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Abstract
Amortized simulator-based inference has emerged as a powerful framework for tackling
inverse problems and Bayesian inference in many computational sciences by learning the
reverse mapping from observed data to parameters. Once trained on many simulated
parameter-data pairs, these methods afford parameter inference for any particular dataset,
yielding high-quality posterior samples with only one or a few forward passes of a neural
network. While amortized methods offer significant advantages in terms of efficiency and
reusability across datasets, they are typically constrained by their training conditions –
particularly the prior distribution of parameters used during training. In this paper, we
introduce PriorGuide, a technique that enables on-the-fly adaptation to arbitrary priors at
inference time for diffusion-based amortized inference methods. Our method allows users to
incorporate new information or expert knowledge at runtime without costly retraining.

1. Introduction

Simulation-based inference has become a fundamental tool across computational sciences,
enabling parameter estimation in complex systems where the forward model (simulator) is
available but its likelihood is intractable (Cranmer et al., 2020). In a Bayesian framework, we
express prior beliefs about parameters as distributions and update them given observations
(Robert, 2007). While traditional inference methods such as Markov Chain Monte Carlo
(MCMC) are the gold standard with tractable likelihoods (Gelman et al., 2014), recent neural
network approaches can directly learn the inverse mapping from observations to posterior
distributions over model parameters (Greenberg et al., 2019; Radev et al., 2020). These
methods are typically amortized, enabling efficient inference after training and facilitating
meta-learning across related problems (Brown et al., 2020). In this context, ‘inference’
takes on a unified meaning: the neural network’s forward pass directly produces a posterior
estimate.
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Modern generative modeling techniques such as transformers (Vaswani et al., 2017),
flow-matching (Lipman et al., 2023), and diffusion models (Ho et al., 2020; Song et al.,
2021) have proven particularly effective for this inverse modeling task, with recent work
demonstrating state-of-the-art performance in simulation-based inference (Wildberger et al.,
2024; Gloeckler et al., 2024; Chang et al., 2024). These methods learn the inverse mapping
by generating training data – (model parameters, data) pairs – through simulation, typically
using a uniform training distribution over parameters, equivalent to the prior, to ensure
broad coverage of the parameter space.

However, this approach faces key limitations in practice. First, practitioners often possess
domain-specific knowledge that could improve inference if incorporated as prior beliefs.
Second, researchers may need to conduct prior sensitivity analysis to understand how their
modeling assumptions affect conclusions (Elsemüller et al., 2024). Current methods either
require retraining with new priors or offer only limited solutions. As the field moves toward
larger foundation models for amortized inference (Hollmann et al., 2025), retraining becomes
increasingly impractical.

While recent work has proposed techniques for prior specification at inference time
(Elsemüller et al., 2024; Chang et al., 2024; Whittle et al., 2025), these amortized approaches
are restricted to specific family of priors considered during training – from factorized his-
tograms to Gaussian mixture models. While some of these families are very flexible in
principle, training over the space of all meaningful runtime priors becomes rapidly infeasible.
Diffusion interval guidance offers runtime prior specification, but limited to simple range
constraints (Gloeckler et al., 2024). A general solution for incorporating arbitrary priors at
runtime remains an open challenge.

Contributions. We introduce PriorGuide, a method that enables flexible incorporation
of arbitrary prior beliefs at inference time for diffusion-based amortized inference models.
Our approach requires no modifications to the base diffusion model’s training procedure
and supports more complex priors than previously explored methods. Our method works
with existing diffusion-based inference models by implementing the prior as a guidance term.
We demonstrate PriorGuide’s effectiveness on synthetic examples and a challenging inverse
problem. See Fig. A.1 for an illustration of our method.

