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Abstract

There are several applications of stochastic optimization where one can benefit from a robust
estimate of the gradient. For example, domains such as distributed learning with corrupted
nodes, the presence of large outliers in the training data, learning under privacy constraints,
or even heavy-tailed noise due to the dynamics of the algorithm itself. Here we study SGD
with robust gradient estimators based on estimating the median.
We first derive iterative methods based on the stochastic proximal point method for com-
puting the median gradient and generalizations thereof. Then we propose an algorithm
estimating the median gradient across iterations, and find that several well known meth-
ods are particular cases of this framework. For instance, we observe that different forms of
clipping allow to compute online estimators of the median of gradients, in contrast to (heavy-
ball) momentum, which corresponds to an online estimator of the mean. Finally, we provide
a theoretical framework for any algorithm computing the median gradient across samples,
and show that the resulting method can converge even under heavy-tailed, state-dependent
noise.

1 Introduction

Many problems in machine learning can be represented by an optimization problem

min
w∈Rd

ℓ(w),

where w is a vector of parameters and ℓ : Rd → R is a loss function. To tackle this problem, gradient-based
optimization algorithms have been the de facto choice in many application domains (Nemirovsky & Yudin,
1983; Bottou, 2010; Bottou et al., 2018), where we are only given access to a noisy oracle of the gradient

gt = ∇ℓ(wt) + ξt(wt). (1)

Here t denotes the iterations and ξt(wt) ∈ Rd is noise vector that is sampled from a distribution that depends
on the parameter wt. With this noise oracle, stochastic gradient descent (SGD) with learning rate ηt is given
by

wt+1 = wt − ηtgt. (SGD)

While SGD has proven useful in numerous applications, its performance heavily relies on the ‘quality’ of the
noisy oracles gt, and can tragically degrade when the noise ξt has significant outliers, exhibits heavy tails
(that is, ∥ξt∥ is very large with non-negligible probability), or has been corrupted in an adversarial way. We
provide two examples.

(i) Heavy-tailed gradients. Recent studies have provided theoretical and empirical evidence that heavy
tails can naturally arise in stochastic optimization. From a theoretical perspective Gurbuzbalaban et al.
(2021); Hodgkinson & Mahoney (2021); Pavasovic et al. (2023) showed that the parameter-dependent

1



Under review as submission to TMLR

nature of ξt can result in heavy tails, even in very basic settings such as linear regression with Gaussian
data. On the other hand, it has been empirically observed that the gradients for training transformer
architectures on language tasks are more heavy-tailed compared to, for example, convolutional models
for image data (Zhang et al., 2020b; Kunstner et al., 2023). While the presence of heavy-tails in gradients
might be beneficial in certain settings (Simsekli et al., 2020), from an optimization perspective, it mostly
introduces non-trivial challenges, which might even make the algorithm diverge unless additional care is
taken (Zhang et al., 2020b; Gorbunov et al., 2020).

(ii) Corrupted nodes. A well-known problem in distributed learning is when some computation nodes are
malicious and can communicate adversarial updates, which results in inaccurate gradient oracles that can
significantly misguide the optimization procedure. Similar to the heavy-tailed setting, depending on how
much malicious are the nodes, SGD can be impractical unless certain modifications are made (Mhamdi
et al., 2018). We refer to Karimireddy et al. (2021) and references therein for an overview of more robust
aggregation techniques.

In order to make the optimization algorithms more robust to such noisy oracles, many techniques have been
developed for different domains under various conditions. In the context of heavy-tailed gradients, clipping
is often employed (Zhang et al., 2020a; Puchkin et al., 2023; Koloskova et al., 2023). In distributed learning
robust aggregation rules are needed to protect against corrupted or malicious nodes (Data et al., 2018;
Karimireddy et al., 2021; Khirirat et al., 2023). This line of research is also closely related to error feedback
in federated learning (Seide et al., 2014; Karimireddy et al., 2019; Richtárik et al., 2021) and learning under
differential privacy constraints (Khirirat et al., 2023).

