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Abstract
Recent face-swapping methods excel under controlled conditions but often fail when presented
with extreme facial poses. Diffusion-based approaches may be able to overcome these issues, but
they still face significant computational costs. This paper introduces MagicMask, a novel face-
swapping framework that robustly handles various poses in real time by fusing visual and geometric
information. Our method incorporates explicit, identity-adapted geometric cues into the latent
feature space via a multi-head attention mechanism. It employs an Adversarial Facial Silhouette
Alignment (AFSA) loss to preserve detailed facial boundaries that are adapted to the source identity.
Comprehensive experiments on multiple benchmarks demonstrate that MagicMask competes with
state-of-the-art methods under standard conditions and significantly outperforms them in extreme
pose scenarios.
Keywords: Face identity swap, face swap, pose robustness, generative adversarial network, trans-
former

1. Introduction

Face swapping is a technique that replaces the identity of one individual in an image or video
with that of another. It offers promising applications in computer vision for the visual arts and
entertainment industries (Perov et al., 2020); on the other hand, it poses risks of misuse in activities
such as scams, abuse, and the creation of non-consensual pornography (Director, 2018). Despite
these negative implications, research into face-swapping technology remains crucial due to its
technological potential and significant societal impact.
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The primary objective in the face identity swapping literature is to make face identity more
similar to a given source face while preserving non-identity-related attributes of the target images,
such as skin texture, illumination, hairstyles, and facial accessories (Shiohara et al., 2023). Face
identity-swapping methods have undergone considerable evolution with the rapid advancement of
deep learning-driven computer vision. The quality of the results has improved to the extent that some
methods (Chen et al., 2020, 2023; Wang et al., 2024) now yield seamless and photorealistic outcomes
in controlled environments, making it increasingly challenging to distinguish swapped faces from the
originals.

However, face identity swapping under extreme face poses remains a significant challenge.
Extreme poses can be thought of as some angular ranges in which the shape of facial components
changes the boundaries of the face, because the actual boundaries can not cover the components due
to changes in the angle of the face. Figure 1 illustrates the morphological differences between face
boundaries and face landmarks, depending on the poses. As shown in Figure 1(a), in frontal face
(face angle = 0◦), where all key facial landmarks (e.g., both eyes, nose, and mouth) are positioned
within the facial boundaries, the process can be conceptualised as reshaping and repositioning these
components to reflect the source identity, with well-defined regions requiring modification.

In contrast, extreme face poses present challenges (See the extreme (face angle = ±90◦) and less
extreme (face angle = −45◦ or +30◦)cases in Figure 1(a)), such as occlusions and irregular facial
boundaries caused by facial components, which collectively complicate the swapping process. As
depicted in Figure 1(b), recent methods (Shiohara et al., 2023; Chen et al., 2020) are still intractable
in generating seamless face-swapping results in certain extreme facial poses. Several studies have
addressed face swapping under challenging face poses (Rosberg et al., 2023; Li et al., 2023; Wang
et al., 2021b).

The predominant way is to leverage explicit geometric information. Li et al.,(Li et al., 2023)
employs landmark features to encode the positional information of facial components. Wang et
al.,(Wang et al., 2021b) use 3D face images as geometric supervision to understand the shape and
pose of the face. Rosberg et al.,(Rosberg et al., 2023) presents an interpretive feature similarity
regulisataion for preserving the pose of a target face. Nonetheless, as shown in Figure 1(b), they
still produce unrealistic results if face poses cause significant modifications to the facial silhouette.
Recently, several diffusion-based face-swapping methods (Zhao et al., 2023; Baliah et al., 2025)
have shown remarkable achievements. Those methods produce exact target attribute reconstruction
results while preserving the identity of the source image. However, due to the iterative nature of their
sampling process, they incur substantial computational costs, which preclude real-time deployment.

In this work, we propose a novel face-swapping method called MagicMask, a real-time and
pose-robust method for face identity swapping. The MagicMask comprises three main components:
a visual representation module, a geometric representation module, and a decoder. The visual
representation module extracts latent features from images. Coupled with a face identity encoder that
derives the identity code from the source image, it produces identity-specific latent representations.
To explicitly preserve and inject identity-specific characteristics into the latent space of the target face,
we introduce a novel Attention-Residual Identity Embedding (ARIE) module. The ARIE adaptively
enhances identity preservation through a synergistic attention-residual mechanism, ensuring robust
feature refinement. The latent features obtained from both modules are then combined and fed into
the decoder to generate the swapped face. Additionally, we introduce a novel complementary loss
called ‘Adversarial Facial Silhouette Alignment’ to ensure that the facial silhouette in extreme face
poses is naturally aligned while preserving the source identity.
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Figure 1: Illustration for the changes of shapes of facial
boundaries and components and the identity swapping
results of recently proposed methods and MagicMask
depending on face poses, respectively. The images are
obtained from MPIE dataset (Gross et al., 2010). (a)
describes the change of facial component silhouette
depending on face poses. The white lines define the
face boundaries. The red lines show the silhouette
of facial components such as the nose and eye, but if
some parts of the facial components are outside the
facial boundaries (white lines), the parts are drawn by
the orange lines. (b) shows identity swapping results
of Blendface (Shiohara et al., 2023), SimSwap (Chen
et al., 2020), and the proposed MagicMask. MagicMask
produces more natural face-swapping results across
frontal to extreme face poses compared with others.

