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ABSTRACT

The ability to perform learning during inference (Brown et al., [2020a), i.e. in-
context learning (ICL) is a core feature of self-attention in transformers. ICL
acts like an online associative memory and is believed to underpin transformers’
capabilities in complex sequence processing tasks. In some cases, ICL was shown
to simulate online gradient descent of a local loss function on an input sequence.
In this work, we view ICL as a continual learning problem that may suffer from
memory interference and requires a solution to a plasticity—stability dilemma. We
examine here the memory consolidation properties of ICL and propose a Bayesian
continual learning framework to solve this dilemma, leading to a new attention
model. Our framework builds on the idea of metaplasticity in neuroscience, where
the level of plasticity of each synapse is tied to an importance measure grounded
by a Bayesian prior distribution capturing previously learned knowledge. Our
approach explains several gated linear attention models in the literature, identifying
the respective assumptions from a Bayesian learning perspective. Furthermore, our
Bayesian continual learning approach provides a principled approach to forgetting,
enabling the design of attention layers with a desired memory horizon. Our experi-
ments achieve competitive performances on synthetic benchmarks. Additionally,
we experiment on several commonsense reasoning benchmarks where small models
benefit from consolidated synapses, outperforming strong baseline like Gated Delta
Networks.

1 INTRODUCTION

Transformers have been established as the workhorse of generative Al, underpinning breakthroughs in
large language modeling (Brown et al., 2020b;|(Chowdhery et al.,[2023)), computer vision (Dosovitskiy
et al.,2020), robotics (Brohan et al., [2022)), and even scientific domains like chemistry (Schwaller
et al.L [2019), and biology (Jumper et al., 2021)). Central to this success is the self-attention mech-
anism (Vaswani et al.| [2017), which allows a model to capture interactions among all tokens in a
sequence in a highly parallelizable manner. However, this mechanism requires caching key-value
(KV) pairs for each input token, causing memory and computational costs to grow linearly and
quadratically, respectively, with sequence length. Consequently, long-context data scenarios pose
strong technical challenges for classical Transformer architectures, especially at the edge (Kim et al.|
2023).

A promising direction to simultaneously address the computational and memory bottlenecks is to
adopt fixed-size attention memories, such as in linear transformers (Schlag et al.l [2021) and state
space models (Gu and Dao, 2023a)). These trade the dynamically growing KV cache with a fixed-
size memory state that is updated at each token. A key insight is their ability to perform in-context
learning (ICL) (Brown et al.|[2020a), whereby the model effectively “learns” at test time by processing
contextual examples within the input. ICL solves a continual and online learning problem, not unlike
how the brain dynamically adjusts its weights through neural and synaptic plasticity. In this view, we
know that learning with fixed-size memory without revisiting past states and inputs (i.e. replay) can
lead to catastrophic interference (McCloskey and Cohenl [1989). This interference likely contributes
to the limited capacity of linear transformers (Schlag et al., [2021)).

The concept of metaplasticity from neuroscience (Abraham and Bear, |1996), which posits that the
degree of plasticity is itself adaptive to preserve prior knowledge, has led to practical algorithms to



Catastrophic forgetting

r \
Thomas Bayes was Joshua's son
Metaplasticity Eoroen
Thomas Bayes was. Joshua's son Remembered
Metaplasticity w/ Forgetting Neyeqlcamy
Thomas Bayes was Joshua's son
i qﬁ/(’S) (19171<S>
Token Mixer S |
1
(v A . 5 Metaplastic Update
© p(vi|ky, S) (State remembered)
\Hllaiﬁl—/\ Linear // Linear \ / Linear \\ Lincar / Naive Update
L ; ) (State forgotten) .
T »
fL'f SZ

Figure 1: Bayesian Metaplasticity Attention. (Left) Palimpsa is a novel token mixer (attention
layer) that uses Bayesian inference at test time to compute attention scores. (Right) Self-attention in
autoregressive transformers is inherently a continual learning problem, and as such can suffer from
catastrophic forgetting. Metaplasticity is a widely studied technique that dynamically modifies the
learning rate to prevent important prior information to be forgotten. In this work, we derive Bayesian
Metaplastic Attention, a new attention block based on an online Bayesian posterior, preventing
both catastrophic forgetting and catastrophic remembering. (Bottom Right) gy, is the (variational)
distribution over memory states S at time step ¢ tracked in Palimpsa. The Bayesian metaplastic
approach provably updates the distribution in a way that retains information essential to the task
(purple to blue region). Whereas a Naive update would discard prior information in a detrimental
way. Palimpsa is further equipped with a forgetting mechanism to present loss of plasticity at long
sequences, by discarding stale information.

solve the catastrophic forgetting problem (Zenke et al., 2017a; Kirkpatrick et al.| 2017a; Benna and
Fusil [2016)). In this work, we pose ICL as a continual learning problem that can be solved through
metaplasticity, building on prior work that associated ICL and gradient descent (Akyiirek et al., [2022;
von Oswald et al.,[2023a). However, existing metaplasticity methods are unsuitable for transformers
for the following reasons: They either rely on clearly demarcated tasks and associated labels, growing
memory, and lack differentiability (Kudithipudi et al., 2023). As we aim to introduce metaplastic
methods embedded in transformer architectures, differentiability is necessary for training. One
natural solution to these challenges is to formulate memory updates as a process of Bayesian Gradient
Descent (BGD), ensuring that each update balances prior knowledge with new evidence (Zeno et al.}
2021)). These methods effectively adjust parameters according to their uncertainty in an online fashion.
However, BGD and other metaplasticity methods suffer from catastrophic remembering (Kaushik
et al., [2021), induced by a loss of plasticity that suppresses the ability to learn new knowledge to
preserve old ones. For ICL, this would imply that the model becomes unable to incorporate new
information past a critical sequence length, which is often cited as a key limitation of state space
models (Behrouz et al.,[2024). The recent Metaplasticity from Synaptic Uncertainty (MESU) solves
this problem by leveraging a Bayesian framework to also enable the forgetting by discarding stale or
unused information (Bonnet et al., [2025a). The degree of this palimpsest propertycan be adjusted
through a Bayesian prior, which effectively controls the time horizon of the memory.

