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Background: Alternative splicing (AS) plays an essential role in tumorigenesis and progression. This study 
intended to construct an innovative prognostic model based on AS events to gain more precise survival 
prediction and search for potential therapeutic targets in ovarian cancer.
Methods: Seven types of AS events in ovarian serous cystadenocarcinoma (OV) patients with RNA-seq 
were obtained using The Cancer Genome Atlas (TCGA) SpliceSeq tool and database. Cox and Kaplan-
Meier curve analyses were employed to establish the prognostic models. Relying on drug sensitivity data 
from the CellMiner database, Genomics of Drug Sensitivity (GDS) was adopted to estimate the platinum-
sensitive analysis. Furthermore, a prognostic splicing factor (SF)-AS network was constructed using 
Cytoscape. Finally, in order to explore the influence of the tumor microenvironment on the prognosis of 
OV patients, we first combined a similar network fusion and consensus clustering (SNF-CC) algorithm to 
identify three OV subtypes based on survival-related AS events and then utilized single-sample Gene Set 
Enrichment Analysis (ssGSEA) method to perform immune cell infiltration analysis. 
Results: A total of 48,049 AS events and 21,841 related genes were selected from 318 OV samples, and 2,206 
AS events associated with disease-free survival (DFS) were identified. Multivariate Cox and Kaplan-Meier 
curve analyses were then employed to establish the prognostic models. Receiver operating characteristic 
(ROC) analysis from 0.59 to 0.75 showed that these models were highly efficient in distinguishing patient 
survival. GDS was adopted with the CellMiner database to provide some insights for platinum-sensitive 
analysis of OV. Furthermore, a prognostic SF-AS network, which discovered a significant connection 
between SFs and prognostic AS genes, was constructed using Cytoscape. The combined SNF-CC algorithm 
revealed three distinct OV subtypes based on the prognostic AS events, and the associations between this 
novel molecular classification and immune cell infiltration were further explored. 
Conclusions: We developed a powerful prognostic AS signature for OV and provided a deeper 
understanding of SF-AS network regulatory mechanisms, as well as platinum-sensitive and cancer immune 
microenvironments. These results revealed various candidate biomarkers and potential targets for OV 
treatment strategies.
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Introduction

Ovarian cancer is the seventh most common female 
cancer in the world, and epithelial ovarian cancer is the 
most dominant pathological subtype (1). Almost half of all 
patients with ovarian cancer are diagnosed over the age of 
65, and this age group accounts for over 70% of deaths (2). 
Data from national databases, including the Surveillance, 
Epidemiology, and End Results (SEER) program, illustrate 
racial/ethnic disparities in risk and survival of epithelial 
ovarian cancer: compared with other races/ethnicity, white 
women have a higher incidence, while African American 
women have worse survival rates (3). In China, a rising 
occurrence and an improving survival trend could be seen 
in invasive epithelial ovarian carcinoma over the period 
from 1997 to 2006 (4). Usually, if ovarian cancer is found 
at an advanced stage, the overall 5-year survival rate is 
approximately 30–40% (5). Studies have shown that the 
alternative splicing (AS) events of some specific genes can 
affect the growth, invasion, and other aspects of ovarian 
cancer cells (6-9), and thereby promote or inhibit the 
occurrence of ovarian cancer. Although a large number 
of studies based on messenger ribonucleic acid (mRNA) 
or long noncoding ribonucleic acid (lncRNA) (10) have 
attempted to establish a prognostic model for ovarian serous 
cystadenocarcinoma (OV), a prognostic model based on AS 
provides more significant potential. 

AS refers to a post-transcriptional processing of mRNA. 
Pre-mRNA can generate different types of mRNA 
spliceosomes through splicing at different sites, which 
markedly increases the diversity of proteins. About 95% of 
genes have been reported to undergo AS (11). AS not only 
plays a normal physiological role in the body (12), but also 
participates in the occurrence and progression of various 
malignant tumors (13-15). Increasing evidence suggests 
that AS is involved in carcinogenic processes, including 
proliferation, metastasis, hypoxia, apoptosis, drug resistance, 
and immune escape, thus influencing the prognosis of 
patients (15). For instance, some splicing factors, like RNA 
binding fox-1 homolog 2 (RBFox2), have been linked to 
epithelial-mesenchymal transition which related to invasion 
and metastasis in cancer (15). Moreover, the families of 
protein domains, which are often mutated in tumors, can 

be affected by some AS changes, thereby disrupting protein-
protein interactions (PPIs) in cancer-related pathways (14). 
In addition, the selection of isotypes is regulated by a variety 
of factors, including signaling molecules, kinases, splicing 
factors (SFs), etc., which usually regulate AS events in a 
synergistic manner (15). AS events have been originally 
described as prognostic biomarkers for pancreatic cancer (16),  
colorectal cancer (17), thyroid cancer (18), and other tumors. 
However, few reports have focused on the likelihood 
of differentially-expressed AS events as a biomarker for 
forecasting the prognosis of OV (19). Therefore, we planned 
to construct a novel prognostic model based on AS events in 
OV and explore the relationship between AS events and AS-
related molecules that included but not limited to SFs.

