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Abstract
As AI becomes omnipresent in today’s world,
it is crucial to study the safety aspects of learn-
ing, such as guaranteed watermarking capabilities
and defenses against adversarial attacks. In prior
works, these properties were generally studied
separately and empirically barring a few excep-
tions. Meanwhile, strong forms of adversarial
attacks that are transferable had been developed
(empirically) for discriminative DNNs (Liu et al.,
2016) and LLMs (Zou et al., 2023). In this ever-
evolving landscape of attacks and defenses, we
initiate the formal study of watermarks, defenses,
and transferable attacks for classification, under a
unified framework, by having two time-bounded
players participate in an interactive protocol. Con-
sequently, we show that for every learning task, at
least one of the three schemes exists. Importantly,
our results cover regimes where VC theory is not
necessarily applicable. Finally we provide prov-
able examples of the three schemes and show that
transferable attacks exist only in regimes beyond
bounded VC dimension. The example we give is
a nontrivial construction based on cryptographic
tools, i.e. homomorphic encryption.

1. Introduction
The increasing deployment of deep learning models ampli-
fies the need for secure and robust models. In autonomous
driving, ensuring the integrity of perception algorithms
against adversarial manipulations is crucial for public safety
(Amodei et al., 2016; Deng et al., 2020; Goodfellow et al.,
2015; Kurakin et al., 2018). Additionally, in the competitive
landscape of AI companies, where innovative models can
represent significant intellectual and commercial value, it is
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crucial to have mechanisms to assert and protect ownership.

The concept of watermarking has emerged as a strategy
for asserting content authenticity and ownership of both
discriminative (Adi et al., 2018; Uchida et al., 2017; Fan
et al., 2019; Zhang et al., 2018; Namba and Sakuma, 2019)
and generative models (Kirchenbauer et al., 2023; Kudi-
tipudi et al., 2023; Zhao et al., 2023a). These techniques
embed unique signals into a model or its outputs, acting as
digital fingerprints that safeguard intellectual property. No-
tably, in discriminative models, watermarking often utilizes
backdoor-like methods (Zhang et al., 2018; Merrer et al.,
2017; Adi et al., 2018; Namba and Sakuma, 2019), where
developers embed specific mechanisms in the models that
can be triggered by unusual phrases or image patterns.

Another aspect to consider is transferable adversarial at-
tacks. These attacks involve creating adversarial examples
that are effective across multiple models within the same
class, such as deep neural networks (DNNs). Research has
shown that these attacks can be highly effective against both
discriminative and generative models (Liu et al., 2016; Zou
et al., 2023). This underscores the need for defenses that
can withstand attacks crafted not just for a specific model
but for a broad set of models within the domain.

Provable guarantees for strong adversarial defenses and
undetectable watermarks are rare and often hold only in
special cases. For example, (Goldwasser et al., 2020) shows
a defense that is secure against “all” adversarial examples
for learning tasks with bounded VC-dimension.

This situation leads us to question which learning tasks,
if any, can have provably unremovable watermarks and
defenses that are robust against “all” adversaries. Ideally,
we want every task to have these features. Early studies,
like the one in (Goldwasser et al., 2022), show that some
common adversarial defenses, such as those outlined in
(Cohen et al., 2019), can remove undetectable backdoors,
while methods like (Merrer et al., 2017) use adversarial
samples to implant watermarks. These findings suggest a
natural connection between the two areas.

Our contributions. We initiate a formal study of the tax-
onomy of discriminative learning tasks based on whether
they have a watermark, an adversarial defense, or a trans-
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ferable attack. Building upon (Adi et al., 2018; Goldwasser
et al., 2022; Merrer et al., 2017) we give a new formal defi-
nition of a watermark. Similarly, inspired by (Goldwasser
et al., 2020) we introduce a new formal definition of an
adversarial defense. Thirdly, we give, as far as we know, the
first formal definition of a transferable attack.

Using this new formalism, our main result shows that:

Every learning task has at least one of the three:
a Watermark, an Adversarial Defense, or a Transferable

Attack.

Our results prove that this is, remarkably, a property of
the learning task and the amount of resources available to
learners—such as compute, memory, and data—rather than
our ability to design algorithms.

In addition, we provably show:

1. The existence of a Adversarial Defense for all learning
tasks with bounded VC-dimension, thereby ruling out
Transferable Attacks in this regime.

2. An example of a Watermark for some class of learning
tasks with bounded VC-dimension.

3. An Example of a Transferable Attack, albeit in the
case with multiple valid labels for one input. Interest-
ingly, the example uses tools from cryptography such
as Fully Homomorphic Encryption (FHE). Thus ruling
out Watermarks and Adversarial Defenses for this task.

Implications for Adversarial Attacks: Finally, we would
like to point out some implications of our results, partic-
ularly for the well-studied notion of adversarial attacks,
which can be seen as the negation of our notion of Adver-
sarial Defense. Our main result states that if an Adversarial
Defense does not exist, there must be either a Watermark
or a Transferable Attack that fools all resource-bounded
learners. Moreover, if a Transferable Attack does not ex-
ist, an adversarial attack can, in principle, be turned into a
Watermark.

Comments on the Learning Task. Our definitions and
the main results are phrased with respect to a fixed learn-
ing task (Section 2), while VC-theory takes an alternate
viewpoint that tries to show guarantees on the risk (mostly
sample complexity-based) for any distribution. However,
it is known that for DNNs and other modern architectures,
moving beyond classical VC theory would be necessary
(Zhang et al., 2021; Nagarajan and Kolter, 2019). In our
case due to the requirements of our schemes (e.g. unremov-
ability and undetectability) it might not be possible to obtain
this formalization that works for all distributions as is the

case in classical VC theory.1 We defer the discussion of
related works to the Appendix A.

2. Preliminaries
Learning Task. For n ∈ N we define [n] :=

{
0, 1, . . . , n−

1
}

. A learning task L is a pair (D,h) of a distribution D,
supp(D) ⊆ X and a ground truth map h : X → Y ∪ {⊥},
where Y is a finite space of labels and ⊥ represents a sit-
uation where h is not defined. To every f : X → Y , we
associate err(f) := Ex∼D[f(x) ̸= h(x)]. We implicitly
assume h does not map to ⊥ on supp(D). We assume
all parties have access to i.i.d. samples (x, h(x)), where
x ∼ D, although D and h are unknown to the parties.
For q ∈ N,x ∈ X q,y ∈ Yq we define err(x,y) :=
1
q

∑
i∈[q] 1

{
h(x(i)) ̸=y(i),h(x(i))̸=⊥

}, i.e. we count (x, y) as

an error if h is well-defined on x and h(x) ̸= y.

Distinguishability. For q ∈ N and distributions D0, D1

over X q and an algorithm A accepting x ∈ X q and return-
ing b̂ ∈ {0, 1}, we say that the probability of A for distin-
guishing D0, D1 is p ∈ [0, 1] if p = Pb∼U({0,1}),x∼Db

[
b =

A(x)
]
, where b ∼ U({0, 1}) is a uniformly random bit.

3. Watermarks, Adversarial Defenses and
Transferable Attacks

Here we define the three schemes and discuss the design
choices we made. To do that we use the language of in-
teractive protocols (Goldwasser and Sipser, 1986), where
a verifier (V) and a prover (P) communicate according to
certain rules. Watermarks and Transferable Attacks are ini-
tiated by V, and Adversarial Defense by P. Both V and P
are time-bounded algorithms, but meaningful settings occur
when either has sufficient time to train a model to a given
accuracy. This setup enables us to generalize processes for
watermarks and defenses, allowing richer interaction while
capturing the essence of the process. For more details on
the properties of each scheme, please refer to Appendix C.1.

Watermark is “an efficient algorithm that computes a
low-error classifier f : X → Y and x ∈ X q such that fast
adversaries are not able to find low-error answers y ∈ Yq

nor distinguish x from a sample from Dq . Moreover, there
is an efficient adversary that can find a low-error y. ”

Definition 1 (Watermark (Informal)). Let L =
(
D,h

)
be

a learning task, ϵ ∈
(
0, 12

)
, t, T ∈ N, where t bounds the

running time of P, and T the running time of V.

1Since we are considering time-bounded parties, this implicitly
restricts what can be learned. But at the same time, it allows the
freedom of appropriate priors to be chosen by the parties, as long
as they respect the time.
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We say that a succinctly representable VWATERMARK run-
ning in time T implements a watermarking scheme for L,
denoted by VWATERMARK ∈ WATERMARK

(
L, ϵ, T, t

)
, if it

computes (f,x), f : X → Y,x ∈ X q, and P that on input
(f,x) returns y ∈ Yq satisfies the following.

• Correctness (f has low error). With high probability,
err(f) ≤ ϵ.

• Uniqueness (models trained from scratch give low-
error answers). There exists succinctly representable
P running in time T such that with high probability,
err(x,y) ≤ 2ϵ.

• Unremovability (fast P return high-error answers).
For every succinctly representable P running in time
t we have that with high probability, err(x,y) > 2ϵ.

• Undetectability (fast P cannot detect that they are
tested). For every succinctly representable P running
in time t the advantage of P for distinguishing x ∼ Dq

from x := V is small.

Adversarial Defense is “is an efficient algorithm that
computes a low-error f : X → Y such that fast adversaries
are not able to find x ∈ X q where f makes mistakes and
which looks indistinguishable from a sample from Dq .”

Definition 2 (Adversarial Defense (Informal)). Let L =(
D,h

)
be a learning task. Let ϵ ∈

(
0, 12

)
, t, T ∈ N, where

t bounds the V’s running time, and T the P’s running time.

We say that a succinctly representable PDEFENSE running in
time T implements an adversarial defense for L, denoted by
PDEFENSE ∈ DEFENSE

(
L, ϵ, t, T

)
, if P computes f : X →

Y , V replies with x := V(f),x ∈ X q, and P outputs
b = P(f,x), b ∈ {0, 1} satisfying the following.

• Correctness (f has low error). With high probability,
err(f) ≤ ϵ.

• Completeness (if x came from the right distribution
P does not signal it is attacked). When x ∼ Dq then
with high probability,2 b = 0.

• Soundness (fast attacks creating x on which f makes
mistakes are detected). For every succinctly repre-
sentable V running in time t we have that with high
probability, err(x, f(x)) ≤ 7ϵ or b = 1.

Transferable Attack is “an efficient algorithm to compute
x ∈ X q for which fast adversaries are not able to find low

error answers and that looks indistinguishable from a
sample from Dq .”