Robustness of median. While attracting increasing attention in stochastic optimization thanks to mod-
ern machine learning applications, taming the impact of strong noise has already been considered in various
other domains. Indeed, estimation under heavy-tails and corruptions has been a long-standing topic in ro-
bust statistics (Huber, 1981). Being a vast research field that has produced numerous algorithms designed
for different tasks, one of the recurring themes in robust statistics is the use of the sample median and its
variations as opposed to the sample mean (Minsker, 2015), whenever an aggregation of random variables is
needed. For instance, in the presence of heavy tails, the sample median has been shown to be a significantly
more robust estimator of the true mean, whereas the sample mean can be vulnerable to strong noise (Lugosi
& Mendelson, 2019).

Sample median SGD. Inspired by tools from robust statistics, some notions of median have been utilized
in stochastic optimization as well (Yin et al., 2018; Alistarh et al., 2018; Acharya et al., 2022). One such
approach is to compute the median over a finite sample of gradients. While this approach has paved the way
for powerful optimization algorithms in terms of robustness, it often introduces a significant computational
burden, since a multivariate median needs to be computed at every iteration (Weiszfeld & Plastria, 2009;
Vardi & Zhang, 2000).

Motivation. Clipping-based and error feedback approaches on the one hand, and median-based approaches
on the other hand are motivated through different mathematical frameworks and appear to use different
algorithmic tools. In this study, our main goal is to bridge the gap between these two seemingly different
branches and to bring a unified theoretical perspective that can shed further light on both directions. The
main tool to build this bridge between stochastic optimization and robust statistics will be the Stochastic
Proximal Point method (SPP) (Asi & Duchi, 2019; Davis & Drusvyatskiy, 2019; Toulis et al., 2020) for solving
a later-specified gradient estimation problem.

Contributions. We first show how heavy-ball momentum (Polyak, 1964) can be seen as online estimator of
the mean gradient using SPP. Here we use the term online in the sense that the method is given a different
loss function at each step.

Encouraged by this result, we then focus on online estimation of the median gradient, using the same tech-
nique. Doing so, we recover several known clipping-based optimization algorithms from distributed learning
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as special cases, such as Clip21 (Khirirat et al., 2023), and a variant of centered clipping (Karimireddy et al.,
2021). We also shown connections to sign-based gradient methods (Riedmiller & Braun, 1993).

Our proposed framework allows to unify the different motivations for previously developed techniques, and
illustrates that clipping-based optimization algorithms essentially runs a “hidden” estimation of the median
across iterations. In particular, the observation that centered clipping and Clip21 are an iterative estimator
of a geometric median appears to be new, and might have consequences for its application in distributed
learning.

We theoretically analyze these online gradient estimation methods in a simplified setting: when allowing
multiple gradient samples per iteration, we show that SGD with (approximately computed) median gradients
indeed yields a very powerful algorithm, which converges with 1/

√
T rate (T being the number of iterations)

even when the gradient oracles are heavy-tailed with diverging second-order moments. We further illustrate
that, in addition to having infinite variance, the noise vectors ξt(w) can even have a multiplicative dependence
on w, a scenario which is highly challenging and cannot be directly covered by existing theoretical results,
see e.g., (Wang et al., 2021; Zhang et al., 2020b; Puchkin et al., 2023).

We finally illustrate our theory on synthetic least-squares experiments where we compare the effectiveness of
sample median, sample mean, and several online median estimators. Our results underline that for heavy-
tailed noise, using the sample median is highly effective in contrast to the sample mean which is unstable
and often does not converge. Our experiments also show that our online median estimates are robust, while
being less expensive to compute. We further compare different clipping techniques for training transformer
architectures on language modeling tasks, and show that they can improve upon the performance of SGD
with momentum, however the gap is relatively small.

Notation. Throughout the paper, ∥ · ∥p denotes the ℓp-norm, given by ∥z∥p :=
(∑d

i=1 |z|pi
) 1

p when p ∈
[1, ∞), and ∥z∥∞ = max

i=1,...,d
|zi| when p = ∞. When p = 2 we recover the usual Euclidean ℓ2-norm ∥·∥2, which

we will often simply denote by ∥ · ∥. For a matrix A, we denote its Frobenius norm by ∥A∥F :=
√∑

i,j A2
ij .

For n ∈ N+, we denote the set [n] := {1, . . . , n}.

