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ABSTRACT

Studying complex real-world phenomena often involves data from multiple views
(e.g. sensor modalities or brain regions), each capturing different aspects of the
underlying system. Within neuroscience, there is growing interest in large-scale
simultaneous recordings across multiple brain regions. Understanding the relation-
ship between views (e.g., the neural activity in each region recorded) can reveal
fundamental insights into each view and the system as a whole. However, existing
methods to characterize such relationships lack the expressivity required to capture
nonlinear relationships, describe only shared sources of variance, or discard geo-
metric information that is crucial to drawing insights from data. Here, we present
SPLICE: a neural network-based method that infers disentangled, interpretable
representations of private and shared latent variables from paired samples of high-
dimensional views. Compared to competing methods, we demonstrate that SPLICE
1) disentangles shared and private representations more effectively, 2) yields more
interpretable representations by preserving geometry, and 3) is more robust to
incorrect a priori estimates of latent dimensionality. We propose our approach as
a general-purpose method for finding succinct and interpretable descriptions of
paired data sets in terms of disentangled shared and private latent variables.

1 INTRODUCTION

Given multiple high-dimensional datasets that each capture a different view of a single underlying
system, gaining deep insight into the system requires understanding the information that is common
(shared) and unique (private) between views. Examples include identifying the shared semantic
overlap between text captions and images (Lee & Pavlovic, 2021), integrating information from
single-cell transcriptomics and proteomics to characterize cell state (Argelaguet et al., 2021), and
performing sensor fusion in robots (Fadadu et al., 2022). This multi-view paradigm is becoming
prevalent in neuroscience due to new recording technologies that are rapidly increasing the scale
of neuronal recordings (Jun et al., 2017; Steinmetz et al., 2021). Cutting-edge neural recordings
capture the simultaneous activity of many neurons across multiple regions, at single-neuron resolution.
If we consider each brain region as a view into the underlying brain-wide activity, understanding
what information is represented separately in individual regions or shared between them is vital to
characterizing each region’s functional role.

Since representations of local information (private to a region) and global information (shared
across regions) can be nonlinearly multiplexed with each other, an understanding of each requires
disentangling the two information types. Mathematically, we can frame this task as an inverse
problem where, for any sample of paired data points xA ∈ A and xB ∈ B, there exist a shared
set of latent variables s and two private sets of latent variables zA and zB . The high-dimensional
observations are then generated as xA = gA(s, zA) and xB = gB(s, zB) for two distinct nonlinear
functions gA(·) and gB(·), where zA, s and zB are all statistically independent (Fig. 1a). Our goal is
to find {gA(·); gB(·); zA; s;zB}.

Although many multi-view learning methods have been developed in the general machine learning
literature, these methods primarily seek to create multimodal generative models, where individual
factors of variation can be independently manipulated to produce realistic-looking data (Palumbo
et al., 2023; Lee & Pavlovic, 2021). These methods typically impose an isotropic Gaussian prior on
latent variables and use total-correlation objectives to encourage factorization and enable the desired
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sampling of the latent space. These architectural choices work towards the models’ stated goals of
generation and disentangling, but destroy latent geometric structure vital to drawing insight from the
data. Achieving understanding of the overall system, the primary goal in scientific machine learning,
instead requires interpreting the latent representations themselves – their content, structure, and how
they influence the observed data.

In neuroscience, for example, examining the latent geometry of neural representations has provided
insight into the computations that single brain regions perform; manifold learning methods have
revealed a ring geometry in the population activity of head direction cells, enabling blind discovery
and decoding of the represented variable (Chaudhuri et al., 2019). Similar methods, applied to the
neural activity of entorhinal grid cells, discovered a toroidal geometry that confirmed predictions
from theoretical continuous attractor models (Gardner et al., 2022). Finally, geometry-preserving
retinotopic maps have helped to delineate the borders of adjacent visual regions (Engel et al., 1994;
Zhuang et al., 2017). Manifold learning methods (Tenenbaum et al., 2000; Silva & Tenenbaum,
2002; Roweis & Saul, 2000) typically use local distances in high-D observation space to estimate
geodesic distances and then learn a low-dimensional embedding that preserves the estimated distances.
However, applying manifold learning to multi-view data introduces complications; when shared and
private information are mixed, the distances used by these methods reflect a combination of both types
of info, preventing accurate estimation of the geometry of only the shared or private components.

Neuroscience-specific multi-view learning methods introduce additional constraints to promote
understanding, including enforcing linearity to prevent geometric distortion and incorporating Gaus-
sian process priors to infer temporally smooth latent variables. However, linear models lack the
expressivity necessary to model the complex nonlinear relationships between latent variables and
neural activity. Furthermore, these models often lack explicit loss terms to disentangle shared and
private latents, instead relying on the model architecture to implicitly encourage disentangling. When
the dimensionality of the shared space is mis-specified, such models can leak view-specific vari-
ance into the shared latents without penalty, or vice-versa. This vulnerability, also prevalent in the
machine learning literature, is especially problematic for blind scientific discovery, where the true
dimensionality of latent structure is unknown and mis-specification is unavoidable.

There thus remains a need for a method that can disentangle nonlinearly mixed shared and private
latent variables without a priori knowledge of latent dimensionality, while retaining geometric
structure that promotes interpretability. The primary contributions of our work are: 1) a new network
architecture (SPLICE) that separates and captures both the shared and private intrinsic geometry of a
multi-view dataset, 2) validation of the architecture in controlled simulations showing that our model
achieves superior disentangling, interpretability, and robustness to mis-specified latent dimensionality
than state-of-the-art methods (Lyu et al., 2021; Lee & Pavlovic, 2021), and 3) a real neural data
example showing that our model blindly discovers known shared information, validating its utility
for scientific discovery without the a priori hypotheses required by previous targeted studies.

2 SUBMANIFOLD PARTITIONING VIA LEAST-VARIANCE INFORMED CHANNEL
ESTIMATION (SPLICE)

Given paired observations that represent two views of a single underlying system, SPLICE aims to
infer disentangled latent representations of shared and private information that also preserve intrinsic
submanifold geometry. Under the forward model described in Section 1, each set of latent variables,
shared or private, corresponds to a submanifold of the overall data manifold in observation space
(Fig. 1a, right). As one set of latent variables varies and the other is held constant, it traces out the
corresponding submanifold in the high-D observation space. However, recovering the submanifolds
directly from the original observations is difficult; the latent submanifolds are nonlinearly mixed in
observation space, so local distances in observation space are influenced by both shared and private
information. Therefore, we cannot use conventional manifold learning techniques that rely on these
local distances. Instead, we must first isolate the submanifolds before applying conventional manifold
learning techniques.

SPLICE adopts a two-step approach to address this requirement. In Step 1 we use predictability
minimization (Schmidhuber, 1992) in a crossed autoencoder framework to learn disentangled repre-
sentations of the shared and private latent variables. Assuming disentangling was successful, we can
then hold one set of latents constant while varying the other to project data onto the shared or private
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Figure 1: Problem formulation and model architecture. a) Illustration of the observation model. Low-
dimensional private and shared latent variables are combined nonlinearly to form low-dimensional
manifolds embedded in the A view and B view high-dimensional observation spaces. b) The SPLICE
unsupervised autoencoder network architecture.

submanifolds, and use conventional manifold learning techniques to estimate geodesic distances
along them. Step 2 then finetunes the latent representations to preserve the estimated submanifold
geometries, providing insight into the structure of the latent variables.