2Correctness implies err(x, f(x)) ≤ 2ϵ with high probability.

Definition 3 (Transferable Adversarial Attack (Infor-
mal)). Let L =

(
D,h

)
be a learning task. Let ϵ ∈(

0, 12
)
, T ∈ N, T bounds the running time of V and P.

We say that a succinctly representable V running in time
T is a transferable adversarial attack, denoted by V ∈
TRANSFATTACK(L, ϵ, T, t), if it computes x ∈ X q , and the
interaction with P that on input x returns y = P(x),y ∈
Yq satisfies the following.

• Transferability (fast provers return high error an-
swers). For every succinctly representable P run-
ning in time t we have that with high probability,
err(x,y) > 2ϵ.

• Undetectability (fast provers cannot detect that they
are tested). For every succinctly representable P run-
ning in time t the advantage of P for distinguishing
x ∼ Dq from x := V is small.

On Error Oracles. We imagine the interaction is judged
by an external party that potentially knows the distribution
and h and can compute the necessary errors and provide the
final decision. Basically, we imagine the “transcript” of the
interaction is sent to this judge. It is an interesting future
work for the parties to have access to restricted versions of
error oracles, but this is beyond the scope of this work.

Comments on Succinct Representation for V and P. We
require the algorithms run by V and P to be succinctly
representable, i.e. their code should be much smaller than
their running time. For details see Appendix C.1.

4. Main Result
We are ready to state an informal version of our main re-
sult. Please refer to Theorem 4 for the details and full proof.
The key idea here is to define a zero-sum game between V
and P, where the “actions” of each player are the possible
algorithms/circuits that can be implemented in the given
time bound. Notably, this game is finite, but there are ex-
ponentially many such “actions” for each player. For our
result, we rely on some key properties of such large zero-
sum games (Lipton and Young, 1994b; Lipton et al., 2003).

Theorem 1 (Informal). For every learning task L and
ϵ ∈

(
0, 12

)
, T ∈ N, such that there exists a learner running

in time T that, with high probability, learns f such that
err(f) ≤ ϵ, at least one of the following exists:

WATERMARK
(
L, ϵ, T, T 1/

√
log(T )

)
,

DEFENSE
(
L, ϵ, T 1/

√
log(T ), O(T )

)
,

TRANSFATTACK
(
L, ϵ, T, T

)
.
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Figure 1: Taxonomy of learning tasks with bounded VC-dimension. The axes represent the time bound for the parties in the
corresponding schemes. The blue regions depict positive results, the red negative, and the gray regimes of parameters which
are not of interest. See Section 5 for details about the blue regions. The curved line represents an application of Theorem 1,
which says that at least one of the three points should be blue.

The role of T, ϵ and specific constants and probabilities
in Theorem 1. Defining the protocols with respect to the
time parameter and then looking at the appropriately sized
circuits allows us to argue about the existence of one of these
properties across all algorithms running in the specified time
bound. Additionally, we want to emphasize that Theorem 1
qualitatively also holds with other settings of parameters like
acceptance and rejection probabilities as well as constants
present in definitions of unremovability, soundness, and
transferability. We chose specific values of parameters,
rather than giving respective ranges for which the theorem
holds, for simplicity. One could hope to generalize our result
beyond the setting of fixed time (circuit size) T similarly
to how it is done in the field of computational learning
theory, where one defines an efficient learner as running in
time polynomial in 1/ϵ and a size parameter of the learning
problem. We leave this question for future work.

We end this section with a simple observation that if a Trans-
ferable Attack exists then neither a Watermark nor a Defense
exists. Indeed, a Transferable Attack is a strong notion of
an attack so it rules out a Defense. Secondly, a Transfer-
able Attack against adversaries running in time T rules out a
Watermark because it conflicts with the uniqueness property.

5. Instantiations of our Defintions
In this section, we give three instantiations of our definitions,
which demonstrate why the upper bounds on the running
time of V and P are crucial parameters that distinguish
between tasks having Watermarks, Adversarial Defenses,
and Transferable Attacks. The full statements are given in
Appendix E. Figure 1 summarizes the results visually.

We show an Adversarial Defense PD for all learning tasks

L with VC-dimension bounded by d, i.e. for all ϵ

PD ∈ DEFENSE (L, ϵ, t =∞, T = poly (d/ϵ)) .

We also show a Watermark VW for a class of learning tasks
L with the VC-dimension bounded by d, i.e. for all ϵ

VW ∈ WATERMARK (L, ϵ, T = O (d/ϵ) , t = d/100) .

Theorem 2 (Cryptography based Transferable Attack
(Informal)). There exists a family of distributions D, hy-
pothesis classH = {hk}k, distributionDL over k and VTA
such that for all sufficiently small ϵ if k ∼ DLn then

VTA ∈

TRANSFATTACK

((
D,hk

)
, ϵ, T = O

(
1

ϵ1.3

)
, t =

1

ϵ2

)
.

The learning task from Theorem 2 considers an extension of
the setup from Section 2, where there are multiple equally
valid outputs for most inputs. In this sense, it is closer to
generative than classification models (see also discussion
in Section 6). Interestingly, this task is such that learning
a good model is easy (poly(n, 1/ϵ) time is enough) but
evaluating an error of an input/output pair is hard (requires
2Ω(n) time).

6. Future Work - Beyond Classification
Inspired by Theorem 2 we conjecture a possibility of gen-
eralizing our results to develop a taxonomy for generative
learning tasks. Instead of a ground truth function, one could
consider a ground truth quality oracle Q, which measures
the quality of every input/output pair. This model introduces
new phenomena not present in the case of classification. For
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example, the task of generation, i.e. producing a high-
quality output y on input x, is decoupled from the task of
verification, i.e. evaluating the quality of y as output for x.
By, decoupled we mean that there is no clear formal reduc-
tion of one task to the other. Conversely, for classification,
where the space of possible labels is small, the two tasks are
equivalent. Without going into details, this decoupling is the
reason why the proof of Theorem 1 does not automatically
transfer to the generative case.

This decoupling introduces new complexities, but it also
suggests that considering new definitions may be beneficial.
For example, because generation and verification are equiv-
alent for classification tasks, we allowed neither V nor P
access to h, as it would trivialize the definitions. However,
a modification of the Watermark definition, where access
to Q is given to P could be investigated in the generative
case. Interestingly, such a setting was considered in (Zhang
et al., 2023b), where access to Q was crucial for mounting a
provable attack on “all” strong watermarks. As we alluded
to, Theorem2 can be seen as an example of a task, where
generation is easy but verification is hard - the opposite to
what (Zhang et al., 2023b) posits.

We hope that careful formalizations of the interaction and
capabilities of all parties might give insights into not only
the schemes considered in this work, but also problems like
weak-to-strong generalization or scalable oversight.
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In Hal Daumé III and Aarti Singh, editors, Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pages 10399–10409. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/wu20f.html.

Cihang Xie, Zhishuai Zhang, Jianyu Wang, Yuyin Zhou,
Zhou Ren, and Alan Loddon Yuille. Improving trans-
ferability of adversarial examples with input diver-
sity. 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 2725–2734,
2018. URL https://api.semanticscholar.
org/CorpusID:3972825.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning
(still) requires rethinking generalization. Communica-
tions of the ACM, 64(3):107–115, 2021.

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati,
Daniele Venturi, Giuseppe Ateniese, and Boaz Barak.
Watermarks in the sand: Impossibility of strong water-
marking for generative models. arXiV, abs/2311.04378,
2023a. doi: 10.48550/ARXIV.2311.04378. URL https:
//doi.org/10.48550/arXiv.2311.04378.

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati,
Daniele Venturi, Giuseppe Ateniese, and Boaz Barak.
Watermarks in the sand: Impossibility of strong water-
marking for generative models. arXiV, abs/2311.04378,
2023b. doi: 10.48550/ARXIV.2311.04378. URL https:
//doi.org/10.48550/arXiv.2311.04378.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph. Stoecklin, Heqing Huang, and Ian Mol-
loy. Protecting intellectual property of deep neural
networks with watermarking. In Proceedings of the
2018 on Asia Conference on Computer and Communi-
cations Security, ASIACCS ’18, page 159–172, New
York, NY, USA, 2018. Association for Computing

8

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://scottaaronson.blog/?p=6823
https://scottaaronson.blog/?p=6823
https://doi.org/10.1109/FOCS.2011.98
https://doi.org/10.1109/FOCS.2011.98
https://api.semanticscholar.org/CorpusID:259342528
https://api.semanticscholar.org/CorpusID:259342528
https://api.semanticscholar.org/CorpusID:259342528
https://proceedings.neurips.cc/paper_files/paper/2023/file/a00548031e4647b13042c97c922fadf1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a00548031e4647b13042c97c922fadf1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a00548031e4647b13042c97c922fadf1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a00548031e4647b13042c97c922fadf1-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:258987524
https://api.semanticscholar.org/CorpusID:258987524
https://api.semanticscholar.org/CorpusID:258987524
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html
https://proceedings.mlr.press/v119/wu20f.html
https://proceedings.mlr.press/v119/wu20f.html
https://api.semanticscholar.org/CorpusID:3972825
https://api.semanticscholar.org/CorpusID:3972825
https://doi.org/10.48550/arXiv.2311.04378
https://doi.org/10.48550/arXiv.2311.04378
https://doi.org/10.48550/arXiv.2311.04378
https://doi.org/10.48550/arXiv.2311.04378


Unified Taxonomy in AI Safety: Watermarks, Adversarial Defenses, and Transferable Attacks

Machinery. ISBN 9781450355766. doi: 10.1145/
3196494.3196550. URL https://doi.org/10.
1145/3196494.3196550.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang
Wang. Provable robust watermarking for ai-generated
text. CoRR, abs/2306.17439, 2023a. doi: 10.48550/
ARXIV.2306.17439. URL https://doi.org/10.
48550/arXiv.2306.17439.

Xuandong Zhao, Kexun Zhang, Yu-Xiang Wang, and
Lei Li. Invisible image watermarks are provably
removable using generative ai. 2023b. URL https:
//api.semanticscholar.org/CorpusID:
259075167.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Ngai-
Man Cheung, and Min Lin. A recipe for water-
marking diffusion models. ArXiv, abs/2303.10137,
2023c. URL https://api.semanticscholar.
org/CorpusID:257622907.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrik-
son. Universal and transferable adversarial attacks
on aligned language models. ArXiv, abs/2307.15043,
2023. URL https://api.semanticscholar.
org/CorpusID:260202961.