Building on MESU, we introduce Palimpsa, a dual-state attention block that performs metaplastic
Bayesian updates to a fixed-size attention memory. Palimpsa mitigates in-context catastrophic
forgetting by adjusting per-state update magnitude based on memory uncertainty, preserving critical
past information. By releasing information predicted as stale, it also prevents in-context catastrophic
remembering. The key to deriving Palimpsa is the formulation of self-attention as an optimization
of an inner variational free energy at test-time, for which the variational posterior updates can be
analytically computed. Despite being based on Bayesian learning, our formulation scales efficiently
on GPUs at speeds comparable to Mamba and other gated state-space models (Gu and Dao| [2024;
Yang et al., [2024). We designed custom Triton kernels to accelerate key operations in the attention

'A palimpsest is a writing surface where the original text is scraped or washed off to be reused, especially
used in ancient works when parchment was of limited supply — similarly to the fixed-size memory in Palimpsa



block, which are made publicly availableﬂ

Furthermore, we find that existing related methods can be derived from specific assumptions on
the variational posterior, connecting several prior work in a common mathematical framework. We
validate Palimpsa on synthetic benchmarks and commonsense reasoning language benchmarks. Our
results demonstrate competive performance across different memory sizes especially for smaller scale
models, highlighting robust performance under tight memory constraints.

Our specific contributions are:

* Introduce the neuroscience concept of metaplasticity to mitigate in-context catastrophic
forgetting in transformer models.

 Palimpsa, a model that prevents in-context catastrophic rememberingby gradually releasing
outdated knowledge, with scalable custom kernels.

* A mathematical framework that casts several state-space models as special cases of a
common Bayesian framework

RELATED WORK

Continual Learning Methods and Neural Sequence Models Lifelong learning or Continual
Learning (CL) models aims to learn new tasks sequentially without forgetting previously learned tasks
(Kudithipudi et al.,|2022). CL is a critical ability for adapting to dynamic real-world environments.
However, these models face a limitation in mitigating catastrophic forgetting when adapting to new
data, making it challenging to achieve a balance between learning new knowledge and retaining prior
knowledge, also known as stability-plasticity dilemma (Fusi et al., 2005a). CL methods can be broadly
categorized into replay-based ((Buzzega et al., 2020), (Lopez-Paz and Ranzato, 2017))), dynamic
network expansion ((Rusu et al., |2016), (Wang et al.| [2024))), and regularization-based methods
((Zenke et al., [2017Db), (Kirkpatrick et al.l 2017b)). While these approaches are complementary
mechanisms for CL systems (McClelland et al.,{1995)), our work focuses specifically on regularization-
based metaplasticity, because it provides a local and efficient to solve the stability-plasticity dilemma
using finite size memory.

CL has been considered in State Space Models (SSM), but differently to Palimpsa. (Cheng et al.|
2024) used the subspace projection methods in the token mixer, but did not study the ICL aspects of
this problem. Other work applied modern transformer and SSM models to improve on CL benchmarks
(Thengane et al} 2022). Here, we instead show how these mechanisms can improve general language
modeling tasks that do not have an explicitly constructed CL structure, namely language.

Another related concept is Bayesian learning in terms of ICL. (Xie et al.,[2021) analyzed ICL within
the Bayesian framework, assuming access to the nominal language distribution and that the tokens
are generated from a hidden Markov model. (Wies et al.,[2023) relaxed the model assumption and
assumed access to a pretrained model that is close to the nominal distribution conditioned on any
token sequence. Other work (Arora et al.| 2024} |Hahn and Goyall, 2023} |Zhang et al.| 2023} |[Falck
et al.,|2024)) provided Bayesian analysis of ICL, but did not address the learning dynamics of ICL
with Bayesian learning.

Bayesian learning and metaplasticity are closely linked in the hypothesis that synapses maintain
uncertainty estimates (Aitchison et al.l 2021) to dynamically adjust their plasticity. This perspective
inspired metaplastic continual learning methods like MESU (Bonnet et al., 2025a). This type of
metaplasticity can be written in a local and linear fashion. In Palimpsa, we take advantage of these
properties to allow scalable training on GPUs using the techniques employed for gated state-space
models (Gu and Daol [2023al).

Gated Linear Recurrence Models Linear attention mechanisms for autoregressive language
modeling were first suggested by (Katharopoulos et al., 2020) due to their promising compute and
memory complexity advantage over self-attention. (Schlag et al,[2021)) demonstrated the equivalence
of linear self-attention and fast weight programming and highlighted their limited ability to perform
recall tasks. The introduction of data-dependent gating and forgetting mechanisms was shown to
mitigate the limited capacity of linear attention (Yang et al., 2024} 2023} [Liu et al., [ 2024aj Sun et al.|

2Link omitted for double-blind review



2024a}; Beck et al.| [2024), along with efficient GPU I/O-aware implementations enabling scaling for
large language modeling.

(Akyiirek et al.| [2022} ivon Oswald et al.|[2023b)) demonstrated that the forward pass through the linear
attention mechanism can be framed as an iterative gradient descent on a regression cost function,
thus enabling test-time adaptation of the model underpinning ICL. With this mechanistic perspective
on ICL, the choice of the model and the cost function directly influenced the resulting gating and
forgetting mechanisms (Yang et al.,2023). The perspective of gradient descent on local loss functions
was further elaborated in Mesa-optimization (von Oswald et al., [2023a};[2025)), Test-Time Training
(Sun et al., [2023), Gated Delta Networks (Yang et al.| [2024), Longhorn (Liu et al.| 2024a)) and
Titans (Behrouz et al.| 2024). For example, Longhorn (Liu et al., 2024a)) applied an online learning
framework with to this relationship to derive gating mechanisms from first principles.