Experimental results demonstrate the effec-
tiveness of the MagicMask in swapping face
identities under extreme poses. MagicMask
achieves scores of 98.41, 1.47, and 2.04 for
identity (ID) retrieval, pose error, and expres-
sion error metrics, respectively, which surpass
those of recent state-of-the-art (SOTA) methods.
Also, the MagicMask achieves 27.9ms of execu-
tion speed, which is almost 36 frame-per-second
(FPS) in our experiments. For face-swapping ex-
periments for extreme poses using MPIE (Gross
et al., 2010) and LPFF (Wu et al., 2023) datasets,
the MagicMask produces a mean score of 0.372
cosine similarity with 2.94 pose error and 2.93
expression error. These results suggest that the
MagicMask provides superior and more stable
face-swapping performance compared to the ex-
isting SOTA approaches. Consequently, this pa-
per opens a new avenue for identity-preserving
face-swapping in extreme pose scenarios, laying
a solid foundation for future advancements in
pose-invariant facial synthesis, deepfake detec-
tion, and identity-aware generative models.

2. Related Works

The primary objective of face identity swap-
ping research is not only just to swap the tar-
get face’s identity to the source face but to pre-
serve the target face’s visual attributes that are
irrelevant to identity, such as illumination con-
ditions, hairstyles, makeup, skin texture, and
facial accessories. Recently, proposed methods
have addressed identity swapping by formulat-
ing the task to minimize the latent feature dis-
tances between the swapped face and the source
face. Once the identity of the target image is
swapped, methods such as Faceshifter (Li et al., 2019) and Faceswapper (Li et al., 2024) extract latent
features using a face identity encoder and minimize the cosine angular distance between the latent
features of the swapped face and those of the source face. In addition to cosine angular distance,
Euclidean metrics, such as the l1-distance and l2-distance, are commonly used to assess the similarity
between latent features (Nirkin et al., 2019).

Regarding the preservation of visual properties of target faces, Zhang et al.,(Zhang et al., 2021)
employed a simple classifier with an associated classification loss to assess whether these properties
are retained in the swapped face. However, this approach necessitates additional labelling to specify
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Figure 2: Architectural details of the proposed MagicMask. The visual representation module fV extracts
a visual latent feature z

′

v using the target image xt and the source identity code es extracted from source
image xs by using the identity encoder εID. The es is continuously ensambled while extracting low-level to
high-level features using the attention residual identity-embedding (ARIE) blocks to enhance the identity of
the source image. The geometric representation module fG draws out the geometric latent feature z

′

g from a
depth xt and a facial landmark paired with xt. z

′

v and z
′

g are combined and applied to the decoder to generate
swapped face xt→s.

the types of properties present in the target face image, thus increasing the labour intensity. A more
common strategy to preserve the visual properties of target images involves the use of loss functions
inspired by perceptual loss (Gatys, 2015). In addition, reconstruction loss, which is applied between
the swapped face and the target face image, is another widely used method for this purpose (Chen
et al., 2020, 2023).

Although the methods described above demonstrate remarkable performance under controlled
experimental conditions, it remains uncertain whether similar performance can be achieved in cases
involving extreme poses. As shown in Figure 1(a), when face poses change drastically, the facial
elements that are deformed to fit the source identity will affect the entire silhouette of the face, and
if this is not handled properly, a deterioration in the quality of the distorted face will occur. Using
explicit geometric features such as facial landmarks (Li et al., 2024) and face 3D maps (Wang et al.,
2021b) can be thought of as a solution to this issue. However, as shown in Figure 1, recent SOTA
methods still suffer from poor swap results on extreme poses. Consequently, it is essential to develop
a robust method for a wide range of face pose variations.

3. The MagicMask

3.1. Methodology overview

We build a novel architecture called MagicMask, which can capture not only visual representation
but also explicit geometric information. Figure 2 shows the architectural details of the MagicMask.
The visual representation module fV abstracts latent features z

′
v extracted from the target image and

integrates source identity code es extracted from the identity encoder εID to grant the source identity
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information to latent features extracted from the target face. The geometric representation module
fG extracts source identity-adapted geometric latent features z

′
g using es and explicit geometric

information defined by depth maps xdt and landmark features xlt. Based on the multi-head cross-
attention mechanism with es, z

′
g is adapted to the source identity. z

′
v and z

′
g are combined and applied

to the decoder fD for generating the swapped face.
In addition, we present a complimentary loss term for improving the quality of facial boundaries

and components, which are the regions where the most severe quality degradation occurs in extreme
poses. As shown in Figure 1, depending on the face pose and facial component shape, the shapes of
facial components and boundaries sometimes should be modified and also need some in-painting
for the modified regions. We formulate ‘Adversarial facial silhouette alignment’, which can reduce
the image distortion and quality degradation according to the distortion caused by a changed shape
of facial components and boundaries under some extreme poses. Detailed information for the
architectural characteristics and loss terms are described in the further subsections.

