

000 001 002 003 004 005 AURA: VISUALLY INTERPRETABLE AFFECTIVE UN- 006 DERSTANDING VIA ROBUST ARCHETYPES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Text-driven vision–language methods (e.g., CLIP variants) face three persistent
029 hurdles in affective computing: (i) limited support for continuous regression (e.g.,
030 Valence–Arousal, VA), (ii) brittle reliance on language prompts, and (iii) the ab-
031 sence of a unified paradigm across expression classification, action unit detection
032 (AUD), and VA regression (VAE). We introduce AURA, a prompt-free framework
033 that **projects frozen CLIP visual features into a learnable visual archetype space to**
034 **perform archetype-grounded predictions and explanations**. AURA comprises two
035 components: (1) self-organized archetype discovery, which adaptively allocates
036 the number of archetypes per affective state, assigning denser archetype sets to
037 complex or ambiguous states for fine-grained interpretability, and (2) archetype
038 contextualization, which models interactions among the most relevant archetypes
039 and semantic tokens to enhance structural consistency while suppressing redun-
040 dancy. Inference reduces to cosine matching between projected features and fixed
041 archetypes. Evaluated across six benchmarks, AURA consistently outperforms
042 prior state-of-the-art while remaining highly efficient. Overall, AURA unifies
043 classification, detection, and regression under a single visual-archetype paradigm,
044 delivering strong accuracy, cognitively aligned interpretability, and excellent effi-
045 ciency. All models and source code will be released upon acceptance.
046

1 INTRODUCTION

047 Large-scale vision–language models (VLMs) such as CLIP (Radford et al., 2021) have demonstrated
048 remarkable progress in multimodal representation learning. Benefiting from their paired image–text
049 training paradigm, CLIP’s visual embeddings capture more *semantically* rich information compared
050 to other self-supervised visual representation approaches (Jiang et al., 2023; Jose et al., 2025). This
051 advantage has recently been exploited in **interpretable affective understanding**, especially for
052 Facial Expression Recognition (FER) and Action Unit (AU) detection tasks (Zhou et al., 2022b;
053 Li et al., 2024a; Foteinopoulou & Patras, 2024; Chang et al., 2024; Liu et al., 2025). However,
054 existing CLIP-based methods face several critical limitations: **(i) Incompatibility with regression**,
055 Dimensional affective representations, such as the Valence–Arousal (VA) space, are essential for
056 fine-grained affective analysis. CLIP’s classification-oriented design, relying on textual descriptions,
057 is fundamentally unsuitable for regression tasks; **(ii) Reliance on brittle linguistic prompts**, Current
058 approaches attempt to describe inherently fuzzy and continuous affective states through elaborately
059 crafted handcrafted or adaptive templates (e.g., CoOp (Zhou et al., 2022b)). FER often demands fine-
060 grained textual descriptions of facial muscle configurations or even multiple sentences to represent
061 a single emotion class (Zhou et al., 2022b; Li et al., 2024a; Foteinopoulou & Patras, 2024). Simi-
062 larly, AU detection requires translating technical AU codes into approximate linguistic expressions
063 (e.g., “AU5: Upper Lid Raiser” → “wide-open eyes”), a process that is brittle, labor-intensive, and
064 knowledge-dependent (Chang et al., 2024; Liu et al., 2025); **(iii) Lack of a unified framework**, FER
065 and AU detection are typically addressed in isolation with task-specific customization, hindering
066 the development of a generalizable framework that supports classification, detection, and regression
067 in affective computing; and **(iv) Heavy reliance on fine-tuning**. Adapting to affective tasks often
068 requires fine-tuning the visual and/or textual encoders, which increases computational cost and
069 reduces representation generality, confining the model to task-specific settings.

070 More fundamentally, *text-dependent approaches diverge from how humans naturally interpret emotions*. Cognitive psychology shows that affective understanding is grounded in perceptual similarity
071

054 to internalized **visual archetypes**, rather than in **abstract linguistic** reasoning (Rosch, 1975; Fehr
 055 & Russell, 1984), motivating a cognitively aligned alternative. We introduce **AURA** (Affective
 056 Understanding via Robust Archetypes), a novel *visually interpretable* framework that unifies regres-
 057 sion, classification, and detection in a single paradigm. It eliminates reliance on textual descriptions,
 058 prompt engineering, and fine-tuning by **projecting frozen CLIP visual embeddings into a learnable**
 059 **archetype space** to discover an *adaptive* set of *dense, robust* archetypes, offering a perceptually
 060 aligned solution.

061 Notably, our method diverges from existing archetype/clustering/anchor-based approaches (Snell
 062 et al., 2017; Deng et al., 2021; Zhou et al., 2023a; Chen et al., 2019), which exhibit three major
 063 limitations: (1) *Fixed center numbers*. They predetermine one or a fixed set of archetypes (e.g., Top-
 064 K) per class, requiring elaborate manual design and leading to brittle representations; (2) *Constrained*
 065 to *classification*. They are predominantly restricted to classification and offer little support for
 066 regression tasks; (3) *Lack of fine-grained interpretability*. Their archetypes are typically too coarse to
 067 capture subtle affective variations, providing limited semantic interpretability. In contrast, **AURA**
 068 introduces three key advances: (1) **Self-organized archetype discovery**. It adaptively induces a dense
 069 set of archetypes for each affective state, allocating more archetypes to ambiguous states and fewer
 070 to simpler ones, capturing fine-grained variability without manual intervention. (2) **Unified task**
 071 **support**. It unifies regression, classification, and detection in a single framework, overcoming the
 072 task-specific tailoring required by prior approaches. (3) **Visually Grounded Semantic Interpretability**.
 073 Each sample attains interpretability through its archetypes that are cognitively aligned with human
 074 perception. In summary, our contributions include:

- 075 • **AURA Framework.** We propose AURA, a novel *visually interpretable* framework that **projects**
 076 **frozen CLIP visual embeddings into a learnable archetype space to enable archetype-grounded**
 077 **predictions and explanations**, thereby eliminating reliance on textual descriptions, prompt engi-
 078 **neering, and encoder fine-tuning, and promoting cognitively aligned modeling.**
- 079 • **Self-organized Archetype Discovery.** We introduce a self-organized mechanism that adaptively
 080 induces an appropriate number of archetypes for each affective state, allocating more to complex
 081 or ambiguous emotions and fewer to simpler ones, capturing fine-grained variability.
- 082 • **Unified Paradigm and Interpretable Modeling.** AURA establishes a unified framework that
 083 consistently supports diverse emotional analysis tasks, including regression, classification, and
 084 detection. Critically, it provides cognitively grounded interpretability, ensuring that every model
 085 decision is explained through alignment with semantically meaningful archetypes.
- 086 • **Effectiveness and Efficiency.** Extensive experiments across six benchmarks demonstrate that
 087 AURA consistently achieves state-of-the-art performance with reduced computational cost, un-
 088 derscoring its practicality, efficiency, and generalizability.

089 2 AURA FRAMEWORK

090 To discover semantically expressive and discriminative visual archetypes, the proposed AURA
 091 framework comprises two complementary components, as illustrated in Fig. 1 (Left). **(i) Self-
 092 organized Archetype Discovery Module**, discretizes continuous CLIP visual space into a set of
 093 semantically rich, compact, and densely distributed archetypes, which serve as the foundation for
 094 modeling affective variability. **(ii) Archetype Contextualization Module**. Building upon these
 095 archetypes, this module enhances structural coherence and captures nuanced semantic relationships
 096 by attending to the most relevant neighbors, thereby promoting contextual alignment.

100 2.1 VISUAL ARCHETYPE-SPACE PROJECTION (VAS).

101 To embed CLIP visual representations into the archetype space while disentangling affective cues
 102 from confounding factors, a *Visual Archetype-Space Projector* (VAS), $\mathcal{F}(\cdot)$ is introduced. This
 103 module compresses high-dimensional embeddings into a compact archetype-centric space and fulfills
 104 three functions: (1) steering embeddings toward the archetype space to facilitate effective archetype
 105 discovery, (2) attenuating affect-irrelevant variations (e.g., identity, illumination, and background),
 106 and (3) amplifying discriminative affective signals under supervised guidance. These functions are
 107 critical given the heterogeneity of affective tasks: FER and VA regression require holistic global cues,
 108 while AU detection relies on localized details. To capture such nuances, the projector exploits CLIP’s

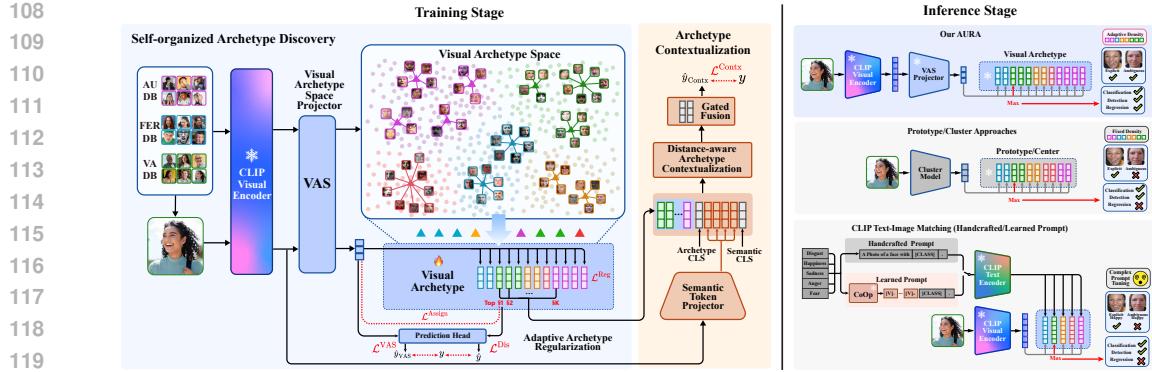


Figure 1: **Left: Training Stage.** Overall architecture of AURA, capable of handling FER, AU detection, and VA regression. AURA consists of two key modules. (1) *Self-organized Archetype Discovery* (blue): frozen CLIP features are projected into a Visual Archetype Space (VAS), followed by sample–archetype assignment with density and expressiveness regularization, which adaptively allocate more archetypes to complex or ambiguous affective states, while representing simpler states with fewer archetypes. (2) *Archetype Contextualization* refines the continuity among archetypes by modeling their contextual dependencies, enhancing semantic consistency and reducing redundancy. **Right: Inference Stage.** Predictions are obtained by cosine matching to fixed archetypes, yielding an efficient and interpretable pipeline. **Comparison.** Existing Prototype/Cluster methods and CLIP text–image matching approaches are also illustrated. Unlike AURA, these cannot perform regression tasks and capture only explicit affective states. Prototype/Cluster methods typically rely on fixed number of centers, whereas AURA adaptively adjusts archetype density. CLIP-based approaches further require prompt engineering, while AURA learns perception-grounded, fine-grained, and interpretable archetypes without manual design.

hierarchical features to derive task-appropriate global- or patch-level embeddings, thereby ensuring the **versatility** of AURA and its capacity to generalize across diverse affective scenarios.

(i) Global-level Embedding. Tasks such as FER and VA regression require holistic cues from the entire face. Given an image x^t , global embeddings are extracted from the CLIP encoder as $\mathbf{z}_g^t = \mathcal{E}_{\text{CLS}}(x^t) \in \mathbb{R}^D$ and projected into archetype space via a lightweight two-layer projector $\mathbf{f}_t = \mathcal{F}(\mathbf{z}_g^t) \in \mathbb{R}^d$ with $d \ll D$. To attenuate affect-irrelevant variations and enhance discriminative capacity, task-specific supervision is imposed. **For FER**, predictions are obtained by a linear classifier $\phi_{\text{Exp}}(\cdot)$, optimized with cross-entropy, with weight $w_y = \frac{N}{y \cdot n_y}$ compensates for class imbalance:

$$\mathcal{L}_{\text{Exp}}^{\text{VAS}} = -w_y \log \phi_{\text{Exp}}(\mathbf{f}_{\text{Exp}})_y. \quad (1)$$

For VA regression, regression heads $\phi_V(\cdot)$ and $\phi_A(\cdot)$ operate on valence and arousal features, and the objective integrates concordance correlation (CCC) with mean squared error (MSE):

$$\mathcal{L}_{\text{VA}}^{\text{VAS}} = \frac{1}{2} [\text{CCC}(\phi_V(\mathbf{f}_V), y_V) + \text{CCC}(\phi_A(\mathbf{f}_A), y_A)] + \alpha_{\text{mse}} \frac{1}{2} [\text{MSE}(\phi_V(\mathbf{f}_V), y_V) + \text{MSE}(\phi_A(\mathbf{f}_A), y_A)]. \quad (2)$$

(ii) Patch-level Embedding. AU detection targets localized muscle activations and therefore requires fine-grained patch features. Patch embeddings $\mathbf{z}_p^{\text{AU}} \in \mathbb{R}^{L \times D}$ are extracted from the final hidden layer of CLIP, where L denotes the number of patches. A lightweight Transformer $\mathcal{T}_{\text{proj}}(\cdot)$ augments them with a learnable [CLS] token and positional encodings, yielding contextualized features $\tilde{\mathbf{z}}^{\text{AU}} = \mathcal{T}_{\text{proj}}(\mathbf{z}_p^{\text{AU}}) \in \mathbb{R}^D$. For each AU m , an independent projector $\mathcal{F}_{(m)}(\cdot)$ maps $\tilde{\mathbf{z}}^{\text{AU}}$ into archetype space, followed by a detection head $\phi_{(m)}(\cdot)$, optimized by binary cross-entropy across all M AUs:

$$\mathcal{L}_{\text{AU}}^{\text{VAS}} = \frac{1}{M} \sum_{m=1}^M \text{BCE}(y_m, \phi_{(m)}(\mathcal{F}_{(m)}(\tilde{\mathbf{z}}^{\text{AU}}))). \quad (3)$$

2.2 SELF-ORGANIZED ARCHETYPE DISCOVERY MODULE

To discover self-organized, perception-grounded & task-adaptive visual archetypes, a *Self-organized Archetype Discovery* module is introduced. It operates via two complementary stages: (i) *Discriminative Archetype Assignment*, which aligns projected visual features with archetypes under label supervision, strengthening their discriminative capacity; and (ii) *Adaptive Archetype Regularization*, which self-organizes both the density and distribution of archetypes, refining their semantic fidelity and compactness. The whole architecture is illustrated in left (blue) part of Fig. 1.

162 2.2.1 DISCRIMINATIVE ARCHETYPE ASSIGNMENT
163

164 This step enforces discriminative alignment between samples and archetypes, ensuring that each
165 sample is mapped to the most semantically representative archetype in the latent space. Formally,
166 let $\mathcal{A} = \{\mathbf{a}^1, \dots, \mathbf{a}^K\} \subset \mathbb{R}^d$ denote a learnable set of K archetypes, where each \mathbf{a}^k serves as a
167 semantically meaningful anchor in the latent space. Given a projected feature $\mathbf{f} \in \mathbb{R}^d$, an assignment
168 operator $\mathcal{Q}(\cdot; \mathcal{A})$ maps \mathbf{f} to the most semantically aligned archetype under cosine similarity. To
169 guarantee scale-invariant matching, both features and archetypes are ℓ_2 -normalized. The resulting
170 assigned archetype is defined as

$$171 \mathbf{a}^{k^*} = \mathcal{Q}(\mathbf{f}; \mathcal{A}), \quad k^* = \arg \max_k \left\langle \frac{\mathbf{f}}{\|\mathbf{f}\|_2}, \frac{\mathbf{a}^k}{\|\mathbf{a}^k\|_2} \right\rangle. \quad (4)$$

173 To enable semantically faithful archetype representations, two complementary objectives are formulated:
174 (i) an *Archetype Assignment Loss* that stabilizes learning and enforces consistent alignment,
175 and (ii) a *Task-aware Supervision Loss* that preserves semantic fidelity with respect to affective tasks.
176

177 **(i) Archetype Assignment Loss ($\mathcal{L}^{\text{Assign}}$)**. To ensure stable archetype discovery and robust feature
178 discretization, a dual-term objective is defined for each projected feature \mathbf{f} and its assigned archetype
179 \mathbf{a} . The first term adapts the archetype \mathbf{a} toward the encoder distribution, while the second enforces a
180 commitment constraint from \mathbf{f} to \mathbf{a} , preventing feature drift and promoting stable alignment. Formally,
181

$$182 \mathcal{L}^{\text{Assign}} = \underbrace{\|\text{sg}[\mathbf{f}] - \mathbf{a}\|_2^2}_{\text{archetype adaptation}} + \beta \cdot \underbrace{\|\mathbf{f} - \text{sg}[\mathbf{a}]\|_2^2}_{\text{commitment penalty}}, \quad (5)$$

185 where $\text{sg}[\cdot]$ denotes the stop-gradient operator and β balances adaptation and commitment. This
186 symmetric formulation allows archetypes to self-organize around the latent feature distribution, while
187 ensuring that encoder outputs consistently conform to the discovered archetype structure.

