
Under review as a conference paper at ICLR 2021

DISE: DYNAMIC INTEGRATOR SELECTION TO MINI-
MIZE FORWARD-PASS TIME IN NEURAL ODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural ordinary differential equations (Neural ODEs) are appreciated for their
ability to significantly reduce the number of parameters when constructing a neu-
ral network. On the other hand, they are sometimes blamed for their long forward-
pass inference time, which is incurred by solving integral problems. To improve
the model accuracy, they rely on advanced solvers, such as the Dormand–Prince
(DOPRI) method. To solve an integral problem, however, it requires at least tens
(or sometimes thousands) of steps in many Neural ODE experiments. In this work,
we propose to i) directly regularize the step size of DOPRI to make the forward-
pass faster and ii) dynamically choose a simpler integrator than DOPRI for a care-
fully selected subset of input. Because it is not the case that every input requires
the advanced integrator, we design an auxiliary neural network to choose an ap-
propriate integrator given input to decrease the overall inference time without sig-
nificantly sacrificing accuracy. We consider the Euler method, the fourth-order
Runge–Kutta (RK4) method, and DOPRI as selection candidates. We found that
10-30% of cases can be solved with simple integrators in our experiments. There-
fore, the overall number of functional evaluations (NFE) decreases up to 78% with
improved accuracy.

1 INTRODUCTION

Neural ordinary differential equations (Neural ODEs) are to learn time-dependent physical dynamics
describing continuous residual networks (Chen et al., 2018). It is well known that residual connec-
tions are numerically similar to the explicit Euler method, the simplest integrator to solve ODEs. In
this regard, Neural ODEs are considered as a generalization of residual networks. In general, it is
agreed by many researchers that Neural ODEs have two advantages and one disadvantage: i) Neural
ODEs can sometimes reduce the required number of neural network parameters, e.g., (Pinckaers
& Litjens, 2019), ii) Neural ODEs can interpret the neural network layer (or time) as a continu-
ous variable and a hidden vector at an arbitrary layer can be calculated, iii) however, Neural ODEs’s
forward-pass inference can sometimes be numerically unstable (i.e., the underflow error of DOPRI’s
adaptive step size) and/or slow to solve an integral problem (i.e., too many steps in DOPRI) (Zhuang
et al., 2020b; Finlay et al., 2020; Daulbaev et al., 2020; Quaglino et al., 2020).

Table 1: MNIST classification results (1
NFE ≈ 0.0007 seconds for a test batch of
100 images)

Model Accuracy NFE
ResNet 0.9959 N/A
RKNet 0.9953 N/A
No reg. 0.9960 26

Kinetic energy reg. 0.9965 20
L1 reg. 0.9956 20
L2 reg. 0.9961 20
Our reg. 0.9964 14

No reg. & DISE 0.9958 11.36
Our reg. & DISE 0.9963 5.79

Much work has been actively devoted to address the nu-
merically unstable nature of solving integral problems.
In this work, however, we are interested in address-
ing the problem of long forward-pass inference time.
To overcome the challenge, we i) directly regularize
the numerical errors of the Dormand–Prince (DOPRI)
method (Dormand & Prince, 1980), which means we
try to learn an ODE that can be quickly solved by DO-
PRI, and ii) dynamically select an appropriate integra-
tor for each sample rather than relying on only one in-
tegrator. In many cases, Neural ODEs use DOPRI, one
of the most advanced adaptive step integrator, for its
best accuracy. However, our method allows that we rely
on simpler integrators, such as the Euler method or the

1

Under review as a conference paper at ICLR 2021

Feature Extractor ODE Classifier

Neural ODE

prediction
h(0) h(1)

x

Figure 1: The general architecture of Neural ODEs. We assume a classification task in this figure.

fourth-order Runge–Kutta (RK4) method (Ixaru & Vanden Berghe, 2004), for carefully selected
inputs.

Table 1 shows an experimental result that our proposed regularization not only reduces the number of
function evaluations (NFE) — the inference time is linearly proportional to the number of function
evaluations in Neural ODEs — but also increases the inference accuracy in the MNIST classification
task. We can reduce the inference time by reducing the average number of steps (and thus, the
average NFE) of DOPRI, which can be obtained when the learned ODE is trained to be in a suitable
form to solve with DOPRI with a proper regularization.