While metaplasticity was never linked with the self-attention mechanisms or gated state-space models,
the gating mechanisms could be seen as a form of suboptimal metaplasticity. Furthermore, while
gating enables the model to control which information is compressed into the hidden state achieving
a form of metaplasticity, there was no efficient mechanism that enables the controlled eviction of
stale information was proposed.

Palimpsa is closest to Longhorn (Liu et al., 2024a) and Mesanet (von Oswald et al., [2025). The
Longhorn update is derived from a stability-plasticity loss reminiscent of metaplasticity. There, a
trainable projection of the input tokens 3; at each time step determines the stability-plasticity ratio
for each row of the fixed-size memory matrix. When 3;; = 0, the entire i-th row of the memory will
remain unchanged. Furthermore, within a sequence, every longhorn memory state will have the same
plasticity rate, i.e. no in-context metaplasticity.

In contrast, our Bayesian metaplasticity perspective dictates a plasticity rate that changes in-context.
This is achieved using a second state, as in the Mesanet. Mesanet (von Oswald et al.,2025) seeks the
optimal solution of an in-context regression objective, leading to an update that is strikingly similar
with Palimpsa. This is because Bayesian and frequentist solutions to linear regression problems
lead to identical estimates of the mean. However, the Bayesian approach also offers a per-state
uncertainty measure, and a perspective that leads to assumptions that are different from those of
Mesanet. As described in the methods, metaplasticity on each synapse dictates the objective to have a
vector 3, weighting the contribution to the loss function on each component (as in Longhorn), and
leading to a synaptic importance matrix, defined as the inverse of the synaptic variance. To maintain
training throughput, preserving the principle of metaplasticity entails a diagonal approximation of
the covariance matrix. Mesanet incorporates such correlations with a scalable model, computing
iteratively by gradient descent the inverse of the covariance matrix in an highly parallelised manner.
This entails a numerical approximation, costing inner loops updates and a scalar B;. As such, in
Mesanet, every line of the memory matrix has the same covariance matrix, meaning that importance is
shared along a an entire dimension. Maintaining the per-state importance as in Palimpsa is beneficial
to control stability—plasticity trade-off. Furthermore, Palimpsa ties input integration to forgetting
by design (see Methods). Finally, because Palimpsa is Bayesian, the attention head provides output
uncertainty that can be leveraged to improve overall model performance.

2 BACKGROUND AND METHODS

2.1 BACKGROUND: SELF-ATTENTION HEADS AND METAPLASTIC MEMORY

The decoder self-attention (Vaswani et al., 2017) autoregressively maps the sequence {x;}~_; into
{y;}L_,. Bach token z; is projected into key, query, and value vectors k;, g; € R% v, € R% . Then,
self-attention computes a weighted combination of the values V; = [V;_1, v;] based on the similarity
between each query g; and the keys K; = [K;_1, k;|. Concretely, this can be expressed as:

Yy =V Softmax(I(tT qt).

The similarity between queries and keys (the “look-up” step) determines the extent to which each
value contributes to the output. Linear Transformers (Schlag et al.,2021)) omit the softmax, in which
case the KV cache can be replaced by a fixed-size matrix, updated in-place for every new incoming
token with a Hebbian learning update

St = St—l + 'Ut®kt7 and Y = St q:, where St ERd“Xdk,



which we refer to as the attention memory, collects all past key—value information on-the-fly and
leading to constant memory usage and linear compute in sequence length L.

However, if the new key k; is not orthogonal to previously stored keys, the weight update will
partially overwrite older memories. (Schlag et al., |2021)) demonstrated the limited capacity of linear
transformers and implemented an error-correcting delta rule to mitigate this issue. This idea has been
later expanded over to improve performance and trainability (Sun et al.l [2024b; [Liu et al., 2024a};
Yang et al.| 2024).

However, a dilemma emerges with long sequences: should the model prioritize learning to map new
key—value pairs, or preserve the relationships from earlier pairs? Continual learning assumes that
some parameters are important (e.g. because they are shared across tasks or critical to one) and should
be preserved, while others are expendable. The learning rate for each weight can be adjusted based
on importance to address this: More important weights adopt a smaller learning rate to maintain
their established mappings, while less important ones can adapt more rapidly. Such dependence of
plasticity on past cues is known as metaplasticity in neuroscience (Fusi et al.,[2005b).

Recently, (Bonnet et al.| [2025a) proposed a mathematically grounded approach to derive a metaplastic
learning rule from a Bayesian framework. The key distinguishing element there is to also formalize
forgetting in an online life-long learning scenario, thereby preventing a vanishing learning rate for
every weight. It thus avoids the so called catastrophic remembering (Kaushik et al.; 2021 problem in
traditional Bayesian frameworks. Building on this idea, we treat the self-attention memory update
as a Bayesian inference problem that includes formalized forgetting. Our self-attention mechanism
is responsible for remembering, learning, and forgetting the context, which is why the training of
Palimpsa can be understood as Learning to Remember, Learn, and Forget.

2.2  DERIVATION OF PALIMPSA

Bayesian Formulation of the Attention Objective For a given time step, the attention head can
be defined as p(v|k, 3, S). Given the inputs k € R% and 3 € R%, the attention head assigns a
probability to each value v € R? using its state § € R% <9k Assuming a Gaussian distribution, we
define the objective function (Linear regression) of the attention head as the negative-log-likelihood:

—log p(v | k,B3,S) = %H‘S’k - vHiiag(,B)‘

Given t tokens {x;}!_, with &; € R?*!, we obtain ¢ training data points {d;}i_, =
{(kj7 Bj)svitioy. Applying Bayes’ rule to these observations gives the posterior distribution on S,
which can be expressed in the direct or recursive form, respectively:

p(di|S) - p(S) _ p(d;|S) 'p(S|d1:t—1).