9

https://doi.org/10.1145/3196494.3196550
https://doi.org/10.1145/3196494.3196550
https://doi.org/10.48550/arXiv.2306.17439
https://doi.org/10.48550/arXiv.2306.17439
https://api.semanticscholar.org/CorpusID:259075167
https://api.semanticscholar.org/CorpusID:259075167
https://api.semanticscholar.org/CorpusID:259075167
https://api.semanticscholar.org/CorpusID:257622907
https://api.semanticscholar.org/CorpusID:257622907
https://api.semanticscholar.org/CorpusID:260202961
https://api.semanticscholar.org/CorpusID:260202961


Unified Taxonomy in AI Safety: Watermarks, Adversarial Defenses, and Transferable Attacks

A. Related Work
This section provides an overview of the main areas relevant to our work: Watermarking techniques, adversarial defenses,
and transferable attacks on deep neural networks (DNNs). Each subsection outlines important contributions and the current
state of research in these areas.

A.1. Watermarking

Watermarking techniques are crucial for protecting the intellectual property of machine learning models. These techniques
can be broadly categorized based on the type of model they target. We review watermarking schemes for both discriminative
and generative models, with a primary focus on discriminative models, as our work builds upon these methods.

A.1.1. WATERMARKING SCHEMES FOR DISCRIMINATIVE MODELS

Discriminative models, which are designed to categorize input data into predefined classes, have been a major focus of
watermarking research. The key approaches in this domain can be divided into black-box and white-box approaches.

Black-Box Setting: In the black-box setting, the model owner does not have access to the internal parameters or
architecture of the model, but can query the model to observe its outputs. This setting has seen the development of several
watermarking techniques, primarily through backdoor-like methods.

Adi et al. and Zhang et al. proposed frameworks that embed watermarks using specifically crafted input data (e.g., unique
patterns) with predefined outcomes. These watermarks can be verified by feeding these special inputs into the model and
checking for the expected outputs, thereby confirming ownership.

Another significant contribution in this domain is by Merrer et al., who introduced a method that employs adversarial
examples to embed the backdoor. Adversarial examples are perturbed inputs that cause the model to produce specific
outputs, thus serving as a watermark.

Namba and Sakuma further enhanced the robustness of black-box watermarking schemes by developing techniques that
withstand various model modifications and attacks. These methods ensure that the watermark remains intact and detectable
even when the model undergoes transformations.

Provable undetectability of backdoors was achieved in the context of classification tasks by Goldwasser et al.. Unfortunately,
it is known ((Goldwasser et al., 2022)) that some undetectable watermarks are easily removed by simple mechanisms similar
to randomized smoothing (Cohen et al., 2019).

The popularity of black-box watermarking is due to its practical applicability, as it does not require access to the model’s
internal workings. This makes it suitable for scenarios where models are deployed as APIs or services. Our framework builds
upon these black-box watermarking techniques, extending their robustness and applicability in adversarial environments.

White-Box Setting: In contrast, the white-box setting assumes that the model owner has full access to the model’s
parameters and architecture, allowing for direct examination to confirm ownership. The initial methodologies for embedding
watermarks into the weights of DNNs were introduced by Uchida et al. and Nagai et al.. Uchida et al. presented a framework
for embedding watermarks into the model weights, which can be examined to confirm ownership.

An advancement in white-box watermarking is provided by Darvish Rouhani et al., who developed a technique to embed an
N -bit (N ≥ 1) watermark in DNNs. This technique is both data- and model-dependent, meaning the watermark is activated
only when specific data inputs are fed into the model. For revealing the watermark, activations from intermediate layers are
necessary in the case of white-box access, whereas only the final layer’s output is needed for black-box scenarios.

Our work does not focus on white-box watermarking techniques. Instead, we concentrate on exploring the interaction
between backdoor-like watermarking techniques, adversarial defenses, and transferable attacks. Overall, watermarking
through backdooring has become more popular due to its applicability in the black-box setting.

A.1.2. WATERMARKING SCHEMES FOR GENERATIVE MODELS

Watermarking techniques for generative models have attracted considerable attention with the advent of large language
models (LLMs) and other advanced generative models. This increased interest has led to a surge in research and diverse
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contributions in this area.

Large Language Models: Watermarking LLMs is critical for mitigating potential harms associated with generated text.
Significant contributions in this domain include (Kirchenbauer et al., 2023), who proposed a watermarking framework that
embeds signals into generated text that are invisible to humans but detectable algorithmically. This method promotes the use
of a randomized set of ”green” tokens during text generation, and detects the watermark without access to the language
model API or parameters.

Kuditipudi et al. introduced robust distortion-free watermarks for language models. Their method ensures that the watermark
does not distort the generated text, providing robustness against various text manipulations while maintaining the quality of
the output.

Zhao et al. presented a provable, robust watermarking technique for AI-generated text. This approach offers strong
theoretical guarantees for the robustness of the watermark, making it resilient against attempts to remove or alter it without
significantly changing the generated text.

However, Zhang et al. highlighted vulnerabilities in these watermarking schemes. Their work demonstrates that current
watermarking techniques can be effectively broken, raising important considerations for the future development of robust
and secure watermarking methods for LLMs.

Image Generation Models: Various watermarking techniques have been developed for image generation models to
address ethical and legal concerns. Fernandez et al. introduced a method combining image watermarking with Latent
Diffusion Models, embedding invisible watermarks in generated images for future detection. This approach is robust against
modifications such as cropping. Wen et al. proposed Tree-Ring Watermarking, which embeds a pattern into the initial
noise vector during sampling, making the watermark robust to transformations like convolutions and rotations. Jiang et al.
highlighted vulnerabilities in watermarking schemes, showing that human-imperceptible perturbations can evade watermark
detection while maintaining visual quality. Zhao et al. provided a comprehensive analysis of watermarking techniques
for Diffusion Models, offering a recipe for efficiently watermarking models like Stable Diffusion, either through training
from scratch or fine-tuning. Additionally, Zhao et al. demonstrated that invisible watermarks are vulnerable to regeneration
attacks that remove watermarks by adding random noise and reconstructing the image, suggesting a shift towards using
semantically similar watermarks for better resilience.

Audio Generation Models: Watermarking techniques for audio generators have been developed for robustness against
various attacks. Erfani et al. introduced a spikegram-based method embedding watermarks in high-amplitude kernels, robust
against MP3 compression and other attacks while preserving quality. Liu et al. proposed DeAR, a deep-learning-based
approach resistant to audio re-recording (AR) distortions.

A.2. Adversarial Defense

The field of adversarial robustness has a rich and extensive literature (Szegedy et al., 2014; Gilmer et al., 2018; Raghunathan
et al., 2018; Wong and Kolter, 2018; Engstrom et al., 2017). Adversarial defenses are essential for ensuring the security and
reliability of machine learning models against adversarial attacks that aim to deceive them with carefully crafted inputs.

For discriminative models, there has been significant progress in developing adversarial defenses. Techniques such as
adversarial training (Madry et al., 2018), which involves training the model on adversarial examples, have shown promise in
improving robustness. Certified defenses (Raghunathan et al., 2018) provide provable guarantees against adversarial attacks,
ensuring that the model’s predictions remain unchanged within a specified perturbation bound. Additionally, methods like
randomized smoothing (Cohen et al., 2019) offer robustness guarantees.

A particularly relevant work for our study is (Goldwasser et al., 2020), which considers a different model for generating
adversarial examples. This approach has significant implications for the robustness of watermarking techniques in the face
of adversarial attacks.

In the context of Large Language Models (LLMs), there is a rapidly growing body of research focused on identifying
adversarial examples (Zou et al., 2023; Carlini et al., 2023; Wen et al., 2023a). This research is closely related to the notion
of jailbreaking (Andriushchenko et al., 2024; Chao et al., 2023; Mehrotra et al., 2024; Wei et al., 2023), which involves
manipulating models to bypass their intended constraints and protections.
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Furthermore, by employing the Greedy Coordinate Gradient (GCG) technique, Melamed et al. (2024) were able to develop
prompts that, despite being incomprehensible to humans, achieved similar outcomes as the original natural-language prompts.
These so-called evil twins can be exploited by malicious users. For instance, it is feasible for a malicious user to leverage
this framework to construct prompts that generate a corpus of toxic or harmful documents, while not appearing malicious
at surface level. However, these risks can be mitigated by implementing pre-processing defenses like paraphrasing or
retokenization (Jain et al., 2023).

A.3. Transferable Attacks and Transductive Learning

Transferable attacks refer to adversarial examples that are effective across multiple models. Moreover, transductive learning
has been explored as a means to enhance adversarial robustness, and since our Definition 3 captures some notion of
transductive learning in the context of transferable attacks, we highlight significant contributions in these areas.

Adversarial Robustness via Transductive Learning: Transductive learning (Gammerman et al., 1998) has shown
promise in improving the robustness of models by utilizing both training and test data during the learning process. This
approach aims to make models more resilient to adversarial perturbations encountered at test time.

One significant contribution is by Goldwasser et al., which explores learning guarantees in the presence of arbitrary
adversarial test examples, providing a foundational framework for transductive robustness. Another notable study by
Chen et al. formalizes transductive robustness and proposes a bilevel attack objective to challenge transductive defenses,
presenting both theoretical and empirical support for transductive learning’s utility.

Additionally, Montasser et al. introduce a transductive learning model that adapts to perturbation complexity, achieving a
robust error rate proportional to the VC dimension. The method by Wu et al. improves robustness by dynamically adjusting
the network during runtime to mask gradients and cleanse non-robust features, validated through experimental results. Lastly,
Tramer et al. critique the standard of adaptive attacks, demonstrating the need for specific tuning to effectively evaluate and
enhance adversarial defenses.

Transferable Attacks on DNNs: Transferable attacks exploit the vulnerability of models to adversarial examples that
generalize across different models. For discriminative models, significant works include (Liu et al., 2016), which investigates
the transferability of adversarial examples and their effectiveness in black-box attack scenarios, (Xie et al., 2018), who
propose input diversity techniques to enhance the transferability of adversarial examples across different models, and (Dong
et al., 2019), which presents translation-invariant attacks to evade defenses and improve the effectiveness of transferable
adversarial examples.

In the context of generative models, including large language models (LLMs) and other advanced generative architectures,
relevant research is rapidly emerging, focusing on the transferability of adversarial attacks. This area is crucial as it aims
to understand and mitigate the risks associated with adversarial examples in these powerful models. Notably, Zou et al.
explored universal and transferable adversarial attacks on aligned language models, highlighting the potential vulnerabilities
and the need for robust defenses in these systems.