However, the NFE of DOPRI in a step is 6 whereas RK4 has 4 and the Euler method has 1. So,
the Euler method is six times faster than DOPRI even when their step sizes are identical. Therefore,
the automatic step size adjustment of DOPRI is not enough to minimize the NFE of forward-pass
inference (see Section B in Appendix for more detailed descriptions with a concrete example). To
this end, we design an auxiliary network that chooses an appropriate integrator for each sample. The
combination of our regularization and the proposed Dynamic Integrator SElection (DISE) shows
the best performance in the table.

We conduct experiments for three different tasks and datasets: MNIST image classification, Phys-
ioNet mortality prediction, and continuous normalizing flows. Our method shows the best (or close
to the best) accuracy with a much smaller NFE than state-of-the-art methods. Our contributions can
be summarized as follows:

1. We design an effective regularization to reduce the number of function evaluations (NFE)
of Neural ODEs.

2. We design a sample-wise dynamic integrator selection (DISE) method to further accelerate
Neural ODEs without significantly sacrificing model accuracy.

3. We conduct in-depth analyses with three popular tasks of Neural ODEs.

2 RELATED WORK

In this section, we review the literature on Neural ODEs. In particular, we review recent regulariza-
tion designs for Neuarl ODEs and numerical methods to solve ODEs.

2.1 NEURAL ODES

It had been attempted by several researchers to model neural networks as differential equa-
tions (Weinan, 2017; Ruthotto & Haber, 2019; Lu et al., 2018; Ciccone et al., 2018; Chen et al.,
2018; Gholami et al., 2019). Among them, the seminal neural ordinary differential equations (Neu-
ral ODEs), as shown in Fig. 1, consist of three parts in general: a feature extractor, an ODE, and a
classifier (Chen et al., 2018; Zhuang et al., 2020a). Given an input x, the feature extractor produces
an input to the ODE, denoted h(0).

Let h(t) be a hidden vector at layer (or time) t in the ODE part. In Neural ODEs, a neu-
ral network f with a set of parameters, denoted θ, approximates ∂h(t)

∂t and h(t1) becomes
h(0) +

∫ t1
t0
f(h(t), t;θ) dt, where f(h(t), t;θ) = ∂h(t)

∂t . In other words, the internal dynamics
of the hidden vector evolution is described by an ODE. One key advantage of Neural ODEs is that
we can reduce the number of parameters without sacrificing model accuracy. For instance, one re-
cent work based on a Neural ODE marked the best accuracy for medical image segmentation with an
order of magnitude smaller parameter numbers (Pinckaers & Litjens, 2019). In general, we calculate

2

Under review as a conference paper at ICLR 2021

h(1)1 and feed it into the next classifier and its final prediction is made. One can accordingly modify
the architecture in Fig. 1 for other types of tasks. For simplicity but without loss of generality, we
assume the architecture in our discussion.

Neural ODEs have been used in many tasks, ranging from classification and regression to time
series forecasting and generative models (Yildiz et al., 2019; Grathwohl et al., 2019; Rubanova
et al., 2019).

2.2 ODE SOLVERS

DOPRI is one of the most powerful integrators (Hairer et al., 1993) and widely used in Neural ODEs.
It is a member of the Runge–Kutta family of ODE solvers. DOPRI dynamically controls the step
size while solving an integral problem. It is now the default method for MATLAB, GNU Octave, and
Simulink. It internally estimates an error by using a heuristic method and the step size is determined
by a function inversely proportional to the estimated error — the larger the error, the shorter the
step size. The error at i-th step of DOPRI for an integral problem x, denoted errx,i, is estimated
by the difference between the fourth-order and the fifth-order Runge–Kutta methods at the moment.
The intuition behind the heuristic error estimation is simple yet effective. Among simpler methods,
we consider the Euler method, and the fourth-order Runge–Kutta (RK4) method. The Euler method
is the simplest method to solve ODEs and both the Euler method and RK4 use a fixed step size.
Therefore, their solving time is deterministic.

One step of DOPRI involves six function evaluations, i.e., six function calls of f . The Euler method
calls the network f only once in a step and RK4 calls four times. Therefore, the Euler method is six
times faster than DOPRI for a step. The term ‘NFE’ refers to the number of function evaluations to
solve an integral problem. For the Euler method and RK4, NFE is deterministic and does not vary.
In DOPRI, however, NFE varies from one sample to another, depending on the estimated error and
the number of steps. We refer readers to Section B in Appendix for more detailed descriptions with
a concrete example.