Sldy.+) = = @)
Pl =7 ) p(d)
Since the query gq; is independent of .S, the output y; is the expected value recalled by g;:
Y = Bp(sjarn) 8] = Epsia,.,) [S1a = piu- )

In the case of an unbounded context size, catastrophic remembering (Kaushik et al.|[2021)) may occur:
As t increases, the prior becomes too dominant, and no additional information can be integrated
from new tokens. Bayesian forgetting can be introduced by recursively computed by truncating the
posterior p(S|d;—.¢), where N is the size of the memory window (Bonnet et al.,2025a). Inspired
by common practice in state space models (Gu and Dao| 2023b)), we introduce input-dependence to
the Bayesian forgetting (see Appendices).

This suggests a simple interpretation: at each time step, we discard %t from all previous data we
have seen, v; € [0,1]. Effectively our weighted posterior never has more weight than that of a
truncated posterior with a memory window of size N. Thus, with a context window N that reflects
the maximum memory capacity of the model, catastrophic remembering can be avoided. We further
tie the forgetting and the input gates by defining: v; = 0(6,x;), and B; = v:0(0sx;). In this way,
no forgetting simultaneously entails no input.

Framing Bayesian Attention as an Optimization Problem We use variational inference to recast
Bayesian inference as an optimization problem (Blundell et al.,2015). For each time step ¢, We define
qe, ,(Si), i =1,...,d,, a variational distribution over S; parameterized by 6; ;. We minimize the



Kullback-Leibler (KL) divergence between the variational distribution and the true posterior by
finding the optimal 6, ;:

0,; = arg;HiHDKL [qgo(Si) || p(Sildy:e)], i =1,....d,.

The variational distribution g, , is modeled as a multivariate Gaussian of dimension dj:

QHM(S) ~ N(l"’t,ia Et,i)a where Ot,i = {ut,iv 2t,i}7 I’Lt,i S dev Et,i S deXdk7 1= 15 ey d1)~

Using Bayes’ theorem and the definition of KL divergence, finding the optimal ; ; is equivalent to
minimizing the free energy:

t
]:t,i = DxL [qgt,z‘(si) Hp(sl)] - qum(si) lz lng(ds‘Si)

s=1

This free variational energy is analytically tractable, and its minimum with respect to p; ; and X ;
can be computed in closed form (see Appendices) without requiring any approximation.

Palimpsa Layer and Architecture We minimise the free-energy JF;; by setting its gradient
to zero, resulting in the following exact posterior updates (see Appendices). For computational
tractability, Palimpsa only keeps the diagonal term of the covariance matrices (3; ; = diag(o‘f}i)) as
metaplasticity dictates. This results in the following update equation that can be computed chunk-wise
with cumulative sum:

I, 1
I = oy + (o — ) Iprior + Bk}, = OéttTl O -1+ IA © [(5:& O] 'Ut)®kt] E))
t t

Where o := (1 — %), I; := 0%2 a precision matrix representing the importance of each state, and

Iprior 1s the importance prior. Our experiments used the Palimpsa layer as a drop-in replacement
of the Gated Delta Rule (Yang et al., 2024)), with modifications related for 3; and ~,. We tested
in three size configurations, namely 170M, 340M and 760M (see appendices for details). In our
implementation, the size of the memory window is trained, as N := Nj,;; exp(logN), where logN
is the trained parameter. For language modeling, we choose the state size to be half that of Gated
Deltanet (dy, is divided by two compared to Gated DeltaNet) so that the state sizes remain comparable.

BAYESIAN INFERENCE AT TEST-TIME AS A GENERAL FRAMEWORK OF GATED MODELS

We investigate previous works in the light of the Bayesian view of ICL. Writing out the variational
free energy above with terms that depend on g1 (see Appendices), we can identify three components:

2
2 (= a) (i — ) TS (e — ) -

Iprio’r

Fri(pi) = %”Hikt — U]

plasticity forgetting stability

The first term is similar to other fixed-term memories, and contributes to adding new knowledge. The
second term introduces the learning window, through its dependence on N, it determines how far
in the past the memories are stored, and then forgotten. The third term is the one that determines
the plasticity rate based on the importance of the synapse. A major challenge in minimizing F; ; is
calculating the inverse of the matrix 2;11’2- € Ré>dk_ (von Oswald et al., 2023a) use the Sherman-
Morrison formula to compute it step-by-step but this approach doesn’t scale well. Another approach
is to use conjugate gradients, as done in MesaNet (von Oswald et al., 2025)). However, both methods
require 3 € R (a single number) for tractability, since a vector 3 would require the inversion for
every row of the state matrix. However, using a single number for [ is that the stability part of the
equation becomes the same for every row.

Longhorn, Deltanets and Palimpsa use at least one approximation for tractability. A common
simplification is to assume the matrix Et__llﬂ. is diagonal (meaning it only has values on its main
diagonal). Longhorn and Palimpsa use a vector for 3 and thus the diagonal simplification to solve
the objective. In contrast, DeltaNets solve their objective by assuming the loss is linear around the
current states. In Palimpsa, we further identify this diagonal I;_; ; € R with the “importance”
of given synapse, and provides its optimal learning rate. For all other gated models in Table |1} the



Table 1: A detailed comparison of layer architectures (see appendices for details). For each layer,
this table presents the key design choices and the resulting online update rule. All bold letters denote
vectors or matrices. The outer product is written as uv ' or, where emphasized, as u ® v. 1 is a
vector or matrix of ones.