3.2. Architectural details

Visual representation module: This module is established to obtain visual latent features which
contain source identity information and target image attributes. It is best if we can only transfer the
source identity information to some area that represents the target face identity in a latent feature
space. However, it is almost intractable because the identity information is highly coupled with other
information about identity-nonrelated attributes. Li et al.,(Li et al., 2024) use face segmentation
masks of target face images to explicitly constrain spatial regions of latent features in combining
identity codes and latent features (Li et al., 2024). However, the masks can contain a lot of noisy
information when extreme face poses significantly vary face shapes, so strong constraints using a
binary mask may degrade robustness on face pose, which may degrade the performance of swapping
methods.

Instead of leveraging binary masks to constrain feature-combining areas for the identity code
injection, we use attention mechanisms, a more natural way to combine identity information with
target latent features. We use an objective function to constrain the region to show the identity and to
preserve the attributes of target images. We present an attention residual identity-embedding (ARIE)
block to integrate identity information into the latent features. Figure 2 shows the architectural
details of the module. Initially, the ARIE block conducts batch normalisation to improve the
generalisation performance and stabilise the training. After that, we apply a convolutional layer and
Instance Normalisation (IN) to enhance the invariance about image textures, which are irrelevant in
recognising face identity, as follows:

IN(zv) =
zv − µc(zv)√
σc(zv)2 + ϵ

, (1)

where µc and σc indicate the mean and standard deviation computed separately for each instance
and each channel of a given feature computed with respect to the feature’s height and width axes. ϵ
defines a small constant added for numerical stability.
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Then, we compute spatial αv
s and channel αv

c attention matrixes using the output of the instant
normalisation and es as follows:

αv
s = softmax

((
1

C

C∑
c=0

IN(zt)c

)
ϕ(es)

)
, (2)

αv
c = softmax

((
1

WH

W∑
w=0

H∑
h=0

IN(zt)w,h

)
⊗ ϕ(es)

)
, (3)

where W , H , and C denote the width, height, and channels of the output of the instance normalisation.
w, h, and c define the indices for the width, height, and channels, respectively. ϕ(∗) defines linear
kernels for scaling es and projecting into the latent feature space of each ARIE block. ⊗ indicates
element-wise multiplication. zt and ϕ(es) take 1024 dimensionalities.

At last, we integrate source identity information using the above attention tensors and the identity
code into latent features as follows:

zv = [αv
s ⊗ IN(zt) + IN(zt)α

v
c ]⊕ es, (4)

where ⊕ denotes the channel-wise summation.
At last, we pass the modified features through additional convolutional layers and then combine

them with the original zt. As shown in Figure 2, by sequentially placing the ARIE blocks, we aim to
strengthen the identity information of the source face in all layers of latent features.
Geometric representation module: The geometric representation module fG learns explicit geo-
metric information such as locations and depths of facial components and their positioning. Li et
al.,(Li et al., 2024) and Wang et al.,(Wang et al., 2021b) suppose that the usage of explicit geometric
information improves the robustness of face identity swaps when face poses are dynamically changed.
The architectural details of fG are shown in Figure 2. We extract latent features from depth map and
landmark features using convolutional layers and apply it into the multiple transformer encoders with
es. The transformer encoders are used to capture more global information, such as relative positional
information of facial components, which the convolutional layer may miss.

Geometric latent feature zg using multi-head attention is produced as follows. At the beginning,
we obtain the key Kg, query Qg, and values Vg using the three independent linearly kernels WK ,
WQ, and WV as follows:

Kg = zgWK , Qg = zgWQ, Vg = zgWV . (5)

Usually, Kg and Qg are used to compute the attention matrix normalised by the Softmax function,
and it is combined with Vg to derive a self-attention output. In addition to the self-attention on the
geometric features, we compute an additional sharing key-query attention matrix using WQ, WK ,
and es: Ke = esWK and Qe = esWQ and combined with the self-attention. We derive the final
output of the transformer as follows:

zg = softmax(
QgK

T
g√

dg
)Vg + softmax(

QeK
T
e√

dg
)Vg, (6)

where dg denotes the dimensionality of the transformer encoder. zg abstracts information from a
geometric feature adapted with the source identity code using the attention mechanism so that it
automatically learns the correspondence between geometric information and the source identity.
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As a result, zg explicitly models the alignment between the source identity and the target’s
geometric information, enabling better disentanglement and more robust synthesis under pose
variation. zg is applied to the decoder to generate an identity-swapped face.

Consequently, the input to the visual representation module is RGB images containing rich visual
information. The visual representation module encodes texture-rich RGB features and injects identity
via channel & spatial attention. The geometric representation module encodes topology-rich depth
and landmark tensors, aligning them with the identity code through cross-attention, thereby learning
the correspondence between 3-D structure and identity tokens.
Decoder: After obtaining the two latent features zv and zg, we pass a combined feature defined as
the summation of the two features zv + zg through the Decoder to generate the swapped face. The
decoder will focus only on restoring the image from the features and leave the identity modification
mission to the identity code embedding in the visual and geometric representation modules. In this
work, we just use the padding operation and convolutional layers to upscale the latent feature and
generate the swapped face.