2.3 REGULARIZATIONS IN NEURAL ODES

To make Neural ODEs faster, one possible way is regularizing the ODE function f . Two naı̈ve
methods are regularizing θ with the L1 or L2 regularizers (Ng, 2004). Strictly speaking, these two
regularizers are to prevent overfitting. Therefore, preventing overfitting does not necessarily mean
quick forward-pass inference.

To this end, Dupont et al. showed that by augmenting h(t) with additional zeros, i.e., augmenting the
dimensionality of h(t), one can achieve similar effects (Dupont et al., 2019). However, this method
is meaningful when we cannot freely control the dimensionality of h(t), which is not our setting.
Recently, a kinetic regularization concept has been proposed by Finlay et al. (Finlay et al., 2020),
which is written as follows:

Rk
def
=

∫ t1

t0

‖f(h(t), t;θ)‖22 dt. (1)

Among all regularization terms designed so far, this kinetic regularization’s goal is the closest to
ours. It can encourage Neural ODEs to learn straight-line paths from h(t0) to h(t1).

3 PROPOSED METHOD

While enabling the design of compact models, Neural ODEs have one critical drawback that they
require solving integral problems, for which many approximation methods have been proposed: the
Euler method, RK4, and DOPRI, to name a few. Almost all of them are based on discretizing t
and converting an integral into a series of additions. In many cases, therefore, it requires a dense
discretization, resulting in a long forward-pass inference time.

1For simplicity but without loss of generality, the time duration can be fixed into t ∈ [0, 1]. Any arbitrary
length ODEs can be compressed into a unit time interval ODE. In some time series datasets, however, the final
integral time t1 is given in a sample. In such a case, t1 is set to the sample time.

3

Under review as a conference paper at ICLR 2021

Traininig
Data

Feature Extractor ODE Classifier

Neural ODE

Auxiliary Network

Ltask	+	λR

Integrator selection
and its reward

x h(0) h(1)

Figure 2: The overall workflow of our proposed method. We note that the Neural ODE and the
auxiliary integrator selection network cooperate with each other.

In this paper, we tackle the problem of minimizing the number of function evaluations (and thereby,
the forward-pass inference time) of Neural ODEs without significantly sacrificing model accuracy.
Our proposed method consists of two parts: i) using the DOPRI’s error estimation as a regularizer
and ii) using an auxiliary network to select an appropriate integrator for each input sample.

3.1 DOPRI’S ERROR ESTIMATION AS A REGULARIZER

We re-implement the DOPRI method in PyTorch and make it return the estimated error terms. Let
{errx,1, errx,2, · · · , errx,N}, where N is the number of steps of DOPRI, be an array of errors
estimated by DOPRI while solving an integral problem for an input x. Note that the adaptive step
size is an inverse function of the error at each step. We use the following regularizer while training
Neural ODEs:

Rerr
def
=
∑
x∈T

N∑
i=1

errx,i, (2)

where x is an input sample for which we have to solve an integral problem, and T is a training set.

For instance, x can be an image sample to classify. If we train a Neural ODE to classify images
with the cross-entropy loss in conjunction with the regularizer, the trained Neural ODE will learn an
ODE that can correctly classify images while reducing the forward-pass time of DOPRI.

The backward-pass calculation of our proposed regularizer can be done in O(1
savg

) by maintaining
the forward-pass computation graph, where savg is the average step size of DOPRI. However, this
complexity will decrease as training goes on with our regularizer because the average step size will
increase.

3.2 AUXILIARY NETWORK TO SELECT INTEGRATOR

We introduce our auxiliary network v to dynamically select an appropriate integrator given input.
This network v cooperates with a Neural ODE as shown in Fig. 2. Before training the auxiliary
network, we first train a target Neural ODE. We use the following loss function to train the target
Neural ODE:

Ltask + λR, (3)

where Ltask is a task-specific training loss, which can be optimized through the adjoint sensitiv-
ity method, and R is an appropriate regularization term. λ ≥ 0 is a coefficient to emphasize the
regularization term.

