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Abstract—Simultaneous electrocardiography (ECG) and
phonocardiogram (PCG) offer a multimodal view of cardiac
function by capturing electrical and mechanical activity,
respectively. However, their shared and unique information and
potential for mutual reconstruction remain poorly understood
across different physiological states and individuals.

This study analyzes the EPHNOGRAM dataset of simulta-
neous ECG-PCG recordings during rest and exercise, using
linear and nonlinear models—including a non-causal neural
network—to reconstruct one modality from the other. Nonlinear
models, especially non-causal neural network, outperform others,
with ECG reconstruction from PCG proving more feasible. In the
within-subject scenario, the non-causal neural network achieved a
signal-to-noise ratio (SNR) of 6.5+5.2 dB and a cross-correlation
of 0.78 £ 0.19 for PCG-based ECG reconstruction.

These findings provide quantitative insight into the electrome-
chanical relationship between cardiac signals and support the
development of multimodal cardiac monitoring tools.

Index Terms—ECG-PCG Translation, Cross-modal learning,
Machine-learning, Power spectrum

I. INTRODUCTION

Cardiac function arises from tightly coupled electrical, me-
chanical, hemodynamic, autonomic, and metabolic processes
that generate interrelated biosignals. The electrocardiogram
(ECG) reflects the heart’s electrical activity, while cardiac aus-
cultation captures mechanical events as heart sounds, recorded
digitally as phonocardiogram (PCG) [1]. ECG and PCG are
accessible, low-cost, and complementary modalities: ECG
reveals conduction and repolarization, whereas PCG captures
valve motion and blood flow. Integrating them provides a more
complete view of cardiac function than either alone [2], [3].

Advances in sensors and machine learning have enabled
joint ECG-PCG applications in monitoring [4], disease de-
tection [5], and biomarker extraction [6], [7]. New hardware
allows simultaneous acquisition [8], [9], and large datasets
have spurred multimodal research, improving performance in
arrhythmia classification [10], heart sound segmentation, and
disease detection [11]. Coupled signal modeling and nonlinear
features have further enhanced disease classification and risk
stratification [2], [5].
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Despite progress, fundamental questions remain: How much
information is shared or exclusive between ECG and PCG?
Can one modality be reliably reconstructed from the other
across physiological states (e.g., rest vs. exercise) or subjects?
Signal morphology and reconstruction are affected by sensor
placement, variability, and noise [12], [13]. Prior studies often
emphasize classification or basic reconstruction metrics (e.g.,
RMSE), neglecting clinical features, robustness, and direc-
tional information flow [14]. PCG lacks consistent mapping
to ECG amplitude or morphology, and ECG variability due
to electrode placement adds further complexity [12]. Open
challenges include modeling causal/non-causal relationships,
event timing (e.g., QT interval vs. S1/S2), and biomarker
recoverability.

Applications of bimodal ECG-PCG modeling can in-
clude improved cardiac monitoring via signal denois-
ing/reconstruction, analysis of causal/non-causal information
flow to probe electromechanical coupling, and identifying
modality-specific components [15] via reconstruction residuals
that may serve as features for AI/ML models.

This study explores causal and non-causal relationships
between ECG and PCG using simultaneous recordings during
rest and exercise from the EPHNOGRAM dataset [16], [17].
We evaluate cross-modal signal reconstruction and cardiac
event timing to quantify information transfer between elec-
trical and mechanical signals across physiological states and
individuals. Emphasis is placed on waveform reconstruction
from one modality to another. Results highlight both the
potential and limitations of cross-modal modeling for robust,
generalizable cardiac monitoring.

Our unified framework advances multimodal cardiac inte-
gration by enabling accurate waveform reconstruction, with
implications for wearable and remote monitoring technologies,
especially in resource-constrained or ambulatory contexts [9]—-

[11].

