rate O( 1√

n
) with high probability. For brevity, we do not provide the calculations and use

results from Cover & Shenhar (1977) that show the convergence rate to be O( 1√
n
) in expectation. Now we show that this

implies D(p(y0)||pθn
0
) → 0 with an approximate rate O( 1n ). To this end, take pθn

0
= p(y0) + t, where t = O( 1√

n
). Say,

p(1) = p = p(y0) and hence, p(0) = 1− p. Then, we have

D(p||p+ t) = p log
p

p+ t
+ (1− p) log

(1− p)

(1− p− t)

= − 1

ln 2

(
p ln (1 +

t

p
) + (1− p) ln (1− p− t)

)
.

Assuming n to be large enough such that t ≪ min {p, 1− p} and using the Taylor expansion of ln (1− x) up to second-order
terms, we have

D(p||p+ t) ≈ t2

ln 2

(
1

p
+

1

1− p

)
.

Thus, D(p||pθn
0
) → 0 with O( 1n ) in expectation.

Next, we generalize these optimal loss and convergence results for general l and k using results from the current case.

Case l ≤ k Here we have the evaluation loss L(l,k,n)
Test (DTest) as

L(l,k,n)
Test (DTest) = H(Yl|ḡ(Xl, . . . , X1))+∑

(xk,...,x1)

p(xk, . . . , x1)× (7)

D(p(yk|ḡ(xk, . . . , x1))||pnθk(yk|ḡ(xk, . . . , x1))), (8)

where pnθk(yk|ḡ(xk, . . . , x1)) is as defined in (3). Since D(p||q)) ≥ 0 with equality holding only when p = q, we have

L(l,k,n),∗
Test (DTest) = H(Yl|ḡ(Xl, . . . , X1)) = H(Yl|g(Xl, . . . , X1)) = H(Yl|Xl, . . . , X1), where H(Yl|g(Xl, . . . , X1)) is
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the conditional entropy of the distribution p(yk|g(xk, . . . , x1)). The equality H(Yl|g(Xl, . . . , X1)) = H(Yl|Xl, . . . , X1)
follows directly and is proved in Lem. A.1 for completeness.

Moreover, we have pn,∗θk
(yk|ḡ(xk, . . . , x1)) = p(yk|ḡ(xk, . . . , x1)) for (yk, xk, . . . , x1) ∈ {0, 1}k+1. Note that here, for

l ≤ k, L(l,k,n),∗
Test (DTest) = H(Yl|ḡ(Xl−1, . . . , X0)) is independent of k.

Now we look at the convergence rate of D(p(yk|ḡ(xk, . . . , x1))||pnθk(yk|ḡ(xk, . . . , x1))) → 0 as n → ∞. Here we only
perform approximate calculations as this is sufficient for present purposes. From the previous case with l = 0, k = 0,
we know D(p(y0)||pnθ0(y0)) → 0 as O( 1n ). For the convergence of D(p(yk|ḡ(xk, . . . , x1))||pnθk(yk|ḡ(xk, . . . , x1))),
we will only look at the indices yk that have prefix ḡ(xk, . . . , x1). We know that the number of such prefixes is
approximately equal to np(ḡ(xk, . . . , x1)) in expectation. Thus D(p(yk|ḡ(xk, . . . , x1))||pnθk(yk|ḡ(xk, . . . , x1))) →
0 as O( 1

np(ḡ(xk,...,x1))
). Thus, from (7) L(l,k,n)

Test (DTest) converges to H(Yl|ḡ(Xl, . . . , X1)) approximately as∑
ḡ(xk,...,x1)

p(ḡ(xk, . . . , x1))O( 1
np(ḡ(xk,...,x1))

) ≈ O( |S|
n ).