We then train the auxiliary network v(h(0);θv) to predict the costs of the Euler method, RK4, and
DOPRI. Given a fixed Neural ODE f and θ, we use the same training data to collect the following
data for each integrator:

c(h(0); f,θ)
def
=

{
∆α, if prediction is the same as ground-truth in the training data,
Mα, if otherwise,

(4)

where ∆ > 0 is the number of function evaluations (NFE) to solve the integral problem of h(0) +∫ t1
t0
f(h(t), t;θ) dt, M is a large enough penalty, and α is an exponent. We evaluate this cost value

4

Under review as a conference paper at ICLR 2021

c for each integrator and train the network v. The auxiliary network predicts the costs of the three
integrators simultaneously, i.e., its output dimensionality is 3.

If the target task is not a classification problem, we use the following cost:

c(h(0); f,θ)
def
=

{
(∆Γ)α, if Γ ≤ β,
Mα, if otherwise,

(5)

where Γ is an error estimation for a certain integrator, such as mean absolute/squared error, KL
divergence, and so forth, for which we prefer small values. If larger values are preferred, the above
definition should be accordingly modified. β is a hyperparameter to decide a threshold.

Note that training v becomes a regression problem with supervision. After many epochs, the auxil-
iary integrator selection network v is stabilized and we can deploy it. The best integrator for h(0) is
selected by finding the smallest predicted cost. We also note that we need to run the network v only
once to select an appropriate integrator for a test case, which incurs a little overhead.

The neural network architecture for v should be carefully designed for each application. We intro-
duce our general method in this section. In the experimental evaluation section, we will introduce
our design choice for v in each application.

4 EXPERIMENTAL EVALUATIONS

We describe our detailed experimental environments and results with the following three different
tasks: i) MNIST image classification, ii) PhysioNet mortality prediction, and iii) continuous normal-
izing flows.

We conduct our experiments in the following sequence. We first compare the following regular-
ization methods: i) Neural ODEs without any regularizer, ii) with the L1 regularizer, iii) with the
L2 regularizer, iv) with the kinetic energy regularizer, and v) with our proposed regularizer. At this
stage, we do not include the auxiliary network yet. This stage is to study which regularizer works
better than others in each task. After selecting the best regularization method for each task, we train
all networks including the auxiliary network.

Throughout these experiments, we show that i) the forward-pass of learned ODEs can be faster by
using an appropriate regularizer, and ii) the auxiliary network strategically selects simpler integrators
than DOPRI for carefully chosen input samples. For each experiment, we show NFE values and unit
NFE time in seconds and its multiplication will be wall-clock time. We repeat training and testing
with 10 different seeds and report the mean value in the main paper and the standard deviation value
in Appendix. Experiments with various integrators are also in Appendix.

All experiments were conducted in the following software and hardware environments: UBUNTU
18.04 LTS, PYTHON 3.6.6, NUMPY 1.18.5, SCIPY 1.5, MATPLOTLIB 3.3.1, PYTORCH 1.2.0,
CUDA 10.0, and NVIDIA Driver 417.22, i9 CPU, and NVIDIA RTX TITAN.

4.1 MNIST IMAGE CLASSIFICATION

We omit the description about MNIST. We use ODE-Net used in (Chen et al., 2018) to classify
MNIST images. Refer to Appendix for detailed descriptions on ODE-Net with its hyperparameter
configurations.

Table 2: The auxiliary network for MNIST where σ is ReLU, π is
Group Normalization, and ξ is Adaptive Average Pooling.

Layer Design In Size Out Size
1 σ(Residual Block) 64× 6× 6 64× 6× 6
2 ξ(σ(π(Residual Block))) 64× 6× 6 64× 1× 1
3 FC after flattening 64× 1× 1 32× 1
4 FC 32× 1 3× 1

Auxiliary Network Architec-
ture. In addition to ODE-
Net, we have one more auxil-
iary network v whose architec-
ture is summarized in Table 2.
We use the standard residual
block (He et al., 2016) for this
network and the proposed net-
work consists of four layers. In comparison with the network f of ODE-Net, its architecture is
relatively simpler and it takes 0.8 NFEs (i.e., 0.0006 seconds) to run once. Recall in Table 1 that

5

Under review as a conference paper at ICLR 2021

the network (function) f is evaluated 5-20 times on average to solve integral problems. Therefore,
running the auxiliary network v once to decide the best integrator can be a fruitful investment.