188 **(ii) Archetype Discriminative Loss (\mathcal{L}^{Dis})**. To ensure archetypes remain both task-discriminative
189 and perceptually grounded, the supervision objective is coupled with the archetype assignment
190 process. This joint formulation aligns archetype learning with human-consistent perception while
191 enabling adaptive specialization to the heterogeneous label of FER, AU detection, and VA regression.
192

193 *For FER*. A shared archetype set is defined across all expression classes, denoted as $\mathcal{A}_{\text{Exp}} =$
194 $\{\mathbf{a}_{\text{Exp}}^1, \dots, \mathbf{a}_{\text{Exp}}^{K_{\text{Exp}}}\}$, where K_{Exp} is the number of archetypes. Given a projected feature \mathbf{f} , archetype
195 assignment yields $\mathbf{a}^k = \mathcal{Q}(\mathbf{f}; \mathcal{A}_{\text{Exp}})$. The expression class associated with the selected archetype is
196 then predicted as $\hat{y}_{\mathbf{a}^k} = \phi_{\text{Exp}}(\mathbf{a}^k)$, where $\phi_{\text{Exp}}(\cdot)$ denotes the shared classifier in Eq. 1. To enforce
197 semantic alignment, a weighted cross-entropy loss $\mathcal{L}_{\text{Exp}}^{\text{Dis}}(\hat{y}_{\mathbf{a}^k}, y)$ is employed, consistent with Eq. 1.
198

199 *For VA Regression*. Two distinct archetype sets are defined, $\mathcal{A}_{\text{V}} = \{\mathbf{a}_{\text{V}}^1, \dots, \mathbf{a}_{\text{V}}^{K_{\text{V}}}\}$ and $\mathcal{A}_{\text{A}} =$
200 $\{\mathbf{a}_{\text{A}}^1, \dots, \mathbf{a}_{\text{A}}^{K_{\text{A}}}\}$, corresponding to valence and arousal. Projected features \mathbf{f}_{V} and \mathbf{f}_{A} are assigned with
201 archetypes via quantization: $\mathbf{a}_{\text{V}}^k = \mathcal{Q}(\mathbf{f}_{\text{V}}; \mathcal{A}_{\text{V}})$ and $\mathbf{a}_{\text{A}}^k = \mathcal{Q}(\mathbf{f}_{\text{A}}; \mathcal{A}_{\text{A}})$. Predictions are then obtained as
202 $\hat{y}_{\text{V}} = \phi_{\text{V}}(\mathbf{a}_{\text{V}}^k)$ and $\hat{y}_{\text{A}} = \phi_{\text{A}}(\mathbf{a}_{\text{A}}^k)$, where $\phi_{\text{V}}(\cdot)$ and $\phi_{\text{A}}(\cdot)$ are shared regression heads in Eq. 2. For
203 each dimension $t \in \{\text{V}, \text{A}\}$, supervision is imposed through $\mathcal{L}_t^{\text{Dis}}$, consistent with Eq. 2.

204 *For AU Detection*. A distinct archetype set $\mathcal{A}_{(m)} = \{\mathbf{a}_{(m)}^1, \dots, \mathbf{a}_{(m)}^{K_{(m)}}\}$ is defined for each AU m .
205 The projected feature $\mathbf{f}_{(m)}$ is independently assigned with an archetype via $\mathbf{a}_{(m)}^k = \mathcal{Q}(\mathbf{f}_{(m)}; \mathcal{A}_{(m)})$.
206 The activation score is then obtained as $\hat{y}_{(m)} = \phi_{(m)}(\mathbf{a}_{(m)}^k)$, where $\phi_{(m)}(\cdot)$ shared in Eq. 3. Each
207 AU archetype set is supervised with $\mathcal{L}_{(m)}^{\text{Dis}}$, consistent with Eq. 3.
208

210 2.2.2 ADAPTIVE ARCHETYPE REGULARIZATION
211

212 To enhance the quality of learned archetypes while accommodating task-specific characteristics,
213 AURA introduces adaptive regularizations focusing on two key aspects: *density* and *expressiveness*.
214 **Density** governs the allocation of archetypes per affective state, ensuring that simple states are
215 represented by fewer archetypes, while ambiguous or highly variable states receive denser coverage.
216 **Expressiveness** captures the semantic fidelity of each archetype, requiring compactness within

homogeneous states and discriminativeness across heterogeneous ones. By jointly regularizing them, AURA self-organizes archetypes into a semantically faithful and task-adaptive structure.

For FER Task. With discrete emotion labels, a complementary regularization strategy is devised to enhance both the robustness and stability of learned archetypes by enforcing (i) *intra-class compactness*, (ii) *inter-class separation*, and (iii) *archetype diversity*. Through their combined effect, the archetype space self-organizes into a stable configuration, where **each emotion class is allocated an appropriate number of archetypes** that faithfully reflects its intrinsic variability. Formally, Each archetype \mathbf{a}^k is assigned to an emotion class via $c_k = \arg \max_u [\phi_{\text{Exp}}(\mathbf{a}^k)]_u$, where $\phi_{\text{Exp}}(\cdot)$ is the classifier in Eq. 1, and its confidence is measured by $w^k = \max_u [\text{softmax}(\phi_{\text{Exp}}(\mathbf{a}^k))]_u$. For each class c , the associated archetype set is $\mathcal{A}_c = \{k \mid c_k = c\}$ with class center $\mu_c = \frac{1}{|\mathcal{A}_c|} \sum_{k \in \mathcal{A}_c} \mathbf{a}^k$, normalized as $\tilde{\mu}_c = \mu_c / \|\mu_c\|_2$. The three optimization objectives are defined as:

(i) *Intra-class Compactness Loss* ($\mathcal{L}_{\text{intra}}$): encourages archetypes to align with their respective class centers, with uncertain archetypes (low w^k) penalized more heavily:

$$\mathcal{L}_{\text{intra}} = \frac{1}{K} \sum_{k=1}^K (1 - w^k) \cdot (1 - \cos(\tilde{\mathbf{a}}^k, \tilde{\mu}_{c_k})). \quad (6)$$

(ii) *Inter-class Separation Loss* ($\mathcal{L}_{\text{inter}}$): enforces distinctiveness between classes by penalizing pairs of centers whose similarity exceeds a margin m :

$$\mathcal{L}_{\text{inter}} = \frac{1}{|\mathcal{S}|} \sum_{(c, c') \in \mathcal{S}} \max(0, \cos(\tilde{\mu}_c, \tilde{\mu}_{c'}) - m). \quad (7)$$

(iii) *Archetype Diversity Loss* (\mathcal{L}_{div}): encourages semantic dispersion while preventing collapse by balancing spread from the global mean and variance across classes. Let $\bar{\mu} = \frac{1}{C} \sum_{c=1}^C \tilde{\mu}_c$ be the global mean, $d_c = \|\tilde{\mu}_c - \bar{\mu}\|_2$, and $\bar{d} = \frac{1}{C} \sum_{c=1}^C d_c$. The loss is:

$$\mathcal{L}_{\text{div}} = -\frac{1}{C} \sum_{c=1}^C d_c - \frac{1}{C} \sum_{c=1}^C (d_c - \bar{d})^2. \quad (8)$$

The total FER archetype regularization loss is then given by $\mathcal{L}^{\text{Reg}} = \mathcal{L}_{\text{intra}} + \mathcal{L}_{\text{inter}} + \mathcal{L}_{\text{div}}$.

For AU Detection and VA Regression. Unlike FER, these tasks lack reliable discrete class boundaries. VA regression is inherently continuous, while AU detection, although binary in label space, involves subtle intensity variations that cannot be faithfully captured by strict binary modeling. To address this, AU predictions are treated as continuous activation scores within $[0, 1]$. Accordingly, a class-free archetype regularization strategy is adopted, which jointly enforces (i) *Score-aware Attraction Loss*, (ii) *Score-aware Repulsion Loss*, and (iii) *archetype diversity*. This design ensures that archetypes remain semantically expressive and robust, even without explicit class supervision.

(i) *Score-aware Attraction Loss* ($\mathcal{L}_{\text{attr}}$): encourages archetypes with similar predicted scores to cluster in the feature space. Let \mathbf{a}^i and \mathbf{a}^j denote two archetypes with predicted scores $\hat{y}^i = \phi_{\text{task}}(\mathbf{a}^i)$ and $\hat{y}^j = \phi_{\text{task}}(\mathbf{a}^j)$, where $\phi_{\text{task}}(\cdot)$ is a shared regression head (sigmoid-activated for AU). Define the score gap $\Delta^{ij} = |\hat{y}^i - \hat{y}^j|$ and cosine distance $d^{ij} = \frac{1 - \cos(\mathbf{a}^i, \mathbf{a}^j)}{2}$. The candidate set $\mathcal{S}_{\text{attr}} = \{(i, j) \mid \Delta^{ij} < m\}$ contains archetype pairs with similar scores, where m is a soft margin. The loss is then:

$$\mathcal{L}_{\text{attr}} = \frac{1}{|\mathcal{S}_{\text{attr}}|} \sum_{(i, j) \in \mathcal{S}_{\text{attr}}} [\max(0, d^{ij} - m)]^2, \quad (9)$$

which penalizes unnecessary separation among archetypes aligned with similar activation levels.

(ii) *Score-aware Repulsion Loss* ($\mathcal{L}_{\text{repul}}$): This term enforces separation between archetypes associated with dissimilar predicted scores. Let $\Delta^{ij} = |\hat{y}^i - \hat{y}^j|$ and $d^{ij} = \frac{1 - \cos(\mathbf{a}^i, \mathbf{a}^j)}{2}$ denote the score gap and cosine distance between two archetypes, respectively. The candidate set $\mathcal{S}_{\text{repul}} = \{(i, j) \mid \Delta^{ij} \geq m\}$ collects pairs with divergent scores, where m is a soft margin. The repulsion loss is then defined as

$$\mathcal{L}_{\text{repul}} = \frac{1}{|\mathcal{S}_{\text{repul}}|} \sum_{(i, j) \in \mathcal{S}_{\text{repul}}} [\max(0, m - d^{ij})]^2, \quad (10)$$

270 which prevents collapse by pushing apart archetypes encoding distinct affective states.
 271

272 *(iii) Archetype Diversity* (\mathcal{L}_{div}): To avoid collapse and promote semantic dispersion, archetypes are
 273 further regularized with the diversity objective \mathcal{L}_{div} as defined in Eq. 8. The overall regularization
 274 loss for AU detection and VA Regression defined as: $\mathcal{L}^{\text{Reg}} = \mathcal{L}_{\text{attr}} + \mathcal{L}_{\text{repul}} + \mathcal{L}_{\text{div}}$.

275 2.2.3 TOTAL SELF-ORGANIZED ARCHETYPE DISCOVERY LOSS

277 Finally, we combine the Discriminative Archetype Assignment Losses and the Adaptive Archetype
 278 Regularization Losses to define the Self-organized Archetype Discovery Loss for all tasks as:

$$279 \mathcal{L}^{\text{Arc}} = \mathcal{L}^{\text{Assign}} + \mathcal{L}^{\text{Dis}} + \mathcal{L}^{\text{Reg}}. \quad (11)$$

281 2.3 ARCHETYPE CONTEXTUALIZATION MODULE

283 The Self-organized Archetype Discovery module learns archetypes independently, but such isolation
 284 overlooks semantic continuity among those jointly relevant to a sample. To address this, an **Archetype**
 285 **Contextualization (AC)** module (Fig. 1, left brown part) enforces structural consistency across
 286 related archetypes. For each input, the top- K similar archetypes and the projected semantic token are
 287 processed by a lightweight Transformer encoder to capture contextual dependencies. This adapts
 288 archetypes to their semantic neighbors, enhancing consistency and reducing redundancy.

290 2.3.1 SEMANTIC TOKEN PROJECTOR.

292 Archetype Contextualization aims to capture context-dependent relations among archetypes. For each
 293 sample, in addition to retrieving its top- K most relevant archetypes, the semantic representation ob-
 294 tained via the Semantic Token Projector is also incorporated. Same with Sec. 2.1, global embeddings
 295 used for FER and VA regression, while patch embeddings are adopted for AU detection.

296 **(i) Global Semantic Token Projector.** An attention-based projection module is introduced to derive
 297 a compact set of N_{tok} semantic tokens from global CLIP embeddings. Given \mathbf{z}_g^t , a learnable query set
 298 $\mathbf{S} = [\mathbf{s}^1; \dots; \mathbf{s}^{N_{\text{tok}}}] \in \mathbb{R}^{N_{\text{tok}} \times d_{\text{tok}}}$ is defined, each \mathbf{s}^n is intended to capture a distinct affective attribute.
 299 For token index n , token-specific key and value projections $f_K^{(n)}, f_V^{(n)} : \mathbb{R}^d \rightarrow \mathbb{R}^{d_{\text{tok}}}$ generate

$$300 \mathbf{k}^{(n)} = f_K^{(n)}(\mathbf{z}_g^t), \quad \mathbf{v}^{(n)} = f_V^{(n)}(\mathbf{z}_g^t). \quad (12)$$

302 Each query \mathbf{s}^n attends to its key-value pair through a multi-head attention operator $\Psi(\cdot)$, yielding

$$304 \mathbf{t}^n = \Psi(\mathbf{s}^n, \mathbf{k}^{(n)}, \mathbf{v}^{(n)}). \quad (13)$$

305 The tokens $\{\mathbf{t}^n\}_{n=1}^{N_{\text{tok}}}$ are aggregated and normalized into global semantic token $\mathbf{T}^g \in \mathbb{R}^{N_{\text{tok}} \times d_{\text{tok}}}$.

307 **(ii) Patch Semantic Token Projector.** To capture fine-grained structural cues essential for AU, we
 308 exploit patch embeddings $\mathbf{z}_p^{\text{AU}} \in \mathbb{R}^{L \times D}$. A Transformer $\mathcal{T}_{\text{tok}}(\cdot)$ aggregates local context, where N_{tok}
 309 learnable tokens $\{\mathbf{s}^n\}_{n=1}^{N_{\text{tok}}}$ are prepended to the patch sequence:

$$310 [\tilde{\mathbf{t}}^1; \dots; \tilde{\mathbf{t}}^{N_{\text{tok}}}] = \mathcal{T}_{\text{tok}}([\mathbf{s}^1; \dots; \mathbf{s}^{N_{\text{tok}}}] \parallel \mathbf{z}_p^{\text{AU}}), \quad \tilde{\mathbf{t}}^n \in \mathbb{R}^D.$$

312 Each $\tilde{\mathbf{t}}^n$ is projected through an AU-specific linear layer for each AU to yield semantic tokens
 313 $\mathbf{t}^n \in \mathbb{R}^{d_{\text{tok}}}$, forming the patch-aware semantic token $\mathbf{T}^p = [\mathbf{t}^1; \dots; \mathbf{t}^{N_{\text{tok}}}] \in \mathbb{R}^{N_{\text{tok}} \times d_{\text{tok}}}$.