3.3. Objective function

Identity swapping loss: This encourages the swapped image xt→s to have the same identity as xs.
In this paper, the loss term for identity swap is employed to minimise the cosine angular similarity
between xt→s and xs in the latent feature space, as follows:

Lt→s
IS = 1− εID(xs)

T εID (xt→s)

∥εID (xs)∥2∥εID (xt→s)∥2
, (7)

where εID indicates the face identity encoder. Our work uses the pre-trained face recognition model
(Deng et al., 2019) as the identity encoder, which is the most frequently used network for various
face swapping methods (Shiohara et al., 2023; Chen et al., 2020, 2023; Wang et al., 2024; Li et al.,
2019). The parameters on the identity encoder are frozen during the optimisation.
Attribute preserving and visual quality loss: The visual quality of the swapped face images

is determined not only by their identity similarity to the source face but also by how well they
preserve non-identity-related attributes such as illumination, skin texture, and background details. To
encourage attribute preservation, we formulate reconstruction loss using image and latent features as
follows:

Lt→s
Recon = ∥(xt→s − xt)⊗ (1−mt)∥1 +

ND∑
i=1

∥∥(zit→s − zit
)
⊗
(
1− m̄i

t

)∥∥2
2
, (8)

where ND defines the number of convolutional layers in the decoder. zi∗ denotes the latent feature
taken from ith convolutional layers in the decoder. mt indicates a binary-valued face mask, and m̄i

t

denotes the mask that linearly rescaled from mt according to the width and height of ith convolutional
layer’s latent feature.

The reconstruction loss is motivated by the perceptual loss of neural style transfer (Gatys et al.,
2016). The gradients of this loss are only computed from a non-facial area of the target face image
marked by the mask. Because we don’t explicitly limit how the target latent feature and source
identity code overlap, integrating the source identity code influences the entire target feature space;
Thus, we apply a loss function that explicitly enhances the visual attribute of the target face.



YU HARIT DENG LUO YANG SUN

In addition to Lt→s
Recon, we employ the cyclic reconstruction loss function Lt→t

Cycle to improve the
image generation performance regardless of identity swapping, represented by

Lt→t
Cycle = ∥xt→t − xt∥22 , (9)

where xt→t defines the swapped image using xt only i.e.,we assign xt not only the target face but a
source face also. We employ this loss because m and m̄ in Lt→s

Recon consists of binary values (i.e.,1
is face area and 0 is non-face area), it may output unnatural results of facial boundaries which are
potentially harmful in training the MagicMask. Cyclic reconstruction loss is employed to decay
the disadvantage of strong constraints by using a binary value facial mask and improve general
performance in generating face images.
Adversarial facial silhouette alignment: Adversarial loss is a commonly used loss function to

improve the quality of swapped face images by helping to increase performance in recovering
high-frequency features such as image sharpness (Li et al., 2024, 2019; Chen et al., 2020). The
commonly used adversarial loss for the face identity swap is formulated as follows:

Lt→s
Adv = E [log (1−D (xt→s))] + E [logD (xt)] , (10)

where D indicates the discriminator for the adversarial loss.
Existing methods have demonstrated that the above loss function works well when face poses

are normal. However, as shown in Figure 1(b), extreme face poses can lead to artefacts, such
as synthesising a frontal face feature onto a side face, because the discriminator D only evaluates
whether an entire image is real or generated, without enforcing local consistency of facial components.

To address this issue and explicitly improve the visual quality of facial components and face
boundaries, we propose an adversarial loss called Adversarial Facial Silhouette Alignment (AFSA).
The idea is to perform adversarial learning on local image patches corresponding to facial components.
Wang et al.,(Wang et al., 2021a) applied similar ideas for face restoration and it’s demonstrate that
adversrial learning using facial components will improve the visual quality the outputs.

Given the target image xt, the swapped image xt→s, and the face landmarks xlt (which provide
coordinates for key facial components such as the eyes, nose, and mouth), we extract local patches
by defining a bounding box for each component using its extreme coordinates (top, bottom, left, and
right) with a small margin. In this work, the set of facial component patches is defined as:

X l = {xeye, xnose, xmouth, xjaw}.

After we obtain the two facial component image sets X l
t and X l

t→s from xt and xt→s, we conducted
an adversarial learning as follows:

Lt→s
AFSA =

1

N

N∑
i=1

(
Exl

t→s,i∈Xl
t→s

[
log
(
1−D

(
xlt→s,i

))]
+ Exl

t,i∈Xl
t

[
logD

(
xlt,i
)])

(11)

where i and N are the index and the number of facial component patch (e.g., N = 4 for eye, nose,
mouth, jaw and the index of the eye is 1), and xlt,i and xlt→s,i denote the ith patch extracted from xt
and xt→s, respectively.