Layer | Stability Matrix | Input Gating | Forgetting | Objective resolution
L4, ‘ B: € R ‘ None ‘ Diagonal approximation
Longhorn 8@k 56
Update Rule:  pt; = (14, xa, — m) O pi_1+ ﬁ Rk
Ig, | B: R | None | First order approximation
DeltaNet
Update Rule:  py = py_1(La, — Bekik]) + Brosk]
Iy, | BieR | v eR | First order approximation
Gated DeltaNet
Update Rule:  p; = puy—1(ar(La, — Bekek))) + Brock/
>t ‘ B eR ‘ ay € R ‘ Conjugate grad. approx.
Mesa - _
Update Rule: % = atzt{ll—i_ (e = DIPTZ‘O—F + ﬁtktk;
= [ o + Brock] |
diag(I;_1,) | B eR™ |  €R | Diagonal approximation
Palimpsa
’ Update Rule: L= O[tIIti1 (- l)Ip”ar + 6t®kt2’
P T ome= T @llt—1+_,%® [(B: ©vy) @ ki
. Ii—Iprior
Palimpsa |tIpT <1 Update Rule: 1y = aypy—1 + 220 ?Z‘r ® ky
(=2 Mamba2, see text) e

importance is fixed, so I;_1 ; = 1. In other words, their stability term is constant, meaning they have
no metaplasticity.
Furthermore, we find that Mamba?2 is a special case of Palimpsa. In our update equation, for very
. . N ~ .
strong forgetting i.e. Iprior > a then Iy = I,,,;,,. In this case, I; would be constant and the update
rule simplifies to:
BO v

Iprior

My = Qphi—1 + ® ki,

which takes the same form as Mamba2’s update rule. While Mamba2 was described as solving a
negative inner-product loss (Yang et al.|[2024)), our Bayesian framework further shows that Mamba2
is an asymptotic special case of Palimpsa, where forgetting is so strong that computing the dynamic
importance matrix becomes unnecessary. The fact that a continuum exists between Mamba2 and
Palimpsa is an exciting direction for future work.

3 EXPERIMENTS

3.1 SYNTHETIC EXPERIMENTS: MAD

We evaluate Palimpsa on the Mechanistic Architecture Design (MAD) benchmark (Poli et al., 2024)),
a methodology for rapidly prototyping and testing sequence models. MAD utilizes a collection of
synthetic tasks, such as recall, memorization, and compression, that serve as isolated “unit tests”
to probe key architectural capabilities. MAD tasks are designed to identify which computational
primitives excel at specific functions. Most importantly, the performance on the MAD benchmark
were shown to correlate with compute-optimal performances on language tasks. For baselines, we
used MAD benchmarks with default hyperparameters and grid search setting as published in (von
Oswald et al., [2025). Palimpsa achieves a competitive average score compared to other models
(Table[2)). The model is among the best performers in almost every category, demonstrating particular
strength in tasks related to state management. It obtains a perfect score on IC&Noisy Recall and
delivers top-tier results on Memorize, Selective Copy, and Compress. The primary exception is Fuzzy



Table 2: Performance of Palimpsa on MAD benchmark (Poli et al.,[2024)). Others results are reported
from (von Oswald et al.| [2025).

Model IC& Noisy Fuzzy Memorize Selective Compress | Average
Recall Recall Copy
Transformer | 100 48.6 84.7 96.0 495 | 75.8
Mamba?2 100 51.2 42.0 95.4 41.3 66.0
GLA 100 39.0 82.5 96.1 423 72.0
xLSTM 100 47.6 79.8 954 434 73.2
DeltaNet 100 55.5 40.8 98.8 433 67.7
Gated DeltaNet 100 32.7 81.7 95.7 45.0 71.0
Hawk 93.0 13.6 91.3 77.0 47.7 64.5
MesaNet 100 58.5 77.2 99.2 45.4 76.1
Hawk-MesaNet 100 30.2 85.6 99.6 52.3 73.5
Palimpsa 100 26.9 84.5 98.7 49.6 71.9

Recall, where its performance is lower. This indicates a potential trade-off between the model’s
capacity for precise state preservation and its ability to process more ambiguous information.

3.2 LANGUAGE MODELLING EXPERIMENTS

We pre-train Palimpsa and Gated Delta Networks on the fineweb-edu dataset for three different sizes
and 15B and 30B tokens respectively. We evaluate Palimpsa on language modeling and common
sense reasoning at academic scales. Following prior work (von Oswald et al., |2023a; Liu et al.,
2024b}, |Yang et al., [2024)), we test Wikitext perplexity and zero shot performance on a range of
tasks such as LAMBADA (Paperno et al., 2016), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., |2021), ARC (Clark et al., [2018)), SIQA (Sap et al.l [2019)),
and BoolQ (Clark et al., 2019). Results presented in Table [3| show that Palimpsa’s performance
relative to the Gated DeltaNet baseline (Yang et al.,2024)) varies significantly with model scale. At
the smallest scale of 170M parameters, Palimpsa is superior on all evaluated tasks. This advantage
continues at the 340M scale, where Palimpsa maintains a better average score, but at the 760M scale,
the Gated DeltaNet becomes the stronger model. This performance crossover suggests a complex
interaction between our architecture and model scale. We propose two potential explanations for
this scaling trend. The first is that the inductive biases from the metaplastic token mixer provide
diminishing returns as model capacity increases, as the larger model may meta-learn other ways to
manage state memories. The second is that the mechanism faces optimization challenges at a larger
scale, preventing the model from fully leveraging its capabilities.

3.3 LIMITATIONS AND FUTURE WORK

A key limitation of our approach is its memory consumption, which impacts scalability. To compute
the outputs for a given processing chunk, Palimpsa must explicitly materialize all intermediate states.
This requirement leads to a significant memory footprint. This contrasts with architectures like Gated
DeltaNet (Yang et al., |2024)), which can compute all outputs for a given chunk using only its inputs
and the final state of the previous chunk. Palimpsa cannot perform this direct computation because
the element-wise product with the importance matrix I, is incompatible with the WY representation
(Bischof and Van Loan| |1987)) used by DeltaNet. To manage this memory demand, we are constrained
to use smaller chunk dimensions, slowing training throughput for larger models (See Appendices).
This finding suggests Palimpsa is best suited for smaller scales, a focus that is not a major drawback
given the growing importance of small language models for agentic Al (Belcak et al., 2025). Based
on our findings, several promising research directions emerge:

* The theoretical continuum identified between Palimpsa and Mamba2 could be explored
further, for instance by fine-tuning Mamba2 models to incorporate metaplastic updates.



Table 3: Performance of Palimpsa and baselines on language modeling and common-sense reasoning
tasks. The best results are highlighted. Results from Transformer++ at sizes 340M and 760M are
reported from (Behrouz et al., [2024), while 170M is trained from scratch.