315 2.3.2 DISTANCE-AWARE ARCHETYPE CONTEXTUALIZATION

317 To capture contextual dependencies among semantically related archetypes and mitigate redundancy,
 318 we retrieve the top- K nearest archetypes for each sample. The selected archetypes $\{\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(K)}\}$
 319 are then transformed into **distance-aware** semantic tokens:

$$320 \hat{\mathbf{a}}^{(k)} = \mathbf{W}_{\text{proj}} \mathbf{a}^{(k)} + \mathbf{b}_{\text{proj}} + \mathbf{W}_{\text{dist}} d_k + \mathbf{b}_{\text{dist}}, \quad (14)$$

322 where $\mathbf{a}^{(k)} \in \mathbb{R}^d$ denotes the k -th nearest archetype, d_k is its cosine distance to the projected sample
 323 feature \mathbf{f} , $\mathbf{W}_{\text{proj}} \in \mathbb{R}^{d_{\text{tok}} \times d}$ and $\mathbf{W}_{\text{dist}} \in \mathbb{R}^{d_{\text{tok}} \times 1}$ are learnable projection matrices, and $\mathbf{b}_{\text{proj}}, \mathbf{b}_{\text{dist}} \in$
 $\mathbb{R}^{d_{\text{tok}}}$ are bias terms. This yields the sequence of semantic tokens $\hat{\mathbf{A}} = [\hat{\mathbf{a}}^{(1)}; \dots; \hat{\mathbf{a}}^{(K)}] \in \mathbb{R}^{K \times d_{\text{tok}}}$.

324 Let $\mathbf{T} = [\mathbf{t}^1; \dots; \mathbf{t}^{N_{\text{tok}}}] \in \mathbb{R}^{N_{\text{tok}} \times d_{\text{tok}}}$ denote the semantic tokens obtained in Section 2.3.1. Two
 325 special tokens, a semantic CLS token \mathbf{c}_{sem} and an archetype CLS token \mathbf{c}_{arc} , are prepended:
 326

$$\mathbf{X}_{\text{Contx}} = [\mathbf{c}_{\text{sem}}; \mathbf{T}; \mathbf{c}_{\text{arc}}; \hat{\mathbf{A}}] \in \mathbb{R}^{(2+N_{\text{tok}}+K) \times d_{\text{tok}}}. \quad (15)$$

328 After adding positional encodings, the sequence is Contexted by a Transformer encoder $\mathcal{T}_{\text{Contx}}(\cdot)$:
 329

$$\tilde{\mathbf{X}} = \mathcal{T}_{\text{Contx}}(\mathbf{X}_{\text{Contx}}). \quad (16)$$

331 We then extract the updated tokens $\tilde{\mathbf{c}}_{\text{sem}}$ and $\tilde{\mathbf{c}}_{\text{arc}}$, and concatenate them into $\mathbf{u} = [\tilde{\mathbf{c}}_{\text{sem}}; \tilde{\mathbf{c}}_{\text{arc}}] \in \mathbb{R}^{2d_{\text{tok}}}$.
 332 A softmax-based gating module $\mathcal{G}(\cdot) : \mathbb{R}^{2d_{\text{tok}}} \rightarrow \mathbb{R}^2$ generates the fusion weights $\alpha = \mathcal{G}(\mathbf{u}) =$
 333 $[\alpha_{\text{sem}}, \alpha_{\text{arc}}]$, and the fused representation is computed as $\mathbf{f}_{\text{fused}} = \alpha_{\text{sem}} \cdot \tilde{\mathbf{c}}_{\text{sem}} + \alpha_{\text{arc}} \cdot \tilde{\mathbf{c}}_{\text{arc}}$. Finally,
 334 $\mathbf{f}_{\text{fused}}$ is normalized and fed into a prediction head $\phi_{\text{task}}(\cdot)$ to yield \hat{y}_{Contx} . The objective is defined as:
 335

$$\mathcal{L}^{\text{Contx}} = \mathcal{L}_{\text{task}}(\hat{y}_{\text{Contx}}, y), \quad (17)$$

337 where $\mathcal{L}_{\text{task}}$ corresponds to weighted cross-entropy loss for FER, binary cross-entropy loss for AU
 338 detection, and concordance correlation with mean squared error loss for VA regression.
 339

3 TRAINING OBJECTIVE AND INFERENCE STRATEGY

342 **Training Objective.** The learning process is guided by a composite loss comprising three components:
 343 (i) \mathcal{L}^{VAS} for visual archetype-space projection, (ii) \mathcal{L}^{Arc} for self-organized archetype discovery, and
 344 (iii) $\mathcal{L}^{\text{Contx}}$ for archetype contextualization. The overall optimization objective is defined as

$$\mathcal{L}_{\text{total}} = \lambda_{\text{Proj}} \cdot \mathcal{L}^{\text{VAS}} + \lambda_{\text{Arc}} \cdot \mathcal{L}^{\text{Arc}} + \lambda_{\text{Contx}} \cdot \mathcal{L}^{\text{Contx}}, \quad (18)$$

346 where $\lambda_{\text{Proj}}, \lambda_{\text{Arc}}, \lambda_{\text{Contx}}$ are non-negative weighting coefficients.
 347

348 **Adaptive Archetype Number.** AURA initially set a relatively large K_{max} to provide sufficient
 349 capacity, and during training the model—through the Adaptive Archetype Regularization and the
 350 Archetype Contextualization Module—automatically converges to a much smaller and stable number
 351 of active archetypes $K_{\text{stable}} \ll K_{\text{max}}$. At inference, only these active archetypes are retained while
 352 unused ones are discarded. More details are provided in Appendix E.

353 **Inference Strategy.** During inference, the well learned archetype set is fixed and the contextualization
 354 module is omitted. A CLIP visual embedding \mathbf{z} is first projected into archetype space as $\mathbf{f} = \mathcal{F}(\mathbf{z})$,
 355 after which \mathbf{f} is matched to its nearest archetype $\hat{\mathbf{a}} = \mathcal{Q}(\mathbf{f}; \mathcal{A})$ using cosine similarity. The task-
 356 specific head then generates the final prediction as $\hat{y} = \phi_{\text{task}}(\hat{\mathbf{a}})$. This lightweight and interpretable
 357 pipeline relies *solely* on the discovered archetypes and the projection module.
 358

4 EXPERIMENTS

361 We evaluate the effectiveness of AURA on both **image** and **video** benchmarks. For FER, experiments
 362 are conducted on large-scale in-the-wild datasets AffectNet-7/8 and RAF-DB. For AU detection,
 363 evaluations are performed on the in-the-wild image dataset EmotioNet and further assessed at the
 364 video level on DISFA. For VA regression, we use AffectNet-VA. Additional experimental details,
 365 including implementation, datasets, evaluation protocols, and extended archetype visualizations and
 366 detailed analysis, are provided in the supplementary material (Appendix A and Appendix C).
 367

4.1 COMPARISON WITH SOTA & CLIP VARIANTS

369 Across the three tasks summarized in Table 1, AURA delivers consistently superior performance: for
 370 FER, it achieves the best results on all three datasets, evidencing strong cross-dataset generalization;
 371 for AUD, it attains the highest average F1 on both the image (EmotioNet) and video (DISFA) settings,
 372 surpassing prior state of the art; and for VAE, it yields the highest average CCC as well as the best
 373 per-dimension CCC for Valence and Arousal. Notably, despite leveraging discrete archetypes, AURA
 374 effectively supports continuous regression, preserving fine-grained affective nuances. Moreover,
 375 when compared against CLIP-based approaches under identical protocols, AURA maintains clear
 376 advantages: in VAE, both *CLIP-FT* (fine-tuning with discretized prompts) and prompt-learning
 377 variants (*CoOp/CoCoOp*) obtain low CCC; in FER and AUD, CLIP variants fine-tuned with class-
 378 level prompts or learnable textual prompt consistently trail task-specific methods, with *CoOp/CoCoOp*

Table 1: Comparison of AURA with SOTA methods. Results are reported in F1-score (%) for AU detection, accuracy for FER, and CCC for VA regression. Statistical significance is verified by paired *t*-tests ($p < 0.05$).

Facial Expression Recognition (Accuracy in %)					
Model	RAF-DB \uparrow	AffNet-7 \uparrow	AffNet-8 \uparrow	Params \downarrow	FLOPs \downarrow
MTRAN (Chen et al., 2023)	90.03	66.31	62.48	60.52	3.89
AMP-Net (Liu et al., 2022)	89.25	64.54	61.74	105.67	4.73
MA-Net (Zhou et al., 2021)	88.42	64.53	60.29	63.50	3.65
DACL (Farzaneh & Qi, 2021)	87.78	65.20	—	103.04	1.92
EAC (Zhang et al., 2022)	89.99	65.32	62.13	29.50	10.30
DR-FER (Li et al., 2023)	91.61	67.54	63.60	48.20	13.20
TRANSFER (Xue et al., 2021)	90.91	66.23	—	65.20	15.30
VTFP (Ma et al., 2024)	88.14	64.80	61.85	51.80	6.08
FRA (Guo et al., 2024)	90.76	65.85	62.55	24.00	—
S2D (Chen et al., 2024)	92.57	67.62	63.08	9.00	—
FER-VMantra (Ma et al., 2025)	92.37	67.34	64.55	4.12	0.58
TriBAN (Kim & Choi, 2025)	91.43	66.05	62.49	67.38	4.81
POSTER++ (Mao et al., 2025)	92.21	67.49	63.77	43.70	8.40
UA-FER (Zhou et al., 2025)	92.59	66.95	62.42	28.74	11.27
MHAN (Wang et al., 2025)	92.57	67.74	65.08	4.27	0.55
CLIPER (Li et al., 2024a)	91.61	66.29	61.98	149.25	103.7
CLIP-FT (Radford et al., 2021)	90.38	64.76	60.21	149.25	21.8
CoOp (Zhou et al., 2022b)	84.65	61.25	57.76	85.71	4.26
CoCoOp (Zhou et al., 2022a)	85.89	63.14	59.66	86.80	4.35
AURA (Ours)	94.04 \pm 0.17	68.43 \pm 0.15	65.16 \pm 0.24	3.30	0.26
Action Unit Detection (F1 Score in %)					
Methods	DISFA	EmotionNet			
KSRL (Chang & Wang, 2022)	64.5	—			
CTC (Zhou et al., 2023b)	57.3	64.4			
FBNet (Kollias et al., 2019)	62.0	54.0			
AUDI (Reyes et al., 2022)	59.7	64.6			
MEGNet-MU (Zhou et al., 2022)	62.4	64.9			
SITU (Liu et al., 2023)	62.9	64.2			
CLEF (Zhang et al., 2023b)	64.8	—			
FUXI (Zhang et al., 2023a)	63.3	65.4			
MCM (Zhang et al., 2024)	64.3	—			
EmoLA (Li et al., 2024b)	65.1	—			
MDHRM (Wang et al., 2024)	66.2	—			
CLIPER (Li et al., 2024a)	54.9	56.4			
CLIP-FT (Radford et al., 2021)	60.2	61.9			
CoOp (Zhou et al., 2022b)	58.4	59.7			
CoCoOp (Zhou et al., 2022a)	59.9	61.6			
AURA (Ours)	66.9 \pm 0.3	67.3 \pm 0.4			
Valence-Arousal Estimation (CCC in %)					
Model	CCC-V	CCC-A	CCC-VA		
VA-StarGAN (Kollias, 2020)	61.0	48.0	54.5		
FaceBehaviorNet (Kollias, 2021)	66.0	58.0	62.0		
Emotion-GCN (Antoniadis, 2021)	76.7	64.9	70.8		
EMOCA (Daněček, 2022)	77.0	68.0	72.5		
EmoNet (Toisoul et al., 2021)	73.0	65.0	69.0		
BfSGP (Fu et al., 2025)	72.4	64.5	68.5		
CAGE (Wagner et al., 2024)	71.6	64.2	67.9		
Ig3D (Dong et al., 2024)	72.4	65.0	68.7		
CMFR (He & Da, 2025)	77.0	69.0	73.0		
CLIP-FT (Radford et al., 2021)	57.4	43.3	50.3		
CoOp (Zhou et al., 2022a)	51.2	37.7	44.5		
CoCoOp (Zhou et al., 2022b)	52.5	38.3	45.4		
AURA (Ours)	78.0 \pm 0.4	70.2 \pm 0.1	74.1 \pm 0.3		

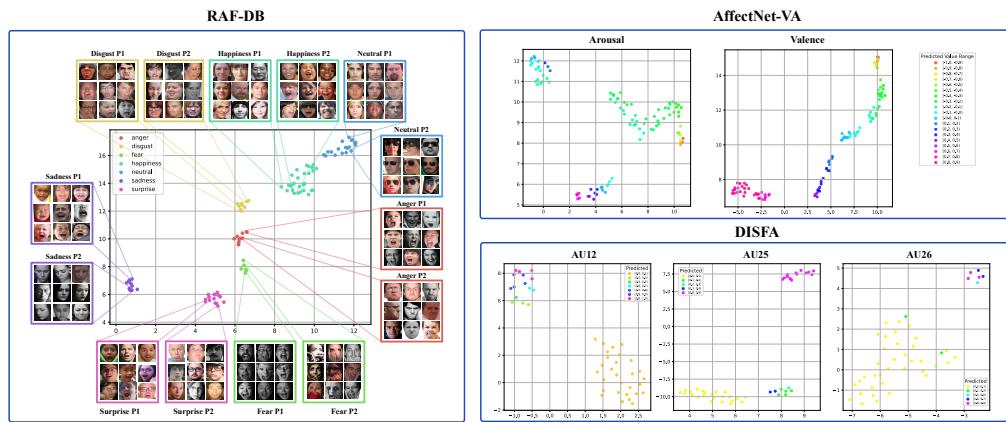


Figure 2: **Left:** visualization of learned archetype distributions on RAF-DB and their assigned samples, demonstrating the interpretability of AURA archetypes. **Right top:** archetypes on AffectNet-VA, illustrating fine-grained affective perception and their effectiveness for regression tasks. **Right bottom:** archetypes on DISFA for AU detection, showing clear distinction between active and inactive AUs.

further degraded by class imbalance and subtle AU activations. While *CLIPER* is competitive on FER, it fares poorly on AUD and VAE and incurs substantial overhead due to its multi-prompt design.

Training Efficiency As shown in Table 1, We compare training parameters and FLOPs of AURA with SOTA. AURA’s key advantage lies in building on a pretrained CLIP visual encoder, allowing all features to be pre-extracted and eliminating the need for repeated inference during training or evaluation. AURA achieves superior performance with the lowest parameter count and FLOPs. At inference, AURA relies solely on cosine similarity with the learned archetypes, incurring negligible computational overhead.