Step 1: Disentangling private and shared latent variables: SPLICE uses a symmetric autoencoder
framework to infer latent variables. Each view is input into two encoders, one that generates a shared
set of latents and the other a private set (Fig. 1b):

ẑA︸︷︷︸
private A latent

= FA(xA), ẑB︸︷︷︸
private B latent

= FB(xB), ŝB�A︸ ︷︷ ︸
shared from B latent

= FB�A(xB), ŝA�B︸ ︷︷ ︸
shared from A latent

= FA�B(xA) (1)

Each view is reconstructed from its own private latents and the shared latents from the other view:

x̂A = GA(ŝB�A, ẑA), x̂B = GB(ŝA�B , ẑB). (2)

The encoders FA, FB , FA�B , FB�A and decoders GA, GB are all parameterized as multi-layer
neural networks. Using shared latents from one view to reconstruct the other view guarantees that
private information does not leak into the shared latents (Karakasis & Sidiropoulos, 2023). To
prevent the other type of leakage – shared information into private latents – we turn to predictability
minimization (Schmidhuber, 1992).

The intuition behind predictability minimization is that if a variable can predict something about
another, there must be non-zero mutual information between them. We therefore introduce auxiliary
“measurement networks” that try to predict each dataset as well as possible based on the other’s
private latent: xpred

A = MB�A(ẑB), x
pred
B = MA�B(ẑA). We use these measurement networks

in an adversarial disentangling scheme: in predicting the opposite region’s observations as well
as possible, the measurement networks try to exploit any shared information that has leaked into
the private latents. If there is no shared information in the private latents, the best prediction the
measurement networks can make (in an MSE sense) is to always output the mean of the target. Thus
for well-trained measurement networks, we have

I(ẑB ;xA) = 0� VarxB
[MB�A(ẑB)] = 0 I(ẑA;xB) = 0� VarxA

[MA�B(ẑA)] = 0. (3)

We thus train the private encoders to minimize VarxB
[MB�A(ẑB)] and VarxA

[MA�B(ẑA)] (in
addition to reconstruction error) to encourage the measurement network predictions to be as poor as
possible. Predicting data observations rather than predicting inferred shared latents prevents shared
information from leaking into the private latents, regardless of whether that shared information is
present in the inferred shared latents. As we will show below, this makes our model more robust to
mis-specified private latent dimensionality than existing methods.
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Step 1 loss functions and fitting: We train the encoders and decoders θae =
{GA, GB , FA, FB , FA�B , FB�A} to minimize the reconstruction losses LA

rec and LB
rec and the

variance in the measurement networks’ outputs:

LSPLICE = E[

LA
rec︷ ︸︸ ︷

∥xA − x̂A∥22 +

LB
rec︷ ︸︸ ︷

∥xB − x̂B∥22 +λdis (Var [MA�B(ẑA)] + Var [MB�A(ẑB)])]

θ∗ae = argmin
θae

LSPLICE . (4)

Successful disentangling with predictability minimization requires well-trained predictors θpred =
{MA�B ,MB�A}. We continuously update θpred to minimize the prediction losses as

θ∗pred = arg min
θpred

E[

LA
pred︷ ︸︸ ︷

∥xA −MB�A(ẑB)∥22 +

LB
pred︷ ︸︸ ︷

∥xB −MA�B(ẑA)∥22]. (5)

To fit the multiple interacting networks comprising the SPLICE model, we adopt an alternating
optimization approach (Schmidhuber, 1992) (Algorithm 1). Because our disentangling strategy relies
on the measurement networks being well-trained and able to learn complex relationships, we use
measurement networks that are as wide and deep as the decoder networks, and take multiple gradient
steps to minimize the measurement prediction losses LA

pred and LB
pred for each single step of the

other losses. 1

Step 2: Geometry Identification and Preservation: With the disentangled shared and private latent
representations from Step 1, Step 2 of SPLICE refines these representations to preserve the intrinsic
submanifold geometries, which is crucial for interpretability. This process involves three sub-steps:

Projecting onto Submanifolds: To estimate the submanifold geometry of each latent space, we first
use the trained network from Step 1 to project data points onto the respective submanifolds. E.g.,
to project points onto the private submanifold of view A (associated with ẑA), we select a random
observation sample x′

B , obtain its shared representation ŝfix
B�A = FB�A(x

′
B), and then generate

reconstructions by passing various xA samples through FA(·) and decoding with the fixed shared
component from the sample x′

B :

x̂zA subm
A = GA(ŝ

fix
B�A, FA(xA)) (6)

Assuming the latent spaces are well-disentangled, this process will project the data points onto
the submanifold corresponding to zA, since ŝB�A is held constant while ẑA varies. We use a
similar procedure to sample points for the shared submanifolds (e.g., by fixing a private latent
ẑfix
A = FA(x

′
A) and varying xB to generate x̂

sB�A subm
A = GA(FB�A(xB), ẑ

fix
A )) and for the view B

private submanifold.

Estimating submanifold geodesic distances: Consider first the set of data points projected onto the
ẑA submanifold. We construct a nearest-neighbors graph and estimate the geodesic distances from
each point to a small number of landmark points in the set. Concurrently, we compute the Euclidean
distances, Dz

A, between the points and landmarks in the latent space ẑA. Similar geodesic (Dgeo
B�A,

Dgeo
A�B , Dgeo

B ) and Euclidean distances (Ds
B�A, Ds

A�B , Dz
B) are computed for the shared latent spaces

and private latent space of view B. Using landmarks rather than computing all pairwise distances
significantly reduces the runtime complexity of this step, from O(N2logN) to O(nNlogN), where
N is the number of points and n ≪ N is the number of landmarks (Silva & Tenenbaum, 2002). As
a result, this step can take multiple orders of magnitude less time than the neural network training.

Fine-tuning with geometry-preserving loss: Finally, the SPLICE autoencoders are fine-tuned by
augmenting the original SPLICE loss function, LSPLICE (Eq. 4), with terms that penalize discrepancies
between the estimated submanifold geodesic distances and the corresponding latent space Euclidean
distances:

θ∗ae = argmin
θae

[
LSPLICE + λgeo

(
Lgeo
A + Lgeo

B + Lgeo
SB�A

+ Lgeo
SA�B

)]
. (7)

1It has been noted (Goodfellow et al., 2014) that training of the measurement networks is different, but
closely related, to Generative Adversarial Networks (GANs): the M(·) network aims to improve its prediction
of a data set, while the F (·) network that provides M ’s input aims to hinder this prediction.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where Lgeo
A =

√
∥Dz

A −Dgeo
A ∥2F , and similarly for the other latent components. λgeo is a hyperpa-

rameter balancing the original disentanglement and reconstruction objectives with the new geometry
preservation objective. The geodesic distances (Dgeo) are expensive to compute and are therefore
estimated once prior to fine-tuning, using the latents from Step 1. However, the latent space Euclidean
distances (Dz, Ds) are recomputed at each fine-tuning epoch as the encoder parameters θae are
updated (Algorithm 2). This encourages the encoders to find mappings that reflect the data’s intrinsic
manifold structure, providing more interpretable representations.