Hyperparameters. The regularization coefficient λ is set to {0.01, 0.0001, 0.0001, 0.005} and
the starting learning rate is 0.1 with a decay factor {0.1, 0.01, 0.001} at {60, 100, 140} epochs. The
exponent α is 0.3 and M is 1,000. We use DOPRI as our default solver unless DISE is adopted.
We use the recommended hyperparameters of ODE-Net in the paper or in the respective github
repository, as noted in Appendix.

Experimental Results. The results are summarized in Table 1. It needs 26 NFEs when we do
not use any regularizer to train ODE-Net. The kinetic energy-based regularizer improves both the
accuracy and the NFE value. However, its NFE is comparable to other standard regularizations. Our
regularizer shows an accuracy close to that of the kinetic regularization in the table with an NFE of
14, which is much faster than other cases.

Table 3: The distribution of
the integrator selection by
our auxiliary network for
MNIST

Integrator Percentage
DOPRI 37%

RK4 34%
Euler 29%

We also applied the dynamic integrator selection (DISE) for both of
the no-regularizer and our regularizer configurations. It is worth not-
ing that the combination of our regularizer and the dynamic selection
shows an extraordinary outcome in the table. Even after considering
the overhead incurred by the auxiliary network, an NFE of 5.79 is
very fast in comparison with other cases. Its accuracy is also larger
than many other baselines.

Table 3 shows a percentage of test cases where each integrator is se-
lected by the auxiliary network with our regularizer. DOPRI occupies
the biggest portion for its higher accuracy than others, i.e., 37%. RK4 and the Euler method have
more numerical errors than DOPRI and as a result, their estimated costs are larger than that of DO-
PRI in general (due to the large penalty M). We note that their rankings in terms of the selection
percentage are the same as those in terms of the numerical error. One interesting point is that the
Euler method also occupies a non-trivial portion in the table.

4.2 PHYSIONET MORTALITY CLASSIFICATION

Table 4: The auxiliary network for PhysioNet
where ψ is Drop Out.

Layer Design In Size Out Size
1 σ(FC) 20× 1 10× 1
2 σ(FC) 10× 1 10× 1
3 σ(FC) 10× 1 5× 1
4 ψ(σ(FC)) 5× 1 5× 1
5 FC 5× 1 3× 1

Dataset. We use the PhysioNet computing in car-
diology challenge dataset released at 2012 (Silva
et al., 2010). It is to forecast mortality rates in in-
tensive care unit (ICU) populations. The dataset had
been collected from 12,000 ICU stays. They remove
short stays less than 48 hours and recorded up to 42
variables. Each records has a time stamp that indi-
cates an elapsed time after admission to the ICU.
Given a record, we predict whether the patient will
die or not. Therefore, the task-specific lossLtask in Eq. 3 is a cross-entropy loss. They well separated
the dataset for training, validating, and testing.

We use Latent-ODE (Rubanova et al., 2019) for this task. The network (function) architecture of f
in Latent-ODE is described in Appendix in conjunction with its hyperparameter configurations.

Table 5: PhysioNet prediction results (1
NFE ≈ 0.013 seconds for a test batch of
60 records)

Model AUC NFE
No reg. 0.7190 74

Kinetic energy reg. 0.7581 63.5
L1 reg. 0.7630 68
L2 reg. 0.7450 59
Our reg. 0.7509 39.71

No reg. & DISE 0.7513 57.57
Our reg. & DISE 0.7604 34.1

Auxiliary Network Architecture. The auxiliary net-
work for this dataset is shown in Table 4, which consists
of four fully connected layers and an output layer. There
is a dropout at the fourth layer and we found that using a
dropout at this position improves the selection quality in
some cases. The time to run the auxiliary network once
is comparable to 0.023 NFE (i.e., 0.0003 seconds) in our
testing, which is negligible.

Hyperparameters. The coefficient λ is set to
{0.045, 0.0002, 0.0025, 0.015} respectively, and the
starting learning rate is 0.01 with a decay factor of

6

Under review as a conference paper at ICLR 2021

0.999. The exponent α is 0.05. The large penalty M is 1,000. The dropout ratio is {0, 0.25}. We use
DOPRI as our default solver unless DISE is adopted. We use the recommended hyperparameters
for Latent-ODE in their paper or in their github repository.