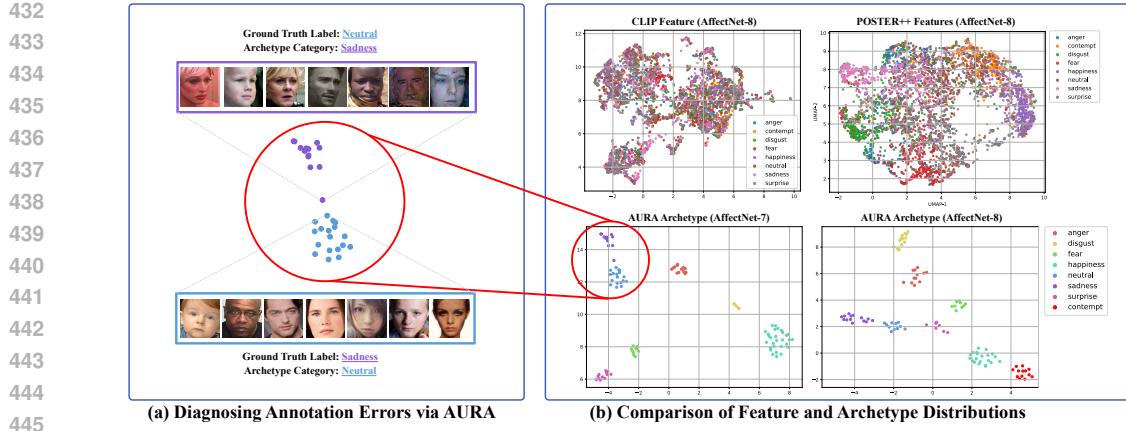


Figure 3: (a) Annotation error diagnosis with AURA, demonstrating its ability to detect mislabeled samples and provide fine-grained interpretability; (b) UMAP visualization of archetypes, original CLIP features, and POSTER++ features on AffectNet-7/8.

4.2 ARCHETYPES SEMANTIC AND DISTRIBUTION ANALYSIS

Visual Perception Grounded: Fig. 2 (left) shows that AURA’s archetypes grouping visually and semantically coherent expressions without relying on textual prompts. Importantly, the archetypes align not only across different emotion categories but also across varying intensity, consistently matching samples with highly similar visual cues. By capturing both subtle variations and dominant modes, the archetypes reflect perceptually grounded structures that bridge low-level cues and high-level affective semantics, making the affective space interpretable, cognitively consistent. **Diagnosing Annotation Errors and Refining Emotion Taxonomy:** Beyond inter- and intra-class interpretability, AURA facilitates annotation error diagnosis, as shown in Fig. 3 (left), where it uncovers mislabels between “sadness” and “neutral” by exposing mismatches between facial cues and labels. Moreover, by capturing subtle variations (e.g., mild vs. intense, pure vs. compound), AURA uses archetypes to break rigid categorical boundaries and refines the seven-class taxonomy into finer, semantically coherent subsets. This yields a more meaningful organization of the affective space.

FER Latent Space Representation: Compared with CLIP and POSTER++ (Mao et al., 2025), which remain entangled or only partially separable, AURA produces disentangled and semantically coherent archetypes on AffectNet-8 and RAF-DB. The model adaptively discovers around 100 archetypes (93 for AffectNet-7, 98 for AffectNet-8), reflecting the need for fine-grained coverage of diverse expression categories. **VA Regression:** In AffectNet-VA, archetype allocation follows the distribution of emotional intensities, with dense coverage in moderate arousal and frequent valence regions. AURA converges to 97 archetypes for valence and 98 for arousal, ensuring comprehensive representation of the continuous affective space. **AU Detection:** In DISFA, AUs exhibit clear separations between strong and weak activations. Unlike FER and VA, AU detection focuses on localized facial details, and AURA accordingly employs fewer archetypes (41 for EmotioNet, 36 for DISFA), achieving compact yet discriminative modeling (see more detailed analysis in Appendix C).

4.3 ABLATION STUDY

As reported in Table 2, where CLIP with a linear head (Row 1) serves as the baseline. Removing the VAS Projector (Row 2) exposes redundant features and hurts performance, while disabling the Archetype Contextualization Module (Row 3) prevents modeling archetype relations and causes drops. VAS Embedding and archetype supervision (Row 4/5) both prove essential for convergence and separation. Without Adaptive Archetype Regularization (Row 6), archetypes collapse; removing compactness, separation, or diversity (Row 7/8/9) degrades structure, with compactness/separation most critical. Varying projection dimension (Rows 10–12) shows smaller dimensions suppress noise, whereas larger ones reintroduce irrelevant features. Finally, feature granularity (Rows 13–14) indicates FER/VA favor global features for efficiency, while AUD benefits from patch-level detail.

Table 2: Ablation study of AURA components across four datasets.

Index	Configuration	w/o / Variant	RAF-DB	AffectNet-8	DISFA	AffectNet-VA
0	AURA (full model)	—	94.0	65.2	66.9	74.1
1	CLIP Embedding + Classifier	AURA	85.3	57.3	55.2	63.4
2	Use CLIP Embedding for Archetype Discovering	VAS Projector	88.1	59.3	58.1	66.2
3	Remove Archetype Contextualization Module	AC Module	92.7	63.1	64.2	73.7
4	No Discriminative for VAS Embedding	\mathcal{L}_{VAS}	93.5	63.4	63.9	72.2
5	No Discriminative for Archetype	\mathcal{L}_{Dis}	89.3	61.6	60.2	69.8
6	No Adaptive Archetype Regularization	\mathcal{L}_{Reg}	92.3	62.1	64.3	71.2
7	No Intra-class Compactness Regularization	$\mathcal{L}_{intra}/\mathcal{L}_{repul}$	90.2	61.2	61.7	73.1
8	No Inter-class Separation Regularization	$\mathcal{L}_{inter}/\mathcal{L}_{attr}$	90.8	62.1	60.0	73.9
9	No Archetype Diversity Regularization	\mathcal{L}_{div}	92.7	63.1	65.2	72.3
10		16	91.3	60.2	61.5	69.0
11	VAS Dim	32	94.0	65.2	66.9	74.1
12		64	93.1	64.9	64.1	73.5
13		Global-level	94.0	65.2	62.3	74.1
14	CLIP Feature Selection	Patch-level	94.3	64.7	66.9	73.5

5 CONCLUSION

We introduced **AURA**, which adaptively discovers visual archetypes as perceptual anchors, providing a unified framework for FER, AU detection, and VA regression. These archetypes yield compact, semantically coherent, and interpretable representations that capture both category-level distinctions and intensity variations. Beyond achieving state-of-the-art performance with high efficiency, AURA also enables fine-grained interpretability, supporting error diagnosis and taxonomy refinement, thereby establishing archetypes as a powerful foundation for affective understanding.

REFERENCES

Antoniadis. Exploiting emotional dependencies with graph convolutional networks for facial expression recognition. In *2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021)*, pp. 1–8. IEEE, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the International Conference on Computer Vision (ICCV)*, 2021.

Yanan Chang and Shangfei Wang. Knowledge-driven self-supervised representation learning for facial action unit recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20417–20426, 2022.

Yanan Chang, Caichao Zhang, Yi Wu, and Shangfei Wang. Facial action unit recognition enhanced by text descriptions of faces. *IEEE Transactions on Affective Computing*, 2024.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks like that: deep learning for interpretable image recognition. *Advances in neural information processing systems*, 32, 2019.

Dongliang Chen, Guihua Wen, Huihui Li, Rui Chen, and Cheng Li. Multi-relations aware network for in-the-wild facial expression recognition. *IEEE Transactions on Circuits and Systems for Video Technology*, 33(8):3848–3859, 2023.

Yin Chen, Jia Li, Shiguang Shan, Meng Wang, and Richang Hong. From static to dynamic: Adapting landmark-aware image models for facial expression recognition in videos. *IEEE Transactions on Affective Computing*, 2024.

Daněček. Emoca: Emotion driven monocular face capture and animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20311–20322, 2022.

Jiankang Deng, Jia Guo, Jing Yang, Alexandros Lattas, and Stefanos Zafeiriou. Variational prototype learning for deep face recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11906–11915, 2021.

Lu Dong, Xiao Wang, Srirangaraj Setlur, Venu Govindaraju, and Ifeoma Nwogu. Ig3d: Integrating 3d face representations in facial expression inference. In *European Conference on Computer Vision*, pp. 404–421. Springer, 2024.

540 C Fabian Benitez-Quiroz, Ramprakash Srinivasan, and Aleix M Martinez. Emotionet: An accurate,
 541 real-time algorithm for the automatic annotation of a million facial expressions in the wild. In
 542 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5562–5570,
 543 2016.

544 Amir Hossein Farzaneh and Xiaojun Qi. Facial expression recognition in the wild via deep attentive
 545 center loss. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 546 pp. 2402–2411, 2021.

547 Beverley Fehr and James A Russell. Concept of emotion viewed from a prototype perspective.
 548 *Journal of experimental psychology: General*, 113(3):464, 1984.

549 Niki Maria Fotiropoulou and Ioannis Patras. Emoclip: A vision-language method for zero-shot
 550 video facial expression recognition. In *2024 IEEE 18th International Conference on Automatic
 551 Face and Gesture Recognition (FG)*, pp. 1–10. IEEE, 2024.

552 Wenlong Fu, Qi Chen, Bing Xue, and Mengjie Zhang. Facial geometric feature extraction for
 553 dimensional emotion analysis using genetic programming. In *International Conference on the
 554 Applications of Evolutionary Computation (Part of EvoStar)*, pp. 137–153. Springer, 2025.

555 Zheng Gao and Ioannis Patras. Self-supervised facial representation learning with facial region aware-
 556 ness. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 557 pp. 2081–2092, 2024.

558 Xiaolong He and Feipeng Da. Expression-driven monocular 3d face reconstruction based on cross-
 559 modal guidance. *The Visual Computer*, pp. 1–21, 2025.

560 Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin'e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin
 561 Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language
 562 models. *arXiv preprint arXiv:2310.08825*, 2023.

563 Cijo Jose, Théo Moutakanni, Dahyun Kang, Federico Baldassarre, Timothée Darcet, Hu Xu, Daniel
 564 Li, Marc Szafraniec, Michaël Ramamonjisoa, Maxime Oquab, et al. Dinov2 meets text: A unified
 565 framework for image-and pixel-level vision-language alignment. In *Proceedings of the Computer
 566 Vision and Pattern Recognition Conference*, pp. 24905–24916, 2025.

567 Kyeong Tae Kim and Jae Young Choi. Triple-branch attention network with multiscale facial region
 568 feature selection for facial emotion recognition. *Pattern Recognition*, pp. 112164, 2025.

569 Kollias. Va-stargan: continuous affect generation. In *International Conference on Advanced Concepts
 570 for Intelligent Vision Systems*, pp. 227–238. Springer, 2020.

571 Kollias. Distribution matching for heterogeneous multi-task learning: a large-scale face study. *arXiv
 572 preprint arXiv:2105.03790*, 2021.

573 Dimitrios Kollias, Viktoria Sharmanika, and Stefanos Zafeiriou. Face behavior a la carte: Express-
 574 sions, affect and action units in a single network. *arXiv preprint arXiv:1910.11111*, 2019.

575 Hanting Li, Hongjing Niu, Zhaoqing Zhu, and Feng Zhao. Cliper: A unified vision-language
 576 framework for in-the-wild facial expression recognition. In *2024 IEEE International Conference
 577 on Multimedia and Expo (ICME)*, pp. 1–6. IEEE, 2024a.

578 Ming Li, Huazhu Fu, Shengfeng He, Hehe Fan, Jun Liu, Jussi Kepo, and Mike Zheng Shou. Dr-
 579 fer: Discriminative and robust representation learning for facial expression recognition. *IEEE
 580 Transactions on Multimedia*, 26:6297–6309, 2023.

581 Shan Li, Weihong Deng, and JunPing Du. Reliable crowdsourcing and deep locality-preserving
 582 learning for expression recognition in the wild. In *Computer Vision and Pattern Recognition
 583 (CVPR), 2017 IEEE Conference on*, pp. 2584–2593. IEEE, 2017.

584 Yifan Li, Anh Dao, Wentao Bao, Zhen Tan, Tianlong Chen, Huan Liu, and Yu Kong. Facial affective
 585 behavior analysis with instruction tuning. In *European Conference on Computer Vision*, pp.
 586 165–186. Springer, 2024b.

594 Chuanhe Liu, Xinjie Zhang, Xiaolong Liu, Tenggan Zhang, Liyu Meng, Yuchen Liu, Yuanyuan Deng,
 595 and Wenqiang Jiang. Facial expression recognition based on multi-modal features for videos in the
 596 wild. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 597 5872–5879, 2023.

598 Hanwei Liu, Huiling Cai, Qingcheng Lin, Xuefeng Li, and Hui Xiao. Adaptive multilayer perceptual
 599 attention network for facial expression recognition. *IEEE Transactions on Circuits and Systems
 600 for Video Technology*, 32(9):6253–6266, 2022.

601 Shifeng Liu, Xinglong Mao, Sirui Zhao, Peiming Li, Tong Xu, and Enhong Chen. Mer-clip:
 602 Au-guided vision-language alignment for micro-expression recognition. *IEEE Transactions on
 603 Affective Computing*, 2025.

604 Cheng Luo, Siyang Song, Weicheng Xie, Linlin Shen, and Hatice Gunes. Learning multi-
 605 dimensional edge feature-based au relation graph for facial action unit recognition. *arXiv preprint
 606 arXiv:2205.01782*, 2022.

607 Fuyan Ma, Bin Sun, and Shutao Li. Facial expression recognition with visual transformers and
 608 attentional selective fusion. *IEEE Transactions on Affective Computing*, 14(2):1236–1248, 2021.

609 Hui Ma, Sen Lei, Heng-Chao Li, and Turgay Celik. Fer-vmamba: A robust facial expression recogni-
 610 tion framework with global compact attention and hierarchical feature interaction. *Information
 611 Fusion*, pp. 103371, 2025.

612 Jiawei Mao, Rui Xu, Xuesong Yin, Yuanqi Chang, Binling Nie, Aibin Huang, and Yigang Wang.
 613 Poster++: A simpler and stronger facial expression recognition network. *Pattern Recognition*, 157:
 614 110951, 2025.

615 S Mohammad Mavadati, Mohammad H Mahoor, Kevin Bartlett, Philip Trinh, and Jeffrey F Cohn.
 616 Disfa: A spontaneous facial action intensity database. *Affective Computing, IEEE Transactions on*,
 617 4(2):151–160, 2013.

618 Ali Mollahosseini, Behzad Hasani, and Mohammad H Mahoor. Affectnet: A database for facial
 619 expression, valence, and arousal computing in the wild. *arXiv preprint arXiv:1708.03985*, 2017.

620 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 621 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 622 models from natural language supervision. In *International conference on machine learning*, pp.
 623 8748–8763. PMLR, 2021.

624 Andrés Romero, Juan León, and Pablo Arbeláez. Multi-view dynamic facial action unit detection.
 625 *Image and Vision Computing*, 122:103723, 2022.

626 Eleanor Rosch. Cognitive representations of semantic categories. *Journal of experimental psychology:
 627 General*, 104(3):192, 1975.

628 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Advances
 629 in neural information processing systems*, 30, 2017.

630 Antoine Toisoul, Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. Estimation
 631 of continuous valence and arousal levels from faces in naturalistic conditions. *Nature Machine
 632 Intelligence*, 3(1):42–50, 2021.

633 Niklas Wagner, Felix Mätzler, Samed R Vossberg, Helen Schneider, Svetlana Pavlitska, and J Marius
 634 Zöllner. Cage: Circumplex affect guided expression inference. In *Proceedings of the IEEE/CVF
 635 Conference on Computer Vision and Pattern Recognition*, pp. 4683–4692, 2024.

636 Xiaofeng Wang, Tianbo Han, Songling Liu, Muhammad Shahroz Ajmal, Lu Chen, Yongqin Zhang,
 637 and Yonghuai Liu. Mhan: Multi-head hybrid attention network for facial expression recognition.
 638 *Pattern Recognition*, pp. 112015, 2025.

639 Zihan Wang, Siyang Song, Cheng Luo, Songhe Deng, Weicheng Xie, and Linlin Shen. Multi-scale
 640 dynamic and hierarchical relationship modeling for facial action units recognition. In *Proceedings
 641 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1270–1280, 2024.

648 Fanglei Xue, Qiangchang Wang, and Guodong Guo. Transfer: Learning relation-aware facial
 649 expression representations with transformers. In *Proceedings of the IEEE/CVF International*
 650 *conference on computer vision*, pp. 3601–3610, 2021.