The adversarial facial silhouette alignment aims to compare facial components and boundaries of
target and swapped faces using an adversarial manner and reduce some distortion or blurred parts,
which are poorly generated areas.
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Total objective: The total objective function is defined by the summation of the above loss functions
with balancing weights for each term and additional regularisation term defined using l1-norm on
trainable parameters, and it is represented as follows:

LTotal = λISLIS + λRecon(LRecon + LCycle) + λAFSALAFSA, (12)

where λIS, λRecon, and λAFSA indicate the balancing weights for LIS, LRecon and LCycle, and LAFSA,
respectively. Section 4 describes the setting of those balancing weights for training.

Each training sample for optimizing MagicMask consists of a pair of source and target face
images, along with their corresponding depth maps and landmark features. The loss function is also
computed for the reverse identity swap xs→t. This not only enhances computational efficiency but
also increases the diversity of face swap scenarios, improving the model’s adaptability.

4. Experiments

4.1. Dataset and Experiment protocol

Datasets: In our experiments, we employ VGGFace2 (Cao et al., 2018) dataset and CelebA-
HQ (Karras et al., 2018) dataset for model training. In performance estimation and comparison with
existing SOTA methods, we use the FaceForensics++ (FF++) (Rossler et al., 2019) dataset, 4) Multi
Pose, Illumination, Expressions (MPIE) (Gross et al., 2010) dataset and 5) Large-pose Flickr Face
(LPFF) (Wu et al., 2023) datasets.

VGGFace2, CelebA-HQ, and FF++ datasets are well-known and frequently used datasets in the
face identity swap literature. In particular, the FF++ dataset is one of the most popular benchmarks.
However, the FF++ dataset does not focus on the extreme face poses. It is essential to use datasets
that encompass a wide variety of face orientations to demonstrate the effectiveness of MagicMask in
handling extreme face angle cases. Thus, we employ the LPFF and MPIE datasets, which provide
numerous variations for facial poses. We provide detailed information and the accessible URLs of
those datasets in Appendix A.

Evaluation metrics and protocol: We employ four evaluation criteria which are commonly
used for face identity swap literature: 1) Cosine Similarity Metrics (CSIM), 2) ID retrieval, 3) pose
error, and 4) expression error. We follow the same setting as in Li et al.,(Li et al., 2019) and Chen et
al.,(Chen et al., 2020) for the performance comparison using the FF++ data sets.

About the MPIE and LPFF datasets, due to the lack of established quantitative benchmarks for
face identity swapping using these two datasets, our analysis in these cases focuses primarily on
qualitative results. However, since the MPIE dataset provides multiple images for each identity, we
revised the evaluation process for the FF++ dataset and applied it to the MPIE dataset. However,
there is no prepared source and target image pair. Therefore, we randomly selected 1000 images
from the CeleA-HQ dataset as source faces and used all subjects in the MPIE dataset as target faces.
We repeated those processes 10 times to reduce bias for some particular identities in our experiments.

4.2. Implementation details

We conduct data preprocessing as follows. First, we detect face regions using a face detector (Qi
et al., 2021). For the detected results, face alignment is performed using the face landmark detection
and alignment algorithm proposed by Bulat et al.,(Bulat and Tzimiropoulos, 2017). Depth maps and
facial masks for the pre-processed images are obtained by the facial depth extraction (Feng et al.,
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Architectural setting CSIM ↑ pose error ↓ expression error ↓ Execution speed (ms) ↓

Normal adversarial loss (eq. 10)
fV 0.291 4.21 4.13 27.9
fV + fG 0.435 3.97 3.51 31.6

Adversarial facial silhouette alignment (eq. 11)
fV 0.427 3.82 3.22 27.93
fV + fG 0.463 3.35 2.91 31.6

Table 1: The quantitative results on the MPIE dataset (Gross et al., 2010) regarding on the architecture setting
and loss functions of the MagicMask.

2021) and the face segmentation (Yu et al., 2018). Initially, all face images are resized to 256 × 256
to enhance the dataset’s quality. Subsequently, the images are aligned and cropped to a uniform
resolution of 224 × 224 for use in the visual representation module. To generate the source identity
code, the source face images are resized to 112 × 112. λIS, λRecon, and λAFSA are set by 5.0, 2.0,
and 1.0. We employ a pre-trained ArcFace model (Deng et al., 2019) as the face identity encoder.
Training and testing are conducted on two RTX A6000 GPUs over 500 epochs. The source code of
MagicMask is publicly available1.

4.3. Ablation studies

Loss function settings: Performance metrics indicate a significant impact when transitioning from
a normal adversarial loss to AFSA loss. Specifically, for the architecture using only fV , the CSIM
metric increased from 0.291 to 0.427, while both pose and expression errors saw notable reductions.
This suggests that the AFSA loss more effectively preserves structural and identity details in the
generated outputs, likely due to its focus on the facial outline and alignment. Overall, this loss
function provides a more robust supervision signal that leads to improved face identity swap results.
Geometric representation module: The incorporation of the geometric representation module fG
consistently boosts performance across both loss function settings. When collaborated with fV , fG
contributes to higher CSIM values and lower pose and expression errors. Under normal adversarial
loss, the CSIM improved from 0.291 to 0.435 , and both pose and expression errors decreased.
Combined with the AFSA loss, the CSIM improved from 0.427 to 0.463. These improvements
indicate that the geometric representation module effectively complements the visual features,
refining the output quality and ensuring a more accurate face swap by capturing and preserving
important geometric details in diverse pose variations.