2. Background

Diffusion models are a powerful framework for generative modeling that transforms samples
from arbitrary to simple distributions and vice versa through a gradual noising and denoising
process (Sohl-Dickstein et al., 2015). In the forward process, starting from a distribution
p(θ0), Gaussian noise is progressively added to the samples until, at the end of the process
(t = 1), the distribution converges to a simple terminal distribution (typically Gaussian).
The forward process can be described as:

p(θt) =

∫
N (θt|θ0, σ(t)2I)p(θ0)dθ0, (1)

where σ(t) defines the noise variance schedule as a function of time (typically increasing
with t), and θt represents the noisy samples at time t. The corresponding reverse process
reconstructs the original sample distribution from noise, and can be formulated as either a
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stochastic differential equation (SDE) or an ordinary differential equation (ODE). For the
Variance Exploding (VE) SDE (Song et al., 2021; Karras et al., 2022), the reverse process
takes the form:

Reverse SDE: dθt = −2σ̇(t)σ(t)∇θ log p(θt)dt+
√
2σ̇(t)σ(t) dωt, (2)

where ∇θ log p(θt) is the score function (gradient of the log-density), dωt is a Wiener process
representing Brownian motion (noise), and σ̇(t) is the time derivative of the variance schedule.

Learning the Score Function. The score function ∇θ log p(θt) can be approximated using
a neural network s(θt, t), trained to minimize the denoising score matching loss (Hyvärinen
and Dayan, 2005; Vincent, 2011; Song et al., 2021):

LDSM = Et∼U(0,1)Eθ0∼p(θ0)Eθt∼N (θt|θ0,σ(t)2I) ∥s(θt, t)−∇θt log p(θt|θ0)∥
2
2 . (3)

Once trained, the network s(θt, t) approximates the gradient of the log-probability density
of noised distributions and affords sampling through the reverse SDE (Eq. (2)). Starting
from a sample θt ∼ N (θt|θ0, σ2

maxI) for t = 1 with sufficiently large σmax, integrating the
reverse process backward in time approximately reconstructs the original distribution p(θ0).

Tweedie’s Formula. Tweedie’s formula provides a key connection between the posterior
mean of θ0 given θt and the score function:

E[θ0|θt] = µ0|t(θt) = θt + σ(t)2∇θt log p(θt). (4)

This relationship enables direct estimation of the posterior mean at any noise level and
establishes an equivalence between µ0|t(θt) and s(θt, t).

The diffusion framework’s flexibility stems largely from its ability to incorporate guidance
mechanisms, which afford steering the sampling process toward desired outcomes by including
additional information or constraints. Notable examples include classifier guidance (Dhariwal
and Nichol, 2021) and classifier-free guidance (Ho and Salimans, 2022), which afford controlled
generation without retraining the model. For inverse problems, this guidance framework has
been extended to incorporate likelihood information, particularly for Gaussian likelihoods
(Chung et al., 2023; Song et al., 2023a).

For the inverse problems in this work, we learn a score function to approximate the
conditional mapping ∇θt log p(θt|x) using the direct conditional training approach of Gloeckler
et al. (2024). In this framework, the observation x is provided directly to the score network
s(θt, t,x), similar to the context in conditional neural processes (Garnelo et al., 2018). While
our experiments in this paper use this direct approach, we note PriorGuide can also be
applied to models using joint training with in-painting guidance (Lugmayr et al., 2022). In
either case, PriorGuide adapts the guidance framework to transform the trained prior into
an arbitrary prior at inference time.

3. PriorGuide

Consider an inverse problem where we observe data x and aim to infer parameters θ. Standard
diffusion models for inverse problems are trained to approximate ∇θ log p(θ|x) via a learned
score function s(θt, t,x), and sampling from the model produces posterior samples p(θ|x)
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that are anchored to the training distribution (prior) p(θ). This constraint limits flexibility
when new prior information becomes available, as incorporating it would traditionally require
retraining the score model.

Given a diffusion model trained to sample from posterior p(θ|x) with prior p(θ), our goal
is to sample from a modified posterior q(θ|x) that incorporates a new prior q(θ) without
retraining. PriorGuide affords prior modification at sampling time by leveraging a basic
statistical relationship:

Proposition 1 Let the posterior under the original prior be given as p(θ|x) ∝ p(θ)p(x|θ),
and let the posterior under the new prior be q(θ|x) ∝ q(θ)p(x|θ). Then, sampling from q(θ|x)
is equivalent to sampling from ρ(θ)p(θ|x) with ρ(θ) ≡ q(θ)

p(θ) the new-over-old prior ratio.