Human cancers are capable of utilizing aberrant AS 
to develop, grow, and progress into therapy-resistant  
tumors (20). Previous studies have shown that abnormal AS 
events can affect the outcome of platinum therapy for ovarian 
cancer. For example, osteopontin (OPN) is upregulated 
in several types of tumors and has been associated with 
chemoresistance, and the overexpression of its OPN-c 
isoform resulted in the increase of cisplatin sensitivity (21).  
Hence, comparing with other reports that focused on 
small-scale AS events, we intended to perform large-scale 
Genomics of Drug Sensitivity analysis to find some potential 
therapeutic targets which were concerned with platinum 
sensitivity. Recently, the significance of AS on tumor 
immunity has been gradually and extensively supported, 
and the independent oncogenic effects, which could be 
related to the suppressive immune microenvironment in 
cancers, have verified by further investigations of AS events 
(22,23). Moreover, an increasing number of studies have 
shown that the dysregulation of AS in tumors can affect 
the tumor microenvironment (24,25), but few studies have 
systematically revealed the correlation between AS events 
and OV cancer immunity. At present, several prognostic 
signatures derived from AS events have been identified in 
OV (19). However, to our knowledge, studies on immune-
related AS events in OV are lacking. Therefore, we decided 
to perform immune cell infiltration analysis to explore the 
effect of AS on tumor microenvironment.

With the advancement of high throughput technology 
and the rapid development of genomics, The Cancer 
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Genome Atlas (TCGA) project provides us with a powerful 
means to study multi-omics events. Based on the RNA 
sequencing (RNA-seq) data and clinical data provided by 
TCGA, this study first applied the SpliceSeq tool to carry 
out data mining on AS events in OV and constructed a 
prognostic model for OV patients. Secondly, the prognostic 
model was integrated with platinum sensitivity analysis 
to provide ideas for platinum-based drug therapy. Next, 
the prognostic SF-AS network was constructed using 
Cytoscape (26). In addition, we used a machine learning 
algorithm to classify OV patients into three subtypes and 
further evaluated the relationship between these subtypes 
and prognosis, immune cell infiltration, etc. Simultaneously, 
this study systematically revealed AS events in OV and 
provided a large number of new targets and ideas for cancer 
treatment. We present the following article in accordance 
with the REMARK reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-6422).

Methods

Data curation process

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

We downloaded the RNA-seq data and corresponding 
clinical information of the OV cohort from TCGA 
data portal (https://portal.gdc.cancer.gov) (27). Next, 
we downloaded AS profiles related to TCGA patients 
from TCGASpliceSeq portal (https://bioinformatics.
mdanderson.org/TCGASpliceSeq) (28). Spliceseq divided 
AS into seven types: Exon Skip (ES), Mutually Exclusive 
Exons (ME), Retained Intron (RI), Alternate Promoter (AP), 
Alternate Terminator (AT), Alternate Donor site (AD), and 
Alternate Acceptor site (AA), and quantitatively indicates 
the probability of occurrence of each AS event with the 
Percent Spliced In (PSI) value from 0 to 1 (29). To generate 
as reliable a set of AS events as possible, we implemented 
a series of stringent filters: percent with PSI value =75%; 
minimum PSI range =0; and minimum PSI standard 
deviation =0. For TCGA clinical data, patients with disease-
free survival (DFS) >30 days were retained and integrated 
with the AS profiles (Table S1). Due to the existence of null 
PSI values of AS profiles, we used the multiple interpolation 
method provided by “mice” R package (30) to complete the 
null value. Finally, 318 ovarian cancer samples and 48,049 
AS events were selected. The detailed design process of this 
study is shown in Figure 1.

Survival analysis and construction of the prognostic models 

For each AS event, patients were divided into two groups 
based on the median PSI value cut-off. To identity the 
relationship between AS events and DFS, we performed 
univariate Cox regression analysis for the seven types of AS 
events using the “survival” R package. A P value <0.05 was 
considered to indicate that an AS event was related to DFS. 
Next, we used the “STRINGdb” R package to draw the PPI 
network diagram of the seven kinds of 30×6+14 AS events 
(there are only 14 ME events) that were most significantly 
related to DFS. In order to eliminate any prognostic AS 
events that may not be independent factors, we further 
performed multivariate Cox regression analysis for the 
seven types of survival-related AS events (31). As a result, 
seven different types of independent prognostic AS events 
were combined to construct a final prognostic predictor 
model. To verify the prediction effect of these models, we 
first used the “survminer” R package to plot the Kaplan-
Meier survival curves of seven diverse AS types as well as 
the combination of all types. The “plotROC” R package 
was then used to plot the receiver operating characteristic 
(ROC) curve to test the accuracy of the prognostic model 
of each AS type. Finally, we calculated the risk score of each 
OV patient according to the following formula:

( )
1

Risk score = PSI
N

i i
i

β
=

×∑  [1]

Subsequently, we constructed a risk score model of 
prognostic AS events (32), and drew a heat map and a 
profile of the survival-death status combined with a risk 
score for each sample.

Platinum sensitivity analysis of prognostic factors

All of the AS prognostic factors that had been constructed 
in the prognostic model of ovarian cancer were selected 
for platinum sensitivity analysis. We obtained the drug 
sensitivity data from the CellMiner database (https://
discover.nci.nih.gov/cellminer/home.do) established by 
the National Cancer Institute (NCI) (33). This database is 
based on the NCI-60 cell line, which is currently the most 
extensively used group of cancer cell samples for testing 
cancer drugs. According to previous studies, platinum-
based drugs are used widely for the treatment of high-grade 
serous ovarian cancer (34). In order to analyse the platinum 
sensitivity of OV, we selected three platinum-based drugs 
(cisplatin, carboplatin, and oxaliplatin), which are clinically 
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tested and Food and Drug Administration (FDA) approved. 
Next, correlation analysis was performed on the RNA 

expression level of each AS event in the prognostic model 
and the sensitivity data of each drug (Spearman method, 
P<0.05). We visualized the correlation analysis results by 
drawing a total of 13 scatter plots. Finally, according to the 
expression level of the AS prognostic factors, boxplots of 
the difference in platinum sensitivity between two groups 
divided into high and low expression levels were drawn.