651 Wei Zhang, Bowen Ma, Feng Qiu, and Yu Ding. Multi-modal facial affective analysis based on
 652 masked autoencoder. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 653 *Recognition*, pp. 5793–5802, 2023a.

654 Xiang Zhang, Taoyue Wang, Xiaotian Li, Huiyuan Yang, and Lijun Yin. Weakly-supervised text-
 655 driven contrastive learning for facial behavior understanding. In *Proceedings of the IEEE/CVF*
 656 *International Conference on Computer Vision*, pp. 20751–20762, 2023b.

657 Xiang Zhang, Huiyuan Yang, Taoyue Wang, Xiaotian Li, and Lijun Yin. Multimodal channel-mixing:
 658 Channel and spatial masked autoencoder on facial action unit detection. In *Proceedings of the*
 659 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 6077–6086, 2024.

660 Yuhang Zhang, Chengrui Wang, Xu Ling, and Weihong Deng. Learn from all: Erasing attention
 661 consistency for noisy label facial expression recognition. In *European Conference on Computer*
 662 *Vision*, pp. 418–434. Springer, 2022.

663 Zengqun Zhao, Qingshan Liu, and Shanmin Wang. Learning deep global multi-scale and local
 664 attention features for facial expression recognition in the wild. *IEEE Transactions on Image*
 665 *Processing*, 30:6544–6556, 2021.

666 Haoliang Zhou, Shucheng Huang, and Yuqiao Xu. Ua-fer: Uncertainty-aware representation learning
 667 for facial expression recognition. *Neurocomputing*, 621:129261, 2025.

668 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 669 vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 670 *pattern recognition*, pp. 16816–16825, 2022a.

671 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 672 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022b.

673 Rushuang Zhou, Zhiguo Zhang, Hong Fu, Li Zhang, Linling Li, Gan Huang, Fali Li, Xin Yang,
 674 Yining Dong, Yuan-Ting Zhang, et al. Pr-pl: A novel prototypical representation based pairwise
 675 learning framework for emotion recognition using eeg signals. *IEEE Transactions on Affective*
 676 *Computing*, 15(2):657–670, 2023a.

677 Weiwei Zhou, Jiada Lu, Zhaolong Xiong, and Weifeng Wang. Leveraging tcn and transformer for
 678 effective visual-audio fusion in continuous emotion recognition. In *Proceedings of the IEEE/CVF*
 679 *Conference on Computer Vision and Pattern Recognition*, pp. 5756–5763, 2023b.

680 A EXPERIMENTS

681 A.1 DATASETS

682 **AffectNet-7/8 & AffectNet-VA** Mollahosseini et al. (2017): AffectNet is an in-the-wild database
 683 that contains around 400K images manually annotated for 6 basic expressions, as well as neutral
 684 and contempt. For our work, we utilize the manually annotated images with the 7/8 expressions
 685 category to ensure alignment with other expression datasets. AffectNet-VA provides VA annotations
 686 in the range of [-1, 1], making it suitable for dimensional affect analysis. The training set of this
 687 database consists of around 321K images and the validation of 5K. The validation set is balanced
 688 across the different expression categories. **RAF-DB (Real-world Affective Faces Database)** Li
 689 et al. (2017): RAF-DB is an in-the-wild database that contains approximately 15,000 facial images,
 690 manually annotated for 7 basic expressions. **DISFA (Denver Intensity of Spontaneous Facial**
 691 **Action)** Mavadati et al. (2013): DISFA is a lab controlled database consisting of videos from 27
 692 subjects, each with approximately 5000 frames. Each frame is annotated with AU intensities on a
 693 six-point discrete scale (0–5). For consistency in AU detection tasks, we binarize the annotations,
 694 assigning a value of 1 to AU intensities greater than 2 and a value of 0 otherwise. The dataset includes
 695 annotations for 8 AUs (1, 2, 4, 6, 9, 12, 25, 26). **EmotioNet** Fabian Benitez-Quiroz et al. (2016)
 696 consists of over 45K in-the-wild facial images, where we follow the official split and use the 11 most
 697 frequent AUs for training and evaluation.

702 A.2 IMPLEMENTATION DETAILS
703

704 Our AURA framework is implemented in PyTorch and trained on an NVIDIA A100 GPU. For data
705 preprocessing, all input images are first cropped to facial regions and then resized to the CLIP-
706 supported resolution. The CLIP visual encoder is a frozen, pre-trained model from OpenAI. Image
707 or video frame features are extracted once using this encoder, after which all training and inference
708 are performed purely at the feature level, eliminating the need to repeatedly invoke CLIP during
709 optimization. We adopt the AdamW optimizer with a learning rate of 1×10^{-4} across all datasets. To
710 enhance generalization, a dropout rate of 0.2 is applied to both the global-level and patch-level visual
711 projectors. For all datasets, the loss weights are set as $\lambda_{\text{Proj}} = \lambda_{\text{Arc}} = \lambda_{\text{Contx}} = 1$, ensuring balanced
712 contributions from projection, visual archetype optimization, and refinement terms. Similarly, we
713 set $\beta = 1$ to assign equal importance to the archetype update and commitment penalty in the vector
714 quantization loss.

715 A.3 EVALUATION PROTOCOLS
716

717 We adopt task-specific evaluation metrics to ensure fair and meaningful performance comparisons.

719 **Facial Expression Recognition (FER).** For FER, we report the classification accuracy (ACC),
720 defined as:

$$721 \quad 722 \quad 723 \quad \text{ACC} = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(\hat{y}_i = y_i), \quad (19)$$

724 where N is total number of samples, y_i is the ground-truth label, \hat{y}_i is predicted label, and $\mathbb{I}(\cdot)$ is the
725 indicator function.

726 **Valence-Arousal (VA) Estimation.** For VA estimation, we use the Concordance Correlation
727 Coefficient (CCC) for both valence (v) and arousal (a), defined as:

$$728 \quad 729 \quad 730 \quad \text{CCC}(x, y) = \frac{2\rho_{xy}\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}, \quad (20)$$

732 where ρ_{xy} is the Pearson correlation coefficient between the predicted values x and ground truth
733 y , μ_x and μ_y are the means, and σ_x and σ_y are the standard deviations. The final CCC score is
734 computed as the average of CCC_v and CCC_a :

$$735 \quad 736 \quad 737 \quad \text{CCC}_{\text{VA}} = \frac{\text{CCC}_v + \text{CCC}_a}{2}. \quad (21)$$

738 **Action Unit Detection (AUD).** For AUD, we compute the F1-score for each Action Unit (AU)
739 independently:

$$740 \quad 741 \quad \text{F1}_k = \frac{2 \cdot \text{Precision}_k \cdot \text{Recall}_k}{\text{Precision}_k + \text{Recall}_k}, \quad (22)$$

742 where $\text{Precision}_k = \frac{\text{TP}_k}{\text{TP}_k + \text{FP}_k}$ and $\text{Recall}_k = \frac{\text{TP}_k}{\text{TP}_k + \text{FN}_k}$ for AU k . We further report the average
743 F1-score across all K AUs:

$$744 \quad 745 \quad 746 \quad \text{F1}_{\text{avg}} = \frac{1}{K} \sum_{k=1}^K \text{F1}_k. \quad (23)$$

748 B ARCHETYPE RESET MECHANISM.
749

750 To avoid archetype collapse, we introduce a usage-aware reset mechanism that periodically reinitializes
751 underutilized archetypes based on their global selection frequency.

752 **Global Usage Tracking:** Let the codebook be denoted as $\mathcal{C} = \{\mathbf{e}_1, \dots, \mathbf{e}_N\}$, where each $\mathbf{e}_i \in \mathbb{R}^d$ is
753 a learnable archetype. During training, we record the global usage count vector $\mathbf{u} = [u_1, \dots, u_N] \in$
754 \mathbb{N}^N , where u_i counts the total number of times \mathbf{e}_i was selected as the nearest archetype over all
755 training steps. We define the normalized usage ratio for each code vector as: $\alpha_i = \frac{u_i}{\sum_{j=1}^N u_j}$, $\forall i =$

1, ..., N . We then define a fixed threshold $\tau \in (0, 1)$ (e.g., $\tau = 0.01$), and identify the set of underutilized codes: $\mathcal{P}_{\text{reset}} = \{i \mid \alpha_i < \tau\}$.

Archetype Reset: For each $i \in \mathcal{P}_{\text{reset}}$, we sample a new feature vector $\mathbf{f}_i \in \mathbb{R}^d$ from the current training batch and reinitialize the archetype as:

$$\mathbf{e}_i \leftarrow \mathbf{f}_i + \boldsymbol{\xi}_i, \quad \text{where } \boldsymbol{\xi}_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}),$$

with $\sigma > 0$ denoting a small Gaussian noise level used to encourage diversity. Alongside the update of \mathbf{e}_i , we reset all related accumulators: $u_i \leftarrow 0$, $\mathbf{c}_i \leftarrow \mathbf{e}_i$, $n_i \leftarrow 0$, where \mathbf{c}_i denotes the accumulated cluster mean for archetype i and n_i is the cluster size (i.e., the count of features assigned to \mathbf{e}_i). Once all underutilized archetypes are updated, we reset the entire usage counter to zero: $\mathbf{u} \leftarrow \mathbf{0}$. This reset mechanism ensures that the codebook dynamically adapts to the evolving data distribution and avoids stagnation due to unused or outdated archetypes.

C ANALYSIS FOR LEARNED ARCHETYPES

We analyze the archetypes learned by AURA to understand their structure, distribution, and interpretability across multiple affective tasks. Our study covers (i) comparison with conventional classification model, (ii) error diagnosis and taxonomy refinement, (iii) spatial organization in arousal-valence space, (iv) allocation patterns in Action Unit spaces, and (v) quantitative cross-task statistics. The results show that AURA adaptively allocates representational capacity according to data distribution and emotional complexity, yielding both higher performance and more interpretable affective representations.

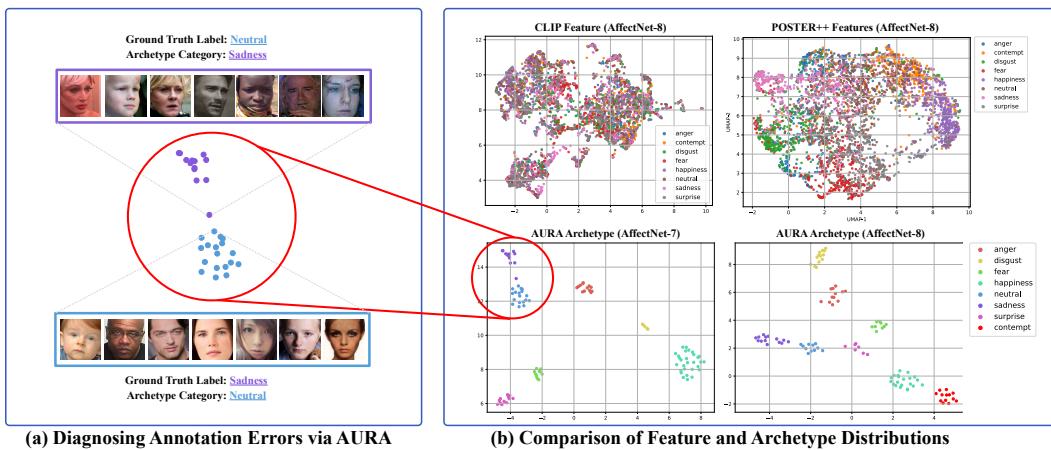


Figure 4: UMAP visualization of archetypes, original CLIP visual features, and POSTER++ features for the AffectNet-7/8 facial expression recognition task. (a) Diagnosis of annotation errors using AURA; (b) Visualization of feature distributions.

C.1 EMOTION REPRESENTATION ADVANTAGE OF AURA

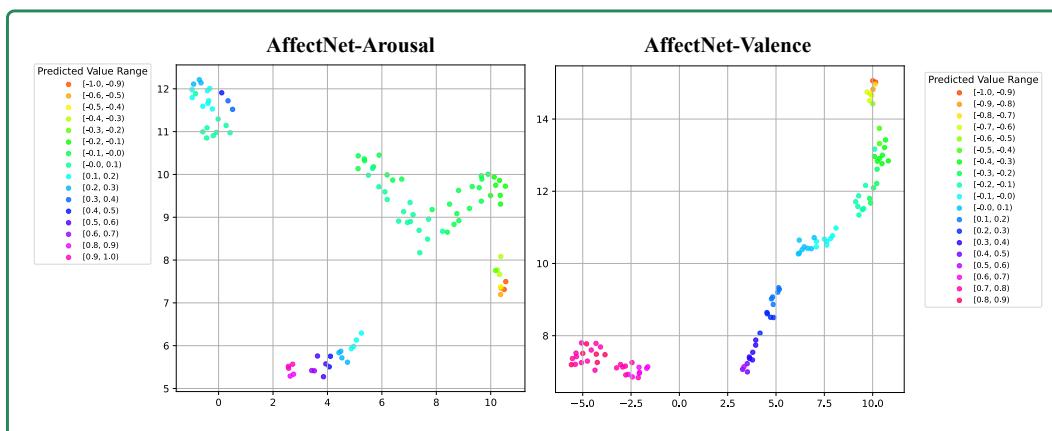
AURA vs. Conventional Classification Models: To assess the advantages of AURA over *conventional label-supervised classification*, which optimizes representations directly under ground-truth labels, we visualize and compare three types of learned features on the AffectNet-8 test set (Fig. 6 (b)): AURA archetypes, original CLIP features, and POSTER++ features. Our observations are as follows: **(i) Original CLIP features** are highly entangled in the affective space, yielding poor emotional separability. **(ii) POSTER++** alleviates some entanglement and improves separability, but many samples remain intertwined and the learned features still lack semantic interpretability. **(iii) AURA archetypes**, in contrast, produce highly distinct and disentangled clusters with strong semantic coherence. These results demonstrate that AURA not only surpasses conventional objectives quantitatively but also yields qualitatively more interpretable and cognitively consistent affective representations.

810 C.2 DIAGNOSING ANNOTATION ERRORS AND REFINING EMOTION TAXONOMY VIA AURA
811

812 We conducted an in-depth examination of the learned AURA archetypes and their associated emotion
813 images, and found that, beyond offering inter- and intra-class interpretability (as illustrated in Fig. 3
814 of the main paper), AURA also serves as an effective tool for diagnosing annotation errors (as
815 illustrated in **Fig. 6 (a)**). Upon thorough inspection, we observe that the AffectNet dataset contains
816 a substantial number of compound expressions, which are inherently challenging to differentiate
817 during the annotation process and therefore susceptible to mislabeling. Thanks to our semantic
818 interpretability of AURA, we are able to systematically probe the samples assigned to each archetype,
819 enabling precise *analysis, explanation, and error diagnosis*.

820 As illustrated in **Fig. 6(a)**, we identify two closely related archetypes corresponding to “sadness”
821 and “neutral”. Closer inspection of the images assigned to the “sadness” archetype, despite being
822 labeled as “neutral” in the ground truth, reveals consistently sorrowful expressions characterized by
823 knitted brows with pronounced glabellar lines, drooping eyelids, a dull gaze, and downward-turned,
824 compressed lips. Conversely, the images mapped to the “neutral” archetype, though annotated as
825 “sadness”, clearly exhibit neutral facial cues, including level eyebrows, relaxed eyelids, a steady
826 forward gaze, and lips at rest without curvature.

827 Notably, *AURA refines the conventional seven-class emotion taxonomy into finer, semantically*
828 *coherent subsets*, enabling more accurate grouping of visually similar expressions. Such refinement
829 allows AURA to capture subtle variations within a single emotion class, distinguishing, for example,
830 between mild and intense expressions or between pure and compound emotions. This finer-grained
831 partitioning not only improves the structural organization of the affective space but also facilitates the
832 identification of borderline or ambiguous cases that are often misclassified under rigid categorical
833 schemes. By transcending the limitations of hard class boundaries, AURA provides a more continuous
834 and interpretable representation of emotions, thereby enhancing both the semantic clarity of the
835 learned features and the reliability of emotion annotations in large-scale datasets.