3 RESULTS

Figure 2: Rotated MNIST example. a) (left) During training, view A inputs were original MNIST
digits, view B inputs were a random rotation of them. (right) SPLICE accurately reconstructs the
original and rotated digits. b: The FB(·) private encoder in SPLICE distilled from input xB only
the rotation angle and discards digit identity, indicating successful disentangling. c) SPLICE retains
the circular 1-D geometry of rotation angle, unlike Lyu et al. (Lyu et al., 2021) and DMVAE (Lee &
Pavlovic, 2021). d) Even when given 5x the true number of private latents, SPLICE confines private
variance to 2 dimensions, while other methods use all available dimensions and admit non-angle
related variance.

Experiment 1: Rotated MNIST. We first validated SPLICE on rotated MNIST digits, a common
dataset in multi-view learning. The dataset consisted of paired samples of an original MNIST image
(view A) and randomly rotated versions of the same image (view B). To better distinguish the
capabilities of SPLICE and existing methods, we uniformly sampled the angle of rotation from a full
circle (θ ∈ [0◦, 360◦]), rather than the limited range (−45◦ to 45◦) typically used in the multi-view
learning literature (Wang et al., 2015; Lyu et al., 2021; Karakasis & Sidiropoulos, 2023). The shared
information in this experiment was thus the digit identity and features (e.g., line thickness), while the
view B private information was the rotation angle. Since the xA inputs were not rotated, there was
no private information for A.
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After training, SPLICE accurately reconstructed the original and rotated digits (Fig. 2a). The inferred
private latent space ẑB was a 1D double circular manifold, along which rotation angle steadily
increased (Fig. 2c). The proximity of angles 180◦ apart makes sense considering that vertically
symmetric digits look almost identical when rotated 180◦, and even non-symmetric digits activate
similar pixels when rotated 180◦. Both shared latent space ŝA�B and ŝB�A showed clear organization
by digit, with clusters for similar digits (e.g. 4 and 9, 3 and 8) closer together (Supp. Fig. 3), and no
apparent representation of angle (Supp. Fig. 7.

We compared SPLICE’s performance to two private-shared disentangling methods: Lyu et al. (2021)
and Lee & Pavlovic (2021) (DMVAE). Lyu et al. (2021) uses an deterministic Deep-CCA-based
architecture, with an adversarial scheme to disentangle shared and private latents. DMVAE uses
a variational autoencoder framework, with a total correlation-based disentangling objective and a
mixture-of-experts inference for cross-modality generation. Lyu et al. (2021) produced a latent space
with no clear angular organization (Fig. 2c, middle), which we suspect resulted from leakage between
shared and private information. While DMVAE (Fig. 2c, right) does show visible organization
by angle, it failed to extract a 1D circular manifold, and instead produced a circular point cloud,
presumably due to its isotropic Gaussian prior on the latent space. These discrepancies illustrate
the fundamental limitations of existing methods for blind scientific discovery. If we did not know
beforehand that the true private latent was the angle of rotation, only SPLICE’s inferred latent space
would have provided clues that the private latent variable was a 1D circular variable. Lyu et al.
(2021)’s latent space would instead suggest a 1D linear variable, and DMVAE’s would suggest two
largely independent 1D linear variables.

We quantified SPLICE’s performance relative to other methods by calculating the amount of private
latent variance explained by the true angle of rotation. In line with the qualitative results, rotation
angle explained a greater proportion of the variance in SPLICE’s private latent space compared to
those of the other two methods (Fig. 2c; Supp. Fig. 5c, Supp. Table 1)), indicating that SPLICE
achieves better disentangling than existing multi-view methods. To assess the fidelity of SPLICE’s
shared latent space, we additionally assessed how well digit identity could be decoded from the
SPLICE shared latent space, relative to Lyu et al. (2021), Lee & Pavlovic (2021), and three shared-
only methods: Kingma & Welling (2013), Wang et al. (2015) and Karakasis & Sidiropoulos (2023).
The decoding accuracy from SPLICE’s shared latent space was close to the best competing method
(Supp. Fig. 3, Supp. Table 5), and the latent space showed no apparent organization by rotation angle,
the private latent variable (Supp. Fig. 7).

To assess the robustness of SPLICE and existing private-shared methods to mis-specified latent
dimensionality, we also trained versions of each model with more private latent dimensions than
necessary. Importantly, SPLICE confined virtually all private latent variance to two dimensions – even
when given 5x the required number of dimensions – indicating that SPLICE is robust to mis-specified
latent dimensionality (Fig. 2d). In contrast, Lyu et al. and DMVAE had considerable latent variance
in the extra dimensions and considerable latent variance unrelated to rotation angle (Fig. 2d). These
results highlight another crucial advantage of SPLICE over existing methods for blind discovery; if
we had no a priori knowledge of the true latent dimensionality and picked a dimensionality that was
too large, only SPLICE would have suggested that the true private latent was confined to a 2D plane.

The disentangled SPLICE latents significantly generalized, allowing us to generate arbitrarily rotated
digits for digit-angle combinations not in the training set. Interestingly, we were able to verify that
the new projections do lie on the original data manifold (Supp. Fig. 5b). The Lyu et al. model was
unable to compose digit identity and angles from different test samples (Supp. Fig 5a), and DMVAE
was largely successful but sometimes applied an incorrect rotation angle (Supp. Fig. 5a). Finally,
we also trained SPLICE with different values for λgeo and found that SPLICE is remarkably robust
to this hyperparameter . The private and shared latent spaces were quantitatively and qualitatively
similar even for order-of-magnitude differences of λgeo (Supp. Table 2, Supp. Fig 6). We found
similar results and performance improvement over previous disentangling methods on a different
rotated images data set, composed of synthetically-generated "sprites" (Supp. Section A.3).

Experiment 2: Synthetic LGN-V1 activity.

Motivated by applications in neuroscience, we next probed SPLICE’s ability to handle nonlinear,
neural-like data. We simulated two populations of neurons responding to a shared "visual" stimulus –
a rectangular bar with variable x and y positions – and private 1D "position" stimuli (Fig. 3a). To
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Figure 3: Simulated LGN-V1 experiment. a) The two synthetic brain regions encode 1) location
on a linear track (place 1, private to A), 2) the 2D position of a vertical visual stimulus bar (shared
across A and B), and 3) a second linear track location (place 2, private to B). b) The visual stimulus
drives center-surround and Gabor RFs. Neurons are ordered by RF centers; As the neurons’ private
place infromation is unrelated to their visual RF centers, it appears as random noise. c) SPLICE
autoencoder network. d) SPLICE correctly estimates the shared latent dimensionality (d = 2), while
RRR overestimates it as d = 70. e) Value of the 2D SPLICE shared latents for each trial (each dot is
one trial) before applying geometry preservation. f) Same as g, but after applying SPLICE’s geometry
preservation. x and y positions are dot size and dot color, respectively. g) Each panel shows the data
as in f, but colored by the activity of a randomly chosen neuron: SPLICE allows discovering that the
activity coordinated across the regions has localized RFs that tile the shared space.

mimic neuronal receptive fields, the first population had lateral geniculate nucleus (LGN)-like center-
surround receptive fields to the visual stimulus, and the second population had V1-like Gabor-filter
receptive fields to the visual stimulus (Supp. Fig. 8). Both populations had Gaussian tuning curves
to their respective private stimuli, mimicking the tuning curves of hippocampal place field cells. To
make this dataset more challenging, we set the variance of the shared response to be ≈ 6x smaller
than the variance of the private response.