Construction of splicing correlation network

According to previous research, the regulatory mechanism 
of AS events involves the interaction of SF with its 
target RNA elements (35), while other proteins that do 
not directly bind RNA, such as kinases, transcription 
factors and histone-modifying enzymes, have also been 
shown to regulate AS (36-38). Consequently, MiasDB 
(http://47.88.84.236/Miasdb), a database of molecular 
interactions related to AS (39), was chosen to establish 
the network of the correlation between the PSI value of 
AS events and the expression of prognostic AS-related 
molecules. This database has collected 173 human AS 

events to conduct 938 human interactions between SFs, 
transcription factors, RNA elements, modified histones, 
and splicing-associated kinases, which are divided into SFs-
RNA elements interactions (SF-RNA) and PPIs (39). 

Firstly, Cox regression analysis was performed on AS-
related molecules selected from MiasDB to screen the 
AS-related molecules associated with survival. Next, 
we separately correlated the expression level of these 
survival and AS-related molecules with the PSI value 
of all survival-related AS events (Spearman method, 
P<0.05). Furthermore, the AS correlation network graph 
was constructed using Cytoscape. Finally, we used the 
“clusterProfiler” R package for Gene Ontology (GO) 
enrichment to analyse the effects of these splicing network-
related genes on biological processes (40).

Similar network fusion and consensus clustering (SNF-CC) 
for cancer subtypes

A modified clustering method, SNF-CC, which links similar 
network fusion (41) with consensus clustering (42), was 
applied to classify all OV patients. The “CancerSubtypes” 
R package, a software package for cancer classification, uses 

Figure 1 Flowchart of integrated AS events profiling established by TCGA data. Alternative splicing data and corresponding clinical 
information of the OV cohort were downloaded from TCGA data portal. Patients with incomplete clinical data, survival <30 days, and 
mismatched data between the two categories were removed. Cox survival analysis was then performed for each AS events, and forest plots 
were drawn according to the hazard ratio value. After visualizing the PPI network of these prognostic AS event-related genes, Kaplan-Meier 
analysis and risk score model were conducted. Based on these AS events, we performed splicing correlation network and platinum sensitivity 
analysis. Finally, three OV subtypes were constructed using the SNF-CC method, and tumor microenvironment analysis was performed 
using the GSEA and ssGSEA methods. AS, alternative splicing; TCGA, The Cancer Genome Atlas; OV, ovarian serous cystadenocarcinoma; 
PPI, protein-protein interaction; SNF-CC, similar network fusion and consensus clustering; GSEA, Gene Set Enrichment Analysis; 
ssGSEA, Single-Sample GSEA.

Clinical information 
patients (n=376)

Patients without : 
Complete clinical information 
survival less than 30 days 
corresponding RNA-Seq data

Cross-reference RNA Sequencing 
Samples (n=420)

Literature 
databases

Clinical information 
patients (n=318)

SpliceSeq analycis 48049 
AS events from 21841 genes

Prefiles of Alternative Splicing in OV

Hazard ratios

DFS cox regression
Venn PPI KM curve Risk score

SF net Barplot

Splicing 
relatived 
factors

Pharmic 
GI50

SNF-CC

cluster1 cluster2 cluster3

GSEA ssGSEA



Annals of Translational Medicine, 2021 Page 5 of 18

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021 | https://dx.doi.org/10.21037/atm-21-6422

multi-omics data to identify cancer subtypes and provides a 
series of standard frameworks, including data preprocessing, 
feature selection, cancer subtype identification, result 
validation, and visualization (43). Based on the feature 
selection of Cox regression analysis, we selected all 
prognostic AS events to classify the molecular subtypes of 
ovarian cancer. To verify the results, we used the consensus 
heatmap and cumulative distribution function (CDF) to 
select a more appropriate number of clusters. Survival 
analysis based on the number of clustering candidates was 
also performed to select the number of clusters, and clusters 
with obvious survival differences were considered as the 
final OV subtypes. In addition, silhouette width, an effect 
indicator that signifies that the sample is well matched if the 
value is high, was used to measure the matching degree of 
the samples with the identified subtypes (43).

Gene Set Enrichment Analysis (GSEA) and single-sample 
GSEA (ssGSEA) for cancer subtypes

The intratumoral microenvironment is a complex that 
includes tumor and non-tumor cells, such as immune 
cells (44), and immune cells can regulate the occurrence 
and development of OV (45). By comparing with the 
IMMPORT database (https://www.immport.org/shared/
home) (46), we found that some genes that were in the 
splicing correlation network, such as tumor protein, 
translationally-controlled 1 (TPT1), had immune functions. 
Therefore, we wanted to further analyze the relationship 
between the immune system and the identified three 
subtypes. First, we used the GSEA method to examine the 
differences in the biological pathway of the TPT1 gene 
in these three subtypes (47). Gene Ontology (GO) gene 
sets (C5) were selected as GSEA gene sets. Next, using the 
“GSVA” R package (48), the ssGSEA method was applied 
to score the OV subtypes for immune cell infiltration. 
SsGSEA is used to assess the enrichment score of a gene 
set in each single sample. It can obtain a numerical matrix, 
which contains the enrichment scores of diverse immune 
cells in all OV samples (49). The characteristic gene set 
of immune cells we selected was derived from the study of 
Charoentong et al. (50), which involved in 28 immune cell 
subsets, including the main cell types related to adaptive and 
innate immunity. Finally, in order to explore the influence of 
immune cells on prognosis in different types of samples, we 
evaluated the model using the consistency index (C-index); 
the higher the C-index value, the more significant the 
influence of a certain type of cell on the prognosis.

Statistical analysis

Spearman’s correlational analysis was performed to explore 
the relationships among the variables. Wilcoxon Signed 
Rank Test was used to conduct paired independent sample 
t-tests. Statistical analyses were performed and visualized 
using R version 4.1.0. 