B. Additional Preliminaries
Interactive protocols. We will model the interaction in the language of interactive protocols (Goldwasser and Sipser,
1986). These were initially introduced in the context of computational complexity and cryptography, but later found
applications in a broad spectrum of fields. There are two parties V, as in verifier, and P, as in prover. V plays the role of a
watermarking party or an adversary trying to break an adversarial defense and P plays the role of an adversarial defense or
an adversary trying to break a watermarking scheme. In addition, V plays the role of the attacking party for the transferable
attack, and P is the defending party here.

The concept of interative protocols has found a lot of interest in recent years for various domains in AI safety (Brown-Cohen
et al., 2023; Amit et al., 2024; Khan et al., 2024) and interpretability (Wäldchen et al., 2024; Kirchner et al., 2024). In
this paper we use the verifier-prover interactions to define the primary safety properties studied in this paper (as defined in
Section 3) and the induced game to guarantee the existence of the aforementioned properties.
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Table 1: Overview of properties across various watermarking schemes. The symbol" denotes properties with formal
guarantees or where proof is plausible, whereas% indicates the absence of such guarantees. Entries marked with"(E)

represent properties observed empirically; these lack formal proof in the corresponding literature, suggesting that deriving
such proof may present substantial challenges.

Fast (t≪ TL) or Slow (t ⪆ TL) Robust against

Arbitrary test examples (Goldwasser et al., 2020) Slow− runs in time t⪆TL
for bounded VC-dim classes

ALL - adversarial examples
works for bounded VC-dim classes

Randomized smoothing (Cohen et al., 2019) Fast- runs in time O(1) ℓp-bounded perturbations

Adversarial training (Madry et al., 2018) Slow- runs in time t ⪆ TL “ℓp-bounded perturbations”

Table 2: Properties of some adversarial defenses. For a learning task L we denote by TL the computational cost needed to
learn L, by which we need the time needed to learn L. “·” signifies that the property holds empirically but the corresponding
paper provides no proof.

C. Formal Definitions
As mentioned in the main paper we are interested in succinct circuits.

Definition 4 (Succint circuits). Let C be a circuit of width w and depth d. We will denote size(C) := w · d. We say that C
is succinctly representable if there exists a circuit of size 100 log(size(C))3 that accepts as input i ∈ [w], j, j1, j2 ∈ [d], g ∈
[O(1)], where g represents a gate from a universal constant-sized gate set, and returns 0 or 1, depending if g appears in
location (i, j) in C and if it is connected to gates in locations (i− 1, j1) and (i− 1, j2).

We are ready to formally define our notion of a Watermark, Adversarial Defense and Transferable Attack.

Definition 5 (Watermark). Let L = (D,h) be a learning task. Let T, t, q ∈ N, ϵ ∈
(
0, 12

)
, l, c, s ∈ (0, 1), s < c, where t

bounds the running time of P, and T the running time of V, q the number of queries, ϵ the risk level, c probability that
uniqueness holds, s probability that unremovability and undetectability holds, l the learning probability.

We say that a succinctly representable circuit VWATERMARK of size T implements a watermarking scheme for L, denoted by
VWATERMARK ∈ WATERMARK(L, ϵ, q, T, t, l, c, s), if it computes (f,x), and P that on input (f,x) returns y ∈ Yq satisfies
the following.

3Constant 100 is chosen arbitrarily. One often considers circuits representable by polylog-sized circuits. But for us, the constants
play a role and this is why we chose this definition.
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• Correctness (f has low error). With probability at least l

err(f) ≤ ϵ.

• Uniqueness (models trained from scratch give low-error answers). There exists a succinctly representable circuit P
of size T such that with probability at least c

err(x,y) ≤ 2ϵ.

• Unremovability (fast P give high-error answers). For every succinctly representable circuit P of size at most t we
have that with probability at most s

err(x,y) ≤ 2ϵ.

• Undetectability (fast P cannot detect that they are tested). For every succinctly representable circuit P of size at most
t the probability of P for distinguishing x ∼ Dq from x := V is at most 1

2 + s
2 .

Definition 6 (Adversarial Defense). Let L = (D,h) be a learning task. Let T, t, q ∈ N, ϵ ∈
(
0, 12

)
, l, c, s ∈ (0, 1), s < c,

where t bounds the running time of V, and T the running time of P, q the number of queries, ϵ the risk level, c the
completeness, s the soundness, l the learning probability.

We say that a succinctly representable circuit PDEFENSE of size T implements an adversarial defense for L, denoted by
PDEFENSE ∈ DEFENSE(L, ϵ, q, t, T, l, c, s), if P sends f , V replies with x ∈ X q, and P outputs b = P(f,x), b ∈ {0, 1}
satisfying the following.

• Correctness (f has low error). With probability at least l

err(f) ≤ ϵ.

• Completeness (if x came from the right distribution P does not signal it is attacked). When x ∼ Dq then with
probability at least c

b = 0.

• Soundness (fast attacks creating x on which f makes mistakes are detected). For every succinctly representable
circuit P of size at most t we have that with probability at most s

err(x, f(x)) > 7ϵ and b = 0.

Definition 7 (Transferable Attack). Let L = (D,h) be a learning task. Let T, t, q ∈ N, ϵ ∈
(
0, 12

)
, c, s ∈ (0, 1), where

T bounds the running time of V and P, q the number of queries, ϵ the risk level, c the transferability probability, s the
undetectability probability.

We say that a succinctly representable circuit V running in time T is a transferable adversarial attack, denoted by
V ∈ TRANSFATTACK(L, ϵ, q, T, t, c, s), if it computes x ∈ X q, and the interaction with P that on input x returns
y = P(x),y ∈ Yq satisfies the following.

• Transferability (fast provers return high error answers). For every succinctly representable circuit P of size at most t
we have that with probability at least c

err(x,y) > 2ϵ.

• Undetectability (fast provers cannot detect that they are tested). For every succinctly representable circuit P of size at
most t we have that the probability of P for distinguishing x ∼ Dq from x := V is at most 1

2 + s
2 .
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C.1. Discussion of the Definitions

Watermark. Unremovability and Undectability are standard but desirable properties of a watermark. But some detailed
remarks are in order.

Capabilities of the watermarking party and the adversaries. Naturally, for the protocol to be useful, the watermarking party
and the honest adversary should be efficient algorithms. On the other hand, unremovability requires that dishonest adversaries
should not be accepted. This shows that for a watermark to be possible, the class of allowed dishonest adversaries has to be
strictly smaller than the class of honest adversaries. To model the intuition that it should be hard to remove a watermark, we
chose to define the allowed classes of algorithms based on their running time.4 By the above discussion, we can’t model
both honest and dishonest adversaries as running in polynomial time, as then the classes would be equal. To address this,
we chose to use a more granular approach, and we assume that there are t, T ∈ N, t < T such that the honest adversary
runs in time T and the cheating adversaries are limited to running in time t. We chose to model the watermarking party as
also running in time T , although other choices are possible. Our running time restrictions are similar to those in (Adi et al.,
2018). We will see later that t, T will play a crucial role for the existence of watermarks.

Uniqueness. We enforce the property that, if an honest adversary does not use f and trains a model fH from scratch, then it
should be accepted. Formally, we require that there exists an algorithm running in time T that produces yH, which has an
error at most 2ϵ with high probability. The value 2ϵ is the previously mentioned threshold for acceptance of the adversary.

Unremovability. The watermark should be hard to remove. In our definition, this is modeled by requiring that every adversary
running in time t is not able to produce y that has an error lower than 2ϵ. Note the separation that it gives from uniqueness.

Undetectability. Lastly, we require undetectability. It should be hard for the adversary to detect that it is being tested, i.e.
x ∈ X q should be indistinguishable for the adversary from a sample from Dq . Finally, a dishonest adversary should not be
able to detect that it is being tested. Similarly to unremovability, we say that no adversary running in time t can distinguish
x from a sample from Dq with high probability.

Adversarial Defense. Similar to our definition of watermark, we enforce that the defending party sends a low-error
classifier that it has learned. The main property of our defense is that a successful defense must be able to detect that it is
being tested. This forces the attacker to provide samples that are an adversarial attack, where the low-error classifier makes
mistakes, and also that these examples must be indistingushable from the data distribution D.

Transferable Attack. The main remark here for our definition of Transferable Attack is that P can learn f after seeing x
sent by V and is still not able to provide low error answers nor detect that it is being tested.

Comments on Correctness Requirement. Note that we enforce Correctness in the protocol for both Watermarks and
Adversarial Defenses. This is to mimic the idea that trained models are generally available publicly and one aims to exhibit
good quality models. Also, without enforcing this the protocols are trivial to satisfy.

Comments on Succinct Representation for V and P. This is in accordance with how learning takes place in practice,
for instance, consider DNNs and learning algorithms for those DNNs. The code representing gradient descent algorithms
is almost always much shorter than the time of the optimization of weights DNNs for which it is run. Additionally, the
requirement that V’s and P’s algorithms are succinct forbids a trivial way to circumvent learning by hard-coding f in the
description of the Watermark or Adversarial Defense algorithms.

D. Main Theorem
Before proving our main theorem we recall a result from (Lipton and Young, 1994a) about simple strategies for large
zero-sum games.

Game theory. A two-player zero-sum game is specified by a payoff matrix G. G is an r × c matrix. MIN, the row player,
chooses a probability distribution p1 over the rows. MAX, the column player, chooses a probability distribution p2 over the
columns. A row i and a column j are drawn from p1 and p2 and MIN pays Gij to MAX. MIN tries to minimize the expected
payment; MAX tries to maximize it.

4It is possible to consider data-limited adversaries also.
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By the Min-Max Theorem, there exist optimal strategies for both MIN and MAX. Optimal means that playing first and
revealing one’s mixed strategy is not a disadvantage. Such a pair of strategies is also known as a Nash equilibrium. The
expected payoff when both players play optimally is known as the value of the game and is denoted by V(G).

We will use the following theorem from (Lipton and Young, 1994a), which says that optimal strategies can be approximated
by uniform distributions over sets of pure strategies of size O(log(c)).