After training, SPLICE accurately reconstructed the simulated neural responses (Fig. 3c, right).
The full SPLICE model correctly recovered a 2D sheet in the shared latent space, with the axes
corresponding to the true x and y coordinates of the visual stimulus (Fig. 3f). Both inferred private
latent spaces captured the corresponding ground truth "position" variable, showing near perfect
correlation between ground truth and inferred latents (Supp. Figs 9,10). Remarkably, we were able to
estimate the receptive fields for each simulated neuron by plotting a heatmap of their activity in the
inferred latent space – a key capability for blind neuroscientific discovery (Fig. 3g).

To highlight the importance of SPLICE’s geometry preservation step, we examined the shared latent
space for an ablated model that was trained with only the Step 1 loss. The resulting latent space was
highly fragmented and distorted, but still organized by stimulus x and y position (Fig. 3e). If we
had no access to the ground truth shared latents, the ablated model would suggest that the shared
information had a complex fragmented structure. However, using the full model, while still blind to
the ground truth, would allow us to correctly infer that the true shared information consisted of 2
independent linear variables organized as a simple, continuous 2D sheet.

We first compared SPLICE’s performance on this dataset to Reduced Rank Regression (Semedo et al.,
2019), a popular linear method in neuroscience for identifying shared latent variables. A common
paradigm in neuroscience is to estimate the true latent dimensionality of neural activity by gradually
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increasing dimensionality and identifying when reconstruction quality saturates. Following the same
approach, we found that SPLICE correctly identified the true shared dimensionality (ns = 2; Fig. 3c,
orange). In contrast, RRR required ≈75 dimensions for reconstruction to saturate (Fig. 3c, blue).
Because we designed our simulated neurons to have the same tuning curves as real neural populations,
the discrepancy between SPLICE and RRR confirms the importance of nonlinear models in gaining a
clear description of shared variablility between populations; RRR grossly overestimated the number
of shared dimensions due to its linear assumptions.

Similarly to the ablated SPLICE model, competing nonlinear methods from the machine learning
literature produced latent spaces that were highly fragmented (Supp. Figs. 9,10). To quantify the
interpretablity of the latent spaces, we calculated how well the ground truth latents could be decoded
linearly from the latent spaces. We found that SPLICE was able to decode the shared and private
ground truth latents nearly perfectly, while competing methods had poor decoding accuracy.

Finally, we assessed the ability of SPLICE to disentangle shared and private in the presence of noise.
We added i.i.d. Gaussian noise to the neuron responses, and found that SPLICE was able to recover
the shared and private geometry even when the variance of the i.i.d. noise was 0.4 times the variance
of the signal, resulting in a shared SNR of 0.329 and a private SNR ratio of 2.166. (Supp. Fig. 8d,e).

Experiment 3: Data from neurophysiological experiments: Having shown SPLICE’s advantages
in disentangling and blind discovery on neural and non-neural synthetic datasets, we turned to
showing SPLICE’s utility on experimental neurophysiological data. Specifically, we wanted to assess
whether SPLICE could blindly rediscover shared information between regions that is known from
the neuroscience literature. We fit SPLICE to electrophysiologically-recorded neural data from
simultaneous Neuropixels recordings of hippocampus and prefrontal cortex, taken as mice performed
a decision making task in a Virtual Reality T-maze (Fig. 4a). In single-region studies, both these
brain regions have been shown to encode the animal’s spatial position.

SPLICE’s inferred shared latent space showed a shared encoding of the animal’s position (Fig. 4c),
consistent with the presence of place cells in both brain regions. Indeed, we could reliably decode
the animal’s position from the shared latent space on held-out trials (R2 = 0.889). SPLICE
also outperformed Reduced Rank Regression (Semedo et al., 2019) in that reconstruction quality
saturated with just two dimensions, while RRR required ≈ 12 for reconstruction to saturate (Fig. 4b).
This discrepancy suggests that, like in Experiment 2, the relationship between shared information
and neural responses is nonlinear, and the linear model was unable to correctly distill the shared
information into a small number of latent dimensions.

Figure 4: Neurophysiological data experiment. a) On each trial, mice made a Left/Right decision
on a virtual T-maze. The correct response was cued by a visual stimulus in the first half of the stem
of the T. Simultaneous recordings yielded 96 neurons in hippocampus, and 348 neurons in medial
prefrontal cortex. b) SPLICE outperformed RRR (Semedo et al., 2019), summarizing the shared
space in 2 dimensions, instead of 12. c) The shared latent space encodes the animal’s position.

4 DISCUSSION

We propose SPLICE as an unsupervised approach for learning interpretable latent representations of
shared and private information in complex, high-dimensional paired data sets. Compared to existing
methods (Semedo et al., 2019; Lyu et al., 2021; Lee & Pavlovic, 2021), SPLICE more effectively
disentangles shared and private information, yields more interpretable latents by preserving geometry,
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is more robust to incorrect estimates of latent dimensionality. While we preserve submanifold
geometry using L-Isomap (Silva & Tenenbaum, 2002) due to its relative simplicity and computational
efficiency, the SPLICE framework supports any manifold learning technique that produces pairwise
geodesic distances, e.g., robust extensions of Isomap (Budninskiy et al., 2018), diffusion-based
distances (Moon et al., 2019), or dynamics-based distances (Low et al., 2018).

A key design choice in SPLICE is disentangling via predictability minimization, which explicitly
encourages "first-order independence" (E[xB |zA] = constant) for continuous-valued latents. While a
stronger condition than decorrelation, this condition is theoretically weaker than the full independence
condition of Lyu et al. (2021). Empirically, however, our experiments show that Lyu et al.’s
method disentangles less effectively than methods with weaker theoretical guarantees, consistent
with previous evaluations (Karakasis & Sidiropoulos, 2023). Thus while Lyu et al.’s guarantees hold
in idealized conditions, practical implementations face challenges with limited network size and
imperfect optimization, which require balancing theoretical guarantees with empirical performance.
Future work could explore loss functions that better balance this trade-off. We note that SPLICE
can be augmented to include higher-order independence constraints via additional measurement
networks that predict higher-order moments. Nevertheless, SPLICE achieved superior disentangling
across diverse datasets, indicating that first-order independence is effective for learning disentangled
representations. To ensure fair comparisons, we selected hyperparameters for each method via a
consistent tuning procedure (see Supplement). Although adversarial training can often be brittle,
we found that with the selected hyperparameters, SPLICE trained without issues (e.g. oscillatory
behavior or divergence) for all datasets.