Experimental Results. Table 5 summarizes all the results in terms of the AUC score and NFE.
Adding an regularizer improves the AUC score and NFE at the same time in all cases. It is noted that
the best AUC score is achieved when we use the L1 regularizer for this task among all regularizers.
Our regularizer shows the smallest NFE among all tested regularizers, i.e., an NFE of 74 with no
regularizers vs. an NFE of 39.71 with our regularizer. When being used with DISE, our regularizer
marks an NFE of 34.1 and an AUC score of 0.7604, which is the best AUC to NFE ratio in the table.

Table 6: The distribution of
the integrator selection by
our auxiliary network for
PhysioNet.

Integrator Percentage
DOPRI 87.5%

RK4 0%
Euler 12.5%

We summarized the distribution of the integrator selection by DISE
with our regularizer in Table 6. For a majority of cases, it chooses
DOPRI due to the difficult nature of the task. One interesting point
is that RK4 had not been used at all because it does not show any
notable difference from the Euler method in this task. In that regard,
choosing the Euler method is a sensible decision.

4.3 CONTINUOUS NORMALIZING FLOWS

Dataset. Normalizing flows transform a simple distribution into a richer complex distribution,
which can be used for many deep learning applications, such as generative models, reinforcement
learning, and variational inference (Rezende & Mohamed, 2015). It is also known that Neural ODEs
can generalize the concept of normalizing flows, which is called continuous normalizing flows. We
use the experimental codes and data released in (Chen et al., 2018).

Table 7: The auxiliary network for Continuous
Normalizing Flows. Φ means Tanh.

Layer Design In Size Out Size
1 (FC) 32× 3 32× 1
2 Φ(FC) 32× 1 64× 1
3 Φ(FC) 64× 1 32× 1
4 Φ(FC) 32× 1 3× 1

In this task, we perform a maximum likelihood
training between q(x) and p(x), where q is a dis-
tribution created by a flow model and p is a target
distribution. Therefore, the task-specific loss is to
maximize Ep(x)[log q(x)], i.e., minimize Ltask =
−Ep(x)[log q(x)]. The change of variable theorem
is used to measure the probability q(x). We set
the initial distribution to a Gaussian distribution of
N (0, 1) and a flow model tries to transform it to the target distribution p. One good characteristic
of continuous normalizing flows is that we can reverse the model and extract the reverse-mapping
procedure from q to the Gaussian as well.

Table 8: Continuous Normalizing Flow re-
sults (1 NFE≈ 0.008 seconds for a test batch
of 32 samples)

Model NLP NFE
No reg. 0.8911 2297

Kinetic energy reg. 0.8914 2286
L1 reg. 0.8901 2259
L2 reg. 0.8760 2904
Our reg. 0.8841 2166

No reg. & DISE 0.8883 2104
Our reg. & DISE 0.8742 1984

Auxiliary Network Architecture. The auxiliary
network for this dataset is shown in Table 7, which
consists of three fully connected layers and an out-
put layer. The time to run the auxiliary network once
is comparable to 0.018 NFE (i.e., 0.000144 seconds)
in our testing, which is negligible.

Hyperparameters. The coefficient λ is set to
{0.0005, 0.00001, 0.0003, 0.004} and the learning
rate is 0.001. The exponent α is 0.03. The large
penalty M is 1,000. We use DOPRI as our default
solver unless DISE is adopted. We use the recom-
mended hyperparameters for the base continuous normalizing flow model in the original paper or in
their github repository. The threshold β is set to the average negative log-probability loss of the case
where we use our regularizer. The rationale behind this threshold is that we select the Euler method
only when its loss value is good enough.

Experimental Results. Table 8 shows the performance of various methods. With no regularizers,
the base Neural ODE model’s NFE is very large, i.e., an NFE of 2,297. Our regularizer decreases it
to 2,166 and the combination of our regularizer and DISE further decreases to 1,984. However, the
L2 regularizer rather increases the NFE and has a negative influence on it. In almost all cases, adding

7

Under review as a conference paper at ICLR 2021

(a) t = 0.0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1.0 (f) Target

(g) t = 0.0 (h) t = 0.25 (i) t = 0.5 (j) t = 0.75 (k) t = 1.0 (l) Target

(m) t = 0.0 (n) t = 0.25 (o) t = 0.5 (p) t = 0.75 (q) t = 1.0 (r) Target

Figure 3: Visualization of the transformation process from the Gaussian noise to the target distribu-
tion. (a-e) are by our regularization, (g-k) are by the L1 regularization, (m-q) are with the kinetic
energy regularization.

an regularizer decreases the negative log-probability, denoted NLP in the table. At this experiment,
1 NFE takes approximately 0.008 seconds.