Results

An overview of AS events in TCGA ovarian cancer 
samples

Based on RNA-Seq data obtained from 318 OV patients, 
we established an integrated AS events profiling. As shown 
in Figure 2A, the seven AS types are AA, AD, AP, AT, ES, 
ME, and RI. As a result, this AS events profile included 
48,049 AS events and its related 21,841 genes. Specifically, 
we obtained 4,006 AA type AS events comprising 2,777 
genes, 3,497 AD types AS events comprising 2,389 genes, 
9,689 AP type AS events comprising 3,901 genes, 8,453 
AT type AS events comprising 3,691 genes, 19,251 ES 
type AS events comprising 6,931 genes, 207 ME type AS 
events comprising 201 genes, and 2,946 RI type AS events 
comprising 1,951 genes (Figure 2B). It turned out that ES 
was the largest number of AS event types, and a single 
gene could correspond to multiple AS types. We used an 
UpSet diagram (51) to visualize the interactions between 
these AS events (Figure 2C). Finally, A Venn plot between 
the seven groups showed that there were three single genes 
corresponding to seven AS types (Figure 2D)

Construction of a prognostic model for ovarian cancer 
based on AS events

To explore the prognosis of AS events in OV patients, we 
first used univariate Cox regression analysis to evaluate the 
impact of all AS events on prognosis. We obtained a total of 
2,206 survival-related AS events (P<0.05), and the hazards 
ratio (HR) value was used to evaluate which of these were 
poor prognostic factors (HR >1) or favourable prognostic 
factors (HR <1), as shown in Figure 3A,3B. Forest maps 
were drawn for the top 20 AS events that were significantly 
related to survival for the seven different AS types (except 
for ME, which only had 14), as shown in Figure 3C-3I. 
Next, 194 (30×6+14) AS events significantly associated with 
survival from the seven different AS types were selected 
to construct a PPI network (only showing the names of 
proteins with interactions greater than 5). The PPI network 
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Figure 2 Overview of AS events profiling in OV. (A) Diagrams for the seven AS event types: ES, AP, AT, RI, and AA, AD, and ME. (B) 
Bar chart of AS events in OV, where the red bars represented AS events and the blue bars represented related genes. (C) UpSet plot of 
interactions between these seven AS event types in OV. (D) The Venn diagram of AS events in OV, which showed the number of genes 
contained in each AS set in detail. AS, alternative splicing; OV, ovarian serous cystadenocarcinoma; ES, exon skip; AP, alternate promoter; 
AT, alternate terminator; RI, retained intron; AA, alternate acceptor site; AD, alternate donor site; ME, mutually exclusive exons.

revealed the interactions between AS events (Figure 3J), in 
which it could be seen that RPS27A, MYC, etc., were most 
closely related to other AS events.

In order to obtain the independent prognostic factors 
for OV patients, for each type of AS event, we selected 
approximately the top 20 AS events that were markedly 
associated with survival for multivariate Cox regression 
analysis (19) (factors that could clearly distinguish risk were 
also included in the model construction, except for ME, 

which only had 14) (P<0.05). We found that the AA type 
contained eight independent prognostic factors, the AD 
type contained six independent prognostic factors, the AP 
type contained 10 independent prognostic factors, the AT 
type contained 10 independent prognostic factors, the ES 
type contained 16 independent prognostic factors, the ME 
type contained three independent prognostic factors, and 
the RI type contained five independent prognostic factors. 
Finally, a total of 58 independent prognostic factors were 
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Figure 3 Overview of prognostic related AS events profiling in OV. (A) The quantity of AS events and related genes associated with 
prognosis. (B) The distribution of different types of AS events between favourable prognosis (HR <1) and poor prognosis (HR >1). 
(C-I) Forest map displaying the prognosis information of the seven types of survival-related AS events in detail. The 20 AS events with 
the most significant P value (except for ME, which only had 14) were selected from each type. (J) PPI network graph. Seven types of 194 
(30×6+14) AS events that were significantly related to survival were selected for construction. AS, alternative splicing; OV, ovarian serous 
cystadenocarcinoma; ME, mutually exclusive exons; PPI, protein-protein interaction.
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involved in the construction of ovarian cancer prognosis 
model based on AS events (Table S2). 

Kaplan-Meier survival analysis was performed to verify 
the ability of the prognostic model constructed by different 
types of AS events to forecast the survival ability of ovarian 
cancer patients (Figure 4A-4H). Prognostic models for all 
types of AS events could significantly divide patients into 
high- and low-risk groups (P<0.05), and the area under 
curve (AUC) value of the ROC curve remained above 
0.6 (except for ME, 0.59) (Figure 4I). In particular, the 
AUC of the final prognostic model was 0.75, indicating a 
high accuracy. Subsequently, according to the risk score 
formula, we constructed a risk score model to further verify 
the prognostic value. The results showed that the risk 
score chart and the survival-death status chart of patients 
ranked by the risk value of each sample indicated that the 
prognostic model could clearly divide patients into the 
high- and low-risk groups (Figure 4J-4L).