Proof We can rewrite the new posterior q(θ|x) as

q(θ|x) ∝ q(θ)p(x|θ) = q(θ)

p(θ)
p(θ)p(x|θ) ∝ q(θ)

p(θ)
p(θ|x) = ρ(θ)p(θ|x),

where the prior ratio ρ(θ) ≡ q(θ)
p(θ) takes the role of an importance weighing function.

Modified Posterior Score. Prop. 1, combined with the properties of diffusion models,
allows us to express the score of the modified posterior at any time t as:

q(θt|x) ∝
∫

ρ(θ0)p(θ0|x)p(θt|θ0)dθ0 (5)

∇θt log q(θt|x) = ∇θt log

∫
ρ(θ0)p(θ0|x)p(θt|θ0,x)dθ0 (6)

= ∇θt log

∫
ρ(θ0)p(θ0|θt,x)p(θt|x)dθ0 (7)

= ∇θt log

∫
ρ(θ0)p(θ0|θt,x)dθ0 +∇θt log p(θt|x) (8)

where in Eq. (5) we write the modified posterior as an integral over θ0 by noting that q(θ0|x) ∝
ρ(θ0)p(θ0|x) and then propagate this information to time t via the transition kernel p(θt|θ0).
In Eq. (6) we write the score, and then re-express the joint probability p(θ0|x)p(θt|θ0) =
p(θ0,θt|x) as p(θ0|θt,x)p(θt|x), which allows us to separate the contribution of the new
prior guidance from the original score model s(θt, t,x). In multiple steps we exploit the fact
that multiplicative constants inside the integral disappear under the score.

We can draw samples from q(θt|x) via the reverse diffusion process using the modified
score:

∇θt log q(θt|x) ≈ ∇θt logEp(θ0|θt,x) [ρ(θ0)] + s(θt, t,x). (9)

where first term estimates how the new prior’s influence propagates to time t (guidance
term) and the second term is our trained score model. This is a common way to implement
a guidance function (Chung et al., 2023; Song et al., 2023a,b; Rissanen et al., 2024), where
now the guidance function is the prior ratio. In the rest of this section, we apply several
approximation techniques to estimate the guidance term.
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3.1. Approximating the Guidance Function

To approximate the guidance term in Eq. (9) efficiently while maintaining flexible inference-
time priors, we introduce two approximations. Following recent work (Song et al., 2023a; Peng
et al., 2024; Rissanen et al., 2024), we first model the reverse transition kernel as a Gaussian
distribution. We then introduce a novel approach that represents ρ(θ) as a Gaussian mixture
model. This representation enables both an analytical solution and preserves flexibility
in the model. While previous research on inverse problems has explored guidance with
linear-Gaussian observation models (Song et al., 2023a), these can be viewed as special cases
of our method when using a single mixture component.

Reverse Transition Kernel Approximation. We first approximate the reverse transition
kernel p(θ0|θt) as a Gaussian distribution centered at µ0|t(θt), obtained from the score
function via Tweedie’s formula, Eq. (4). This approximation is common in the guidance
literature (Chung et al., 2023; Song et al., 2023a; Peng et al., 2024; Rissanen et al., 2024;
Finzi et al., 2023; Bao et al., 2022). For the covariance matrix Σ0|t, we adopt a simple yet
effective approximation inspired by Song et al. (2023a); Ho et al. (2022):

Σ0|t =
σ(t)2

1 + σ(t)2
I. (10)

This approximation acts as a time-dependent scaling factor that naturally aligns with the
diffusion process – starting at the identity matrix when t = 1 and approaching zero as t → 0,
effectively increasing the precision of our prior guidance at smaller timesteps.