Case l > k Here the evaluation loss L(l,k,n)
Test (DTest) is given by

L(l,k,n)
Test (DTest) = H(Yk|ḡ(Xk, . . . , X1))

+
∑

(xk,...,x0)

p(xk, . . . , x1)× (9)

D(p(yk|ḡ(xk, . . . , x1))||pnθk(yk|ḡ(xk, . . . , x1))), (10)

The optimal value of L(l,k,n)
Test (DTest) is clearly H(Yk|ḡ(Xk, . . . , X1)) = H(Yk|g(Xk, . . . , X1)) = H(Yk|Xk, . . . , X1)

from non-negativity of KL divergence and the data generation process. Moreover, the convergence rate of L(l,k,n)
Test (DTest)

to H(Yk|Xk, . . . , X1) approximately with rate O( |S|
n ), the same way as in the previous case.

Thm. 3.2. The proof follows directly from the non-negativity of KL divergence.

l ≤ k Here, we have ∑
(yk,xk,...,x1)∈{0,1}k

p(yk, xk . . . , x1) log (h(yk|xk . . . , x1))

= H(Yk|Xk, . . . , X1) +
∑

(xk,...,x1)∈{0,1}k

p(yk, xk . . . , x1)×

D(p(yk|xk . . . , x1)||h(yk|xk . . . , x1))

= H(Yl|Xl, . . . , X1) +
∑

(xk,...,x1)∈{0,1}k

p(yk, xk . . . , x1)

D(p(yk|xk . . . , x1)||h(yk|xk . . . , x1))

Note that H(Yk|Xk, . . . , X1) = H(Yl|Xl, . . . , X1) because Yk only depends on the past l observations and the stationarity
assumption. Further, we have D(·||·) ≥ 0 to conclude the proof.

l > k Here, we have ∑
(yk,xk,...,x1)∈{0,1}k

p(yk, xk . . . , x1) log (h(yk|xk . . . , x1))

= H(Yk|Xk, . . . , X1) +
∑

(xk,...,x1)∈{0,1}k

p(yk, xk . . . , x1)

D(p(yk|xk . . . , X1)||h(yk|xk . . . , x1)),

≥ H(Yk|Xk, . . . , X1)

where we have D(·||·) ≥ 0.
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B. Understanding Transformers and Data-Efficient Training
First, we understand the role of various components of a Transformer in the prediction process. Then, we show the
importance of relative position encodings (Shaw et al., 2018) and group-equivariant positional encodings (Romero &
Cordonnier, 2020) statistically in resource-constrained datasets. In particular, our results show that these methods are
beneficial only when the available data is small, but their effect is negligible for larger datasets. For this analysis, we
use position augmentations and group augmentations instead of equivariance for the ease of analysis. In practice, both
equivariance and augmentation enforce the same constraint on the model. While equivariance applies the constraints by
design in the model, augmentation does it more implicitly when training.

B.1. Understanding Transformers

Here we discuss the role of various components of a Transformer.

Attention weights Attention weights play an important role in filtering out unimportant data points and hence help make
the range of the state function ḡ as small as possible while also ensuring that the important information is retained. We
validate this claim by showing that when attention weights are used, additional irrelevant information does not affect the loss
values. Whereas, without attention, the loss values are negatively affected.

On the other hand, in the extreme case where all the input variables are important, we show, perhaps surprisingly, that
attention performs worse than a network without it.

Absolute positional encoding and FFN Absolute positional encoding introduced by Vaswani et al. (2017) helps identify
the order of the words in a sentence for the Transformer. Without positional encoding, the output of a Transformer is
equivariant to the permutation of words in the input. This is not desirable since changing the order of words in a sentence
can completely change its meaning or may even make it gibberish. Hence, the understanding of the order of the words is
important to a Transformer.

In our experiments, we find that FFN does not effectively filter out unnecessary information like attention. But it does
improve the results when used with attention, indicating that it helps produce a better representation of the state of the
Transformer.