Relation to previous work in machine learning: Prior efforts focused on fully disentangling every
latent variable (Schmidhuber, 1992; Kim & Mnih, 2018), which is an ill-posed unsupervised problem
without further constraints (Locatello et al., 2020), and discards informative dependencies between
latents. VAE approaches face similar issues due to their reliance on isotropic Gaussian priors (Kim &
Mnih, 2018; Lee & Pavlovic, 2021; Palumbo et al., 2023), which encourage disentangling between
each latent and are generally not appropriate for arbitrary data distributions. SPLICE instead only
disentangles shared and private latent spaces, allowing the geometric loss to preserve structure within
each space. SPLICE’s autoencoder framework also allows it to quantify variance explained and
easily embed new points outside the training set. These capabilities are vital for assessing goodness
of fit and analyzing new observations, and are not easily achievable by non-parametric methods,
e.g., (Lederman & Talmon, 2018). Kevrekidis et al. (2024) proposed using orthogonality constraints
on encoder gradients to disentangle shared and private information. However, this method requires
accurate prior estimation of the latent sizes to prevent information leakage, and makes the strong
assumption that the private and shared submanifolds are orthogonal in the data space.

Relation to previous work in neuroscience: Within neuroscience, assessing the relationship between
activity in different brain regions has relied on models that assume either a linear link between latents
and neural activity (Semedo et al., 2019; Gokcen et al., 2022; 2023; Ebrahimi et al., 2022; Gallego
et al., 2020), or linear followed by a pointwise nonlinearity (e.g., softplus(·) or exponential) (Glaser
et al., 2020; Balzani et al., 2022; Keeley et al., 2020; Dowling & Savin, 2025). As artifical neural
networks, all of these can be thought of as single-layer models between latents and neural activity.
As neural representations are known to often be nonlinear, many datasets may not be well described
with such approaches. Here we allow more complex nonlinear relationships by using link functions
parameterized by deep neural networks. One exception among prior work is (Abbaspourazad et al.,
2024), which learns a highly nonlinear embedding of neural activity into a single latent state that
evolves with a linear dynamical system, similar to Koopman operators (Koopman, 1931). While some
of the studies explicitly distinguish latents labeled as shared vs. private, there are no demonstrations
of precise disentangling nor explicit preservation of manifold geometry.

Limitations: A primary limitation of SPLICE is that it can only account for two views at once.
Analyzing three or more would require multiple pairwise runs of SPLICE. This constraint is likewise
faced by CCA and its extensions considered in this paper. A second drawback is that SPLICE targets
only the geometry of the data, omitting information about temporal evolution. Future work should
consider combining SPLICE with dynamical approaches that account for temporal structure. Lastly,
SPLICE’s projection step assumes that the full data manifold is the cross-product of the private
and shared submanifolds. While this may not strictly hold for all real-world datasets, our MNIST
experiment shows that the latent combinations not seen during training (i.e. outside the cross-product
space) still lie on the data manifold, indicating tolerance to mild violations of this assumption.
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ETHICS STATEMENT

Our work provides a general model for obtaining interpretable descriptions of multi-view data. We
focus on neuroscience applications, but the model could be applied to other settings with paired
samples (e.g. sensor fusion, images from different viewpoints, etc). We do not foresee any negative
societal impacts from our work.

REPRODUCIBILITY STATEMENT

All models in this manuscript were train in PyTorch using the AdamW optimizer on an NVIDIA RTX
4080 GPU. Further details about hyperparameters and architecture for the experiments presented
above are available in the Appendix. Upon publication, we will make available a GitHub repository
containing the SPLICE implementation and scripts for running the experiments above.
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A APPENDIX

Algorithm 1 Training process for Step 1, separating shared and private latents
1: Initialize autoencoder networks θae = {GA, GB , FA, FB , FA�B , FB�A}
2: Initialize measurement networks MA�B and MB�A

3: for i in 1 . . .niter do
4: if i mod Trestart = 0 then
5: Restart measurement networks
6: nmsr = msr_iter_restart
7: else
8: nmsr = msr_iter_normal
9: end if

10:
11: Freeze encoders and decoders, unfreeze measurement networks
12: for iter in 1 . . .nmsr do
13: for (Abatch, Bbatch in dataloader) do
14: Use measurement networks to predict datasets from private latents: xpred

A and xpred
B

15: Compute measurement networks’ prediction loss LA
pred and LB

pred

16: Update measurement networks to minimize LA
pred + LB

pred

17: end for
18: end for
19:
20: Freeze measurement networks, unfreeze encoders and decoders
21: for (Abatch, Bbatch in dataloader) do
22: Encode inputs Abatch and Bbatch to get all latents: ŝB�A and ŝA�B , ẑA and ẑB
23: Decode shared and private latents to reconstruct inputs: Âbatch and B̂batch

24: Compute reconstruction loss LA
rec and LB

rec
25: Update encoder and decoder networks to minimize LA

rec + LB
rec

26:
27: Encode inputs Abatch and Bbatch to get all latents: ŝB�A and ŝA�B , ẑA and ẑB
28: Compute Var [MB�A(ẑB)] and Var [MA�B(ẑA)]
29: Update encoder networks to minimize Var [MB�A(ẑB)] + Var [MA�B(ẑA)]
30: end for
31: end for

A.1 MNIST EXPERIMENT

A.1.1 RESULTS ACROSS MULTIPLE RANDOM SEEDS

Supplementary Table 1: MNIST disentangling results across multiple random seeds.
Var. in zb Exp. by θ p-val. to SPLICE step 1 p-val. to full SPLICE

Lyu et al. (2021) 27.09± 9.84 p < 0.0001 p < 0.0001
DMVAE 84.64± 1.35 p = 0.0002 p < 0.0001
SPLICE step 1 94.83± 2.27 - p = 0.0262
SPLICE (both steps) 97.12± 0.78 p = 0.0262 -

A.1.2 RESULTS ACROSS MULTIPLE λgeo VALUES

Across orders of magnitude, different λgeo values produced similar distangling (below) and qualita-
tively similar latent spaces (Supp. Fig. 6).
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Algorithm 2 Training process for Step 2, fine-tuning to preserve geometry
1: Select a random sample to generate ẑfix

A , ŝfix
B�A, ŝfix

A�B , ẑfix
B

2: Calculate submanifold projections x̂zA subm
A , x̂

sB�A subm
A , x̂

sA�B subm
B , x̂zB subm

B

3: Estimate geodesic distances Dgeo
A , Dgeo

B�A, D
geo
A�B , D

geo
B

4: for i in 1 . . .niter do
5: if i mod Trestart = 0 then
6: Restart measurement networks
7: nmsr = msr_iter_restart
8: else
9: nmsr = msr_iter_normal

10: end if
11:
12: Freeze encoders and decoders, unfreeze measurement networks
13: for iter in 1 . . .nmsr do
14: for (Abatch, Bbatch in dataloader) do
15: Use measurement networks to predict datasets from private latents: xpred