Prior Ratio Approximation. We then approximate the prior ratio function ρ(θ) = q(θ)
p(θ)

as a generalized mixture of Gaussians:

ρ(θ) ≈
K∑
i=1

wiN (θ|µi,Σi), ρ(θ) ≥ 0, (11)

where {wi,µi,Σi}Ki=1 represent the weights, means and covariance matrices of the mixture.
Since this represents a ratio rather than a distribution, the mixture weights need not be
positive nor sum to one, as long as the ratio remains non-negative, potentially enabling more
expressive approximations such as subtractive mixtures (Loconte et al., 2024). Notably, when
p(θ) is uniform (as in our experiments), ρ(θ) reduce to q(θ), and we directly specify it as
a Gaussian mixture. For non-uniform training distributions, the ratio function can be fit
with a generalized Gaussian mixture approximation, which can theoretically approximate
any continuous function (Sorenson and Alspach, 1971).

Guidance Term. With these Gaussian approximations, the guidance term becomes:

∇θt logEp(θ0|θt,x) [ρ(θ0)] ≈ ∇θt log

∫ K∑
i=1

wiN (θ0|µi,Σi)N (θ0|µ0|t(θt),Σ0|t)dθ0. (12)
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This integral can be solved analytically (full derivation in Appendix A.2), yielding:

∇θt logEp(θ0|θt,x)[ρ(θ0)] ≈
∑K

i=1wiN (µi|µ0|t(θt), Σ̃i)(µi − µ0|t(θt))
TΣ̃−1

i ∇θtµ0|t(θt)∑K
i=1wiN (µi|µ0|t(θt), Σ̃i)

(13)

=
K∑
i

w̃i(µi − µ0|t(θt))
TΣ̃−1

i ∇θtµ0|t(θt), (14)

where Σ̃i = Σi + Σ0|t and w̃i = wiN (µi|µ0|t(θt), Σ̃i)/
∑K

j=1wjN (µj |µ0|t(θt), Σ̃j). For
typical inverse problems where parameter dimensionality is below 100, these calculations
remain computationally tractable. However, higher-dimensional problems would require
additional approximations, particularly for the log determinant and matrix inversion.

Finally, the PriorGuide update to the mean of the reverse kernel can be expressed
concisely using Tweedie’s formula, Eq. (4), and our derived guidance term, Eq. (14):

µnew
0|t (θt) = µ0|t(θt) + σ(t)2

K∑
i

w̃i(µi − µ0|t(θt))
TΣ̃−1

i ∇θtµ0|t. (15)

This update intuitively combines the original prediction µ0|t(θt) with a weighted sum of
correction terms from our new prior. The correction magnitude is controlled by both the noise
schedule σ(t)2 and the distance between the mixture components and current prediction.

4. Experiments

We evaluate PriorGuide using the base model from Simformer (Gloeckler et al., 2024),
trained with the variance exploding SDE (Song et al., 2021). Notably, our method requires
no modifications to the original diffusion model’s training procedure and works by adjusting
the guidance term at inference time as described in Section 3.

Two Moons with Correlated Prior. The two moons example is a common benchmark
for simulation-based inference. Here, we add a strong correlated prior q(θ) to test how
our method handles a multi-modal scenario (Fig. A.2). PriorGuide correctly captures the
multimodality of the problem through its posterior distribution. For validation, we compare
PriorGuide’s results with a ground truth baseline obtained by retraining the base model with
q(θ). For quantitative validation, we compared samples from PriorGuide and the retrained
model across 10 different observations x using the Classifier 2-Sample Tests (C2ST) score
(Lopez-Paz and Oquab, 2017). The C2ST score measures how well a classifier can distinguish
between two sets of samples, with 0.5 indicating indistinguishable samples. Between the
retrained model and PriorGuide samples, we obtain a score of 0.623± 0.044. For context,
the score between the base diffusion model and standard MCMC samples is 0.523± 0.016,
demonstrating that PriorGuide generates comparable samples without requiring retraining.
See Appendix A.3 for model details.