The rest of the paper is organized as follows: Section II
describes the dataset, preprocessing, modeling, and evaluation.
Section IIT presents the results on reconstruction and spectral
analysis. Section IV discusses implications and limitations,
and Section V concludes the study.
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II. METHODS
A. The EPHNOGRAM Dataset

The EPHNOGRAM dataset [16], [17], publicly available
on PhysioNet, includes 68 simultaneous ECG-PCG recordings
from healthy adults (age 25.4£1.9 years) during various phys-
ical activities. Data were collected using single-channel ECG
and PCG stethoscopes in an indoor fitness center and include
both short (30s) and long (30min) recordings. Activities
span four scenarios: resting (supine and seated in a quiet
room), treadmill walking at 3.7 km/h, treadmill stress testing
using the modified Bruce protocol [18], and incremental-load
bicycle stress testing. All signals are stored in WFDB format
with aligned activity intensity labels, and detailed collection
protocols are provided in [16], [17].

For this study, we analyzed 28 recordings selected for
signal quality and protocol completion, excluding those with
excessive noise or electrode disconnections as documented in
the dataset metadata [17]. Our subset includes recordings from
rest, walking, and both stress test conditions.

B. Preprocessing

ECG baseline wander was corrected using a 0.2-30Hz
bandpass filter, and power-line interference (50Hz) was re-
moved using a second-order IIR notch filter (Q-factor = 45)
with zero-phase forward-backward filtering.

PCG signals, representing zero-centered transient acoustic
events, were bandpass filtered between 10-200Hz. As PCG
lacks baseline drift and power-line noise, no further correction
was necessary.

For both ECG and PCG, outliers exceeding +60 (¢)—where
o(t) is the time-varying standard deviation computed over
I-minute sliding windows—were clipped. This empirically
chosen threshold, based on expert review of EPHNOGRAM,
balances artifact removal with the preservation of clinically
important features like R-peaks. Lower thresholds distorted
signal morphology, while higher ones failed to remove extreme
noise. This setting is dataset-specific and not intended as a
general guideline.

To address amplitude variability during stress testing, a
time-adaptive normalization was applied using sliding 60-
second windows to compute the local mean and standard
deviation. This approach, aligned with prior literature [12],
preserves local waveform characteristics while reducing inter-
subject amplitude variation, enabling more robust cross-subject
modeling.

Finally, all signals were downsampled from 8000Hz to
1000 Hz to reduce computational and memory demands for
subsequent machine learning and reconstruction analyses.

C. Cross-modal Waveform Learning

ECG and PCG provide complementary views of cardiac
function: ECG reflects electrical activity, while PCG captures
mechanical events related to contraction and relaxation. Al-
though the two modalities share some physiological informa-
tion, each also conveys unique, modality-specific characteris-
tics.
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Fig. 1: Power spectrum for ECG and PCG across all recordings

in EPHNOGRAM dataset.

Figure 1 illustrates this distinction through power spec-
tral analysis of EPHNOGRAM recordings, computed via the
Welch method using 1-second windows, 1 Hz resolution, and
50% overlap. The spectra reveal that low-frequency compo-
nents (below 5 Hz) are primarily associated with ECG, high-
frequency components (above 50Hz) are specific to PCG,
and the intermediate range (5-50Hz) likely encodes shared
electromechanical information.

1) Machine learning frameworks: Throughout the paper,
we denote models that use one modality to predict another
as * — y, where z(t) and y(t) are time series. Accord-
ingly, ECG—PCG refers to predicting PCG waveforms or
features from ECG input using machine learning models,
and PCG—ECG denotes the reverse. This prediction can be
expressed as y(t) = g(x(7)|t1 < 7 < ta), where [t1,t2] is
the input window of duration At = t5 —t; used by the model
g(+) to estimate y at time ¢.

To study temporal information flow, we consider three
schemes: causal, where t5 < t and only past input is used;
anti-causal, where ¢ < ¢; and only future input is used; and
non-causal, where ¢t; < t < to and the input window spans
both past and future. In this study, the non-causal window is
symmetric around ¢, as illustrated in Fig. 2.