Model Wiki. LMB. |LMB. PIQA Hella. Wino. ARC-e ARC-¢c SIQA BoolQ Avg.
ppld ppld | acct acct acc_n?tT acctT acctT acc_nf accT acc? T

170M params / 15B tokens

Transformer++ | 33.46 56.46 | 30.64 63.06 35.01 50.36 5429 2577 3736 5639 44.11
Gated DeltaNet | 34.22 54.03 | 27.52 64.53 36.46 51.70 54.71 2594 37.87 46.82 43.19
Palimpsa 32.16 52.32 | 2791 66.59 37.44 52.25 5644 26.71 38.84 59.91 45.76

340M params / 15B tokens

Transformer++ | 31.52 41.08 | 30.76 62.98 34.76 50.53 4521 24.05 36.81 5824 4292
Gated DeltaNet | 27.72 37.65 | 30.97 66.49 39.89 51.46 5875 2747 38.69 54.28 46.00
Palimpsa 27.69 42.18 |29.03 66.76 41.18 5138 60.48 28.58 39.76 60.06 47.15

760M params / 30B tokens

Transformer++ | 25.21 27.64 | 35.78 66.92 42.19 5195 6038 3246 39.51 60.37 48.69
Gated DeltaNet | 21.93 20.59 | 38.29 68.66 48.18 56.20 6498 33.02 41.04 60.58 51.37
Palimpsa 2296 23.43|36.64 68.72 46.84 52.64 6545 33.28 39.56 59.02 50.27

* The output uncertainty from Palimpsa’s Bayesian framework could be leveraged to improve
overall model performance and reliability.

» To overcome current computational limitations, hybrid architectures could be developed,
using Palimpsa for long-term memory and faster models for short-term processing.

4 CONCLUSION

We introduce Palimpsa, a novel attention mechanism derived from a Bayesian continual learning
framework that incorporates principles of metaplasticity. By framing in-context learning as a contin-
ual learning problem, Palimpsa is designed to mitigate both catastrophic forgetting and remembering.
Our experiments on commonsense reasoning and synthetic benchmarks demonstrate that Palimpsa
achieves state-of-the-art performance, outperforming strong baselines like Gated DeltaNet, particu-
larly at smaller model scales where its metaplastic inductive biases provide a distinct advantage.
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5 APPENDICES

BAYESIAN FORGETTING

Following the work of (Bonnet et al., 2025b), we introduce a forgetting mechanism by considering a
truncated posterior, which contains the last N data points. The posterior over parameters S given
data d;_ . 1S:

p(di_n.t|S)p(S) _ p(de|S)p(S|di—n:t—1)
p(di—n:t) p(dildi—N.t—1)
This can be expressed as a recursive update for a sliding window of size N. To move from the

posterior over d;_ n.t—1 to the one over d;_ n11.¢, We incorporate the new data point d; and remove
the oldest one, d;_n:

p(S|dt—N:t) =

“

1
p(s|dt7N+1:t) X p(dt|S)p(S|dt7N:t71) : m . )
Learning N————
Forgetting
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In principle, one may not have access at time ¢ to the likelihood of the oldest data point, p(d;— x|S).
As a proxy, one can use the geometric mean of the likelihoods over the previous window, d; _ n.¢—1:

p(S|dtN:t1):| ¥

p(S) ©

p(din, ... di1]8)¥ {

This is made possible by approximating p(S|d;— n..—1), by the current variational truncated posterior
46, ., (S ) .

In simple terms, instead of completely discarding a single data point, this approach suggests we can
discard a fraction of the joint likelihood of past data. This leads to a *weighted’ posterior where older
data points have been discounted more heavily over time, keeping the total *weight’ of the posterior
roughly constant (when ¢ > N).

For Palimpsa, the forgetting needs to be input-dependent, similar to other gated recurrent models.
Therefore, at each time step ¢, we discount the influence of all previous data by a factor related to a
forgetting gate y; € [0, 1]. The resulting weighted posterior at time ¢, denoted p.,(S|d1.¢), is defined
recursively as:

pw(5|d1:t—1)>_1§ . )

p(S)

Learning Forgetting

P (Sldie) o p(ds] S)pu(Sles_1)- (

This is the target probability distribution that the variational distribution in Palimpsa approximates.
Notably, this form of weighted posterior is the starting point for the general Bayesian framework for
gated recurrent models.

VARIATIONAL FREE ENERGY OF THE WEIGHTED POSTERIOR

We minimize the Kullback-Leibler (KL) divergence between the variational distribution gg(.S;) and
the weighted posterior p,, (S;|dy.;) by finding the optimal parameters 6, ;:

0, = arg;nin Dxi [qo(Si) | pw(Sildie)], i=1,...,dy.

Using the definition of the KL divergence, the recursive update from the previous section (Equation
[7), and assuming that the previous posterior is well-approximated by our variational distribution,
Pw(Sildi:i—1) =~ qo,_, ,(Si), we can show that this is equivalent to minimizing the variational free
energy Ji ;:

46, _, ; S
Fei = Dxr [a0,.(Si) [l a6, ,(Si)] = Eqp, ,(s0) {bgp(dtlsi) - % log p(SE))

Now, using the standard formulas for Gaussian distributions (see Appendix) and considering only the
terms that depend on the variational mean p;, we obtain the free energy expression discussed in the
main text:

2

T M Tt -

Fii(pi) = %Hliikt - Ut,i”%@t,i) + NI + (1 - N) (W1, — Ni)TEtJLi(Ntfl,i — M)
prior

plasticity forgetting stability

However, for Palimpsa we are not only interested in the terms that depend on ;. First, let’s derive
the gradient with respect to all variational parameters.