Theorem 3 ((Lipton and Young, 1994a)). Let G be an r × c payoff matrix for a two-player zero-sum game. For any
η ∈ (0, 1) and k ≥ log(c)

2η2 there exists a multiset of pure strategies for the MIN (row player) of size k such that a mixed
strategy p1 that samples uniformly from this multiset satisfies

max
j

∑
i

p1(i)Gij ≤ V(G) + η(Gmax − Gmin),

where Gmax,Gmin denote the maximum and minimum entry of G respectively. The symmetric result holds for the MAX player.

We are ready to prove our main theorem.

Theorem 4. For every learning task L = (D,h); and ϵ ∈ (0, 1), T, q ∈ N, such that there exists a succinctly representable
circuit of size T that learns L up to error ϵ with probability 1− 1

48 , at least one of

WATERMARK

(
L, ϵ, q, T, T

1

210
√

log(T ) , l =
10

24
, c =

21

24
, s =

19

24

)
,

DEFENSE

(
L, ϵ, q, T

1

210
√

log(T ) , 2T, l = 1− 1

48
, c =

13

24
, s =

11

24

)
,

TRANSFATTACK

(
L, ϵ, q, T, T, c = 3

24
, s =

19

24

)
exists.

Proof of Theorem 4. Let L =
(
D,h

)
be a learning task. Let T, q, C ∈ N, ϵ ∈

(
0, 12

)
.

Let CandidateW be a set of T
1

210
√

log(T ) -sized succinctly representable circuits computing (f,x), where f : X → Y .

Similarly, let CandidateD be a set of T
1

210
√

log(T ) -sized succinctly representable circuits accepting as input (f,x) and
outputing (y, b), where y ∈ Yq, b ∈ {0, 1}. We interpret CandidateW as candidate algorithms for a watermark, and
CandidateD as candidate algorithms for attacks on watermarks.

Define a zero-sum game G between (V,P) ∈ CandidateW × CandidateD. The payoff is given by

G(V,P) =
1

2
P(f,x):=V

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b = 1

]
+

1

2
Pf :=V,x∼Dq

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b = 0

)]
,

where V tries to minimize and P maximize the payoff.

Applying Theorem 3 to G with η = 2−5 we get two probability distributions, p over a multiset of pure strategies in
CandidateW and r over a multiset of pure strategies in CandidateD that lead to a 2−5-approximate Nash equilibrium.

The size k of the multisets is bounded

k ≤ 26 log (|CandidateW|)

≤ 26 log

2
100 log

(
T

1

210
√

log(T )

) Because of the number of possible succinct circuits

≤ 213 log

(
T

1

210
√

log(T )

)
≤ 23

√
log (T ). (1)
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Next, observe that the mixed strategy corresponding to the distribution p can be represented by a succinct circuit of size

k · 100 log
(
T

1

210
√

log(T )

)
≤ k

23

√
log(T ), (2)

because we can create a circuit that is a collection of k circuits corresponding to the multiset of p, where each one is of

size 100 log

(
T

1

210
√

log(T )

)
. Combining (1) and (2) we get that the size of the circuit succinctly representing strategy p is

bounded by

k

23

√
log(T )

≤ 23
√

log (T ) · 1
23

√
log(T )

≤ log(T ).

This implies that p can be implemented by a T -sized succinctly representable circuit. The same hold for r. Let’s call the
strategy corresponding to p, VNash, and the strategy corresponding to r, PNash.

Consider cases:

Case G(VNASH,PNASH) ≥ 19
24 . Define PDEFENSE to work as follows:

1. Simulate f := VLEARN, where VLEARN is a circuit of size T , such that

P
[
err(f) ≤ ϵ

]
≥ 1− 1

48
.

2. Send f to V.

3. Receive x from V.

4. Simulate (y, b) := PNASH(f,x).

5. Return b′ = 1 if b = 1 or d(f(x),y) > 3ϵq and b′ = 0 otherwise,

where d(·, ·) is the Hamming distance. Note that PDEFENSE runs in time 2T and not T because it first simulates VLEARN and
then simulates PNASH.

We claim that

PDEFENSE ∈ DEFENSE

(
L, ϵ, q, T

1

210
√

log(T ) , 2T, l = 1− 1

48
, c =

13

24
, s =

11

24

)
. (3)

Assume towards contradiction that completeness or soundness of PDEFENSE as defined in Definition 6 does not hold.

If completeness of PDEFENSE does not hold then

Px∼Dq

[
b′ = 0

]
<

13

24
. (4)
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Let’s compute the payoff of V, which first runs f := VLEARN and sets x ∼ Dq , in the game G, when playing against PNASH.

G(V,PNASH)

=
1

2
P(f,x):=V

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
Pf :=V,x∼Dq

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]
≤ δ + 1

2
Pf :=VLEARN,x∼Dq

[
err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
Pf :=VLEARN,x∼Dq

[
err(x,y) ≤ 2ϵ and b′ = 0

]
By def. of V,PDEFENSE and P

[
err(f) ≤ ϵ

]
≥ 1− 1

48

<
1

48
+

1

2
+

13
24

2
By (4)

=
38

48
≤ G(VNASH,PNASH),  

where the contradiction is with the properties of Nash equilibria.

Assume that V breaks the soundness of PDEFENSE, which translates to

Px:=V(f)

[
err(x, f(x)) > 7ϵ and b = 0 and d(f(x),y)) > 3ϵq

]
>

11

24
. (5)

Let V′ first simulate f := VLEARN, then runs x := V(f), and returns (f,x). We have

G(V′,PNASH)

=
1

2
P(f,x):=V′

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
Pf :=V′,x∼Dq

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]
=

1

2
Pf :=VLEARN,x=V(f)

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
Pf :=VLEARN,x∼Dq

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]
By def. of V′

<
1

2
+

1− 11
24

2
By (5)

=
37

48
≤ G(VNASH,PNASH),  

where the contradiction is with the properties of Nash equilibria. Thus (3) holds.

Case G(VNASH,PNASH) <
19
24 . Consider P that returns (f(x), b) for a uniformly random b. We have

G(VNASH,P)

≥
(
1− Pf :=VNASH

[
err(f) ≤ ϵ

])
+ Pf :=VNash

[
err(f) ≤ ϵ

]
· 1
2
,

because when x ∼ Dq and err(f) ≤ ϵ the probability that err(x,y) ≤ 2ϵ and b = 0 is 1
2 , and similarly when x := VNASH

then the probability that b = 1 is equal 1
2 . The assumption that G(VNash,P) < 19

24 and properties of Nash equilibria imply
that Pf :=VNash [err(f) ≤ ϵ] ≥ 10

24 . This implies that correctness holds for VNash with l = 10
24 .

Next, assume towards contradiction that unremovability of VNASH does not hold, i.e. there is P running in time t such that
P
[
err(x,y) ≤ 2ϵ

]
> 19

24 . Consider P′ that on input (f,x) returns (P(f,x), 0). Then by definition of G, G(VNASH,P
′) > 19

24 ,
which is a contradiction  .
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Next, assume towards contradiction that undetectability of VNASH does not hold, i.e. there exists P such that it distinguishes
x ∼ Dq from x := VNASH with probability higher than 19

24 . Consider P′ that on input (f,x) returns (f(x),P(f,x)).5 Then
by definition of G, G(VNASH,P

′) > 19
24 , which is a contradiction  

There are two further subcases. If VNASH satisfies uniqueness then

VNASH ∈ WATERMARK

(
L, ϵ, q, T, T

1

210
√

log(T ) , l =
10

24
, c =

21

24
, s =

19

24

)
.

If VNASH does not satisfy uniqueness then, by definition, every succinctly representable circuit P of size T satisfies
err(x,y) ≤ 2ϵ with probability at most 21

24 . Consider the following V. It computes (f,x) := VNash , ignores f and sends x
to P. By the assumption that uniqueness is not satisfied for VNASH we have that transferability of Definition 3 holds for V
with c = 3

24 . Note that P in the transferable attack does not receive f but it makes it no easier for it to satisfy the properties.
Note that undetectability still holds with the same parameter. Thus

VNASH ∈ TRANSFATTACK

(
L, ϵ, q, T, T, c = 3

24
, s =

19

24

)
.

E. Missing Proofs of Section 5
E.1. Adversarial Defenses exist

Our result is based on (Goldwasser et al., 2020). Before we state and prove our result we give an overview of the learning
model considered in (Goldwasser et al., 2020).

E.2. Transductive learning with rejections.

In (Goldwasser et al., 2020) the authors consider a model, where a learner L receives a training set of labeled samples from
the original distribution (xD,yD = h(xD)),x ∼ DN ,yD ∈ {−1,+1}N , where h is the ground truth, together with a test
set xT ∈ X q. Next, L uses (xD,yD,xT ) to compute yT ∈ {−1,+1,⊔⊓}q, where ⊔⊓ represents that L abstains (rejects)
from classifying the corresponding x.

Before we define when learning is successful, we will need some notation. For q ∈ N,x ∈ X q,y ∈ {−1,+1,⊔⊓}q we
define

err(x,y) :=
1

q

∑
i∈[q]

1{
h(x(i)) ̸=y(i),y(i)̸=⊔⊓,h(x(i))̸=⊥

}, ⊔⊓(y) := 1

q

∣∣∣{i ∈ [q] : y(i) = ⊔⊓
}∣∣∣ ,

which means that we count (x, y) ∈ X × {−1,+1,⊔⊓} as an error if h is well defined on x, y is not an abstantion and
h(x) ̸= y.

Learning is successful if it satisfies two properties.

• If xT ∼ Dq then with high probability err(xT ,yT ) and ⊔⊓(yT ) are small.

• For every xT ∈ X q with high probability err(xT ,yT ) is small.6

The formal guarantee of a result from (Goldwasser et al., 2020) are given in Theorem 5. Let’s call this model Transductive
Learning with Rejections (TLR).

Note the differences between TLR and our definition of Adversarial Defenses. To compare the two models we associate the
learner L from TLR with P in our setup, and the party producing xT with V in our definition. First, in TLR, P does not
send f to V. Secondly, and most importantly, we don’t allow P to reply with rejections (⊔⊓) but instead require that P can
“distinguish” that it is being tested (see soundness of Definition 6). Finally, there are no apriori time bounds on either V or
P in TLR. The models are similar but a priori incomparable and any result for TLR needs to be carefully analyzed before
being used to prove that it is an Adversarial Defense.