To explore the relationship between ECG and PCG, we em-
ploy two machine-learning models g(-) that span from linear
to nonlinear temporal modeling. The first is a dynamic linear
model using LASSO regression [19], which estimates the
target modality at time ¢ from a segment of the input modality
around t using a sparse linear combination of samples. This
model captures interpretable linear dependencies between the
signals.

The second is a two-layer fully connected multilayer per-
ceptron (MLP) with ReLU activations: the first layer has 100
neurons with a clipped ReLU, the second has 25 neurons
with a leaky ReLU, and a 10% dropout layer is included to
prevent overfitting. The input-output structure matches that of
the linear model.

This neural network architecture was selected to balance
between modeling capacity and computational efficiency. Pi-
lot studies confirmed their robustness, eliminating the need
for extensive hyperparameter tuning. Collectively, the models
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Fig. 2: Illustration of three temporal learning frameworks for
transforming PCG to ECG at time ¢ = 1 with a segment size
of At = 0.5s: (a) causal (green) uses only past and present
inputs, (b) anti-causal (purple) relies on future inputs, (c) non-
causal (black) incorporates both past and future inputs within
a symmetric window.

represent a progression from simple and interpretable to com-
plex and memory-based, allowing us to assess the modeling
demands of accurate ECG-PCG reconstruction.

2) Training and testing protocols: We evaluate within-
subject modeling to assess how well ECG and PCG informa-
tion can be transferred under varying physiological conditions.
Within-subject models account for intra-individual variability
(e.g., fatigue).

For within-subject validation, we apply 10-fold cross-
validation on each subject’s 30-minute recording, using non-
overlapping 3-minute segments. To avoid boundary artifacts,
the first and last 1-second intervals of each recording are
excluded from metric computations.

D. Evaluation Metrics

1) Signal-to-noise ratio: Signal-to-noise ratio (SNR) quan-
tifies how well a reconstructed signal matches the original
waveform, treating the original ECG or PCG as the signal
and the reconstruction error as noise. A higher SNR indicates
better reconstruction fidelity, while an SNR of 0dB can result
from trivial outputs (e.g., all zeros). As simultaneous ECG
and PCG signals may contain physiological noise—especially
during exercise—SNR should be interpreted alongside other
metrics.

2) Cross-correlation: Cross-correlation was used to quan-
tify the similarity between the original signal x(¢) and its
reconstruction Z(t), capturing alignment in shape and timing
while being invariant to scale.

3) Cross-coherence: Cross coherence measures the
frequency-specific linear relationship between original and
reconstructed signals [20]. For each frequency f:

| Poa (f)I?

where P,;(f) is the cross-spectral density, and Py, (f),
P;:(f) are the power spectral densities of z(t) and Z(t). To
obtain a single summary metric, we compute the spectrum-
weighted average coherence [21], [22]:

. prm(f)ﬂrm(f)
TS R

This emphasizes coherence in frequency bands where the
original signal carries more power.
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III. RESULTS

All analyses were performed using a segment window of
At = 0.5s. Alternative durations (0.75s and 1s) were tested
but did not improve model performance. The 0.5s window
was thus selected for simplicity and efficiency, and all reported
results correspond to this setting.

Table I summarizes the performance of the LASSO and
MLP models under causal, anti-causal, and non-causal config-
urations for both ECG—PCG and PCG—ECG transformations
in the within-subject setting.

Overall, the neural network consistently outperforms the
linear LASSO model across all metrics and configurations. For
example, in the non-causal ECG—PCG task, MLP achieves
coherence 0.37 + 0.16, correlation p,; = 0.49 £+ 0.27, and
SNR 1.8 £+ 1.9dB. For PCG—ECG, performance improves
further, with coherence 0.75 + 0.19, p,z = 0.78 + 0.20, and
SNR 6.5 &+ 5.2dB. This demonstrates the model’s strength in
capturing nonlinear temporal dependencies.