836 C.3 ARCHETYPE ANALYSIS IN AROUSAL-VALENCE SPACE
837852 Figure 5: Valence and Arousal Prototype distribution visualization for AffectNet-VA.
853

854 **AURA For Arousal:** A detailed examination of the AURA archetypes in the arousal dimension
855 reveals a distinct spatial clustering pattern that aligns well with the underlying distribution of
856 emotional intensities in the dataset. Specifically, the archetypes aggregate into four primary clusters:
857 those corresponding to arousal values between -1.0 and -0.5 are concentrated in the lower right
858 region (depicted by orange to yellow-green hues) comprising 9 archetypes; the range -0.5 to -0.1
859 forms a cluster in the mid-right region (yellow-green to cyan) containing 48 archetypes; arousal
860 values from -0.1 to 0.3 cluster in the upper left area (cyan to deep blue) with 23 archetypes; finally,
861 values from 0.0 to 1.0 group near the central bottom area, comprising 20 archetypes.

862 This distribution reflects the natural emotional landscape captured in the dataset, where the majority
863 of arousal values fall within the moderate range of approximately $[-0.3, 0.3]$. Emotions beyond this

864
 865 Table 3: Statistics of assigned archetypes across different datasets and tasks. Each row reports the
 866 number of assigned archetypes (**Assigned Prot.**), their usage range (min–max, **Prot. Usage**), the
 867 total number of samples matched to these archetypes (**Prot. Sample Num.**), and the total number of
 868 samples in the dataset (**Sample Num.**).
 869

RAF-DB				
Expression	Assigned Prot.	Prot. Usage	Prot. Sample Num.	Sample Num.
anger	11	12–566	710	705
disgust	9	17–288	751	717
fear	6	18–169	287	281
happiness	28	19–1788	4735	4772
neutral	19	8–1288	2417	2524
sadness	12	11–999	2009	1982
surprise	15	14–841	1362	1290
AffectNet-VA (Arousal / Valence)				
Bin Range	Assigned Prot.	Prot. Usage	Prot. Sample Num.	Sample Num.
–1.0 –– 0.7	1 / 3	2341 / 1739–6783	2341 / 10522	3716 / 17989
–0.7 –– 0.4	3 / 8	1013–5795 / 6741–7719	9206 / 36362	12372 / 31838
–0.4 –– 0.1	28 / 13	1733–8666 / 1258–7383	63836 / 54243	52069 / 36753
–0.1 – 0.1	34 / 20	1389–7014 / 949–6734	71999 / 36927	99781 / 50891
0.1 – 0.4	22 / 17	1113–12569 / 154–3948	92903 / 20537	74212 / 29866
0.4 – 0.7	7 / 15	1178–3846 / 747–8513	21588 / 45156	30415 / 66280
0.7 – 1.0	5 / 24	5370–9079 / 1255–5565	28220 / 86343	21845 / 60793
DISFA (AU12 / AU25)				
Bin Range	Assigned Prot.	Prot. Usage	Prot. Sample Num.	Sample Num.
0.0 – 0.3	32 / 29	471–5819 / 538–7391	62970 / 54047	65819 / 55054
0.3 – 0.5	1 / 2	1226 / 141–2440	1226 / 2581	
0.5 – 0.7	2 / 0	111–963 / 0	1074 / 0	
0.7 – 1.0	9 / 13	411–6869 / 769–4588	21940 / 30582	21391 / 32156

883
 884 range correspond to intensely high or low arousal states, which are less frequently represented in
 885 the data and therefore require fewer archetypes for effective modeling. Conversely, the $[-0.3, 0.3]$
 886 interval encompasses typical human emotional intensity, exhibiting rich intra-class variability that
 887 necessitates a denser population of archetypes to capture subtle distinctions. For instance, within
 888 this moderate arousal range, expressions may vary from calm attentiveness to mild agitation, each
 889 distinguished by nuanced facial cues that AURA archetypes effectively encode.
 890

891 **AURA For Valence:** Turning to the valence dimension, the archetypes are distributed almost
 892 uniformly across the entire $[-1, 1]$ spectrum, with notable concentration in the intervals $[0.6, 1.0]$ and
 893 $[-0.5, 0.0]$, which are represented by 31 and 23 archetypes respectively. This allocation corresponds
 894 closely with the empirical distribution of valence in the dataset, where highly positive and mildly
 895 negative emotional states are more prevalent. The uniform spread and selective densification of
 896 archetypes indicate that AURA adapts dynamically to the data’s statistical properties, providing finer
 897 granularity in emotionally significant regions while maintaining coverage across the full valence
 898 range.

899 Collectively, these findings underscore AURA’s capacity to model the continuous valence-arousal
 900 affective space with both granularity and efficiency. By allocating archetypes in accordance with the
 901 natural distribution and complexity of emotional expressions, AURA achieves a balance between
 902 representational compactness and discriminative power, thereby enhancing interpretability and
 903 supporting nuanced emotion analysis.
 904

905 C.4 ANALYSIS OF ARCHETYPES IN AU SPACES

906
 907 In this section, we visualize the learned AURA archetypes for four representative Action Units:
 908 AU4, AU12, AU25, and AU26. Across these AUs, a consistent pattern emerges whereby strong
 909 activations are associated with relatively few archetypes, while weak or absent activations correspond
 910 to a larger number of archetypes. This distribution aligns well with established domain knowledge:
 911 strongly activated AUs tend to exhibit more distinctive facial patterns, warranting compact and
 912 focused archetype representation, whereas weakly activated or inactive AUs reflect greater variability
 913 in appearance, thus requiring a more diverse set of archetypes to capture the underlying heterogeneity.

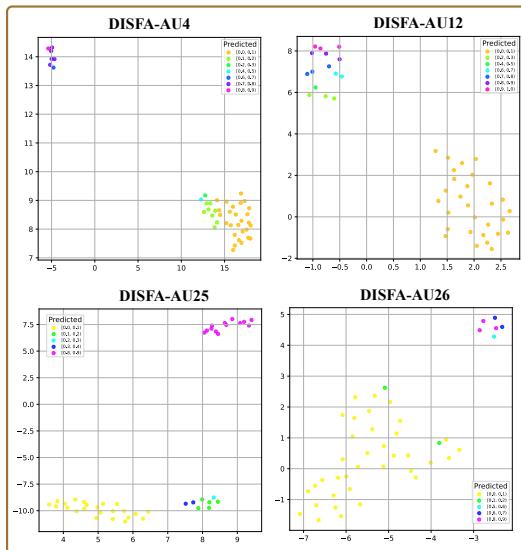
914 Despite this general trend, notable differences arise among the four AUs. For AU25, archetypes
 915 corresponding to strong activation levels (0.8–1.0) cluster densely in the upper-right region of
 916 the latent space, whereas weaker activations (0.1–0.4) concentrate in the lower-right region. This
 917 clear spatial segregation validates the discriminative power of AURA archetypes, as AU25’s strong
 918 activation typically signifies expressions of happiness, while its weaker activation corresponds to

918 distinct emotional states such as disgust or contempt, underscoring AURA’s capacity to capture
 919 fine-grained affective differences.
 920

921 Similarly, for AU4 and AU26, strongly activated archetypes (activation levels between 0.6 and 1.0)
 922 are tightly clustered in the upper-left region, contrasting with other activation levels aggregated in
 923 the lower-right region. This spatial dichotomy reflects AURA’s robust ability to sharply distinguish
 924 between active and inactive AU states.
 925

926 In the case of AU12, the archetypes corresponding to moderate (0.4–0.7) and strong (0.7–1.0)
 927 activations form a contiguous cluster. This pattern is consistent with the known physiological
 928 characteristics of AU12, which often manifests with subtle gradations of activation due to the
 929 underlying facial muscle movements involved. Such nuanced clustering illustrates AURA’s sensitivity
 930 to the fine-scale variations inherent in AU12 activation levels.
 931

932 Overall, these findings demonstrate that AURA archetypes effectively model the complex distribution
 933 of AU activations, balancing compactness for strongly activated units with diversity for weaker
 934 activations, thereby capturing both the discriminative and variable nature of facial action units in a
 935 semantically meaningful manner.
 936



937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 Figure 6: DISFA Archetypes distribution visualization.

C.5 QUANTITATIVE ANALYSIS OF ARCHETYPE DISTRIBUTION ACROSS TASKS

958 We present a quantitative analysis of archetype allocation patterns across three representative affective
 959 tasks: categorical facial expression recognition (RAF-DB), continuous arousal–valence estimation
 960 (AffectNet-VA), and action unit detection (DISFA). The statistics in Table 3 summarize the number
 961 of assigned archetypes (**Assigned Prot.**), their usage ranges (**Prot. Usage**), the total number of
 962 samples matched to these archetypes (**Prot. Sample Num.**), and the total dataset sample counts
 963 (**Sample Num.**). This quantitative view allows us to interpret how the AURA mechanism distributes
 964 representational capacity across different affective states, intensities, and data densities.
 965

966 **RAF-DB (Expression Recognition):** Archetype allocation varies substantially across the seven ex-
 967 pression categories. High-frequency and visually diverse categories such as *happiness* (28 archetypes,
 968 usage range: 19–1788) and *neutral* (19 archetypes, 8–1288) receive a larger number of archetypes
 969 with broad usage spans, indicating high intra-class variability. Conversely, categories such as *fear* (6
 970 archetypes, 18–169) and *disgust* (9 archetypes, 17–288) have fewer archetypes and narrower ranges,
 971 reflecting lower diversity and sample counts. *Sadness* and *surprise* fall in between, with moderate
 972 archetype counts but concentrated usage, suggesting more homogeneous visual patterns.
 973

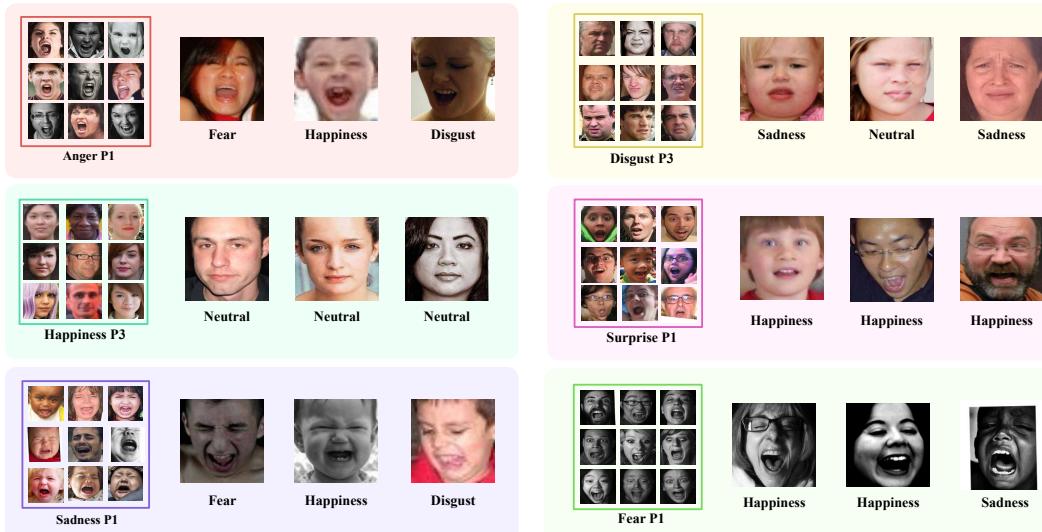
974 **AffectNet-VA (Arousal / Valence Estimation):** In the continuous affective space, archetype allo-
 975 cation strongly correlates with data density. Extreme affective regions (e.g., −1.0–−0.7, 0.7–1.0)
 976

972 exhibit fewer archetypes (1–5 for arousal, 3–24 for valence) and lower matched sample counts, due
 973 to the scarcity of highly polarized emotions in the dataset. In contrast, the central regions (e.g.,
 974 -0.1 – 0.1 , 0.1 – 0.4) receive the largest number of archetypes (up to 34 for arousal, 20 for valence)
 975 and significantly higher sample counts, capturing subtle variations in near-neutral affective states.
 976 This aligns with AffectNet’s known bias toward mild or mixed emotions.

977 **DISFA (Action Unit Detection):** For AU-based modeling, archetype allocation distinguishes between
 978 inactive/low-intensity and highly active facial muscle states. In AU12, the 0.0 – 0.3 range dominates
 979 with 32 archetypes and 62,970 matched samples, while the mid-intensity range (0.3 – 0.5) is covered
 980 by only a single archetype, indicating rare occurrences. High-intensity activations (0.7 – 1.0) have
 981 fewer archetypes (9 for AU12, 13 for AU25) but disproportionately high sample counts, suggesting
 982 these expressions, while less visually diverse, are relatively frequent in the dataset. Notably, AU25
 983 has no archetypes in the 0.5 – 0.7 range, implying low occurrence or ambiguity in this activation
 984 intensity.

985 This quantitative view highlights that archetype allocation in AURA is inherently data-adaptive. Tasks
 986 and affective states with high visual diversity or dense sample distributions receive more archetypes
 987 with wider usage ranges, while homogeneous or rare states are represented by fewer archetypes with
 988 concentrated usage. This property ensures both representation efficiency and strong discriminative
 989 capacity across heterogeneous affective modeling scenarios.

991 D FAILURE CASE ANALYSIS



1011 Figure 7: Failure Case Analysis. For each panel, the **Left** column shows correctly labeled samples
 1012 are aligned with the corresponding expression archetype, while the **Right** column shows samples
 1013 assigned to this archetype despite belonging to other expression classes.

1014 To further evaluate the behavioral characteristics of AURA, we conduct a dedicated failure-case
 1015 analysis, with results shown in Figure 7. For each panel, the **Left** block presents the support images
 1016 that are aligned with a particular expression archetype, while the **Right** side displays misclassified
 1017 samples that were assigned to this archetype despite belonging to different ground-truth classes. This
 1018 setup enables simultaneous examination of **(i) how the model behaves on individual samples and**
 1019 **(ii) what semantic structures lead to these errors.** By comparing each mispredicted sample with
 1020 the defining archetype, we can clearly identify which facial configuration the model relied on (e.g.,
 1021 mouth shape, eye tension, or brow contraction), thereby revealing the semantic basis of the model’s
 1022 mistakes.

1024 Across all panels, a clear and consistent pattern emerges: although the categorical prediction is wrong,
 1025 the assigned archetype remains semantically justified because the misclassified faces share the **same**
 1026 **fine-grained facial-muscle configuration** as the archetype’s support set. Crucially, these archetypes

1026 do not simply correspond to “**open-mouth**” expressions in general; each archetype encodes a distinct
 1027 sub-pattern of facial activation. For example, **Anger P1** captures an expression characterized by
 1028 a maximally forceful, *lower-face* (dominant contraction, a wide, tense mouth opening with strong
 1029 jaw engagement), so samples with an equally forceful lower-face stretch are naturally drawn to
 1030 this archetype, even if their categorical label is Fear or Disgust. In contrast, **Sadness P1** reflects a
 1031 different structural signature: although the mouth is open, the expression is dominated by *upper-face*
 1032 tension (furrowed brows, nasal contraction, and a drooping eye region). Misassigned samples in this
 1033 panel exhibit precisely this upper-face configuration, explaining why the model anchors them to this
 1034 archetype. **Fear P1**, on the other hand, is defined by a high-intensity, mouth-stretched configuration
 1035 *without pronounced brow contraction*, often manifested in *grayscale* images within the dataset;
 1036 misclassified Happiness or Sadness samples assigned to Fear P1 share this same “wide-mouth,
 1037 minimal-brow-movement” structure. These observations show that AURA’s archetypes capture
 1038 fine-grained, physiologically meaningful facial patterns, and that mispredictions occur not because
 1039 the model is confused arbitrarily, but because the sample’s *local facial configuration* aligns more
 1040 closely with a specific archetypal mode than with its discrete ground-truth label.