Platinum sensitivity analysis of prognostic factors

The CellMiner database provided us with a method for 
the Genomics of Drug Sensitivity (GDS) analysis. We 
screened and retained the data of three platinum-based 
GI50 drugs (Z-score standardized) that were approved by 
clinical trials and the FDA. GI50, the half maximal inhibitory 
concentration (IC50) revised by the NCI, represents the 
concentration of the drug when half the cancer cells undergo 
apoptosis (33). The CellMiner database also provided us 
with the expression levels of 22,217 genes (33). A total of 58 
AS events were selected in the OV prognostic model and 
compared with the gene set provided by CellMiner, and 56 
genes corresponding to AS events were retained. 
Next, correlation analysis was conducted on the RNA 
expression levels of these 56 genes and the GI50 data of 
three platinum-based drugs, and 13 sets of results were 
obtained (Spearman, P<0.05). All 13 groups of results were 
selected to draw the scatter plots (Figure 5A), and according 
to the gene expression level, box plots were used to draw 
the differences between the high and low expression groups 
(Figure 5B). For example, the expression level of melanoma 
antigen family member D2 (MAGED2) was significantly 
negatively correlated with the GI50 value of oxaliplatin 
(R=0.301, P<0.05), indicating that with the increase of 
MAGED2 expression, the half inhibitory concentration of 
oxaliplatin decreased, which might improve the effectiveness 
of treatment. On the other hand, the expression level of 
lymphocyte activating 3 (LAG3) was positively correlated 

with the GI50 value of cisplatin (R=0.300, P<0.05), 
indicating that with the increase of the expression level 
of LAG3, the half inhibitory concentration of cisplatin 
increased, possibly leading to platinum resistance.

Construction of the splicing correlation network

In order to identify the biological factors involved in 
the regulation of survival-related AS events in OV, we 
performed survival analysis of AS-related molecules 
provided by MiasDB, and correlation analysis was 
performed between the expression levels of AS-related 
molecules and the PSI value of all survival-related AS events 
(Spearman, P<0.05). Cytoscape was then used to build AS 
correlation network (Figure 6A). The result showed that 10 
AS-related molecules (squares) were associated with OV 
prognosis and were significantly associated with the PSI 
value of 89 AS events (circles). Specifically, four AS-related 
molecules presented a poor prognosis (turquoise squares), 
and six AS-related molecules presented a favourable 
prognosis (green squares). The red line indicated that the 
expression of AS-related molecules was positively correlated 
with AS events, while the black line indicated that AS-related 
molecules were negatively correlated with AS events. For 
example, the AS-related molecules Poly(U) binding splicing 
factor 60 (PUF60) and RAN binding protein 9 (RNABP9) 
were associated with survival (Figure 6B,6C). The PSI value 
of PHD finger protein 19 (PHF19) was positively correlated 
with the expression level of DExH-box helicase 30 (DHX30), 
while the PSI value of dishevelled binding antagonist of 
beta catenin 3 (DACT3) was negatively correlated with the 
expression level of the SF neuro-oncological ventral antigen 
2 (NOVA2) (Figure 6D,6E). 

We performed GO enrichment analysis based on all 
AS-related molecules and AS events in the AS interaction 
network. The biological process showed that these genes 
were mainly related to the process of viral gene expression, 
transcription, and nuclear-transcribed mRNA metabolism. 
Finally, the network diagram of the relationship between 
the enrichment pathway of biological processes and related 
genes was presented in detail (Figure 6F).

SNF-CC divided OV samples into three subtypes

We performed cancer subtypes analysis using the 
“CancerSubtypes” R package. The package’s built-in Cox 
model enabled us to filter out critical survival-related AS 
events and then identify cancer subtypes based on the 

https://cdn.amegroups.cn/static/public/ATM-21-6422-Supplementary.pdf
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Figure 4 Construction of a prognostic model for OV based on AS events. (A-H) Kaplan-Meier analysis of the seven AS types significantly 
divided patients into high- and low-risk groups. (I) ROC curves of prognostic factors constructed by each AS type and all AS types in OV. (J,K) 
A profile of the survival-death status combined with a risk score for each sample. (L) Heat map of PSI value for all prognostic predictors 
grouped by patients at high- and low-risk. OV, ovarian serous cystadenocarcinoma; AS, alternative splicing; ROC, receiver operating 
characteristic; PSI, Percent Spliced In.
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Figure 5 Platinum sensitivity analysis of prognostic factors. (A) The correlation scatter plot between the expression level of prognostic 
predictors and the drug GI50 value in CellMiner database was selected, and 13 groups of relationships were detected. (B) Patients were 
divided into two groups according to the expression level of prognostic predictors, and the boxplot of the differences in platinum sensitivity 
between the two clusters was shown.
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Figure 6 Construction of the splicing correlation network. (A,B) Kaplan-Meier curves of two AS-related molecules. (C,D) Correlation 
between the expression levels of two AS-related molecules and the PSI values of two AS events, respectively. (E) Splicing network of AS 
events: AS-related molecules with favorable prognosis were represented by green squares, while AS-related molecules with poor prognosis 
were represented by blue-green squares, and orange circles represented AS events. AS-related molecules were positively/negatively 
correlated with the expression level of AS events, represented by red/black lines. (F) The GO enrichment analysis of all genes in the splicing 
network showed the enrichment pathway of biological function in detail. AS, alternative splicing; GO, Gene Ontology.

characteristic AS events. We used SNF-CC method to 
build a clustering model (k=2–5), and the performance of 
this clustering model was evaluated by consensus heatmap, 
survival curve, and silhouette width (Figure 7A-7D). The 

results showed that when all OV patients were divided into 
two groups, three groups, and four groups, the silhouette 
width exhibited sufficient robustness, but began to be 
unstable in five groups. Moreover, when the samples were 
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Figure 7 Identification of three distinct clusters using the SNF-CC method. (A-D) SNF-CC method was used to classify OV subtypes for 
different numbers of clusters (k=2–5). The evaluation methods included survival curves, heatmaps, and silhouette width plots. As a result, 
k=3 (P=9.54e-07) with the most significant difference in survival was selected for subsequent analysis. SNF-CC, similar network fusion and 
consensus clustering; OV, ovarian serous cystadenocarcinoma.

divided into three groups, the survival ability of patients 
showed the most significant differences (P=9.54e-07), while 
the model of the two groups could not distinguish the 
survival ability of patients (P=0.362). Therefore, we chose 
three clusters as the final cancer subtypes model: Cluster1 
consisted of 167 patients, Cluster2 consisted of 62 patients, 
and Cluster3 consisted of 89 patients.