5Formally P receives as input (f,x) and not only x.
6Note that, crucially, in this case ⊔⊓(yT ) might be very high, e.g. equal to 1.
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E.3. Formal guarantee for Transductive Learning with Rejections (TLR)

Theorem 5.3 from (Goldwasser et al., 2020) adapted to our notation reads.
Theorem 5 (TLR guarantee ((Goldwasser et al., 2020))). For any N ∈ N, ϵ ∈ (0, 1), h ∈ H and distribution D over X :

PxD,x′
D∼DN

[
∀ xT ∈ XN : err(xT , f(xT )) ≤ ϵ∗ ∧ ⊔⊓ (f (x′D)) ≤ ϵ∗

]
≥ 1− ϵ,

where ϵ∗ =
√

2d
N log (2N) + 1

N log
(
1
ϵ

)
and f = REJECTRON(xD, h(xD),xT , ϵ

∗), where f : X → {−1,+1,⊔⊓} and d
denotes the VC-dimension onH. REJECTRON is defined in Figure 2. in (Goldwasser et al., 2020).

REJECTRON is an algorithm that accepts a labeled training set (xD, h(xD)) and a test set xT and returns a classifier f ,
which might reject some inputs. The learning is successful if with a high probability f rejects a small fraction of DN and
for every xT ∈ XN the error on labeled x’s in xT is small.

E.4. Adversarial Defense for bounded VC-dimension

We are ready to state the main result of this section.
Lemma 1 (Adversarial Defense for bounded VC-dimension). Let d ∈ N andH be a binary hypothesis class on input
space X of VC-dimension bounded by d. There exists an algorithm P such that for every ϵ ∈

(
0, 18

)
, D over X and h ∈ H

we have

P ∈ DEFENSE

(

(D,h), ϵ, q =
d log2(d)

ϵ3
, t =∞, T = poly

(
d

ϵ

)
, l = 1− ϵ, c = 1− ϵ, s = ϵ

)
.

Proof. The proof is based on an algorithm from (Goldwasser et al., 2020).

Construction of P. Let ϵ ∈ (0, 1) and

N :=
d log2(d)

ϵ3
.

Let q := N . First, P, draws N labeled samples (xFRESH, h(xFRESH)). Next, it finds f ∈ H consistent with them and sends f
to V. Importantly this computation is the same as the first step of REJECTRON.

Next, P receives as input x ∈ X q from V. P. Let ϵ∗ :=
√

2d
N log (2N) + 1

N log
(
1
ϵ

)
. Next P runs f ′ =

REJECTRON(xFRESH, h(xFRESH),x, ϵ
∗), where REJECTRON is starting from the second step of the algorithm (Figure 2

(Goldwasser et al., 2020)). Importantly, for every x ∈ X , if f ′(x) ̸= ⊔⊓ then f(x) = f ′(x). In words, f ′ is equal to f
everywhere where f ′ doesn’t reject.

Finally P returns 1 if ⊔⊓(f ′(x)) > 2
3ϵ, and returns 0 otherwise.

P is a defense. First, by the standard PAC theorem we have that with probability at least 1− ϵ, err(f) ≤ ϵ
2 . This means

that correctness holds with probability l = 1− ϵ.

Note that with our setting of N , we have that
ϵ∗ ≤ ϵ

2
.

Theorem 5 guarantees that

• if x ∈ Dq then with probability at least 1− ϵ we have that

⊔⊓(f ′(x)) ≤
ϵ

2
.

which in turn implies that with the same probability P returns b = 0. This implies that completeness holds with
probability 1− ϵ.
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• for every x ∈ X q with probability at least 1− ϵ we have that

err(x, f ′(x)) ≤ ϵ

2
.

To compute soundness we want to upper bound the probability that err(x, f(x)) > 2ϵ7 and b = 0. By construction of
P if b = 0 then ⊔⊓(f ′(x)) ≤ 2ϵ

3 , which means that with probability at least 1− ϵ

err(x,y) ≤ 2ϵ

3
+
ϵ

2
< 2ϵ or b = 1.

This translates to soundness holding with s = ϵ.

REJECTRON runs in polynomial time in the number of samples and makes O( 1ϵ ) calls to an Empirical Risk Minimizer onH
(that we assume runs in time polynomial in d), which implies the promised running time.

E.5. Watermark Example

Lemma 2 (Watermark for bounded VC-dimension against fast adversaries). For every d ∈ N there exists a distribution
D and a binary hypothesis class H of VC-dimension d there exists V such that for any ϵ ∈

(
10000

d , 18
)

if h ∈ H is taken
uniformly at random fromH then

V ∈WATERMARK

(

(D,h), ϵ, q = O

(
1

ϵ

)
, T = O

(
d

ϵ

)
, t =

d

100
, l = 1− 1

100
, c = 1− 2

100
, s =

56

100

)
.

Proof. Let X = N. Let D be the uniform distribution over [N ] for N = 100d2. Let H be the concept class of functions
that have exactly d +1’s in [N ]. NoteH has VC-dimension d. Let h ∈ H be the ground truth.

Construction of V. V works as follows. It draws n = O
(
d
ϵ

)
samples from D labeled with h. Let’s call them xTRAIN. Let

A := {x ∈ [N ] : xTRAIN, h(x) = +1}, B := {x ∈ [N ] : x ∈ xTRAIN, h(x) = −1}.

V takes a uniformly random subset Aw ⊆ A of size q. It defines sets

A′ := A \Aw, B
′ := B ∪Aw.

V computes f consistent with the training set {(x,+1) : x ∈ A′} ∪ {(x,−1) : x ∈ B′}. V samples S ∼ Dq . It defines the
watermark to be x := Aw with probability 1

2 and x := S with probability 1
2 .

V sends (f,x) to P. V can be implemented in time O
(
d
ϵ

)
.

V is a watermark. We claim that (f,x) constitutes a watermark.

It is possible to construct a watermark of prescribed size, i.e. find a subset Aw of a given size, only if |A| ≥ q. The
probability that a single sample from D is labeled +1 is d

N , so by the Chernoff bound (Fact 1) |A|, |B| > dn
2N ≥ q with

probability 1− 1
100 , where we used that n = O

(
d
ϵ

)
, N = 100d2, q = O( 1ϵ ).

Correctness property. Let h′(x) := h(x) if x ∈ [N ] \Aw and h′(x) := −h(x) otherwise. Note that h′ has exactly d− q
+1’s in [N ]. By construction, f is a classifier consistent with h′. By the PAC theorem we know that with probability 1− 1

100 ,
f has an error at most ϵ wrt to h′ (because the hypothesis class of functions with at most d +1’s has a VC dimension of
O(d)). h′ differs from h on q points, so

err(f) ≤ ϵ+ q/N = O

(
ϵ+

1

ϵd2

)
= O(ϵ). (6)

with probability 1− 1
100 , which implies that correctness is satisfied with l = 1− 1

100 .

7Note that we measure the error of f not f ′.
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Distinguishing of x and Dq . Note that the distribution of Aw is the same as the distribution of a uniformly random subset
of [N ] of size q (when taking into account the randomness of the choice of h ∼ U(H)). Observe that the probability that
drawing q i.i.d. samples from U([N ]) we encounter repetitions is at most

1

N
+

2

N
+ · · ·+ q

N
≤ 3q2

N
≤ 1

100
,

because q < d
100 <

√
N

10 . This means that 1
100 is an information-theoretic upper bound on the distinguishing advantage

between x = Aw and Dq .

Moreover, P has access to at most t samples and the probability that the set of samples P draws from Dt and Aw have
empty intersection is at least 1− 1

100 . It is because it is at least (1− t
N )t ≥ (1− 1√

N
)
√

N/10 ≥ 1− 1
100 , where we used

that t <
√
N

10 .8

Note that by construction f maps all elements ofAw to−1. The probability over the choice of F ∼ Dq that F ⊆ h−1({−1}),
i.e. all elements of F have true label −1, is at least(

1− d

N

)q

≥ 1− 1

100
.

The three above observations and the union bound imply that the distinguishing advantage for distinguishing x from Dq of
P is at most 4

100 and so the undetectability holds with s = 8
100 .

Unremovability property. Assume, towards contradiction with unremovability, that P can find y that with probability
s′ = 1

2 + 6
100 satisfies err(x,y) ≤ 2ϵ. Notice, that err(Aw, f(Aw)) = 1 by construction.

Consider an algorithm A for distinguishing Aw from Dq. Upon receiving (f,x) it first runs y = P(f,x) and returns 1 iff
d(y, f(x)) ≥ q

2 . We know that the distinguishing advantage is at most 1
2 + 4

100 , so

1

2
Px:=Aw [A(f,x) = 1] +

1

2
Px∼Dq [A(f,x) = 0] ≤ 1

2
+

4

100
.

But also note that

s′ ≤ Px∼V[err(x,y) ≤ 2ϵ]

≤ 1

2
Px:=Aw

[d(y, f(x)) ≥ (1− 2ϵ)q] +
1

2
Px∼Dq [d(y, f(x)) ≤ (2ϵ+ err(f))q]

≤ 1

2
Px:=Aw

[d(y, f(x)) ≥ q/2] + 1

2
Px∼Dq [d(y, f(x)) ≤ q/2] + 1

100

≤ 1

2
Px:=Aw

[A(f,x) = 1] +
1

2
Px∼Dq [A(f,x) = 0] +

1

100
.

Combining the two above equations we get a contradiction and thus the unremovability holds with s′ = 1
2 + 6

100 .

Uniqueness property. The following P certifies uniqueness. It draws O
(
d
ϵ

)
samples from D, let’s call them x′TRAIN

and trains f ′ consistent with it. By the PAC theorem err(f ′) ≤ ϵ with probability at least 1 − 1
100 . Next upon receiving

x ∈ X q = [N ]q it returns y = f ′(x). By the fact that x is a random subset of [N ] of size q by the Chernoff bound, the union
bound we know that err(x,y) = err(x, f ′(x)) ≤ 2ϵ with probability at least 1 − 2

100 over the choice of h. This proves
uniqueness.

E.6. Transferable Attacks exist

E.6.1. FULLY HOMOMORPHIC ENCRYPTION (FHE)

We include a definition of fully holomorphic encryption based on the definition from (Goldwasser et al., 2013). The notion
of fully homomorphic encryption was first proposed by Rivest, Adleman and Dertouzos (Rivest et al., 1978) in 1978. The
first fully homomorphic encryption scheme was proposed in a breakthrough work by Gentry in 2009 (Gentry, 2009). A
history and recent developments on fully homomorphic encryption is surveyed in (Vaikuntanathan, 2011).