Transformation direction also impacts performance:
PCG—ECG consistently yields higher metrics than
ECG—PCQG, indicating that reconstructing ECG from PCG
is more effective—likely due to ECG’s higher information
content and lower noise.

Causality analysis reveals a consistent physiological pat-
tern. For ECG—PCG, causal models outperform anti-causal
ones (e.g., MLP coherence: 0.36 vs. 0.30), aligning with the
expected direction of electrical-to-mechanical activity. In con-
trast, for PCG—ECG, anti-causal models perform better (e.g.,
MLP coherence: 0.71 vs. 0.59), suggesting that predicting
electrical signals from subsequent mechanical responses is
more effective in this setup.

Model comparisons highlight the value of nonlinearity. For
ECG—PCG, LASSO performs comparably to MLP (e.g., non-
causal coherence: 0.33 vs. 0.37), but for PCG—ECG, the
performance gap is substantial (e.g., LASSO: 0.31 vs. MLP:
0.75), underlining the need for nonlinear models to effectively
reconstruct ECG.

In summary, non-causal MLP models deliver the best overall
performance for both transformation directions, providing the
highest coherence, correlation, and SNR. The following sec-
tions further analyze the MLP’s behavior and its implications
for ECG-PCG cross-modal learning.

A. Spectral Analysis

To assess frequency-domain fidelity, we compared the
power spectra of original and reconstructed ECG and PCG



TABLE I: Evaluation metrics for LASSO and MLP models across causal, anti-causal, and non-causal approaches (cf. Fig. 2)
in both ECG-to-PCG (ECG—PCG) and PCG-to-ECG (PCG—ECG) transformations.

Translation Direction State Model Hixx Pxx SNR
Cansal MLP | 036 £ 0.15 | 047 =028 | 1.6 = 1.9
LASSO | 033 +0.13 | 038 £025 | 1.0+ 1.4
. MLP | 030 £0.13 | 040 £ 023 | 1.0 £ 1.3
ECG—PCG Anti-causal | 1 x650 | 029 + 011 | 0.17 + 0.10 | 02 + 02
Noncausal | _MLP | 037 £016 [ 049 £027 [ I8 £ 19
LASSO | 033 +£0.13 | 039 4026 | 1.1 & 1.4
Causal MLP | 059 £ 0.19 | 0.69 £ 021 | 4.0 + 33
LASSO | 025 +0.13 | 020 £ 0.12 | 02 + 0.3
. MLP | 071 £020 | 0.70 £025 | 52 £ 48
PCG—ECG Anti-causal |y o5 | 029 + 0.16 | 028 + 0.18 | 0.5 + 0.7
Nomcausal | _MLP [ 075 £0.19 [ 078 £020 | 65 £52
LASSO | 031 +0.18 | 033 =020 | 0.7+ 09

signals using the best-performing non-causal MLP and non-
causal LASSO models (Fig. 3). This analysis highlights the
strengths and limitations of nonlinear versus linear modeling.

For ECG reconstruction (Fig. 3a), the MLP output (red)
closely matches the original spectrum (blue) across most fre-
quencies, with notable underestimation below 4 Hz—reflecting
ECG’s distinctive low-frequency content seen in Fig. 1. In
contrast, the LASSO output (yellow) shows substantial atten-
uation across all frequencies, particularly in the low range,
confirming its limited spectral modeling capacity and aligning
with its lower coherence and correlation in Table 1.

For PCG reconstruction (Fig. 3b), the MLP captures better
spectral content below 40 Hz and retains components up to
60 Hz, although with a faster high-frequency decay than the
original. The LASSO model, by comparison, is largely limited
to frequencies under SOHz and displays a 50 Hz notch—an
artifact of preprocessing. This reflects the inherent constraints
of linear models, which cannot generate spectral features
absent in the input ECG, unlike nonlinear models like MLP
that can reconstruct richer frequency content.