1041 In the **Disgust P3** panel, the archetype is characterized by nose wrinkling, *raised upper lip*, and
 1042 narrowed eyes. Samples labeled as Sadness or Neutral are assigned to this archetype because
 1043 they exhibit a very similar nose–mouth configuration, suggesting label ambiguity or overlapping
 1044 expression cues in the dataset. In **Happiness P3**, the archetype reflects subtle, *low-intensity smiles*
 1045 close to Neutral faces. The misclassified Neutral samples assigned to this archetype have very *mild lip*
 1046 *corners* raised and relaxed upper faces, revealing that the boundary between low-intensity Happiness
 1047 and Neutral is intrinsically fuzzy. Finally, **Surprise P1** collects wide-eyed, mouth-open faces; the
 1048 mispredicted Happiness examples assigned to it also display strong “*wow*”-like configurations, again
 1049 showing that the model is grouping samples by a coherent facial pattern rather than arbitrary noise.

1050 Across all panels, AURA’s failure cases reveal a consistent and meaningful pattern: even when the
 1051 discrete class prediction is incorrect, the assigned archetype remains semantically well-aligned with
 1052 the facial structure of the input. This is because the misclassified faces share highly similar AU
 1053 configurations, intensity patterns, and local geometry with the archetype’s support set.

1054 The misassigned samples naturally fall into these archetypes because their fine-grained facial structure
 1055 more closely matches the archetype’s learned configuration than their categorical label suggests.
 1056 Importantly, such mismatches often arise from dataset statistics: if a structural pattern appears
 1057 predominantly in one class (e.g., scream-like faces in Anger) and is underrepresented in others (e.g.,
 1058 scream-like Happiness), the model will gravitate toward the archetype that best captures that structure.
 1059 Rather than being a weakness, this demonstrates the strength of our weakly supervised archetype
 1060 formulation: **AURA prioritizes genuine facial-structure similarity over noisy or ambiguous**
 1061 **labels, offering per-sample insight into which semantic mode the model activated and why.**

1062 E SENSITIVITY TO THE CHOICE OF K_{\max}

1063 This section clarifies the distinction between the predefined upper bound of archetypes and the
 1064 effective number that AURA ultimately employs. AURA differentiates between two quantities: the
 1065 predefined upper bound K_{\max} , typically set between 150 and 400, and the stable number of active
 1066 archetypes K_{stable} that emerges automatically during training. The value of K_{stable} is not determined
 1067 by K_{\max} ; instead, K_{\max} is chosen to be over-complete to ensure sufficient representational capacity,
 1068 while the model identifies a much smaller and semantically meaningful subset of archetypes according
 1069 to the task. Empirically, AURA converges to approximately 100 active archetypes for expression
 1070 recognition on AffectNet and RAF-DB, and around 40 for AU recognition on EmotioNet, regardless
 1071 of the initial choice of K_{\max} .

1072 The adaptivity of AURA arises from two key components: the Adaptive Archetype Regularization
 1073 and the Archetype Contextualization Module. Together, these mechanisms encourage informative
 1074 archetypes to receive substantial assignments while suppressing redundant ones. Let the archetype
 1075 codebook be $\mathcal{C} = \{e_1, \dots, e_{K_{\max}}\}$. During training, AURA maintains a global usage counter u_k
 1076 for each archetype, recording how often e_k is selected as the primal archetype. A normalized usage
 1077 ratio is computed as $\alpha_k = u_k / \sum_{j=1}^{K_{\max}} u_j$. Archetypes with usage ratio below a threshold τ (e.g.,
 1078 $\tau = 0.01$) are considered under-utilized. During the early stage of optimization (first 20–30 epochs),
 1079 an Archetype Reset Mechanism reinitializes the embeddings of under-utilized archetypes to avoid

1080 premature collapse of dictionary capacity. After this warm-up stage, the usage stabilize, producing a
 1081 consistent K_{stable} that remains largely invariant to K_{max} . At inference time, archetypes with $\alpha_k < \tau$
 1082 are pruned, yielding a compact and interpretable dictionary.

1083 To examine robustness with respect to K_{max} , we conduct a sensitivity analysis on RAF-DB with
 1084 $K_{\text{max}} \in \{150, 200, 300, 400\}$. As summarised in Table 4, the resulting number of active archetypes
 1085 remains within a narrow range (99-102) for all settings. Model accuracy varies within only 0.2%,
 1086 convergence epochs remain comparable, and the class-wise archetype distribution exhibits high
 1087 consistency. The computational cost increases moderately for larger K_{max} due to the expanded
 1088 over-complete dictionary, but this does not affect the effective number of utilized archetypes. These
 1089 results demonstrate that AURA automatically identifies a suitable number of archetypes and is robust
 1090 and insensitive to the initial value of K_{max} in terms of performance, convergence behaviour, and the
 1091 granularity–efficiency trade-off.

1092
 1093 **Table 4: Sensitivity of AURA to the choice of K_{max} on RAF-DB.**

K_{max}	K_{stable}	ACC (%)	Convergence Epoch	Archetype Distribution	GFLOPs
150	100	94.1	153	Anger 11 / Disgust 9 / Fear 6 / Happiness 28 / Neutral 19 / Sadness 12 / Surprise 15	0.26
200	99	94.0	147	Anger 11 / Disgust 9 / Fear 6 / Happiness 26 / Neutral 20 / Sadness 12 / Surprise 15	0.29
300	102	94.2	158	Anger 11 / Disgust 10 / Fear 6 / Happiness 29 / Neutral 18 / Sadness 13 / Surprise 15	0.44
400	101	94.1	155	Anger 12 / Disgust 10 / Fear 6 / Happiness 29 / Neutral 19 / Sadness 13 / Surprise 12	0.48

1101 F ENCODER-AGNOSTIC BEHAVIOR OF AURA

1102 To isolate the contribution of the proposed archetype mechanism from the representational priors of
 1103 **CLIP**, we extend our study by conducting a dedicated evaluation using both **CLIP** (Radford et al.,
 1104 2021) and **DINO** (Caron et al., 2021). In particular, DINO serves as a purely self-supervised vision
 1105 backbone without any text–image alignment, providing a controlled testbed to determine whether
 1106 AURA’s improvements originate from CLIP’s semantically aligned visual space or from the archetype
 1107 modeling itself. This analysis allows us to rigorously disentangle the effects of encoder pretraining
 1108 and the structural advantages introduced by AURA.

1109 To ensure a fair and comprehensive comparison, we evaluate each encoder under two parallel
 1110 configurations. For DINO, we first consider **DINO FT (full fine-tuning)**, where the entire DINO
 1111 student network is optimized jointly with task-specific heads following official training protocols.
 1112 All backbone parameters are trainable in this setting. We then construct a second configuration,
 1113 **AURA-DINO**, in which the CLIP backbone in our main AURA model is replaced by the pretrained
 1114 DINO encoder, but the encoder is kept *entirely frozen*. DINO is used strictly as a feature extractor,
 1115 and only AURA’s archetype modules are updated during training. This frozen setting cleanly isolates
 1116 the effect of archetype modeling by removing any benefits from encoder adaptation.

1117 For completeness, we perform the same two configurations using CLIP. In the **CLIP FT** condition,
 1118 the full CLIP visual encoder is fine-tuned end-to-end along with the task heads. In the **AURA-**
 1119 **CLIP** setting, the official pretrained CLIP encoder is kept *frozen*, and AURA operates solely on
 1120 top of its fixed visual embeddings. By aligning CLIP and DINO under identical experimental
 1121 protocols, this cross-encoder evaluation enables a controlled investigation of whether AURA’s gains
 1122 are tied to CLIP’s vision–language alignment or generalize across fundamentally different pretraining
 1123 paradigms.

1124 The results, summarized in Table ??, show that AURA delivers *strong and consistent performance*
 1125 *gains* across both CLIP and DINO. Notably, despite relying on *frozen* DINO features without any
 1126 fine-tuning of backbone parameters, AURA-DINO achieves substantial improvements over the fully
 1127 fine-tuned DINO baseline: +4.3% accuracy on RAF-DB, +6.6 CCC on AffectNet-VA, and +4.7 F1 on
 1128 EmotioNet. While absolute performance under DINO is naturally lower than under CLIP—reflecting
 1129 CLIP’s multimodal supervision and richer semantic priors—the *relative* gains contributed by AURA
 1130 remain highly consistent across FER, VA, and AU tasks.

1131 An additional observation further strengthens this conclusion: although CLIP outperforms DINO
 1132 in absolute terms, owing to its stronger semantic alignment, *the performance gains introduced by*
 1133 *AURA are even larger on CLIP than on DINO*. This pattern reveals two important insights. First, the

1134 benefits of AURA do not arise from CLIP’s multimodal alignment alone, as similar gains appear
 1135 with a purely visual self-supervised encoder. Second, AURA is capable of fully exploiting the
 1136 representational capacity of stronger pretrained models—particularly CLIP’s semantically aligned
 1137 embedding space—yielding more structured latent geometries, reduced intra-class ambiguity, and
 1138 improved predictive accuracy.

1139 Overall, these findings demonstrate that AURA is fundamentally **encoder-agnostic**. Its improvements
 1140 stem from the archetype-based feature structuring itself rather than any encoder-specific advantage.
 1141 AURA consistently enhances a wide range of pretrained vision models by discovering canonical
 1142 semantic anchors and decomposing fine-grained intra-class variability, independently of whether the
 1143 underlying backbone is multimodally aligned (CLIP) or purely visual (DINO).

1144

1145 **Table 5: Evaluating AURA with CLIP and DINO encoders.** “Official FT” denotes full fine-tuning;
 1146 “AURA (ours)” denotes frozen encoder + AURA.

1147

Method	Encoder	RAF-DB Acc	AffectNet-VA CCC	EmotioNet AU-F1
CLIP FT	CLIP (finetuned)	89.1	66.4	62.3
AURA-CLIP	CLIP (official frozen)	94.0 (+4.9)	74.1 (+7.7)	67.3 (+5.0)
DINO FT	DINO (finetuned)	88.3	65.4	60.7
AURA-DINO	DINO (official frozen)	92.6 (+4.3)	72.0 (+6.6)	65.4 (+4.7)

1155

1156

G SENSITIVITY ANALYSIS OF TRAINING HYPERPARAMETERS

1158

1159

This section provides a comprehensive and detailed analysis of the sensitivity of AURA to its major training hyperparameters. Although AURA contains several components in its loss formulation, the overall training process is intentionally designed to remain simple, stable, and fully reproducible across datasets and tasks.

1160

1161

G.1 SENSITIVITY TO THE LOSS-WEIGHT COEFFICIENTS λ

1162

1163

This appendix provides a detailed analysis of the sensitivity of AURA with respect to the loss-weight coefficients used in the total objective

1164

1165

$$\mathcal{L} = \lambda_{\text{Proj}} \mathcal{L}^{\text{VAS}} + \lambda_{\text{Arc}} \mathcal{L}^{\text{Arc}} + \lambda_{\text{Contx}} \mathcal{L}^{\text{Contx}}.$$

1166

1167

Across all experiments, we adopt the uniform setting $\lambda_{\text{Proj}} = \lambda_{\text{Arc}} = \lambda_{\text{Contx}} = 1$, without any tuning. This simple configuration consistently produces strong results on RAF-DB, EmotioNet, and AffectNet for FER, AU detection, and VA regression, indicating that AURA does not rely on delicate loss balancing.

1168

1169

The reason equal weighting works is rooted in the architectural decomposition of AURA: the three loss terms act on **disjoint parameter subsets**, preventing gradient competition. The projection-supervision loss \mathcal{L}^{VAS} governs only the projection head and aligns archetype mixtures with task semantics. The archetype-regularization loss \mathcal{L}^{Arc} acts exclusively on the archetype dictionary, shaping geometry, sparsity, and separation. The contextual-interaction loss $\mathcal{L}^{\text{Contx}}$ applies only to the attention module that mediates cross-archetype message passing. Since each component optimizes an independent representational layer, the gradients naturally remain compatible in scale even without explicit balancing.

1170

1171

Within \mathcal{L}^{Arc} , the components $\mathcal{L}^{\text{Assign}}$, \mathcal{L}^{Dis} , and \mathcal{L}^{Reg} operate on bounded similarity measures (cosine similarity or simplex-normalized assignments), which keeps their magnitudes comparable. These forces **act in complementary directions**—assignment encourages confident usage of archetypes, the distance term promotes geometric separation, and the regularization term stabilizes class- or score-conditioned structure. Maintaining equal weights ensures a stable and unbiased equilibrium: no component overwhelms the archetype geometry, and the system avoids collapse or overspreading. Although the form of \mathcal{L}^{Reg} differs between FER, AU, and VA tasks, all variants enforce inter-

1188 class distinction, intra-class compactness, and diversity; each is designed to operate within similar
 1189 numerical ranges, further supporting robust behavior under $\lambda = 1$.
 1190

1191 To empirically verify sensitivity, we vary each coefficient within $\lambda \in \{0.5, 1.0, 1.5\}$ and evaluate all
 1192 combinations. Across all datasets, the resulting performance remains remarkably stable, with only
 1193 minor fluctuations attributable to convergence speed rather than model quality. The comprehensive
 1194 results are summarized in Table 6. The negligible variation confirms that AURA’s training dynamics
 1195 are inherently well-balanced and do not require hyperparameter tuning for loss weights.
 1196

1196 **Table 6:** Comprehensive sensitivity analysis of the loss-weight coefficients λ across FER (RAF-DB),
 1197 AU (EmotioNet), and VA (AffectNet-VA).

$(\lambda_{\text{Proj}}, \lambda_{\text{Arc}}, \lambda_{\text{Contx}})$	RAF-DB ACC	Epoch	AU-F1	Epoch	VA-CCC	Epoch
(1.0, 1.0, 1.0) (Default)	94.0	152	67.3	136	74.1	188
(0.5, 1.0, 1.0)	93.8	187	67.1	165	74.1	203
(1.5, 1.0, 1.0)	94.0	149	66.8	138	74.2	184
(1.0, 0.5, 1.0)	94.2	176	67.1	148	73.9	189
(1.0, 1.5, 1.0)	94.3	142	67.2	136	74.0	196
(1.0, 1.0, 0.5)	93.8	180	66.9	164	74.0	207
(1.0, 1.0, 1.5)	94.1	146	67.2	122	74.2	175

1208 G.2 SENSITIVITY TO THE MARGIN PARAMETER m

1209 This appendix provides a detailed analysis of the sensitivity of AURA to the choice of the margin m
 1210 used in the archetype regularization terms. Conceptually, the margin m plays a unified role across
 1211 tasks: it specifies the threshold that separates pairs that *should be close* from pairs that *should be
 1212 separated*. As long as m is chosen within a semantically meaningful range that is consistent with the
 1213 underlying similarity or distance scale, the model remains stable and does not require fine-grained
 1214 tuning.
 1215

1216 **In the classification setting**, the inter-class separation loss penalizes pairs of class centers whose
 1217 cosine similarity exceeds the margin m . Formally, the loss takes the form

$$1218 \quad \mathcal{L}_{\text{inter}} = \frac{1}{|\mathcal{S}|} \sum_{(c, c') \in \mathcal{S}} \max(0, \cos(\tilde{\mu}_c, \tilde{\mu}_{c'}) - m),$$

1219 where \mathcal{S} indexes pairs of distinct classes and $\tilde{\mu}_c$ denotes the normalized center of class c . In this
 1220 formulation, m directly defines the maximum allowable similarity between different classes: pairs
 1221 with cosine similarity below m incur no penalty, whereas pairs with similarity above m are pushed
 1222 apart. Since cosine similarities on normalized centers lie in $[0, 1]$, choosing m in the range $[0.2, 0.4]$
 1223 yields a natural trade-off between enforcing sufficient separation and avoiding overly aggressive
 1224 repulsion. Empirically, this interval provides a stable operating region for both FER and AU
 1225 classification.