A and xpred
B

16: Compute measurement networks’ prediction loss LA
pred and LB

pred

17: Update measurement networks to minimize LA
pred + LB

pred

18: end for
19: end for
20:
21: Freeze measurement networks, unfreeze encoders and decoders
22: for (Abatch, Bbatch in dataloader) do
23: Encode inputs Abatch and Bbatch to get all latents: ŝB�A and ŝA�B , ẑA and ẑB
24: Decode shared and private latents to reconstruct inputs: Âbatch and B̂batch

25: Compute reconstruction loss LA
rec and LB

rec
26: Compute geometry preservation loss Lgeo = LA

geo + LB
geo + LA�B

geo + LB�A
geo

27: Update encoder and decoder networks to minimize LA
rec + LB

rec + λgeoLgeo

28:
29: Encode inputs Abatch and Bbatch to get all latents: ŝB�A and ŝA�B , ẑA and ẑB
30: Compute Var [MB�A(ẑB)] and Var [MA�B(ẑA)]
31: Update encoder networks to minimize Var [MB�A(ẑB)] and Var [MA�B(ẑA)]
32: end for
33: end for
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Supplementary Table 2: MNIST disentangling results across multiple λgeo values

λgeo Var. in zb Exp. by θ

0.001 98.28
0.01 97.12(mean)
0.1 97.89

A.1.3 MNIST DATASET DETAILS

For the MNIST experiment, we used the MNIST dataset Lecun et al. (1998) under the GNU General
Public License v3.0. We first split the dataset into training, validation, and test sets, with 50000
digits in the training set, 10000% in the validation set, and 10000% in the test set. Therefore, the
performance metrics we report on the MNIST dataset are based on held-out test set digits that
were unseen during training at any rotation. Each paired data sample was generated by randomly
selecting one of the digits in the corresponding datasplit, and applying rotations by a random angles
θ ∈ [0◦, 360◦]. View A was the original digit, and view B was the same digit rotated by θ degrees.
We only included one rotation of each original MNIST digits, so the final dataset consisted of 50000
training samples, 10000 validation samples, and 10000 test samples.

A.1.4 HYPERPARAMETER SELECTION FOR SPLICE AND BASELINES

The original papers for all models we compared to included an experiment with rotated MNIST
digits. We therefore used the same hyperparameters as in the original papers and did not perform a
hyperparameter search for this experiment.

For all models, we used 30 latent dimensions for each shared space, 0 dimensions for the unrotated
view’s private space, and 2 dimensions for the rotated view’s private space. For SPLICE, we used
a fully connected network with hidden layers of [256, 128, 64, 32] for the encoders. The decoders
mirrored the encoder architecture. The measurement networks had the same architecture as the
decoders. We trained SPLICE for 100 epochs with a batch size of 100, learning rate of 10−3, and
weight decay of 10−3. We set the coefficient for the disentangling loss to 1 for simplicity, and set the
coefficient for the geometry preservation loss to be 0.01 based on the approximate ratio between the
average geodesic distance and the average norm of the data. Training SPLICE took approximately 30
minutes on a single NVIDIA RTX4080 GPU. For SPLICE Step 2, we used 100 neighbors and 100
landmarks for the geodesic distance calculations. We chose the value of 100 neighbors by starting at
100 and increasing in increments of 100 until the nearest neighbors graph was not fragmented. For
the other models, we used the same hyperparameters and hidden layer sizes as in the original papers.

A.1.5 CORRECTING FOR INITIAL ROTATION IN VARIANCE EXPLAINED CALCULATION

We noted that the estimated angle was at times offset by the inherent angle of the digits in the MNIST
dataset; Some of the digits were written at an angle before any rotations were applied. To correct
for the baseline angle, we obtained the latent values for many rotations of each digit, which yielded
a curve of the latent angle as a function of the rotation angle for each digit and model. We then
identified for each digit a horizontal shift in the latent angle estimation by maximizing the inner
product of each digit’s angle curve with a reference curve selected from one random digit (Supp. Fig.
4). This offset was then subtracted to provide an absolute angle inclusive of the initial built-in angle.

We then calculated the variance explained in the private latents by the angle by selecting samples
in 2 degree windows over the true “corrected” angle of the digits, calculating the variances of the
corresponding private latents, and dividing by the total variance of the private latents. Subtracting
this value from 1 gives the variance explained by the angle of the digits for each window. The final
variance explained was calculated as the average of the variances in each window.

A.1.6 ASSESSING ON-MANIFOLD PRESENCE OF GENERATED DIGITS

We quantified if these projections lie on the original data manifold by calculating the distances between
the private submanifold (i.e. the arbitrarily rotated digits) and the nearest neighbors in the observed
dataset, and repeated a similar calculation for the shared submanifold. For both submanifolds, the
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distributions of submanifold nearest-neighbors distances were similar to the distribution nearest-
neighbors distances between observed data points. Virtually all projection nearest-neighbors distances
were smaller than the average within-digit-class distance. These distance metrics suggest that the
projections do lie on the original data manifold, despite not training the model with pairs consisting
of different digits (Supp. Fig. 5b).

A.2 LGN-V1 EXPERIMENT

A.2.1 SIMULATION DETAILS

Given a stimulus consisting of a bar of light presented at different positions in different trials, datasets
A and B are the activity of a field of simulated LGN neurons and V1 neurons, respectively. The stimuli
were kept at a single orientation (vertical). By construction, the ground truth shared information
across both views is the X and Y position of the bar, which geometrically is a 2-dimensional sheet.
The LGN population consisted of 400 neurons, with center-surround receptive fields whose centers
were evenly spaced on a two-dimensional 20x20 grid. The V1 population consisted of two evenly
spaced 20x20 grids of neurons with Gabor filter receptive fields (i.e., V1 was 800-dimensional). The
first grid had vertically oriented Gabor filters and the second had horizontally oriented Gabor filters.
The visual field was implemented as a 100x100 pixel grid, and the size of each neuron’s receptive
field was 30x30 pixels (Supp. Fig.8a).

In addition to the shared visual stimulus, each population also responded to a private 1-D stimulus.
For each population, this was generated by placing a virtual agent along a 1-D virtual linear track.
Each neuron had a randomly centered Gaussian place field on this linear track. On different trials,
the LGN agent and the V1 agent were placed at random, mutually independent, positions on the
track. The neuronal responses to the shared and private stimuli were added linearly to obtain the
final activity for each neuron. We scaled the variance of the responses to the private latents to be 6X
the variance of responses to shared latents. Supp. Fig. 3a shows example stimuli and inputs to the
SPLICE network in Supp. Fig. 3b show an example of the resulting LGN and V1 population activity.
In some simulations, we also added i.i.d. noise to each individual neuron. For each simulation, we
generated 18,900 trials, with the stimulus placed at a randomly chosen X and Y position for each trial.
64% of the trials were used for training, 16% for validation, and 20% for the testing results shown in
Supp. Fig. 3.