4.4. Performance Comparison

General face pose cases: It is essential to confirm that MagicMask provides competitive performance
compared to existing SOTA methods based on commonly used benchmarks to demonstrate that the
structural and objective functional contribution does not bias the performance of the face identity
swap for the extreme face angle cases only. Figure 3 and Table 2 represent qualitative and quantitative
results on the FF++ dataset (Rossler et al., 2019), respectively. MagicMask achieves the best pose
and expression errors and a competitive ID retrieval score compared with existing SOTA methods:
the 98.41 ID retrieval score, 1.47 pose error, and 2.04 expression error. FaceDancer (Rosberg et al.,
2023) produces the best IR retrieval, which is 98.84. This figure is higher than the DiffSwap Zhao

1. https://github.com/andreYoo/magicmask_official

https://github.com/andreYoo/magicmask_official
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BlendFaceSource Target HifiFace SimSwap++ MagicMask (Our)

Figure 3: Qualitative results on the FF++ dataset (Rossler et al., 2019).

Method ID retrieval ↑ pose error ↓ expression error ↓ FID ↓ Execution speed (ms) ↓

FaceSwap (Rossler et al., 2019) 72.69 2.58 2.89 - -
DeepFakes (DeepFakes, 2020) 88.39 4.64 3.33 - -
FaceShifter (Li et al., 2020) 90.68 2.55 2.82 - -
MegaFS (Zhu et al., 2021) 90.83 2.64 2.96 - -
FSLSD (Xu et al., 2022b) 90.05 2.46 2.79 - -
RAFSwap (Xu et al., 2022a) 92.54 3.21 3.60 - -
FaceSwapper (Li et al., 2024) 94.48 2.10 2.69 - -
DiffSwap (Zhao et al., 2023) 98.54 2.45 5.35 - -
FSGAN† (Nirkin et al., 2019) 61.07 3.31 3.02 - 21.5
SimSwap† (Chen et al., 2020) 93.01 1.53 2.84 13.8 27.1
BlendFace† (Shiohara et al., 2023) 97.02 3.07 2.14 - 24.7
HifiFace† (Wang et al., 2021b) 98.01 2.84 2.51 11.58 22.3
FaceDancer† (Rosberg et al., 2023) 98.84 2.04 7.97 18.34 72.6

MagicMask (Our) 98.41 1.47 2.04 13.4 31.6

Table 2: Quantitative results of on the FF++ dataset (Rossler et al., 2019). Results of FaceSwap (FaceSwap),
DeepFakes (DeepFakes, 2020), FaceShifter (Li et al., 2020) and MegaFS (Zhu et al., 2021) are obtained from
their websites. † denotes that we ran officially released source codes to obtain the results.

et al. (2023), which is a diffusion-based method. About the execution speed, MagicMask achieves
a slightly slow but still real-time execution speed (27.9 ms), which is around 28 FPS. This figure
is slightly slower than others (21.5 ms of FSGAN and 22.3ms of FaceSwapper) that use the face
images only. But compared with the FaceDancer (72.6 ms), it’s much faster and good enough for
a real-time performance. About the FID, while MagicMask is slightly behind FaceDancer on raw
ID accuracy and behind HifiFace on FID, it simultaneously delivers strong perceptual quality and
the best geometric consistency, yielding the most balanced overall performance. The experimental
results on the FF++ dataset demonstrate that the MagicMask can produce face-swapping performance
comparable to that of the existing state-of-the-art methods. Consequently, even though the model
complexity is being increased by using the geometric representation module, and parameters are
additionally optimised with the AFSA loss, that modification is helpful in improving the performance.
Extreme face pose cases: Since not many methods report their performance on the MPIE and
LPFF datasets, we compared the performance with methods that released their project in public
repositories. FSGAN (Nirkin et al., 2019), SimSwap (Chen et al., 2020), BlandFace (Shiohara et al.,
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Figure 4: The face identity swapping results of the MagicMask and other methods (Shiohara et al., 2023;
Nirkin et al., 2019; Wang et al., 2021b; Chen et al., 2020; Rosberg et al., 2023) on the MPIE dataset (Gross
et al., 2010). Appendix D provides extended results on the MPIE dataset.

Method CSIM ↑ pose error ↓ expression error ↓

FSGAN† (Nirkin et al., 2019) 0.105 5.31 4.02
SimSwap† (Chen et al., 2020) 0.180 3.92 3.81
BlendFace† (Shiohara et al., 2023) 0.392 3.71 3.18
HifiFace† (Wang et al., 2021b) 0.092 5.01 4.65
FaceDancer† (Rosberg et al., 2023) 0.401 4.72 3.31

MagicMask (Ours) 0.463 3.35 2.91

Table 3: Quantitative results on the MPIE dataset. † denotes that we ran officially released source codes to
obtain the results.