Association of identified subtypes with immune gene 
expression and immune cell infiltration

We validated the association between immune system 
processes and these three subtypes based on the samples of 

OV subtypes. We found that the immune gene TPT1 was 
differentially expressed between the three groups. In order 
to explore the differences in functional annotations and 
signalling pathways between different clusters, we selected 
TPT1 to conduct GSEA analysis (Figure 8A-8C). As a result, 
the enrichment abundances and signalling pathways of 
TPT1 were different between these three groups.

To explore whether there were differences in immune 
cell infiltration between the three clusters, we performed 
ssGSEA analysis using the “GSVA” R package and used 
a heatmap to visualize the ssGSEA results of 28 immune 
cells (Figure 8D,8E). Significant differences were observed 
in immune cell infiltration between these three clusters. 
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Most of the immune cells had the lowest enrichment score 
in Cluster1, while that of Cluster2 was highest, and the 
enrichment score in Cluster3 was slightly lower (although 
some of them were higher than Cluster2 or Cluster1). We 
also found that Cluster2 exhibited a higher abundance of 
anti-tumor immune cell types, including activated B cell, 
immature B cell, activated CD8 T cell, etc. Meanwhile, pro-
tumor immune cells, such as mast cells, immature dendritic 
cells, CD56bright natural killer cells, and regulatory T cells, 
were significantly abundant in Cluster3. To some extent, 
this could explain why samples in Cluster2 had the lowest 
risk and samples in Cluster3 had the highest risk in the 

survival analysis of OV subtypes. 
Combined with the results of GSEA, the distinctions of 

the enrichment of immune-related pathways in different 
subtypes might be due to the disparities of the different 
immune cell infiltration in tumors. Finally, to explore the 
effect of each immune cell on prognosis in different clusters 
of samples, we evaluated the model using the conformance 
index (C-index) of univariate Cox regression (Figure 8F). 
The results showed that the T follicular helper cell had the 
greatest effect on the prognosis of Cluster2 and Cluster3, 
and the effector memory CD8 T cell had the greatest effect 
on the prognosis of Cluster1.
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Figure 8 The immune landscapes and immune cell infiltration among three clusters in OV. (A-C) The GSEA analysis results of the TPT1 
gene in three clusters of OV samples, which showed the top five biological process pathways with the highest scores. (D) The immune 
infiltration analysis of 28 kinds of immune cells between the three clusters. (E) Figure displaying the detailed comparisons of immune 
infiltration for six immune cells. (F) The C-index was used to evaluate the influence of each immune cell on prognosis in different clusters of 
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Discussion

With advances in high-throughput technology and the 
development of next-generation sequencing technologies, 
it is possible to combine multi-omics databases and use 
bioinformatics methods to investigate the mechanism of 
AS behind cancer (49). In order to make all-around and 
in-depth analysis based on AS events in OV, we focused 
on constructing an innovative prognostic model to gain 
more precise survival prediction and combining prognostic 
AS events with immune infiltration and drug sensitivity 
analysis to search for more potential therapeutic targets. 
By analyzing TCGA database, we identified AS events 
in OV and constructed a prognostic model based on AS 
events. The AS profiles we compiled included 48,049 AS 
events and its related 21,841 genes. Interestingly, ES events 
accounted for the main component of these seven types, 
because ES events could be easily verified by polymerase 
chain reaction (PCR). We systematically explained the 
relationship between AS events and DFS in 318 patients 
with OV and established prognostic models for each AS 
type using multivariate Cox regression. After comparing 
the AUC values of each AS type, we found that ES and AD 
had better prediction effects (AUC =0.70) than the other 
five prognostic models, and the final prognostic model, 
which combined the seven AS types, had the most effective 
prediction effect (AUC =0.75). Some genes of the prognostic 
AS events, which were constructed in the final ovarian 
cancer prognostic model, have been confirmed to play 
significant roles in the occurrence of OV in previous studies. 
For example, high kallikrein related peptidase 11 (KLK11) 
mRNA expression is markedly related to prolonged overall 
survival and DFS (52). Vascular endothelial growth factor A 
(VEGFA) is an angiogenic factor, and circular absent, small or 
homeotic 2-like protein (circASH2L) binding to VEGFA plays 
a key role in the regulation of tumor genesis, angiogenesis, 
and lymphangiogenesis in ovarian cancer cells (53).  
Meanwhile, VEGFA can activate OV stem cells through miR-
128-2 (MicroRNA 128-2) methylation and B lymphoma 
Mo-MLV insertion region 1 homolog (Bmi1) up-regulation 
driven by Src-DNMT3A (54). LAG3 acts synergistically 
with programmed cell death 1 (PD1) to regulate T cell 
conduction and inhibit the anti-tumor immune process (55). 
These previous studies are consistent with the results of the 
prognostic impact in our analysis, and they could not only 
indicate that the model has a good accuracy but also provide 
certain clues for other potential therapeutic targets and 
biomarkers that have not been studied.

Based on AS factors in the OV prognostic model, the 
CellMiner database was used for platinum sensitivity 
analysis. Previous studies have shown that the expression 
of the melanoma antigen (MAGE) protein family is 
dysregulated in a variety of cancers, and its abnormal 
expression is often associated with poor prognosis (56,57). 
In our analysis, the expression level of MAGED2 was 
significantly negatively correlated with the GI50 value of 
oxaliplatin, indicating that with the increased expression 
level of MAGED2, the half inhibitory concentration of 
oxaliplatin decreased and the therapeutic effect might 
be improved. On the other hand, LAG3 ,  a cancer 
immunotherapy target (58), was significantly expressed 
positively correlated with the GI50 value of cisplatin, 
indicating that with the increased expression level of LAG3, 
the half inhibitory concentration of cisplatin increased, 
possibly leading to the development of platinum resistance. 
Therefore, this research can provide some ideas for the 
platinum-based drug treatment of OV.