Calculating the Gradient of 7 ;: For readability, we first define the cost term C; ; as the expected
negative log-likelihood:

Cri = —Eqy, (s,) logp(ve,ilke, Br,i, Si)] = Ee, [£i(S:)] - (®)
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To compute the partial derivatives of C; ;, we use the reparameterization trick: S; = p; + A€,
where €; ~ N(0,T) and Al-AiT = 3, ;. This allows us to move the derivative operator inside the
expectation:

(C))

ac; 0L;(S;) ac; - 0L;(S;) T
o | 0S; 0A;, | 88, |’
Generally, these gradients would be estimated using Monte Carlo sampling. However, in Palimpsa

we are in the case of a linear regression problem so the gradients can be calculated analytically.
Substituting the derivative of the linear regression log-likelihood gives:

aC; ac;
= E, [ﬁt,z‘ ((Hz + Aiei)Tkt - Ut,i) kt] = E, [5t,i ((Hz + Aiei)Tkt - Ut,i) kte;r] .
Opi 0A;
(10)

Knowing that E, [€;] = 0 and E, [e;€; | = I (the identity matrix), we can resolve the expectations to
get the final analytlcal gradients of the cost term:

acC; aC;

A; = B, (ktk Hi — Ut,ikt) DA, =B, zkfk A;. (11)

Finally, we add the gradients from the other terms in the free energy objective (the KL-divergence
and forgetting terms) to obtain the full gradients of F; ;:

OF:,i

8; - (1 N N) =4 (i = ) + %Hi + Bri (keke) pi — vriket) (12)
OFii —1 ZINT T
3AZ - |:(1 - N) Et 1,4 NIpTwr A7, - (AZ ) + ﬁt,zktk’t Az- (13)

Closed-Form Solution of 7 ;: To find the optimal variational parameters, we set the gradients of
the free energy F; ; to zero and solve.

First, to find the optimal covariance matrix 3, ;, we solve for A, ; in the equation:

gﬁz —3. (14)
Setting the gradient expression from the previous section to zero gives:
[(1— —) B0+ 7\;Iprwr+5t ikik, } A= (A )T =0. (15)
To solve for the full covariance matrix X ; = A;;A;;, we can multiply on the right by A/;:
{(1— *) PN 111 7\;Ipmor+5t ikl } i —I1=0. (16)

Rearranging the terms, we find that the new precision matrix (the inverse covariance) is a sum of the
discounted old precision, the prior precision, and the new data term:

2 1 (1 - N) Et 11 Vi + 7\;IpT20T + ﬁt zkt . (17)

The closed-form update for the covariance is the inverse of this expression:

2157 |:<1 — *) Et 11 i X;Ipmor + ﬁt 7.kt (18)

The major challenge in this analytical approach is to compute the dj x dj matrix inverse at each
time step. In the case without forgetting (N — 00), (von Oswald et al., 2019) use the Sherman-
Morrison formula to compute it recursively, but this approach did not scale well. Another approach
is to use a parallel conjugate gradient method to solve the associated linear systems, as done in
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MesaNet (von Oswald et al.,[2023a). To connect this with the notation in MesaNet (von Oswald et al.|
2023a)), our precision matrix >, ! corresponds to their H; + A, and our precision-weighted mean
b ! py corresponds to their G;. In their work, the precision matrix is identical for all rows i (i.e.,
Et_)il = X, !) because their 3, is a scalar.

Similarly, we find the optimal mean 1, ; by setting its corresponding gradient to zero:
OF:,i
8Ht,i

(1 — &> S (e — 1) + lem’orﬂt,i + Bt (ktk;rut,i — vy k) = 0. (20)
N : N
Grouping the terms with g, ; yields:

[(1 - %) 2,5_,11’1- + %Ipm'or + 5t,iktkﬂ i = (1 - %) Et_,llvi”t—l,i + Briveike.  (21)
1

Recognizing the term in brackets as the new precision 3, ;°, we arrive at the solution for the mean:

=0. 19)

Mii = X Kl - %) Ef_llyiutq,z + Bt,ivt,ikt} (22)

DERIVATION OF PALIMPSA

In Palimpsa, we aim to solve the update equations with a vector input gating 3, € R%, where
each row of parameters has its own rate. This change prevents a simple closed-form solution for
the matrix inverse. To make the problem tractable and computationally efficient, we introduce a
diagonal approximation for the precision matrix. By assuming the precision matrices are diagonal,
X il = diag(I; ;), we can apply this approximation to the closed-form solutions from the previous
section. This yields element-wise update rules for the diagonal precision vector I, ; and the mean
vector pt; ; for each row i:

Li= (1= 3%) Liov + 2o Dorior + Brik? 23)
Iy 1
Wi = (1 - %) tIt 1 O pi—1,4 + 1. O (Beiveiky) (24)

where kf denotes the element-wise square of k;, and all divisions are element-wise. Note that this is
a stronger approximation than a standard mean-field (diagonal covariance) assumption because we
derived the fully-coupled solution first and only then discarded the off-diagonal terms. This approach
is similar to the “diagonal approximation” used in Longhorn (Liu et al., 2024b) and is equivalent to
treating each parameter (or "synapse") as an independent Gaussian distribution.

From here, by defining the forgetting factor oy = (1 — %+) and stacking the row vectors into matrices,
we can write the final updates for Palimpsa in matrix form:

I =i 1+ (1 — o) Ipior + Bi @K} (25)
I, 4 1
ne = atTt © pp—1 + I, O [(B: ©vi) @ ki (26)

DERIVATION OF DELTANET AND GATED DELTANET

Let’s take the case of Gated DeltaNet, as one just has to suppress the forgetting for the standard
DeltaNet. Starting from the free energy equation and taking 3; € R:

2

Tt i Yt _

Fri(pi) = Sllpi ke — Ut,iH?at + %*f I +1 (1 - *f) (-1 — ui)TEtjl,i(ut—l,i — i),
N Iprior N

plasticity forgetting stability
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with the simplifications E;_ll ; = La, and I, = 1. If we consider the gradient of the plasticity
term to be linear around pe;_1 ; (a first-order approximation), we assume that:

Bi (ktk;rll/i - vt,ikt) ~ B (ktk:ll/tfl,i - Ut,ikt) .