IV. DISCUSSION

This study investigated information transfer and shared
versus exclusive characteristics between ECG and PCG signals
using the EPHNOGRAM dataset and a range of linear and
nonlinear models. By analyzing causal, anti-causal, and non-
causal architectures in the within-subject setting, we provide
a detailed assessment of the potential and limitations of
multimodal cardiac signal learning.

Nonlinear neural networks, particularly when applied in
non-causal form, consistently outperformed linear approaches
across all tasks and metrics. Their ability to capture complex
temporal and spectral patterns makes them especially effective
for waveform reconstruction, consistent with prior findings in
multimodal cardiac modeling [4], [7], [23].

Spectral analyses further highlight the superiority of neural
networks while revealing modality-specific challenges—such
as reconstructing low-frequency ECG and high-frequency
PCG components—where linear models like LASSO fall
short, particularly for PCG—ECG mappings that require non-
linear transformations due to non-overlapping spectral content.
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Fig. 3: Power spectra of original and reconstructed ECG
and PCG signals using non-causal MLP and LASSO in the
within-subject setting. Subplots (a) and (b) illustrate spectral
alignment for each modality, showing that the nonlinear MLP
more accurately captures the frequency content compared to
the linear LASSO model.

A key finding is the asymmetry in transformation difficulty:
reconstructing ECG from PCG is generally more accurate than
the reverse, reflecting the physiological sequence where elec-
trical activity (ECG) precedes mechanical response (PCG) [3].
Causality analysis supports this, showing that causal input
windows benefit ECG—PCG, while anti-causal inputs better
support PCG—ECG.

Exercise conditions significantly degrade reconstruction per-
formance due to increased noise, motion artifacts, and rapidly
changing cardiac dynamics. These results underscore the im-
portance of robust preprocessing and adaptable models in real-



world, high-variability environments.

A. Limitations and Future Work

We acknowledge some limitations in this work, which merit
further research. The relatively small size of the EPHNO-
GRAM dataset is a limitation;. At the same time, each
subject provided 30-minute recordings during exercise and
rest, which were substantial data to support our findings,
larger datasets are required for population-level conclusions.
Nonetheless, our current findings confirmed the causal rela-
tionship between electrical activity and mechanical contraction
of the myocardium. For the same reason, we focused on more
classical LASSO and MLP models and avoided more advanced
and complex models like variational autoencoders (VAEs),
which require more data. While we presented spectral-domain
insights on the nonlinear interplay between the ECG and PCG,
temporal importance analysis (attention weights or saliency
over time) can further reveal how neighboring time-points
and different phases of the cardiac cycle highly influence
predictions. This study was within-subject; future research
should explore cross-subject generalization, despite expected
performance decline due to inter-individual differences and
sensor variations. Incorporating biomarker validation, includ-
ing QT interval and QRS duration estimation from recon-
structed signals, is also essential for translating multimodal
cardiac modeling into practical clinical and wearable monitor-
ing applications. We will explore this direction of research in
future work.

V. CONCLUSION

This study presents a unified framework for modeling shared
and exclusive information between ECG and PCG using data-
driven multimodal learning. Non-causal neural network mod-
els consistently achieve the best performance, particularly for
PCG to ECG transformations. Model accuracy is influenced
by physiological state and inter-subject variability. Spectral
analysis further confirms that nonlinear models are better
equipped to preserve physiologically meaningful frequency
content.

By demonstrating the feasibility of reconstructing clinically
relevant ECG waveforms from PCG, this work advances the
potential for multimodal cardiac monitoring in both clinical
and resource-limited settings. Continued development of ro-
bust, generalizable, and interpretable machine learning models
will be essential for translating these findings into practical ap-
plications for wearable and remote cardiac health monitoring.
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