Our analysis also emphasized the potential contribution 
of SF. We not only studied the regulation of SF on AS events 
but also focused on the effects of AS-related molecules, 
such as kinases, transcription factors, and histone-modifying 
enzymes, on AS (36-38). In the splicing correlation network, 
there are some interactions between AS-related molecules 
and AS events, which have potential value. In particular, there 
is a significant negative correlation between the expression 
level of NOVA2 and the PSI value of DACT3. NOVA2 is a 
variable SF, and the over expression of NOVA2 in ovarian 
cancer may be related to tumor angiogenesis (59). DACT3 is a 
negative regulator of Wnt/β-catenin signal transduction, and 
Wnt signaling plays a vital role in epithelial-mesenchymal 
transition, drug resistance, and prognosis of ovarian cancer 
stem cells (60,61). 

Next, we used the SNF-CC method to classify OV 
samples, and the classification results showed that there 
were significant differences between the survival of these 
three subtypes’ samples. Relevant studies have shown that 
the changes of AS are not only limited to tumor tissues but 
also exist in the tumor microenvironment, and the changes 
of tumor-related splicing events are regulated by SF that 
are differentially expressed in tumor tissues (62). Therefore, 
we hoped to further explore the tumor microenvironment 
differences in the three subtypes of ovarian cancer. After 
performing GSEA analysis of the immune-related gene 
TPT1, we analyzed the immune cell infiltration of these 
three OV subtypes. These results in accordance with the 
survival analysis results of cancer classification showed that 
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most of the enrichment abundance of anti-tumor immune 
cells, such as activated B cell, immature B cell, activated 
CD8 T cell in Cluster2, was the highest, and most of the 
enrichment abundance of pro-tumor immune cells, such 
as mast cell, immature dendritic cell, CD56bright natural 
killer cells, and regulatory T cell in Cluster3, was the 
highest. In conclusion, the overall survival effect of Cluster2 
was superior to that of Cluster3, while Cluster1 was 
intermediate.

Our study focused on the effect of AS on the occurrence 
and progression of tumor, and this process have been 
confirmed by a large number of previous reports. AS 
of mRNA not only participates in a variety of normal 
physiological activities, but also plays an important role in 
cancer (13). Previous studies have found that AS events in 
certain genes can promote or inhibit the development of 
ovarian cancer (6-9). For example, abnormal splicing of 
breast-cancer susceptibility gene 1 (BRCA1) and breast-
cancer susceptibility gene 2 (BRCA2) may be associated with 
the pathogenesis of ovarian cancer (6). Recepteur d’origine 
nantais (RON) and its AS variants participate in multiple 
tumor biological processes, including cell proliferation, 
adhesion, movement, and apoptosis. Overexpression of 
RON and the emergence of RON AS variants have been 
detected in ovarian cancer, and the up-regulation of these 
variants are significantly correlated with the expression 
of SF (7). Two variants of cell division cycle 42 (CDC42), 
CDC42-v1 and CDC42-v2, can be produced by AS. 
CDC42-v2 has been observed to exert inhibitory effects on 
the growth and invasion of ovarian tumor cells, whereas 
CDC42-v1 has not shown these effects (9). In conclusion, 
these reports provide a theoretical basis for studying the 
regulatory mechanism of AS in ovarian cancer.

To our knowledge, this study is the first to use the 
CellMiner database in combination with the AS prognostic 
model to explore platinum sensitivity in ovarian cancer. 
Furthermore, it is also the first to use the SNF-CC method 
to classify ovarian cancer samples and explore immune cell 
infiltration differences in OV subtypes. These findings have 
enriched our understanding of the AS events in ovarian 
cancer and provided substantive candidate biomarkers and 
potential targets for the treatment of ovarian cancer.

Although our study provides some new ideas for 
the AS prognostic model of ovarian cancer, there were 
some limitations and room for improvement. Firstly, 
the establishment and verification of the model was only 
limited to the TCGA-OV expression profiles and the 
TCGASpliceSeq AS profiles. However, independent OV 

data sets should also be used for verification and extension. 
Secondly, due to the scarcity of normal samples in the 
TCGASpliceSeq database, differences between ovarian 
cancer tumor samples and normal samples were not 
analyzed. Furthermore, because our study was based on 
single-omics, the different clinicopathological features 
between populations at different risk and subtypes may 
be due to inherent differences in other factors, such as 
deoxyribonucleic acid (DNA) methylation, which might 
have influenced our results.

Conclusions

In conclusion, our study identified significant AS events in 
OV and constructed an effective model to predict patient 
survival outcomes. OV subtypes based on survival-related 
AS events suggested that the tumor microenvironment, 
especially immune cell infiltration, had an obvious influence 
on the prognosis of OV. In addition, the combination 
of platinum sensitivity analysis and the construction of 
splicing-related factor networks provided various valuable 
potential therapeutic targets for the study of OV. Therefore, 
this in-depth analysis based on AS events can provide 
some new perspectives for the development of treatment 
strategies for OV.
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Supplementary

Table S1 Clinical features. Clinical information overview of the OV cohort integrated with AS profiles from TCGA data portal

Level Overall

N 318

Age (median [IQR]) 58.50 [51.00, 68.00]

Days to last follow-up (median [IQR]) 948 [445, 1579]

Status (%)

Alive 141 (44.3)

Dead 177 (55.7)

Race (%)

Asian 10 (3.1)