B.2. Data-Efficient Training: Positional Augmentation

Equivariance and augmentations are considered to be two sides of the same coin. Whereas one applies constraints on
the model, the other transforms the data during the training process to implicitly introduce those constraints in the learnt
functions. Here, we use group augmentations (Chen et al., 2020) to study its impact on the performance of Transformers as
it helps our theoretical analysis. Augmentations do not change the asymptotic performance limits, but, improves finite data
performance as we find next.

Positional augmentation We study the role of translation augmentation in the performance of Transformers. The key to
our analysis is the following: we transform the data while keeping the position encodings the same and since the input to the
Transformer is a summation of the data and the absolute encodings, the input appears as new data. This effectively increases
the number of training data points in the dataset. Thus, for each augmentation, we count the effective size of the augmented
dataset and analyze the performance from the finite data loss expression obtained in Thm. 3.1.

For translation augmentation for a dataset of size n and each batch processing npos tokens at once. A translation augmentation
parametrized by t0, can be obtained by shifting the data by t, where t goes from t0 to npos − 1. This way, the semantics of
text does not change, but we generate more data points. From the finitary analysis in Thm. 3.1, we know the loss value
converges with rate O(1/n). Hence, with augmentation t0, we have the following gain in the convergence rate. The proof is
direct from the assumption that there are no repetitions in the dataset and counting the size of the augmented dataset.

Proposition B.1. Let a dataset of size n be augmented by t0 with npos tokens processed per batch. Then the gain convergence
rate is O( 1n (1−

1
(npos−t0)

)).

Two important consequences to note from Prop. B.1 are: a) the gain decreases proportionally with increase in n, b) it
increases with decrease in t0.
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Table 1. Attention
Dataset Attention Aggregation
k 5 10 15 5 10 15
MarkovBoolSum 0.016 0.34 0.36 0.011 0.375 0.421
MarkovBin2Dec 0.036 0.87 0.99 0.015 0.91 1.08
WikiText2 6.17 6.18 6.19 6.49 6.66 6.70

Table 2. Position augmentation
n 1 1000
t0 0 99 0 99
loss values 9.68 0.87 0.628 0.624

C. Further Experiments
Here we validate our findings using various experiments.

C.1. Datasets

We work with three sequential datasets: two are synthetic and one is a real language dataset, WikiText2 (Merity et al., 2016).
The synthetic datasets are MarkovBoolSum and MarkovBin2Dec. MarkovBoolSum with Markovity l, is constructed by
first uniformly generating a binary input, then the labels are set as 1 if the sum of previous l inputs sum to greater than or
equal to l/2, else 0. For MarkovBin2Dec, the input is generated in a similar way as MarkovBoolSum, but, the output is the
decimal value corresponding to the binary observation of the l previous observations. The main difference between the two
datasets is that in MarkovBoolSum, not all the inputs contribute to the output, hence attention should help performance.
Whereas, in MarkovBin2Dec, all the input values contribute to the output, hence, attention might not perform as well. All
experiments were run on one fixed seed.

C.2. Model Architecture

We use a single attention layer Transformer with varying attention span. The model dimension is fixed to 64, and the hidden
dimension for FFN is set to 128. For our experiments, we keep three design choices: a) attention or aggregation; b) FFN
or no FFN ; c) translation augmentation.

C.3. Attention

In Tab. 1, we show results that indicate the benefit of attention. The synthetic datasets used l = 5, and were trained for
10000 train batches for 2000 steps of batch size 20. It is found that using attention, the difference between varying lengths
of span k is less than without attention. Also, in the case k = 5 for MarkovBin2Dec, we find that attention performs poorly
compared to no attention. This is because, for k = 5, all points in the input are important and attention may have neglected
some of the inputs.

C.4. Positional Encodings

The results for position augmentation are given in Tab. 2, where we find that augmentation helps improve test loss
performance. But, the loss is significant only when the number of train batches are very small, corresponding to our
theoretical analysis.

9