1226 **In the regression setting**, the margin appears in the score-aware attraction and repulsion losses,
 1227 which jointly control how archetypes with similar or dissimilar predicted scores are arranged in
 1228 the feature space. Let Δ^{ij} denote the score difference between two archetypes and d^{ij} their cosine
 1229 distance. The attraction loss encourages archetypes with similar predicted scores to be close, using
 1230 a hinge on $(d^{ij} - m)$, while the repulsion loss enforces separation for archetypes with divergent
 1231 scores, using a hinge on $(m - d^{ij})$. In this case, m plays a dual role: it defines the boundary
 1232 between “similar-score pairs” and “dissimilar-score pairs”, and it sets the tolerance radius within
 1233 which attraction is active or beyond which repulsion becomes necessary. Because valence–arousal
 1234 targets span a broader semantic range (after normalization to $[-1, 1]$), meaningful score gaps tend
 1235 to be larger, and slightly smaller margins in the interval $m \in [0.1, 0.3]$ yield stable and effective
 1236 behavior.

1237 To empirically validate the above analysis, we conduct a controlled sweep over a range of margin
 1238 values and evaluate performance on all three tasks. The results are reported in Table 7. As expected,
 1239 performance degrades only when m is set too small, which leads to excessively strong separation
 1240 forces and can fragment the representation, or when m is set too large, which weakens the separation
 1241 forces.

1242 and reduces discriminability. Within the intermediate ranges described above, the accuracy, F1, and
 1243 CCC metrics remain stable, confirming that AURA is insensitive to moderate changes in m and does
 1244 not rely on careful tuning of this hyperparameter.
 1245

1246 **Table 7: Sensitivity analysis of the margin m across FER (RAF-DB), AU detection (EmotioNet), and**
 1247 **VA regression (AffectNet-VA).**

m	RAF-DB (ACC)	EmotioNet (AU-F1)	AffectNet-VA (CCC)
0.1	93.2	66.7	73.9
0.2	93.9	67.2	74.1
0.3	94.1	67.3	74.0
0.4	94.0	67.3	73.8
0.5	93.6	66.9	73.4

1258 REFERENCES

1259 Antoniadis. Exploiting emotional dependencies with graph convolutional networks for facial expres-
 1260 sion recognition. In *2021 16th IEEE International Conference on Automatic Face and Gesture*
 1261 *Recognition (FG 2021)*, pp. 1–8. IEEE, 2021.

1262

1263 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 1264 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
 1265 *International Conference on Computer Vision (ICCV)*, 2021.

1266

1267 Yanan Chang and Shangfei Wang. Knowledge-driven self-supervised representation learning for
 1268 facial action unit recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 1269 *and Pattern Recognition*, pp. 20417–20426, 2022.

1270

1271 Yanan Chang, Caichao Zhang, Yi Wu, and Shangfei Wang. Facial action unit recognition enhanced
 1272 by text descriptions of faces. *IEEE Transactions on Affective Computing*, 2024.

1273

1274 Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
 1275 like that: deep learning for interpretable image recognition. *Advances in neural information*
1276 processing systems, 32, 2019.

1277

1278 Dongliang Chen, Guihua Wen, Huihui Li, Rui Chen, and Cheng Li. Multi-relations aware network
 1279 for in-the-wild facial expression recognition. *IEEE Transactions on Circuits and Systems for Video*
 1280 *Technology*, 33(8):3848–3859, 2023.

1281

1282 Yin Chen, Jia Li, Shiguang Shan, Meng Wang, and Richang Hong. From static to dynamic: Adapting
 1283 landmark-aware image models for facial expression recognition in videos. *IEEE Transactions on*
Affective Computing, 2024.

1284

1285 Daněček. Emoca: Emotion driven monocular face capture and animation. In *Proceedings of the*
1286 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20311–20322, 2022.

1287

1288 Jiankang Deng, Jia Guo, Jing Yang, Alexandros Lattas, and Stefanos Zafeiriou. Variational prototype
 1289 learning for deep face recognition. In *Proceedings of the IEEE/CVF Conference on Computer*
1290 Vision and Pattern Recognition, pp. 11906–11915, 2021.

1291

1292 Lu Dong, Xiao Wang, Srirangaraj Setlur, Venu Govindaraju, and Ifeoma Nwogu. Ig3d: Integrating 3d
 1293 face representations in facial expression inference. In *European Conference on Computer Vision*,
 1294 pp. 404–421. Springer, 2024.

1295

1296 C Fabian Benitez-Quiroz, Ramprakash Srinivasan, and Aleix M Martinez. Emotionet: An accurate,
 1297 real-time algorithm for the automatic annotation of a million facial expressions in the wild. In
 1298 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5562–5570,
 1299 2016.

1296 Amir Hossein Farzaneh and Xiaojun Qi. Facial expression recognition in the wild via deep attentive
 1297 center loss. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 1298 pp. 2402–2411, 2021.

1299

1300 Beverley Fehr and James A Russell. Concept of emotion viewed from a prototype perspective.
 1301 *Journal of experimental psychology: General*, 113(3):464, 1984.

1302 Niki Maria Fotiropoulou and Ioannis Patras. Emoclip: A vision-language method for zero-shot
 1303 video facial expression recognition. In *2024 IEEE 18th International Conference on Automatic
 1304 Face and Gesture Recognition (FG)*, pp. 1–10. IEEE, 2024.

1305

1306 Wenlong Fu, Qi Chen, Bing Xue, and Mengjie Zhang. Facial geometric feature extraction for
 1307 dimensional emotion analysis using genetic programming. In *International Conference on the
 1308 Applications of Evolutionary Computation (Part of EvoStar)*, pp. 137–153. Springer, 2025.

1309

1310 Zheng Gao and Ioannis Patras. Self-supervised facial representation learning with facial region aware-
 1311 ness. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 1312 pp. 2081–2092, 2024.

1313

1314 Xiaolong He and Feipeng Da. Expression-driven monocular 3d face reconstruction based on cross-
 1315 modal guidance. *The Visual Computer*, pp. 1–21, 2025.

1316

1317 Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin'e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin
 1318 Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language
 1319 models. *arXiv preprint arXiv:2310.08825*, 2023.

1320

1321 Cijo Jose, Théo Moutakanni, Dahyun Kang, Federico Baldassarre, Timothée Darcet, Hu Xu, Daniel
 1322 Li, Marc Szafraniec, Michaël Ramamonjisoa, Maxime Oquab, et al. Dinov2 meets text: A unified
 1323 framework for image-and pixel-level vision-language alignment. In *Proceedings of the Computer
 1324 Vision and Pattern Recognition Conference*, pp. 24905–24916, 2025.

1325

1326 Kyeong Tae Kim and Jae Young Choi. Triple-branch attention network with multiscale facial region
 1327 feature selection for facial emotion recognition. *Pattern Recognition*, pp. 112164, 2025.

1328

1329 Kollias. Va-stargan: continuous affect generation. In *International Conference on Advanced Concepts
 1330 for Intelligent Vision Systems*, pp. 227–238. Springer, 2020.

1331

1332 Kollias. Distribution matching for heterogeneous multi-task learning: a large-scale face study. *arXiv
 1333 preprint arXiv:2105.03790*, 2021.

1334

1335 Dimitrios Kollias, Viktoria Sharmancka, and Stefanos Zafeiriou. Face behavior a la carte: Express-
 1336 sions, affect and action units in a single network. *arXiv preprint arXiv:1910.11111*, 2019.

1337

1338 Hanting Li, Hongjing Niu, Zhaoqing Zhu, and Feng Zhao. Cliper: A unified vision-language
 1339 framework for in-the-wild facial expression recognition. In *2024 IEEE International Conference
 1340 on Multimedia and Expo (ICME)*, pp. 1–6. IEEE, 2024a.

1341

1342 Ming Li, Huazhu Fu, Shengfeng He, Hehe Fan, Jun Liu, Jussi Keppo, and Mike Zheng Shou. Dr-
 1343 fer: Discriminative and robust representation learning for facial expression recognition. *IEEE
 1344 Transactions on Multimedia*, 26:6297–6309, 2023.

1345

1346 Shan Li, Weihong Deng, and JunPing Du. Reliable crowdsourcing and deep locality-preserving
 1347 learning for expression recognition in the wild. In *Computer Vision and Pattern Recognition
 1348 (CVPR), 2017 IEEE Conference on*, pp. 2584–2593. IEEE, 2017.

1349

1350 Yifan Li, Anh Dao, Wentao Bao, Zhen Tan, Tianlong Chen, Huan Liu, and Yu Kong. Facial affective
 1351 behavior analysis with instruction tuning. In *European Conference on Computer Vision*, pp.
 1352 165–186. Springer, 2024b.

1353

1354 Chuanhe Liu, Xinjie Zhang, Xiaolong Liu, Tenggan Zhang, Liyu Meng, Yuchen Liu, Yuanyuan Deng,
 1355 and Wenqiang Jiang. Facial expression recognition based on multi-modal features for videos in the
 1356 wild. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 1357 5872–5879, 2023.

1350 Hanwei Liu, Huiling Cai, Qingcheng Lin, Xuefeng Li, and Hui Xiao. Adaptive multilayer perceptual
 1351 attention network for facial expression recognition. *IEEE Transactions on Circuits and Systems*
 1352 for Video Technology

1353, 32(9):6253–6266, 2022.

1354 Shifeng Liu, Xinglong Mao, Sirui Zhao, Peiming Li, Tong Xu, and Enhong Chen. Mer-clip:
 1355 Au-guided vision-language alignment for micro-expression recognition. *IEEE Transactions on*
 1356 *Affective Computing*, 2025.

1357 Cheng Luo, Siyang Song, Weicheng Xie, Linlin Shen, and Hatice Gunes. Learning multi-
 1358 dimensional edge feature-based au relation graph for facial action unit recognition. *arXiv preprint*
 1359 *arXiv:2205.01782*, 2022.

1360 Fuyan Ma, Bin Sun, and Shutao Li. Facial expression recognition with visual transformers and
 1361 attentional selective fusion. *IEEE Transactions on Affective Computing*, 14(2):1236–1248, 2021.

1362 Hui Ma, Sen Lei, Heng-Chao Li, and Turgay Celik. Fer-vmamba: A robust facial expression recogni-
 1363 tion framework with global compact attention and hierarchical feature interaction. *Information*
 1364 *Fusion*, pp. 103371, 2025.

1365 Jiawei Mao, Rui Xu, Xuesong Yin, Yuanqi Chang, Binling Nie, Aibin Huang, and Yigang Wang.
 1366 Poster++: A simpler and stronger facial expression recognition network. *Pattern Recognition*, 157:
 1367 110951, 2025.

1368 S Mohammad Mavadati, Mohammad H Mahoor, Kevin Bartlett, Philip Trinh, and Jeffrey F Cohn.
 1369 Disfa: A spontaneous facial action intensity database. *Affective Computing, IEEE Transactions on*,
 1370 4(2):151–160, 2013.

1371 Ali Mollahosseini, Behzad Hasani, and Mohammad H Mahoor. Affectnet: A database for facial
 1372 expression, valence, and arousal computing in the wild. *arXiv preprint arXiv:1708.03985*, 2017.

1373 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 1374 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 1375 models from natural language supervision. In *International conference on machine learning*, pp.
 1376 8748–8763. PMLR, 2021.

1377 Andrés Romero, Juan León, and Pablo Arbeláez. Multi-view dynamic facial action unit detection.
 1378 *Image and Vision Computing*, 122:103723, 2022.

1379 Eleanor Rosch. Cognitive representations of semantic categories. *Journal of experimental psychology: General*, 104(3):192, 1975.

1380 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Advances in neural information processing systems*, 30, 2017.

1381 Antoine Toisoul, Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. Estimation
 1382 of continuous valence and arousal levels from faces in naturalistic conditions. *Nature Machine Intelligence*, 3(1):42–50, 2021.

1383 Niklas Wagner, Felix Mätzler, Samed R Vossberg, Helen Schneider, Svetlana Pavlitska, and J Marius
 1384 Zöllner. Cage: Circumplex affect guided expression inference. In *Proceedings of the IEEE/CVF*
 1385 *Conference on Computer Vision and Pattern Recognition*, pp. 4683–4692, 2024.

1386 Xiaofeng Wang, Tianbo Han, Songling Liu, Muhammad Shahroz Ajmal, Lu Chen, Yongqin Zhang,
 1387 and Yonghuai Liu. Mhan: Multi-head hybrid attention network for facial expression recognition.
 1388 *Pattern Recognition*, pp. 112015, 2025.

1389 Zihan Wang, Siyang Song, Cheng Luo, Songhe Deng, Weicheng Xie, and Linlin Shen. Multi-scale
 1390 dynamic and hierarchical relationship modeling for facial action units recognition. In *Proceedings*
 1391 of the *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1270–1280, 2024.

1392 Fanglei Xue, Qiangchang Wang, and Guodong Guo. Transfer: Learning relation-aware facial
 1393 expression representations with transformers. In *Proceedings of the IEEE/CVF International*
 1394 *conference on computer vision*, pp. 3601–3610, 2021.

1404 Wei Zhang, Bowen Ma, Feng Qiu, and Yu Ding. Multi-modal facial affective analysis based on
 1405 masked autoencoder. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 1406 *Recognition*, pp. 5793–5802, 2023a.

1407 Xiang Zhang, Taoyue Wang, Xiaotian Li, Huiyuan Yang, and Lijun Yin. Weakly-supervised text-
 1408 driven contrastive learning for facial behavior understanding. In *Proceedings of the IEEE/CVF*
 1409 *International Conference on Computer Vision*, pp. 20751–20762, 2023b.

1410 Xiang Zhang, Huiyuan Yang, Taoyue Wang, Xiaotian Li, and Lijun Yin. Multimodal channel-mixing:
 1411 Channel and spatial masked autoencoder on facial action unit detection. In *Proceedings of the*
 1412 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 6077–6086, 2024.

1413 Yuhang Zhang, Chengrui Wang, Xu Ling, and Weihong Deng. Learn from all: Erasing attention
 1414 consistency for noisy label facial expression recognition. In *European Conference on Computer*
 1415 *Vision*, pp. 418–434. Springer, 2022.

1416 Zengqun Zhao, Qingshan Liu, and Shanmin Wang. Learning deep global multi-scale and local
 1417 attention features for facial expression recognition in the wild. *IEEE Transactions on Image*
 1418 *Processing*, 30:6544–6556, 2021.

1419 Haoliang Zhou, Shucheng Huang, and Yuqiao Xu. Ua-fer: Uncertainty-aware representation learning
 1420 for facial expression recognition. *Neurocomputing*, 621:129261, 2025.

1421 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 1422 vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 1423 *pattern recognition*, pp. 16816–16825, 2022a.

1424 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 1425 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022b.

1426 Rushuang Zhou, Zhiguo Zhang, Hong Fu, Li Zhang, Linling Li, Gan Huang, Fali Li, Xin Yang,
 1427 Yining Dong, Yuan-Ting Zhang, et al. Pr-pl: A novel prototypical representation based pairwise
 1428 learning framework for emotion recognition using eeg signals. *IEEE Transactions on Affective*
 1429 *Computing*, 15(2):657–670, 2023a.

1430 Weiwei Zhou, Jiada Lu, Zhaolong Xiong, and Weifeng Wang. Leveraging tcn and transformer for
 1431 effective visual-audio fusion in continuous emotion recognition. In *Proceedings of the IEEE/CVF*
 1432 *Conference on Computer Vision and Pattern Recognition*, pp. 5756–5763, 2023b.

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457