8If the sets were not disjoint then P could see it as suspicious because f makes mistakes on all of Aw.
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E.6.2. PRELIMINARIES

We say that a function f is negligible in an input parameter λ, if for all d > 0, there exists K such that for all λ > K,
f(λ) < λ−d. For brevity, we write: for all sufficiently large λ, f(λ) = negl(λ). We say that a function f is polynomial in
an input parameter λ, if there exists a polynomial p such that for all λ, f(λ) ≤ p(λ). We write f(λ) = poly(λ). A similar
definition holds for polylog(λ). For two polynomials p, q, we say p ≤ q if for every λ ∈ N, p(λ) ≤ q(λ).

When saying that a Turing machine A is p.p.t. we mean that A is a non-uniform probabilistic polynomial-time machine.

E.6.3. DEFINITIONS

Definition 8 ((Goldwasser et al., 2013)). A homomorphic (public-key) encryption scheme FHE is a quadruple of polynomial
time algorithms (FHE.KEYGEN, FHE.ENC, FHE.DEC, FHE.EVAL) as follows:

• FHE.KEYGEN(1λ) is a probabilistic algorithm that takes as input the security parameter 1λ and outputs a public key
pk and a secret key sk.

• FHE.ENC(pk, x ∈ {0, 1}) is a probabilistic algorithm that takes as input the public key pk and an input bit x and
outputs a ciphertext ψ.

• FHE.DEC(sk, ψ) is a deterministic algorithm that takes as input the secret key sk and a ciphertext ψ and outputs a
message x∗ ∈ {0, 1}.

• FHE.EVAL(pk, C, ψ1, ψ2, . . . , ψn) is a deterministic algorithm that takes as input the public key pk, some circuit C
that takes n bits as input and outputs one bit, as well as n ciphertexts ψ1, . . . , ψn. It outputs a ciphertext ψC .

Compactness: For all security parameters λ, there exists a polynomial p(·) such that for all input sizes n, for all x1, . . . , xn,
for all C, the output length of FHE.EVAL is at most p(n) bits long.

Definition 9 (C-homomorphism, (Goldwasser et al., 2013)). Let C = {Cn}n∈N be a class of boolean circuits, where
Cn is a set of boolean circuits taking n bits as input. A scheme FHE is C-homomorphic if for every polynomial n(·), for
every sufficiently large security parameter λ, for every circuit C ∈ Cn, and for every input bit sequence x1, . . . , xn, where
n = n(λ),

P


(pk, sk)← FHE.KEYGEN(1λ);

ψi ← FHE.ENC(pk, xi) for i = 1 . . . n;
ψ ← FHE.EVAL(pk,C, ψ1, . . . , ψn) :

FHE.DEC(sk, ψ) ̸= C(x1, . . . , xn)

 = negl(λ).

where the probability is over the coin tosses of FHE.KEYGEN and FHE.ENC.

Definition 10 (Fully homomorphic encryption). A scheme FHE is fully homomorphic if it is homomorphic for the class of
all arithmetic circuits over GF(2).
Definition 11 (Leveled fully homomorphic encryption). A leveled fully homomorphic encryption scheme is a homomorphic
scheme where FHE.KEYGEN receives an additional input 1d and the resulting scheme is homomorphic for all depth-d
arithmetic circuits over GF(2).
Definition 12 (IND-CPA security). A scheme FHE is IND-CPA secure if for any p.p.t. adversary A,∣∣∣ P [(pk, sk)← FHE.KEYGEN(1λ) : A(pk, FHE.ENC(pk, 0)) = 1

]
+

− P
[
(pk, sk)← FHE.KEYGEN(1λ) : A(pk, FHE.ENC(pk, 1)) = 1

] ∣∣∣ = negl(λ).

We now state the result of Brakerski, Gentry, and Vaikuntanathan (Brakerski et al., 2012) that shows a leveled fully
homomorphic encryption scheme based on a standard assumption in cryptography called Learning with Errors ((Regev,
2005)):

Theorem 6 (Fully Homomorphic Encryption, definition from (Goldwasser et al., 2013)). Assume that there is a constant
0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is hard
to approximate to within a 2O(ℓϵ) factor in the worst case. Then, for every n and every polynomial d = d(n), there is an
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IND-CPA secure d-leveled fully homomorphic encryption scheme where encrypting n bits produces ciphertexts of length
poly(n, λ, d1/ϵ), the size of the circuit for homomorphic evaluation of a function f is size(Cf ) · poly(n, λ, d1/ϵ) and its
depth is depth(Cf ) · poly(log n, log d).

Learning theory preliminaries. For the next lemma, we will consider a slight generalization of learning tasks to the case
where there are many valid outputs for a given input. This can be understood as the case of generative tasks. We call a
function h : X × Y → {0, 1} an error oracle for a learning task (D,h) if the error of f : X → Y is defined as

err(f) := Ex∼D[h(x, f(x))],

where the randomness of expectation includes the potential randomness of f . We assume that all parties have access to
samples (x, y) ∈ X × Y , where x ∼ D and y ∈ Y is some y such that h(x, y) = 0.

Definition 13 (Learning lines on a circle). The input space is X = {x ∈ R2 | ∥x∥2 = 1}, and the output space
Y = {−1,+1}. The hypothesis class is H = {hw | w ∈ R2, ∥w∥2 = 1}, where hw(x) := sgn(⟨w, x⟩). Let D = U(X )
and L = (D,H). Note thatH has VC-dimension equal to 2 so L is learnable to error ϵ with O( 1ϵ ) samples.

Moreover, define Bw(α) := {x ∈ X | |∡(x,w)| ≤ α}.
Lemma 3 (Learning lower bound). Let L be an algorithm for (D,H) that uses K samples and returns a classifier f . Then

Pw∼U(X ),f←L

[
Px∼U(X )[f(x) ̸= hw(x)] ≤

1

2K

]
≤ 3

100
.

Proof. Consider the following algorithm A. It first simulates L on K samples to compute f . Next, it performs a smoothing
of f , i.e. computes

fη(x) :=

{
+1, if Px′∼U(Bx(2πη))[f(x

′) = +1] > Px′∼U(Bx(2πη))[f(x
′) = −1]

−1, otherwise.

Note that if err(f) ≤ η for a ground truth hw then for every x ∈ X \Bx(2πη) we have fη(x) = hw(x). This implies that
A can be adapted to an algorithm that with probability 1 finds w′ such that |∡(w,w′)| ≤ err(f).

Assuming towards contradiction that the statement of the lemma doesn’t hold it means that there is an algorithm using K
samples that with probability 3

100 locates w up to angle 1
2K .

Consider any algorithm A using K samples. Probability that A doesn’t see any sample in Bw(2πη) is at least

(1− 4η)
K ≥

(
(1− 4η)

1
4η

)4ηK
≥
(

1

2e

)4ηK

,

which is bigger than 1− 3
100 if we set η = 1

2K . But note that if there is no sample in Bw(2πη) then A cannot locate w up to
η with certainty. This proves the lemma.

Lemma 4 (Boosting). Let η, ν ∈ (0, 14 ), L be a learning algorithm for (D,H) that uses K samples and outputs f : X →
{−1,+1} such that with probability δ

Pw∼U(X ),x∼U(Bw(2πη))[f(x) ̸= hw(x)] ≤ ν. (7)

Then there exists a learning algorithm L′ that uses max
(
K, 9η

)
samples such that with probability δ − 1

1000 returns f ′

such that
Pw∼U(X ),x∼U(X )[f

′(x) ̸= hw(x)] ≤ 4ην.

Proof. Let L′ first draws max
(
K, 9η

)
samples Q and defines g : X → {−1,+1,⊥} as, g maps to −1 the smallest

continuous interval containing all samples from Q with label −1. Similarly g maps to +1 the smallest continuous interval
containing all samples from Q with label +1. The intervals are disjoined by construction. Unmapped points are mapped to
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⊥. Next, L′ simulates L with K samples and gets a classifier f that with probability δ satisfies the assumption of the lemma.
Finally, it returns

f ′(x) :=

{
g(x), if g(x) ̸=⊥
f(x), otherwise.

Consider 4 arcs defined as the 2 arcs constituting Bw(2πη) divided into 2 parts each by the line {x ∈ R2 | ⟨w, x⟩ = 0}. Let
E be the event that some of these intervals don’t contain a sample from Q. Observe that

P[E] ≤ 4(1− η)
9
η ≤ 1

1000
.

By the union bound with probability δ − 1
1000 , f satisfies (7) and E doesn’t happen. By definition of f ′ this gives the

statement of the lemma.

Lemma 5 (Transferable Attack for a Cryptography based learning task). There exists a polynomial p such that for
every polynomial r ≥ p9 and for every sufficiently large security parameter λ ∈ N there exists a family of distributions
Dλ = {Dk

λ}k, hypothesis class of error oraclesHλ = {hkλ}k, distribution DL over k such that the following conditions are
satisfied.

1. There exists V such that for all ϵ ∈
(

1
r(λ) ,

1
p(λ)

)
if k ∼ DL then

V ∈ TRANSFATTACK
(

(
Dk

λ, h
k
λ

)
, ϵ, q =

16

ϵ
, T =

103

ϵ1.3
, t =

1

ϵ2
, c = 1− 1

10
, s = negl(λ)

)
.

2. There exists a learner L such that for every ϵ ∈
(

1
r(λ) ,

1
p(λ)

)
, with probability 1 − 1

10 over the choice of k and the

internal randomness of L, L returns a classifier of error at most ϵ. Additionally, L runs in time 103

ϵ1.3 and uses 900
ϵ

samples.

3. For every ϵ ∈
(

1
r(λ) ,

1
p(λ)

)
, every learner L using at most 1

ϵ samples (and in particular time) the probability over the

choice of k and the internal randomness of L that it returns a classifier of error at most ϵ is smaller than 1
10 .

We start with a proof sketch before moving to the formal proof.

Proof Sketch. We base the learning task on Definition 13. Let w ∈ X . We define the distribution as an equal mixture of two
parts D = 1

2DCLEAR +
1
2DENC. The first part, i.e. DCLEAR, is equal to x ∼ U(X ) with label y = hw(x). The second part, i.e.

DENC, is equal to x′ ∼ U(X ), y′ = hw(x
′), (x, y) = (FHE.ENC(x), FHE.ENC(y)), which can be thought of as DCLEAR

under an FHE encryption.

Note that ignoring samples from DENC, V can learn, using O( 1ϵ ) samples from DCLEAR, a classifier fw′ of error ϵ for DCLEAR.
Moreover, having access to the public key of the FHE, V can also evaluate fw′ homomorphically on FHE.ENC(x) to obtain
FHE.ENC(y) of error ϵ on DENC also. This means that V is able to learn a low-error classifier on D and thus point 2 of the
lemma is satisfied.