2 Preliminaries

2.1 Heavy-tailed Random Variables

A random variable X is said to be heavy-tailed if the tails of its distribution decay slower than the tails of
an exponential distribution. One important example is the family of symmetric α-stable distributions Pα,σ

(Nolan, 2020, Def. 1.4), parameterized by a stability index α ∈ (0, 2] and a scale σ > 0. When α = 1, this is
the Cauchy distribution; when α = 2, it reduces to a Gaussian. The parameter σ controls the spread of the
distribution. When σ = 1, we call the distribution standard and denote it by Pα := Pα,1. The parameter
α on the other hand controls the heaviness of the tails: for α < 2 the random variable X ∼ Pα has infinite
variance, whereas for α ≤ 1 even the mean of X is infinite. However, for any α, the median is equal to 0.

2.2 Mean Estimation and (Sample) Median

Estimating the mean of a distribution, when given a finite number of samples, is one of the core problems
studied in statistics. If the distribution in question has heavy-tails, or has significant outliers, the sample
mean turns out to be a poor estimator. Lugosi & Mendelson (2019) give a survey of alternative and more
robust techniques: one such alternative is the median, for which we will introduce basic definitions next.

Here, we denote by z a real-value random value, and the boldface z ∈ Rd a random vector. We always
denote the expectation with respect to the distribution of z (or z respectively) by E.

3



Under review as submission to TMLR

Multivariate median. The one-dimensional median is defined by

median(z) ∈ argmin
m∈R

E [|m − z|] . (2)

In contrast to the mean, the median is always defined (though it may not be unique) (Cramér, 2016). Since
we are interested in approximating the median gradient, we need a notion of median that generalizes to
random vectors z ∈ Rd. For this, we can define the ℓp-median:

medianℓp
(z) ∈ argmin

m∈Rd

E [∥m − z∥p] , (3)

where ∥m∥p =
(∑d

j=1 mp
j

) 1
p is the ℓp norm. This recovers several existing notions of a multivariate median:

for p = 1 we obtain a componentwise median (or ℓ1-median) and for p = 2 we obtain the geometric median
(or ℓ2-median) (Fréchet, 1948; Weiszfeld & Plastria, 2009; Minsker, 2015; Cohen et al., 2016). For d = 1 and
every p ∈ [1, ∞), the ℓp-median coincides with the one-dimensional median in (2).

Sample median. Given n realizations z(1), . . . , z(n) of z, the sample median is defined as

medianℓp,i∈[n](z(i)) ∈ argmin
m∈Rd

1
n

n∑
i=1

∥m − z(i)∥p. (4)

Clearly (4) is a special case of (3), by setting the distribution of z as the empirical measure 1
n

∑n
i=1 δzi

.

It is generally accepted that the sample median is a more robust estimator than the sample mean (Huber,
1981; Hampel et al., 2005). This is nicely illustrated by the notion of a breakdown point (Donoho & Huber,
1983; Lopuhaa & Rousseeuw, 1991), which is the smallest fraction of a sample that, if arbitrarily corrupted,
can arbitrarily change the value of the estimator. The breakdown point of the sample median is roughly 1

2 ,
meaning that at least half of the samples need to be outliers for the median to diverge. The sample mean
however can be arbitrarily corrupted by a single outlier, thus its breakdown point is 1

n .

If the samples z(i) are obtained by taking block-wise means over observations, (4) is called the median-of-
means estimator (Nemirovsky & Yudin, 1983; Lugosi & Mendelson, 2019), which is known to be a robust
mean estimator (Lugosi & Mendelson, 2019).

Relation to M-estimation. More generally, for a function D : Rd → R we will consider the problem

argmin
m∈Rd

E [D(m − z)] . (5)

We assume that D is a closed, proper, convex function and that (5) admits a solution (see Appendix B for a
discussion). For D = 1

2 ∥ · ∥2
2, the solution to (5) is the mean E [z] (if it exists), and for D = ∥ · ∥2 the solution

is the geometric median as defined in (3). Problem (5) can be seen as a special case of M-estimators (Huber,
1981, Sec. 3.2).