Figure 3 shows various transformation processes from the initial Gaussian noise to the target distri-
bution with two circles. All show reasonable transformations with little differences.

Table 9: The distribution
of the integrator selection
by our auxiliary network
for Continuous Normaliz-
ing Flows

Integrator Percentage
DOPRI 87.5%

RK4 0%
Euler 12.5%

The selection distribution by the auxiliary network with our regular-
izer is summarized in Table 9. Being similar to that in PhysioNet,
DOPRI is selected for many cases, i.e., 87.5%, and the Euler method
is used from time to time, i.e., 12.5%.

5 CONCLUSIONS

We tackled one critical problem of Neural ODEs, a delayed process
of the forward-pass inference. Even though DOPRI is able to dynami-
cally adjust its step-sizes, as described earlier, there exists a limitation
in saving the forward-pass inference time. To address the problem, we suggested i) regularizing the
DOPRI’s estimated error, which results in a reduced NFE, and ii) dynamically selecting an ap-
propriate integrator for each input. We successfully showed that both the model accuracy and the
forward-pass inference time can be improved at the same time in all tasks. We also showed that non-
trivial percentages of test cases can be solved by the Euler method after adopting our regularizer.
In particular, for MNIST our model shows more than four times smaller NFE (i.e., more than four
times faster forward-pass inference) in comparison with ODE-Net without any regularizer.

One difficulty in our work is controlling hyperparameters such asM and α. If they are ill-configured,
the auxiliary selection network may choose only one integrator by pursuing either computational
correctness (i.e., DOPRI) or computational lightweightness (i.e., the Euler method). During our
preliminary experiments, we tuned them using training data.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In NeurIPS. 2018.

Marco Ciccone, Marco Gallieri, Jonathan Masci, Christian Osendorfer, and Faustino Gomez. Nais-
net: Stable deep networks from non-autonomous differential equations. In Advances in Neural
Information Processing Systems, pp. 3025–3035, 2018.

Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva, Julia Gusak, Andrzej Cichocki, and Ivan
Oseledets. Interpolated Adjoint Method for Neural ODEs. arXiv:2003.05271, 2020.

J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of Computa-
tional and Applied Mathematics, 6(1):19 – 26, 1980.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), NeurIPS. 2019.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In ICML, 2020.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. arXiv preprint arXiv:1902.10298, 2019.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. In ICLR, 2019.

E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I (2nd Revised.
Ed.): Nonstiff Problems. Springer-Verlag, 1993. ISBN 0387566708.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV, 2016.

Liviu Gr. Ixaru and Guido Vanden Berghe. Runge-Kutta Solvers for Ordinary Differential Equations,
pp. 223–304. Springer Netherlands, 2004.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International Conference on
Machine Learning, pp. 3276–3285, 2018.

Andrew Y. Ng. Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. In ICML,
2004.

Hans Pinckaers and Geert Litjens. Neural Ordinary Differential Equations for Semantic Segmenta-
tion of Individual Colon Glands. arXiv:1910.10470, 2019.

Hans Pinckaers and Geert Litjens. Neural ordinary differential equations for semantic segmentation
of individual colon glands, 2019.

Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutnı́k. Snode: Spectral discretization
of neural odes for system identification. In ICLR, 2020.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. volume 37 of
Proceedings of Machine Learning Research, pp. 1530–1538, 2015.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In NeurIPS. 2019.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, pp. 1–13, 2019.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. Comput Car-
diol, 39:245–248, 2010.

9

Under review as a conference paper at ICLR 2021

E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1):1–11, 2017.

Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. Ode2vae: Deep generative second order
odes with bayesian neural networks. In NeurIPS. 2019.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, and James S. Duncan. Ordinary differential equations
on graph networks. In ICLR, 2020a.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and
James Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ode. In
ICML, 2020b.

10