To compute x, V works as follows.10 It samples a uniformly random point xBND from Bw′(O(ϵ)) (see Definition 13). Next,
V encrypts it, i.e. x′ := FHE.ENC(xBND). Next, it flips a uniformly random bit b ∈ {0, 1}. If b = 0 it sends to P the
encrypted x′, and if b = 1 it sends to P a uniformly random x′ ∼ U(X ).

We claim that x′ satisfies two crucial properties:

9This is only a formal requirement so that the interval (1/r(λ), 1/p(λ)) is non-empty.
10In this proof sketch we will assume that q = 1.
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1. P is likely to misclassify x′. Observe that by the fact that V learns a good fw′ with high probability, xBND is a
uniformly random point from an arc that contains the boundary of hw. P’s running time is upper-bounded by 1

ϵ2 ,
which means that it can only learn (see Lemma 3 for intuition) a classifier of error, say, ≥ 10ϵ2. Taking these two facts
together we expect P to misclassify x′ with probability

≈ 1

2
· 10ϵ2/ϵ = 5ϵ > 2ϵ,

where the factor 1
2 takes into account that we send an encrypted x′ only half of the time. If this property held it would

imply the transferability of the scheme.

2. P cannot distinguish x′ from a sample from the original distribution. First note that x′ is encrypted with the same
probability as in the original distribution because we send an encryption of xBND with probability 1

2 and a uniformly
random x′ ∼ U(X ) also with probability 1

2 .

Crucially, if we send FHE.ENC(xBND) then it is indistinguishable for P from FHE.ENC(x) for any other x ∈ X .
This follows, up to technical details, essentially automatically from the security of the FHE scheme. This implies
undetectability.

Finally, essentially automatically, Lemma 3 implies point 3 of the lemma.

It is important to note that we need to augment the distribution with the public key of FHE so that V can execute FHE.ENC
and FHE.EVAL.

Note 1. We want to emphasize that it is crucial (for our construction) that the distribution has both an encrypted and an
unencrypted part.

If there was no DCLEAR then V would see only samples of the form (FHE.ENC(x), FHE.ENC(y)) and would not know
which of them lie close to the boundary of hw, and so it would not be able to choose tricky samples. V would be able to
learn a low-error classifier, but only under the encryption. More concretely, V would be able to evaluate homomorphically
a circuit that given a training set and a test point learns a good classifier and classifies the test point with it. However, it
would not be able to, with high probability, generate FHE.ENC(x), for x close to the boundary as it would not know (in the
clear) where the decision boundary is.

If there was no DENC then everything would happen in the clear and so P would be able to distinguish x’s that appear too
close to the boundary.

Next, we give a formal proof.

Proof. The learning task is based on the task from Definition 13.

Setting of parameters for FHE. Let FHE be a fully homomorphic encryption scheme from Theorem 6. We will use the
scheme for constant leveled circuits d = O(1). Let s(n, λ) be the polynomial bounding the size of the encryption of inputs
of length n with λ security as well as bounding size of the circuit for holomorphic evaluation, which is guaranteed to exist
by Theorem 6. Let β ∈ (0, 1) and p be a polynomial such that

s(nβ , λ, d) ≤ (n · p(λ))0.1, (8)

which exist because s is a polynomial. Let λ ∈ N and n := p1/β(λ)11 for the length of inputs in the FHE scheme. Observe

s(n, λ, d)) ≤ (p(λ) · p(λ))0.1 By (8)

≤ 1

ϵ0.2
By ϵ ∈

(
1

r(λ)
,

1

p(λ)

)
. (9)

11Note that this setting allows to represent points on X up to 2−p1/β(λ) precision and this precision is better than 1
r(λ)

for every
polynomial r for sufficiently large λ. This implies that this precision is enough to allow for learning up to error ϵ, because of the setting
ϵ ≥ 1

q(λ)
.
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Definition of the learning task. We will omit λ from indexes of D and h for simplicity of notation. Let D =
{D(pk,sk)}(pk,sk),H = {h(pk,sk,w)}(pk,sk,w) indexed by valid public/secret key pairs of FHE and w ∈ X , with X as in
Definition 13. Let DL over (pk,sk, w) be equal to FHE.KEYGEN(1λ)× U(X ).

For a valid (pk,sk) pair we define D(pk,sk) as the result of the following process: x ∼ D = U(X ), with probability 1
2 return

(0, x, pk) and with probability 1
2 return (1, FHE.ENC(x), pk), where the first element of the triple describes if the x is

encrypted or not. x is represented as a number ∈ (0, 1) using n bits.12

For a valid (pk,sk) pair and w ∈ X we define h(pk,sk,w)((b, x, pk), y) as a result of the following process: if b = 0
return 1hw(x)=y, otherwise let xDEC ← FHE.DEC(sk, x), yDEC ← FHE.DEC(sk, y) and if xDEC, yDEC ̸=⊥ (decryption is
succesful) return 1hw(xDEC)=yDEC

and return 1 otherwise.

Note 2 (Ω( 1ϵ )-sample learning lower bound.). Note, that by construction any learner using K samples for learning
task {D(pk,sk)}(pk,sk), {h(pk,sk,w)}(pk,sk,w) can be transformed (potentially computationally inefficiently) into a learner using K
samples for the task from Defnition 13 that returns a classifier of at most the same error. This together with a lower bound
for learning from Lemma 3 proves point 3 of the lemma.

Definition of V. V draws N samples Q = {((bi, xi, pk), yi)}i∈[N ] for N := 900
ϵ .

Next, V chooses a subset QCLEAR ⊆ Q of samples for which bi = 0. It trains a classifier fw′(·) := sgn(⟨w′, ·⟩) on QCLEAR

by returning any fw′ consistent with QCLEAR. This can be done in time

N · n ≤ 900

ϵ
· p1/β(λ) ≤ 900

ϵ1.1
(10)

by keeping track of the smallest interval containing all samples in QCLEAR labeled with +1 and then returning any fw′

consistent with this interval.

Note 3 (O( 1
ϵ1.3 )-time learning upper bound.). First note that V learns well, i.e. with probability at least 1 −

2
(
1− ϵ

100

) 900
ϵ ≥ 1− 1

1000 we have that

|∡(w,w′)| ≤ 2πϵ

100
(11)

Moreover, fw′(x) can be implemented by a circuit Cfw′ that compares x with the endpoints of the interval. This can be
done by a constant leveled circuit. Moreover Cfw′ can be evaluated with FHE.EVAL in time

size(Cfw′ )s(n, λ, d) ≤ 10n · s(n, λ, d) ≤ 10p1/β(λ)s(n, λ, d) ≤ 10

ϵ0.3
,

where the last inequality follows from (9). This implies that V can, in time T , return a classifier of error ≤ ϵ for
(D(pk,sk), h(pk,sk,w)). This proves point 2. of the lemma.

Next, V prepares x as follows. It samples q = 16
ϵ points {x′i}i∈[q] from X uniformly at random. It chooses a uniformly

random subset S ⊆ [q]. Next, V generates q− |S| inputs using the following process: xBND ∼ U(Bw′(2π(ϵ+ ϵ
100 ))) (xBND

is close to the decision boundary of fw′ ), return FHE.ENC(pk, xBND). Call the set of q − |S| points EBND. V defines:

x := {(0, x′i, pk) | i ∈ [q] \ S} ∪ {(1, x′, pk) | x′ ∈ EBND}.

The running time of this phase is dominated by evaluations of FHE.EVAL, which takes

q · s(n, λ, d) ≤ 16

ϵ
· 1

ϵ0.2
≤ 16

ϵ1.2
, (12)

where the first inequality follows from (9). Taking the sum of (10) and (12) we get that the running time of V is smaller
than the required T = 103

ϵ1.3 .

12Note that the space over which D(pk,sk) is defined on is not X .
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V is a transferable attack. Now, consider P that runs in time t = 1
ϵ2 . By the assumption t ≤ r(λ), which implies that

the security guarantees of FHE hold for P.

We first claim that x is indistinguishable from D(pk,sk) for P. Observe that by construction the distribution of ratio of
encrypted and not encrypted x’s in x is identical to that of D(pk,sk). Moreover, the distribution of unencrypted x’s is identical
to that of D(pk,sk) by construction. Finally, by the IND-CPA security of FHE and the fact that the running time of P is
bounded by q(λ) for some polynomial q we have that FHE.ENC(pk, xBND) is distinguishable from x ∼ X , FHE.ENC(pk, x)
with advantage at most negl(λ). Thus undetectability holds with near perfect soundness s = 1

2 + negl(λ).

Next, we claim that P can’t return low-error answers on x.

Assume towards contradiction that with probability 5
100

Pw∼U(X ),x∼U(Bw(2πϵ))[f(x) ̸= hw(x)] ≤ 10ϵ. (13)

We can apply Lemma 4 to get that there exists a learner using t+ 9
ϵ samples that with probability 4

100 returns f ′ such that

Pw∼U(X ),x∼U(X )[f
′(x) ̸= hw(x)] ≤ 40ϵ2. (14)

Applying Lemma 3 to (14) we know that

40ϵ2 ≥ 1

2(t+ 9
ϵ )
,

which implies

t ≥ 10

ϵ2
,

which is a contradiction with the assumed running time of P. Thus (13) doesn’t hold and in consequence using (11) we
have that with probability 1− 6

100

Pw∼U(X ),x∼U(Bw′ (2π(ϵ+ ϵ
10 ))

[f(x) ̸= hw(x)] ≥
10

14
· 10ϵ ≥ 7ϵ, (15)

where crucially x is sampled from U(Bw′) and not U(Bw). By Fact 1 we know that |S| ≥ q
3 with probability at least

1− 2e−
q
72 = 1− 2e−

1
8ϵ ≥ 1− 1

1000
.

Another application of the Chernoff bound and the union bound we get from (15) that with probability at least 1− 1
10 we

have that err(x,y) is larger than 2ϵ by the setting of q = 16
ϵ .

Fact 1 (Chernoff-Hoeffding). Let X1, . . . , Xk be independent Bernoulli variables with parameter p. Then for every
0 < ϵ < 1

P

[∣∣∣∣∣1k
k∑

i=1

Xi − p

∣∣∣∣∣ > ϵ

]
≤ 2e−

ϵ2k
2

and

P

[
1

k

k∑
i=1

Xi ≤ (1− ϵ)p

]
≤ e−

ϵ2kp
2 .
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