2023), HifiFace (Wang et al., 2021b), and FaceDancer (Rosberg et al., 2023) are selected. We provide
the URLs that we used to obtain their source codes in Appendix B.

Figure 4 and Table 3 show quantitative and qualitative results for the MPIE dataset, respectively.
The results of BlendFace and FSGAN (second and third row of Figure 4) are mismatched with actual
face areas or could not even generate suitable swapped faces. Their results in extreme poses contain
a lot of image corruption. Hififace output is totally disrupted; its facial components are not properly
swapped, and boundaries are also corrupted. SimSwap (5th row) and FaceDancer (6th row) achieve
better results than others, and those are even compatible with MagicMask. However, SimSwap’s
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Figure 5: The face identity swapping result of the MagicMask and other methods (Shiohara et al., 2023; Nirkin
et al., 2019; Wang et al., 2021b; Chen et al., 2020; Rosberg et al., 2023) on LPFF dataset (Wu et al., 2023).
Appendix E provides extended results on the LPFF dataset. You can see results on more varied facial poses,
including rotating and tilting.

facial silhouettes are more blurred in extreme pose cases. Also, FaceDancer’s output identity is
sometimes closer to the target. For example, the nose shape looks more like the target face.

The quantitative results also show similar circumstances. MagicMask achieves the highest
CSIM score (0.463), significantly outperforming competing methods: FaceDancer (0.401), SimSwap
(0.180), BlendFace (0.392), and HifiFace (0.092). This indicates that MagicMask excels in preserving
the identity of the source face. Additionally, MagicMask achieves the lowest pose error (3.35) and
expression error (2.91). Those results demonstrate the superiority of MagicMask in face identity-
swapping tasks under diverse facial poses.

The quantitative results on the LPFF dataset shown in Figure 5 also suggest that the MagicMask
provides more robust performances in swapping face identity in various pose variations. Similar
to the results on the MPIE dataset, the swapped results were obtained by Blendface and FSGAN.
The results of Hififace appear better than those of the MPIE dataset, but it still outputs disrupted
facial boundaries and components. SimSwap and FaceDancer sometimes generated more detailed
textures than the MagicMask, but in extreme pose cases, the results of the MagicMask look more
natural and better represent the source identity. In general, MagicMask consistently outperforms
state-of-the-art methods across both datasets, demonstrating its effectiveness and reliability in face
identity-swapping tasks. Its superior performance in identity similarity (CSIM), pose preservation,
and expression accuracy establishes it as a robust and reliable solution for handling challenging
conditions in face-swapping applications.
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5. Conclusion

In this work, we introduced MagicMask, a groundbreaking face-swapping framework designed to
maintain identity consistency and visual fidelity under extreme pose variations. By integrating visual
and geometric cues through an attention-based mechanism and introducing the Adversarial Facial
Silhouette Alignment (AFSA) loss, our approach improves robustness on face poses and outperforms
existing state-of-the-art methods on multiple benchmarks containing large facial pose variations.

Despite the additional computational cost and dependency on explicit geometric inputs, Mag-
icMask significantly enhances identity preservation and pose accuracy, addressing key limitations
in existing face-swapping techniques. These advancements establish a strong foundation for future
research in pose-invariant facial synthesis and identity-aware generative models. Future research will
focus on reducing reliance on explicit geometric inputs, improving computational efficiency, and
extending this framework to multi-view and real-time settings, further expanding the possibilities of
high-fidelity face manipulation.
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Appendix A. Details of the datasets

We use five publicly available datasets to demonstrate the effectiveness of our Magic Mask VG-
GFace2 (Cao et al., 2018) dataset, CelebA-HQ (Karras et al., 2018) dataset, FF++ dataset (Rossler
et al., 2019), MPIE dataset (Gross et al., 2010), and LPFF dataset (Wu et al., 2023). The detailed
information of the five dataset is as follows:

VGGFace2 contains 3.31 million images of 9131 subjects (identities), with an average of 362.6
images for each subject. Images are downloaded from Google Image Search and have large variations
in pose, age, illumination, ethnicity and profession (e.g. actors, athletes, politicians). The whole
dataset is split to a training set (including 8631 identites) and a test set (including 500 identites).

CelebA-HQ is a visually enhanced version of the CelebFaces Attributes dataset (CelebA) (Liu
et al., 2015), and it provides 30,000 images with 1024 × 1024 resolution. FF++ dataset is one of the
most popular benchmarks for evaluating face identity-swapping methods, and it contains 1,000 video
sequences.

FF++ is a forensics dataset consisting of 1000 original video sequences that have been ma-
nipulated with four automated face manipulation methods: Deepfakes, Face2Face, FaceSwap and
NeuralTextures. The data has been sourced from 977 youtube videos and all videos contain a
trackable mostly frontal face without occlusions which enables automated tampering methods to
generate realistic forgeries. As we provide binary masks the data can be used for image and video
classification as well as segmentation. In addition, we provide 1000 Deepfakes models to generate
and augment new data.