Benchmark SBI Tasks. Finally, we evaluate PriorGuide on two simulation-based inference
tasks of increasing complexity: the Ornstein-Uhlenbeck Process (OUP), a time-series model
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Uniform θ sampling Mixture θ sampling

Simformer ACE ACEP PriorGuide Simformer PriorGuide

OUP RMSE (↓) 0.61(0.03) 0.59(0.00) 0.21(0.02) 0.17(0.01) 0.51(0.04) 0.40(0.02)
MMD (↓) 0.19(0.01) 0.15(0.00) 0.04(0.00) 0.03(0.00) 0.16(0.02) 0.09(0.01)

Turin RMSE (↓) 0.25(0.00) 0.25(0.00) 0.10(0.01) 0.07(0.00) 0.26(0.00) 0.18(0.00)
MMD (↓) 0.11(0.00) 0.11(0.00) 0.02(0.00) 0.01(0.00) 0.08(0.00) 0.04(0.00)

Table 1: Comparison of SBI task metrics for θ prediction; mean (standard deviation)
over 5 runs. Best results are bolded. Left : Uniform sampling distribution for θ, with an
informative Gaussian prior given to ACEP and PriorGuide. Right : Correlated mixture
sampling distribution, with the same distribution given as prior to PriorGuide.

with two latent variables (Uhlenbeck and Ornstein, 1930), and the Turin model (Turin et al.,
1972), a radio propagation simulator with four parameters that generates 101-dimensional
signal data.

For both tasks, we set the sampling distribution of θ in two ways: (i) as a uniform
distribution and (ii) as a correlated Gaussian mixture distribution. We can then test the
ability of a model of incorporating prior information by passing useful information about
the sampled θ. In the uniform case, we provide information by sampling the prior location
from a Gaussian around the true θ, and giving that Gaussian prior to models that support
runtime priors, following Chang et al., 2024. In the correlated Gaussian mixture case, we
pass a prior that exactly matches the true inference-time sampling distribution. Further
experimental details are provided in Appendix A.3.

As a baseline, we compare our method, PriorGuide, with the same base SimFormer
model without prior guidance (Gloeckler et al., 2024). We also consider another amortized
inference method, the Amortized Conditioning Engine (ACE; Chang et al., 2024), whose
ACEP variant affords runtime incorporation of factorized priors seen during training. Table 1
presents the benchmark results. In the uniform θ case, we compare PriorGuide with an
informative Gaussian prior against Simformer and ACE (both without priors), and ACE with
the same simple prior (ACEP). In the mixture sampling case, we compare base SimFormer
with PriorGuide guided by the sampling distribution as prior.1 PriorGuide outperforms all
baselines in both settings, demonstrating its capabilities of incorporating prior information
at test time without retraining. Example visualizations of results on the SBI experiments
are presented in Appendix A.4.

5. Discussion

In this work, we introduced PriorGuide, a technique that enables the use of flexible, user-
defined priors at inference time for diffusion-based amortized inference methods. Our
experiments demonstrate that PriorGuide can effectively recover posterior distributions
under new priors. This capability is particularly valuable in scientific applications where
prior knowledge is often refined post-training, for prior sensitivity analysis or with large
inference models, where retraining is undesirable.

1. ACEP does not afford complex correlated priors, so it is not included.
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Appendix A. Appendix

A.1. Related Work
PriorGuide builds on advances in three key areas: diffusion models for inverse problems,
simulation-based inference (SBI), and guidance techniques for controllable generation. Recent
work has adapted diffusion models to scientific applications with intractable forward models,
treating inverse problems as conditional generation (Chung et al., 2023). Methods like
those in Gloeckler et al. (2024) train diffusion models to directly approximate the posterior.
However, these approaches fix the prior during training, limiting their flexibility. Recent work
in Elsemüller et al. (2024); Chang et al. (2024); Whittle et al. (2025) showed the effectiveness
of inference time priors, but the approach is limited. In inverse problems, reconstruction
guidance (Chung et al., 2023) incorporates likelihood gradients during sampling. Related
approaches from Rissanen et al. (2024); Finzi et al. (2023); Bao et al. (2022); Peng et al.
(2024) use Tweedie’s formula to guide sampling, but focus on refining the likelihood term
rather than modifying the prior. PriorGuide uniquely repurposes guidance mechanisms
to inject new prior information, combining the flexibility of score-based methods with the
expressiveness of Gaussian mixture priors.