Then, setting the full gradient to zero, 83];;; =0, is given by:
(1= 20) Lo (i = prer,0) + e+ o (k] pss = v i) = 0. @)
Solving for w; yields:
ni = (1 - %) Pi—1,i+ Bt (ktktTNt—l,i —vyiky) - (28)
From there, by defining a; = (1 — &), we can write the final solution in matrix form as:
M = 1 (Olt]ldk + /Btktk;r) — 5t’UtktT~ (29)

This is equivalent to Gated DeltaNet if its input gate is 37 n 5—: and the same as the standard
DeltaNet when N — oo, i.e., oy — 1.

GAUSSIAN CHEAT SHEET
Entropy The entropy of a multivariate Gaussian distribution gg, (S;) = M (w1, X1) of dimension
dy, is given by:

H(qe,) = —Ey,, (s,) [log g6, (S:)]

d 1
H(qe,) = ?k log(2me) + 3 log det (%)

KL Divergence The KL divergence between two multivariate Gaussian distributions gg, (S;) =
N (1, 31) and o, (S;) = N (12, o) is given by:

D 00, (59 140 (5] = B 5, o 251

de, (Sl)

1 _ _
Dxu (g, (S:) || g0, (S:)] = 3 (25" 51) + (2 — p1)" 25 (12 — p1) — di, + log

Cross-Entropy The cross-entropy between two multivariate Gaussian distributions gg, (S;) =
N(p1,%1) and gg, (i) = N (p2, 2) is given by:
H(qe,,q0,) = —Eyq (s,) [log ge,(S:)]
It can be found using the relation:
H(qe,,q0,) = H(qe,) + Dxu [q0,(S:) || g6, (S)]

The final expression is:
1 _ _
H(qe,,q0,) = 3 [tr(25'21) + (2 — p1) " 25 (2 — pa) + di log(27) + log det o]

MAD EXPERIMENTS

We follow the benchmarking procedure detailed in (Poli et al., [2024), precisely: For each task in
the suite, we evaluate the architectures on subtasks of varying difficulty (i.e. varying sequence
length, number of training examples, vocabulary sizes and further, task-specific parameters) and
compute the mean accuracy. We further sweep over varying learning rates and weight decay values
for each model and report the maximum average task accuracy. For each architecture, we fix a set of
hyper-parameters following the work of (von Oswald et al.| 2025) that can be found in Table[d]
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Hyper Parameter

Value / Search Space

Embedding dimension 128
Number of layers 2
Number of heads 8
Value expansion factor (expandv) 1
Key expansion factor (expandk) 1
Initial state memory (N;yi¢) 32
log N initialization U(—1log(4),log(4)) across heads
Epochs 200
Batch size 32
Optimizer AdamW
Learning rate [3e-3, 1le-3, be-4, 1le-4]
Weight decay [0.01, 0.1]
Bs (0.9, 0.98)
Scheduler Cosine Scheduler with Warmup

Minimum learning rate
Warm-up start learning rate
Warm-up steps

le-5
le-7
750

Table 4: MAD benchmark suite hyper-parameters, taken from (Poli et al.| 2024). Model-specific
parameters for Palimpsa are included.

Table 5: Architectural and training details for language modeling experiments. Key and value
expansion factors are denoted by F and E,, respectively.

Model Size Model Name Layers Dim Heads FE; FE, N;,:+ PeakLR Tokens
Transformer++ 20 - - -

170M Gated DeltaNet 19 768 16 1.0 1.0 - 3e-3 15B
Palimpsa 21 05 1.0 16
Gated DeltaNet 22 1.0 1.0 -

340M Palimpsa Y 1024 16 05 10 16 1.5e-3 15B
Gated DeltaNet 23 1.0 1.0 -

760M Palimpsa 25 1536 16 05 10 16 1.25¢-3 30B

LANGUAGE MODELLING EXPERIMENTS

The architectural and training details for Palimpsa, Gated DeltaNet, and Transformer++ are found in
Table[5] For Palimpsa, the log N parameter is initialized for each of the 16 heads by sampling from a
uniform distribution ¢/ (— log(4), log(4)). Note that for all the model we tied words embedding. For
Palimpsa, we choose the state size to be half that of Gated Deltanet (E}, is divided by two compared
to Gated DeltaNet) so that the state sizes remain comparable.
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Figure 2: Training throughput of 1.3B models on a single H100, the relative performance of Palimpsa
compared to Gated DeltaNet decrease with model size

PALIMPSA IMPLEMENTATION AND PARALLELIZATION

Our parallel training algorithm is implemented as a fused Triton kernel using a chunk-wise scan. The
core logic is as follows:

* Chunk-wise Processing: The input sequence is split into chunks of size Br.

¢ Intra-Chunk Parallel Scan: Within each chunk, the recursive state updates for g, and I
are computed in parallel using a cumulative sum operation.

¢ Inter-Chunk Sequential Update: The final state of one chunk is carried over as the initial
state for the next.

This approach allows for efficient GPU utilization during training. The kernel also performs state
checkpointing to ensure numerical stability during the backward pass.

To implement the parallel scan, the recurrences are reformulated. Let ¢ € [1, By| be the index within
a chunk, and let M and Iy be the final states from the previous chunk. The states at every position ¢
in the current chunk are computed as:

A, = cu_mlpr(t)d (¢) (30)

A} = rg\;r;é—furtrlprod (aj) (31)
j=1...

M, = AiMol, + cymsum (Bj ©vj) ®k;jAr;) [ Ay (32)

I = AT+ (1 — A}) Iior + Cl]H:IllSlll{n (,33 ® k?At,j> /A¢ (33)

The final state is then recovered by p; = M;/I;. The cumulative product in Eq. [31|is computed
efficiently in log-space, also as a cumulative sum.

The main limitations Palimpsa must explicitly materialize all intermediate states. This requirement
leads to a significant memory footprint. To manage this memory demand, we are constrained to use
smaller chunk dimensions, slowing training throughput for larger models as shown in Fig. [2|
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