A.2.2 HYPERPARAMETER SELECTION FOR SPLICE AND BASELINES

We compared SPLICE to DeepCCA Andrew et al. (2013), DeepCCAE Wang et al. (2015), Karaka-
sis Karakasis & Sidiropoulos (2023), Lyu et al. Lyu et al. (2021) and DMVAE Lee & Pavlovic
(2021) for the LGN-V1 dataset. We used fully connected networks for all models, with the de-
coder architecture mirroring the encoder architecture. For hyperparameter tuning, we used the Ray
Tune library Liaw et al. (2018) with the HyperOptSearch algorithm Bergstra et al. (2013) and the
ASHAScheduler Li et al. (2020), and optimized with respect to the objective function for each model
on the validation set.

The discrete search space was defined as follows:

• Learning rate: {10−2, 10−3, 10−4, 10−5}
• Weight decay: {0, 10−1, 10−2, 10−3, 10−4}
• Batch size: {1000, 2000, 5000, 12096}
• # of units per hidden layer: {50, 100, 200}
• # of hidden layers: {2, 3, 4, 5, 6}

The best performing hyperparameters from this search space were:

• SPLICE: Learning rate 10−3, weight decay 10−3, batch size 12096, # of units per hidden
layer 200, # of hidden layers 6

• DeepCCA: Learning rate 10−3, weight decay 0, batch size 2000, # of units per hidden layer
200, # of hidden layers 3
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• DeepCCAE: Learning rate 10−2, weight decay 0, batch size 5000, # of units per hidden
layer 200, # of hidden layers 2

• Karakasis: Learning rate 10−3, weight decay 0, batch size 1000, # of units per hidden layer
200, # of hidden layers 3

• Lyu et al.: Learning rate 10−3, weight decay 10−4, batch size 1000, # of units per hidden
layer 200, # of hidden layers 6

• DMVAE: Learning rate 10−3, weight decay 10−3, batch size 1000, # of units per hidden
layer 200, # of hidden layers 6

Other hyperparameters were set according to the original papers (see Sprites section above). For
SPLICE, we set the coefficient for the disentangling loss to 1 for simplicity, and set the coefficient
for the geometry preservation loss to be 0.05 based on the approximate ratio between the average
geodesic distance and the average norm of the data. For SPLICE Step 2, we used 200 neighbors and
100 landmarks for the geodesic distance calculations. We chose the value 200 by starting at 100 and
increasing in increments of 100 until the nearest neighbors graph was not fragmented. SPLICE was
trained for 25000 epochs, which took approximately 2.5 hours on a single NVIDIA RTX4080 GPU.

A.3 SPRITES EXPERIMENT

Supplementary Figure 1: Sprites dataset. a) Attributes used to generate unique sprites. b) Each paired
sample consisted of a single sprite rotated by random angles θA and θB . c-d) SPLICE Step 1 found a
private latent space zA tightly organized by the rotation angle, indicating excellent disentangling. e)
Lyu et al. found a latent space organized by angle along only one dimension. f) DMVAE found a
latent space organized by angle, but with poorer disentangling than SPLICE. g) Applying SPLICE
Step 2 to the network from c-d) produced a private latent space with a nearly perfect ring geometry.
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A.4 SPRITES EXPERIMENT

A.4.1 SPRITES RESULTS

We also assessed SPLICE’s ability to disentangle on simple synthetic data with known true private
and shared information. Our dataset consisted of images of “sprites” (Fig. 1a), each defined by a
specific configuration of features (hair, pants, shirt, etc.). For each sample, we selected a single sprite
and rotated it by random angles θA, θB ∈ [0◦, 360◦] to produce xA and xB (Fig. 1b). Thus, the
shared information was the sprite identity (i.e., the sprite features) and the private information was
the view-specific rotation angle. The private submanifolds of this dataset, each corresponding to all
possible rotations of a single sprite, were thus 1D circular manifolds (i.e. rings) due to the periodic
nature of θ.

We trained SPLICE Step 1 with 500-dimensional shared latents and 2-dimensional private latents
on this dataset. After training, the network successfully reconstructed its inputs (Supp. Fig. 1b),
explaining 95.93% of the variance in xA and 96.19% in xB . The private latent space ẑA was
organized by θA, indicating that the network successfully distilled only the rotation angle into the
private latent (Supp. Fig. 1c,d). Indeed, θ accounts for 99.65% of the total variance in ẑA, indicating
a high degree of disentangling. Similarly, the sprite identity accounted for 99.75% of the total
variance in ŝB�A. Compared to Lyu et al. (Lyu et al., 2021) and DMVAE (Lee & Pavlovic, 2021),
SPLICE Step 1 explained more data variance and achieved better disentangling for all latent spaces
(Supp. Table 4, Supp. Table 3).

Although the true geometry of θA is a ring, nonlinear networks in SPLICE Step 1 and the other meth-
ods obscure this geometry by cutting and warping the latent space ẑA (Supp. Fig. 1c-f), highlighting
the need for the geometry preservation Step 2 of SPLICE. Applying Step 2 to the Step 1-trained
network produced private latent spaces that still encoded rotation angles, but had geometries that
were nearly perfect rings (Supp. Fig. 1g). Thus, if we did not know beforehand that the angle was the
true private information (as is the case for unsupervised discovery), SPLICE’s discovery of the ring
geometry would have provided the insight that the private information was a 1-D circular variable.
Looking at the Step 1 latent space would not have yielded such insight in this scenario.

Supplementary Table 3: SPLICE disentangling and reconstruction vs. baselines on Sprites dataset
reconstruction R2 SD Exp. by θi (%) SD Exp. by sprites(%)

x̂A x̂B ẑA ẑB ŝA ŝB

Lyu et al. 0.904 0.895 5.67 16.28 3.51 3.95

DMVAE 0.885 0.882 88.11 87.09 94.06 93.97

SPLICE (Step 1) 0.959 0.962 94.15 93.31 95.58 95.19

SPLICE (full) 0.956 0.953 98.83 98.91 98.43 98.44

Supplementary Table 4: SPLICE disentangling vs. baselines on Sprites dataset
Var. Exp. by θi (%) Var. Exp. by Sprite ID (%)

ẑA ẑB ŝA ŝB

Lyu et al. 10.97 22.12 6.76 7.70

DMVAE 98.50 98.31 99.09 98.97

SPLICE (step 1 only) 99.65 99.55 99.79 99.75

SPLICE (both steps) 99.99 99.99 99.97 99.97
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Supplementary Figure 2: a) DeepCCA infers shared latent variables by extending linear CCA to use
deep neural network encoders. b) DeepCCAE attempts to capture as much shared information as
possible by adding decoders to DeepCCA. c) Karakasis et al. Karakasis & Sidiropoulos (2023) crosses
the encoders in DCCAE to eliminate leakage of private information into the shared latents. d) Lyu
et al. Lyu et al. (2021) explicitly models private latent variables, and uses adversarial DeepCCA
networks to encourage disentangling between shared and private latents. e) DMVAE Lee & Pavlovic
(2021) explicitly models private latents in a variational framework and encourages disentangling
through minimizing the total correlation – the KL divergence between the joint latent distribution and
the product of the marginal latent distributions.