White 278 (87.4)

Black or African American 21 (6.6)

American Indian or Alaska native 1 (0.3)

Not reported 8 (2.5)

FIGO stage (%)

Stage IIA 3 (0.9)

Stage IIB 3 (0.9)

Stage IIC 11 (3.5)

Stage IIIA 6 (1.9)

Stage IIIB 11 (3.5)

Stage IIIC 237 (74.5)

Stage IV 45 (14.2)

Unknown 2 (0.6)

OV, ovarian serous cystadenocarcinoma; AS, alternative splicing; TCGA, The Cancer Genome Atlas.
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Table S2 Detailed information of 58 independent prognostic factors

Gene HR Lower Upper P value Type Exon

NPEPPS 2.2395 1.4745 3.4013 0.000156 AA 14.1

UFSP2 1.8259 1.1817 2.8214 0.006692 AA 10.1

EEF1D 0.3720 0.2402 0.5760 9.31e-06 AA 8.1.1

SRRT 4.1182 2.7083 6.2621 3.61e-11 AA 19.1

POLDIP3 0.5075 0.3272 0.7869 0.00244 AA 3.1

IMMT 0.5752 0.3566 0.9277 0.023361 AA 6.1

SLC25A3 2.0004 1.3094 3.0561 0.001342 AA 1.4

ISOC2 0.6000 0.3989 0.9024 0.014156 AA 4.1

COPS7A 2.3717 1.5161 3.7101 0.000155 AD 1.4

KLK11 0.6520 0.4327 0.9825 0.040931 AD 5.2

KBTBD4 0.6407 0.4172 0.9838 0.041880 AD 1.2

ZGPAT 1.5319 1.0029 2.3400 0.048476 AD 2.2

NME6 1.5584 1.0275 2.3636 0.036823 AD 1.3

VEGFA 1.6714 1.0867 2.5708 0.019363 AD 7.2:7.3

FAM134C 1.5020 0.9255 2.4375 0.099609 AP 2.1

PIGV 2.8141 1.8381 4.3082 1.92e-06 AP 1

UBR4 0.4092 0.2647 0.6325 5.77e-05 AP 86.1

C12orf23 1.5888 1.0120 2.4943 0.044231 AP 4.1

FGD4 0.5192 0.3402 0.7924 0.002374 AP 4

ZNF266 2.9253 1.8460 4.6359 4.89e-06 AP 6.1

GJA9 0.4178 0.2734 0.6383 5.45e-05 AP 2.1

RPS6KA3 1.8166 1.2044 2.7400 0.004416 AP 3

CUL1 2.6272 1.6977 4.0656 1.45e-05 AP 3

BARX2 0.5372 0.3524 0.8191 0.003885 AP 3.1

ACTR3 3.1419 1.7864 5.5258 7.07e-05 AT 13

ZNF131 2.9838 1.9536 4.5572 4.21e-07 AT 9.3

NR4A3 0.6250 0.4117 0.9488 0.027318 AT 9

LAG3 1.9284 1.2420 2.9941 0.003438 AT 5.2

ATP6V0E1 0.5184 0.3410 0.7881 0.002110 AT 4

KIAA2013 3.0489 1.9391 4.7938 1.38e-06 AT 3

LEF1 2.1721 1.3956 3.3806 0.000589 AT 13

NF544 0.3561 0.2324 0.5456 2.10e-06 AT 10.2

C1orf85 2.1322 1.3355 3.4040 0.001513 AT 7

DDX19B 0.6454 0.4238 0.9828 0.041284 AT 8

NEMF 0.2646 0.1496 0.4691 4.92e-06 ES 4.1

Table S2 (contiuned)
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Table S2 (contiuned)

Gene HR Lower Upper P value Type Exon

TNRC6A 0.5018 0.3324 0.7575 0.001032 ES 13

TATDN1 1.9961 1.3154 3.0289 0.001160 ES 2.1

LETMD1 0.4463 0.2925 0.6810 0.000182 ES 1.3:2:3.2:4

ABHD12 2.4057 1.6016 3.6134 2.35e-05 ES 3

BTBD3 2.0454 1.3419 3.1177 0.000877 ES 3

NOL8 0.4797 0.3072 0.7492 0.001241 ES 4

CAMLG 1.8165 1.2070 2.7338 0.004206 ES 3.1

PLEKHA5 0.2409 0.1308 0.4436 4.90e-06 ES 9

SRRM1 0.5322 0.3406 0.8315 0.005603 ES 4:05

TSEN2 2.2470 1.4654 3.4455 0.000206 ES 6

ELN 0.4528 0.3002 0.6830 0.000158 ES 5

RHOT1 7.2572 4.4697 11.7831 1.10e-15 ES 19.3

SLC38A9 0.2915 0.1664 0.5107 1.64e-05 ES 7

ZNF846 0.5154 0.3430 0.7746 0.001426 ES 5

FKBP5 2.1638 1.1441 4.0922 0.017589 ES 4:5:6:7

MAPK8 0.5746 0.3819 0.8645 0.007848 ME 7|8

NDUFAF6 2.3221 1.4873 3.6255 0.000210 ME 12|13

THNSL2 0.4692 0.3039 0.7243 0.000636 ME 9|10

RAB43 1.7873 1.1692 2.7322 0.007317 RI 4.2

SLC39A1 2.0447 1.3683 3.0553 0.000483 RI 4.2

NPIPB4 0.5022 0.3329 0.7576 0.001026 RI 9.14

KIF9 1.8236 1.1563 2.8758 0.009738 RI 2.2

MAGED2 0.4341 0.2797 0.6737 0.000198 RI 5.2:5.3:5.4

HR, hazard ratio; AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, 
mutually exclusive exons; RI, retained intron; Exon, expression region.