Limitations. While PriorGuide offers significant flexibility, it has several important
limitations: First, the computational cost scales with parameter dimensionality due to the
weighted averaging over Gaussian components. Very high-dimensional problems may require
additional approximations to maintain efficiency. Furthermore, PriorGuide assumes the
new prior ratio can be well-approximated by a Gaussian mixture. While highly expressive,
this may not capture all possible prior distributions, particularly those with heavy tails or
discrete components. Future work could develop automatic conversion of arbitrary priors
into approximate Gaussian mixtures. Additionally, integrating PriorGuide with in-painting
style guidance techniques could enhance its applicability to a wider range of inverse problems
by removing the need to specify conditioning variables upfront, offering further flexibility.

A.2. Gaussian Integration

Here is the detailed derivation for Eq. (14) from the main text:

∇θt logE [ρ(θ0)] ≈ ∇θt log

∫ K∑
i=1

N (θ0|µi,Σi)N (θ0|µ0|t(θt),Σ0|t)dθ0, (A.1)

= ∇θt log
K∑
i=1

∫
N (µi|θ0,Σi)N (θ0|µ0|t(θt),Σ0|t)dθ0. (A.2)

The step above uses the symmetry property of Gaussian distributions: if a ∼ N (µ,Σ)
then µ ∼ N (a,Σ). This allows us to swap θ0 and µi in the first Gaussian. Furthermore,

= ∇θt log

K∑
i=1

N (µi|µ0|t(θt),Σi +Σ0|t), (A.3)

using the standard result for the convolution of two Gaussian distributions:∫
N (x|µ1,Σ1)N (µ1|µ2,Σ2)dµ1 = N (x|µ2,Σ1 +Σ2) (A.4)
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(a) Prior (b) Likelihood (c) Posterior (d) Unguided (e) PriorGuide

Figure A.1: Posterior inference with and without PriorGuide. The plots show the mean µ
and standard deviation σ parameters of a Gaussian toy model. Prior (a) and likelihood (b)
from some observations x (not shown) yield Bayesian posterior (c). A standard diffusion
model trained on a uniform distribution over µ, σ (no prior) matches the likelihood (d).
PriorGuide can implement the specified prior at runtime, matching the Bayesian posterior
(e).

For notational convenience, we define Σ̃i = Σi +Σ0|t continuing with the derivation:

= ∇θt log

K∑
i=1

N (µi|µ0|t(θt), Σ̃i), (A.5)

=
∇θt

∑K
i=1N (µi|µ0|t(θt), Σ̃i)∑K

i=1N (µi|µ0|t(θt), Σ̃i)
(chain rule), (A.6)

=

∑K
i=1N (µi|µ0|t(θt), Σ̃i)∇θt logN (µi|µ0|t(θt), Σ̃i)∑K

i=1N (µi|µ0|t(θt), Σ̃i)
(since ∇f = f∇ log f), (A.7)

=

∑K
i=1N (µi|µ0|t(θt), Σ̃i)∇θt

(
−1

2(µ0|t(θt)− µi)
⊤Σ̃−1

i (µ0|t(θt)− µi)
)

∑K
i=1N (µi|µ0|t(θt), Σ̃i),

(A.8)

=

∑K
i=1N (µi|µ0|t(θt), Σ̃i)(µi − µ0|t(θt))

TΣ̃−1
i ∇θtµ0|t(θt)∑K

i=1N (µi|µ0|t(θt), Σ̃i)
. (A.9)

A.3. Experimental Details

Toy Gaussian Example. A Gaussian likelihood is chosen for tractability, where x | θ ∼
N (x; θ1, θ

2
2) so θ ∈ R2. The original prior p(θ) is uniform over [0, 1]2, while the new prior

q(θ) is a multivariate Gaussian distribution:

q(θ) = N
(
θ;