LPFF comprises 19,590 high-quality, numerous identities, and extensive-pose diversity images.
They firstly collect 155,720 raw portrait images from Flickr, then they remove all the raw images
that already appeared in FFHQ (Kazemi and Sullivan, 2014). After that, they align the remaining
facial images and remove low-resolution images as well as noisy and blurred images.

MPIE contains over 750,000 images of 337 individuals. Each subject was photographed under
15 poses and 19 illumination conditions while exhibiting a range of facial expressions.

Table 4 shows the URLs to download the datasets that we used for this paper.

Dataset Public repository

VGGFace2 Cao et al. (2018) https://www.robots.ox.ac.uk/˜vgg/data/vgg_face2/

CelebA-HQ Karras et al. (2018) https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

LPFF (Wu et al., 2023) https://github.com/oneThousand1000/LPFF-dataset

MPIE (Gross et al., 2010) https://www.kaggle.com/datasets/aliates/multi-pie

Table 4: The URLs of the datasets used for this paper.

https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/oneThousand1000/LPFF-dataset
https://www.kaggle.com/datasets/aliates/multi-pie
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Appendix B. List of public repositories.

We provide URLs of the public repositories of the methods that we selected for the experiment for the
performance comparison on extreme face pose cases. Table 5 shows the list of the public repositories.

Method Public repository

FSGAN Nirkin et al. (2019) https://github.com/YuvalNirkin/fsgan

SimSwap Chen et al. (2020) https://github.com/neuralchen/SimSwap

BlendFace (Shiohara et al., 2023) https://github.com/mapooon/BlendFace

HifiFace (Wang et al., 2021b) https://github.com/maum-ai/hififace

FaceDancer (Rosberg et al., 2023) https://github.com/felixrosberg/FaceDancer

Table 5: Quantitative results of on the MPIE dataset. † denotes that we ran officially released source codes to
obtain the results.

Once we observed that, if the balancing weight for the ID loss is too low and lower than the
reconstruction loss and the loss in charging of preserving the attribute, the model cannot generate
an identity-swapped face well. Additionally, adversarial learning affects the pose and expression
error. We can interpret that this circumstance has happened because the gradients of the total loss
function lead the model to learn to regenerate the target attribute instead of enhancing the source
identity representation. Additionally, adversarial learning impacts the quality of high-frequency
details, detailed parts of the swept face.

Appendix C. Balancing weight for the loss function

The setting for the balancing weight is crucial for achieving the best performance of our MagicMask.
Our balancing weight settings (ID: 5.0, Recon: 2.0, AFAS 1.0) are based on various existing works
(Chen et al., 2020; Shiohara et al., 2023; Wang et al., 2021b) which share similar architectural
components and loss functions.

The balancing weight for ID loss is usually much higher than that for other losses (10 or 5), and
the one for the reconstruction loss is between 5 and 1.0. Adversarial loss is usually 1.0. However,
we couldn’t find suitable ablation studies about the balancing weight setting from those studies.
We conducted ablation studies to capture the performance trend. Table 6 shows the performances
of MagicMask depending on the setting of the balancing weights. The following results are the
experimental data obtained to determine the values of the balancing weight. Those results are
obtained from the MPIE dataset.

Loss type Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6
ID loss 5.0 5.0 5.0 5.0 5.0 5.0
Recon loss 10 6.66 5.0 2.5 2.0 2.0
AFAS loss 0.0 0.0 0.0 1.0 0.0 1.0
Ratio (ID/Recon) 0.5 0.75 (Around) 1.0 2.0 2.5 2.5
CSIM 0.086 0.081 0.114 0.459 0.451 0.463
Pose error 4.12 4.11 4.15 3.36 4.07 3.35
Expr error 3.84 3.33 3.37 2.90 3.10 2.91

Table 6: Quantitative results of on the MPIE dataset. † denotes that we ran officially released source codes to
obtain the results.

https://github.com/YuvalNirkin/fsgan
https://github.com/neuralchen/SimSwap
https://github.com/mapooon/BlendFace
https://github.com/maum-ai/hififace
https://github.com/felixrosberg/FaceDancer
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Appendix D. Extended results on MPIE dataset

Figure 6 shows the extended results for face identity swapping on the MPIE dataset. These results
are extended from the experiments on extreme poses described in Section 4. We can still observe
that BlendFace generates some hallucinated faces that are totally mismatched with the actual face
area. FSGAN results are significantly blurry but also sometimes do not change much. HifiFace’s
results contain high contrast, making their swapped results totally disrupted. SimSwap achieves
competitive performance, but in extreme poses, the boundaries between face and background are not
clear enough.
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Figure 6: The face identity swapping result of the Magic Mask and other methods (Shiohara et al., 2023;
Nirkin et al., 2019; Wang et al., 2021b; Chen et al., 2020) on MPIE dataset.
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Appendix E. Extended results on LPFF dataset

Figure 7 shows the extended results for face identity swapping on the LPFF dataset. These results
are extended from the experiments on extreme poses described in Section 4.
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Figure 7: The face identity swapping result of the Magic Mask and other methods (Shiohara et al., 2023;
Nirkin et al., 2019; Wang et al., 2021b; Chen et al., 2020) on LPFF dataset.
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