A.4.2 SPRITES DATASET DETAILS

For the Sprites experiment, we used static sprite frames from Li & Mandt (2018), available at
https://github.com/YingzhenLi/Sprites under a CC-BY-NC 4.0 license. The dataset
contains animations of 2D sprites, each with a unique combination of skin color, hair, top, and pants.
Each attribute had 6 possible values, for a total of 64 = 1296 unique sprites.

For our experiment, we used only the first frame of each animation. Importantly, we first split the
unique sprites into training, validation, and test sets, with 80% of the sprites in the training set, 10% in
the validation set, and 10% in the test set. Therefore, the performance metrics we report on the Sprites
dataset are based on held-out test set sprites that were unseen during training at any rotation.Each
paired data sample was generated by randomly selecting one of the sprites in the corresponding
datasplit, and applying rotations by random angles θA, θB ∈ [0◦, 360◦]. The final dataset consisted
of 20000 training samples, 5000 validation samples, and 5000 test samples.

A.4.3 TUNING PROCEDURE A FOR SPLICE AND BASELINES

We compared SPLICE to Lyu et al. Lyu et al. (2021) and DMVAE Lee & Pavlovic (2021) for the
Sprites dataset. We used fully connected networks for all models, with the decoder architecture
mirroring the encoder architecture. For hyperparameter tuning, we used the Ray Tune library Liaw
et al. (2018) with the HyperOptSearch algorithm Bergstra et al. (2013) and the ASHAScheduler Li
et al. (2020), and optimized with respect to the objective function for each model on the validation
set.
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The discrete search space was defined as follows:

• Learning rate: {10−2, 10−3, 10−4, 10−5}
• Weight decay: {0, 10−1, 10−2, 10−3, 10−4}
• Batch size: {500, 1000, 2000}
• Hidden layer sizes:

– [1024, 512, 512, 2048]

– [1024, 512, 512, 2048, 1024]

– [1024, 512, 512, 2048, 1024, 512]

The best performing hyperparameters from this search space were the same across all mod-
els: Learning rate 10−4, weight decay 10−3, batch size 1000, and hidden layer sizes
[1024, 512, 512, 2048, 1024, 512]. Because we wanted to select hyperparameters in a completely
unsupervised manner, we did not use the validation set to select hyperparameters that affected the
calculation of the objective functions, i.e. coefficients for loss terms. We instead set these coefficients
to the same values recommended (see below) in the original papers.

A.4.4 MODEL ARCHITECTURES AND TRAINING FOR SPLICE AND BASELINES

For all models, we used 500 latent dimensions for each shared space and 2 latent dimensions for each
private space. Measurement networks for SPLICE had the same architecture as the decoder networks,
and the DCCA networks for Lyu et al. consisted of 3 fully connected layers with 64 hidden units
each, as suggested in the original paper. All models were trained for 5000 total epochs.

Additional hyperparameters were set as follows:

• Lyu et al. Lyu et al. (2021): lrmax = 1, decaymmcca = 10−1, β = 1, λ = 100

• DMVAE Lee & Pavlovic (2021): λ = 10, β = 1

• SPLICE: λdisent = 1, λgeo = 0.005.

The values for Lyu et al. were selected as recommended in the original paper. For DMVAE, the paper
and code provided conflicting values for the coefficients, so we contacted the authors and set the
values per their recommendation. For Lyu et al., lrmax and decaymmcca are the learning rate and
weight decay for the adversarial DCCA networks, β is the coefficient for the reconstruction loss, and
λ is the coefficient for the disentangling loss. For DMVAE, λ is the coefficient for the reconstruction
loss, and β is the coefficient for the total correlation term of the KL expression.

For SPLICE, we set the coefficient for the disentangling loss to 1 for simplicity, and set the coefficient
for the geometry preservation loss to be 0.05 based on the approximate ratio between the average
geodesic distance and the average norm of the data. For SPLICE Step 2, we used 500 neighbors and
100 landmarks for the geodesic distance calculations. We chose the value 500 by starting at 100 and
increasing in increments of 100 until the nearest neighbors graph was not fragmented.

A.4.5 VARIANCE EXPLAINED CALCULATION

We calculated the variance explained in the private latents by the angle by selecting samples in 2
degree windows over the true angle, calculating the variances of the corresponding private latents, and
dividing by the total variance of the private latents. Subtracting this value from 1 gives the variance
explained by the angle of the digits for each window. The final variance explained was calculated as
the average of the variances in each window.

For the variance explained in the shared latents by the sprite ID, we calculated the variance of the
shared latents for each unique sprite ID, and divided by the total variance of the shared latents.
Subtracting this value from 1 gives the variance explained by the sprite ID for each window. Because
our dataset had multiple different rotations for each sprite ID, this gave us enough repetitions of each
sprite ID to obtain a good estimate of the variance explained by the sprite ID. The final variance
explained was calculated as the average of the variances for each sprite ID.
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Supplementary Figure 3: tSNE visualization of clusters in the shared latent spaces that SPLICE
successfully separates digits into distinct clusters. Competing methods tend to have less clear clusters
(e.g., DeepCCAE and Lyu et al.) and at best comparable clustering (DeepCCA, Karkasis et al., and
DMVAE) as measured by the classification accuracy. We note that clustering accuracy is an imperfect
measure of shared info, as it does not account for other aspects of digit identity, such as digit style,
line thickness, etc.
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Supplementary Figure 4: a) MNIST digits have initial rotations – all digits shown are nominally
unrotated. b) Example rotation vs. latent curves that were aligned to correct for inital rotation.
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Supplementary Figure 5: a) Example cross-reconstructed digits. b) SPLICE cross-reconstructed
digits lie on the data manifold. c) SPLICE obtains more disentangled private latents than competing
methods.

Supplementary Figure 6: SPLICE is robust to the choice of λgeo. MNIST private latent spaces look
qualitatively similar across 3 orders of magnitude of λgeo.
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Supplementary Table 5: SPLICE performance vs. baselines on MNIST dataset
Shared Lat. Clustering Acc. (%) Private Lat. Var. Exp. by θ (%)

DeepCCA 90.7 –

DeepCCAE 78.1 –

Karakasis 91.3 –

Lyu et al. 76.1 28.41

DMVAE 91.3 83.71

SPLICE 90.8 95.80

Supplementary Figure 7: SPLICE latent spaces show no apparent contamination by the opposite
information type
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Supplementary Figure 8: LGN-V1 extras: a) Example receptive fields for simulated LGN and V1
neurons. b,c) SPLICE latent spaces are highly disentangled; coloring the shared latent space by
ground truth private latents and vice versa shows no clear structure. d,e) SPLICE recovers the shared
latent geometry and reconstructs well even in the presence of large amounts of i.i.d. noise (shown
panels are when the variance of the noise is 0.4x the variance of the signal).
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Supplementary Figure 9: LGN-V1 shared latent space: True vs. inferred private latents for methods
that estimate shared latents. SPLICE substantially outperforms the competing methods in latent
estimation, recovering a 2D sheet organized by stimulus X and Y position.

Supplementary Figure 10: LGN-V1 private latent space: True vs. inferred private latents for methods
that estimate private latents. SPLICE substantially outperforms the competing methods (despite all
models achieving good reconstruction quality), obtaining highly disentangled 1D structure in the
private latents.
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