[
0.3
0.8

]
,

[
0.039 0.025
0.025 0.04

])
(A.10)

where θ1 represents the mean and θ2 the standard deviation of the likelihood. This choice
of prior introduces correlation between the mean and standard deviation parameters while
concentrating probability mass in a specific region of the parameter space. The x for likelihood
calculations for training are 10 samples from a given θ(i) therefore x(i) ∈ R10. The base
model was trained with 10, 000 simulations. The network architecture and training scheme
was taken from the base configuration in Gloeckler et al. (2024). In Fig. A.1 a histogram
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(a) Prior v samples (b) PriorGuide v samples (c) PriorGuide v retrained

Figure A.2: Two moons with correlated prior. The points are samples from the diffusion
model trained with uniform prior p(θ). Contours of the new prior q(θ). The points are
PriorGuide samples using this new prior. (c) compares these against samples from a
model retrained with the new prior.

plot shows the sample frequency as a comparison for the posterior density which can be
computed exactly.

Two Moons with Correlated Prior. We use the standard two moons example in the
SBI package detailed in Greenberg et al. (2019), where θ ∈ R2 and x ∈ R2. The original prior
p(θ) is uniform over [−1, 1]2, while the new prior q(θ) is a multivariate mixture Gaussian
distribution:

q(θ) =
1

2
N

(
θ;

[
0.2
0.2

]
,

[
0.01 0.007
0.007 0.01

])
+

1

2
N

(
θ;

[
−0.2
−0.2

]
,

[
0.01 0.007
0.007 0.01

])
(A.11)

where the mixture weights are equal so 0.5, and each component shares the same covariance
matrix with correlation coefficient. The base model was trained with 10, 000 simulations and
same network architecture as in the previous example.

Ornstein-Uhlenbeck Process (OUP). OUP is a well-established stochastic process
frequently applied in financial mathematics and evolutionary biology for modeling mean-
reverting dynamics (Uhlenbeck and Ornstein, 1930). The model is defined as:

yt+1 = yt +∆yt, ∆yt = θ1 [exp(θ2)− yt] ∆t+ 0.5w, for t = 1, . . . , T,

where we set T = 25, ∆t = 0.2, and initialize x0 = 10. The noise term follows a Gaussian
distribution, w ∼ N (0,∆t). We define p(θ) as a uniform prior, U([0, 2]× [−2, 2]), over the
latent parameters θ = (θ1, θ2).

For this OUP task, the base model is trained on 10,000 simulations. We evaluate the
performance using Maximum Mean Discrepancy (MMD) with an exponentiated quadratic
kernel with a lengthscale of 1, and Root Mean Squared Error (RMSE). Each experiment is
evaluated using 100 randomly sampled θ. For each θ, we generate 1,000 posterior samples,
repeating this process over five runs.

We define two new prior distributions q(θ) for the OUP experiments: (i) The simple prior
consists of Gaussian distributions with a standard deviation set to 5% of the parameter range.

14



Inference-Time Prior Adaptation in Simulation-Based Inference via Guided Diffusion Models

Each prior’s mean is sampled from a Gaussian centered on the true parameter value, using
the same standard deviation (similar to Chang et al., 2024). (ii) The complex prior, a mixture
of two slightly correlated bivariate Gaussians with equal component weights (π1 = π2 = 0.5):

q(θ) = π1N
(( 0.5

−1.0

)
,

(
0.06 0.01
0.01 0.06

))
+ π2N

((1.3
0.5

)
,

(
0.06 0.01
0.01 0.06

))
. (A.12)

Turin Model. Turin is a widely used time-series model for simulating radio wave propaga-
tion (Turin et al., 1972; Pedersen, 2019). This model generates high-dimensional, complex-
valued time-series data and is governed by four key parameters: G0 determines the reverber-
ation gain, T controls the reverberation time, λ0 defines the arrival rate of the point process,
and σ2

N represents the noise variance.
The model assumes a frequency bandwidth of B = 0.5 GHz and simulates the transfer

function Hk at Ns = 101 evenly spaced frequency points. The observed transfer function at
the k-th frequency point, Yk, is defined as:

Yk = Hk +Wk, k = 0, 1, . . . , Ns − 1,

where Wk represents additive zero-mean complex Gaussian noise with circular symmetry and
variance σ2

W . The transfer function Hk is expressed as:

Hk =

Npoints∑
l=1

αl exp(−j2π∆fkτl),

where the time delays τl are sampled from a homogeneous Poisson point process with rate λ0,
and the complex gains αl are modeled as independent zero-mean complex Gaussian random
variables. The conditional variance of the gains is given by:

E[|αl|2|τl] =
G0 exp(−τl/T )

λ0
.

To obtain the time-domain signal ỹ(t), an inverse Fourier transform is applied:

ỹ(t) =
1

Ns

Ns−1∑
k=0

Yk exp(j2πk∆ft),

where ∆f = B/(Ns − 1) represents the frequency spacing. Finally, the real-valued output is
computed by taking the absolute square of the complex signal and applying a logarithmic
transformation:

y(t) = 10 log10(|ỹ(t)|2).

We follow the same training and experimental setup as in OUP. In this Turin case,
all parameters are normalized to [0, 1] using the transformation: x̃ = x−xmin

xmax−xmin
, where

x̃ is the normalized value. The true parameter bounds are: G0 ∈ [10−9, 10−8], T ∈
[10−9, 10−8], λ0 ∈ [107, 5× 109], σ2

N ∈ [10−10, 10−9].
For this Turin problem, the simple prior follows the same specification as in OUP, while

the complex prior is also a multivariate Gaussian mixture with equal component weights
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but with different component parameters, adjusted to match the Turin model’s parameter
dimension and normalized range, defined as:

q(θ) = π1N



0.30
0.30
0.70
0.70

 ,


0.01 0.005 0.005 0.005
0.005 0.01 0.005 0.005
0.005 0.005 0.01 0.005
0.005 0.005 0.005 0.01


 (A.13)

+ π2N



0.70
0.70
0.30
0.30

 ,


0.01 0.005 0.005 0.005
0.005 0.01 0.005 0.005
0.005 0.005 0.01 0.005
0.005 0.005 0.005 0.01


 . (A.14)

A.4. SBI Mixture Prior Corner plots
As a representative visualization of the SBI experiments, we present example corner plots
of posterior samples for the case where the sampling distribution of θ follows a mixture
distribution in both the OUP and Turin SBI tasks. These plots illustrate marginal pairwise
relationships between sampled latent parameters and demonstrate that PriorGuide can handle
complex priors, producing posterior results that are reasonable given the prior structure.

Fig. A.3 presents the corner plots for the OUP case, comparing Simformer and PriorGuide.
The higher-dimensional Turin task is shown in Fig. A.4 and Fig. A.5 for Simformer and
PriorGuide, respectively.
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(b)

Figure A.3: OUP model. Comparison of posterior samples between Simformer and
PriorGuide. The light blue line is the true parameter value. The bottom left corner of
(b) shows the sampling mixture distribution (and prior); see Eq. (A.12) for detail. (a)
Simformer results (without prior guidance), where the model fails to capture the true mixture
distribution of θ. (b) PriorGuide helps the base model generate posterior results that align
well with the structure of the complex prior.
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Figure A.4: Turin model (SimFormer). Posterior samples using Simformer, without prior
guidance. The light blue line is the true parameter value. The sampling distribution is the
mixture described in Eq. (A.13) (see bottom left corner of Fig. A.5 for visualization). Since
the model is trained on a uniform prior, it yields a wide posterior that fails to capture the
multimodality of the true θ distribution.
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Figure A.5: Turin model (PriorGuide). Posterior samples from PriorGuide. Compared to
the Simformer without prior guidance (Fig. A.4), PriorGuide significantly improves posterior
estimation, aligning it more closely with the complex prior structure while using the same
model as the Simformer, without retraining. Note that the contour plots represent the
sampling distribution (prior).
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