The choice of D determines properties of the associated estimator: if the function D heavily penalizes large
values, like the quadratic D = 1

2 ∥ · ∥2
2, then the solution to (5) will be sensitive to outliers. In contrast

D = ∥ · ∥2 and D = ∥ · ∥1 grow only linearly, and thus (5) will be less sensitive to outliers. We return to
problem (5) later in Section 3.2.
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3 Robust Gradient Estimation with Stochastic Proximal Point

3.1 Warmup: Momentum as Online Mean Gradient Estimation

When dealing with noisy gradient oracles, a standard technique is to apply (heavy-ball) momentum (Polyak,
1964). For momentum coefficient β ∈ [0, 1), it is given by

mt+1 = βmt + (1 − β)gt,

wt+1 = wt − ηtmt+1.
(SGD-M)

Momentum has been empirically shown to improve the performance of SGD in machine learning (Sutskever
et al., 2013), and can be seen as a variance reduction technique (Gower et al., 2020).

In this section, we will derive a new perspective on SGD-M, namely being an online estimator of the mean
gradient. To see this, we recall that for a random variable z ∈ Rd, its mean (if it exists) is the solution
to (5) with D = 1

2 ∥ · ∥2. The random variable of interest in this context are the noisy gradients gt. We
could in principle solve problem (5) with iterative stochastic methods. For this purpose, we consider the
stochastic proximal point (SPP) method (Asi & Duchi, 2019; Davis & Drusvyatskiy, 2019). We give a detailed
introduction to SPP in the next section.

For the purpose of this section, it is sufficient to know that the iterates (mt) of SPP with step-size τ > 0
applied to (5) are given by (details in Appendix B.2)

mt+1 = argmin
m

D(m − gt) + 1
2τ

∥m − mt∥2 = gt + proxτD(mt − gt), (6)

where we denote by proxD the proximal operator of D,

proxD(x) := argmin
y∈Rd

D(y) + 1
2∥y − x∥2.

For D = 1
2 ∥ · ∥2, it is easy to compute proxτD(x) = 1

1+τ x. Thus, one iteration of SPP (6) is equal to

mt+1 = gt + proxτD(mt − gt) = gt + 1
1+τ (mt − gt) = (1 − τ

1+τ )mt + τ
1+τ gt. (7)

This is exactly the momentum step in (SGD-M) with β = 1 − τ
1+τ . However, in SGD-M the parameters wt are

updated each step as well, and thereby the distribution of the gradients gt changes each step. In conclusion,
the momentum operation can be understood as an online estimation of the mean gradient.

We end this section by justifying our choice to specifically consider SPP for solving (5), instead of SGD or
other stochastic methods. If we were to apply SGD with step size to problem (5), we would obtain

mt+1 = (1 − τ)mt + τgt.

This also resembles momentum, but note that the momentum coefficient 1 − τ could be negative if τ > 1.
For SPP on the other hand, the momentum coefficient is correctly parametrized since 1 − τ

1+τ is contained
in [0, 1) for every τ > 0.

In conclusion, we can understand heavy-ball momentum (SGD-M) as applying SPP to the mean estimation
problem in an online fashion. This opens the question what is the SPP update for estimators that are more
robust to heavy-tailed noise, such as the median (or more generally for other choices for D that are of
interest). We answer this in the next section.

3.2 Clipping as Online Median Gradient Estimation

We now focus on the following gradient estimation problem: let G denote the (fixed) distribution over
noisy gradients g. For D : Rd → R≥0 being a closed, proper, convex function, we consider the problem of
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approximating

argmin
m∈Rd

Eg∼G [D(m − g)] . (8)

We consider stochastic iterative methods for solving (8), with a special focus on the stochastic proximal
point method (SPP). We recall the SPP update being

mt+1 = argmin
m

D(m − gt) + 1
2τ

∥m − mt∥2

= gt + proxτD(mt − gt).
(9)

The SPP update can be seen as an implicit version of SGD, which is hard to compute in general. In cases
where SPP has a closed form update, it is often preferred to SGD since is easier to tune (Asi & Duchi, 2019;
Milzarek et al., 2024). Fortunately, as we show next, the SPP method enjoys closed-form updates for all
choices of D which are of interest in our context, in particular for D ∈ {∥ · ∥1, ∥ · ∥2, 1

2 ∥ · ∥2}. All the details
are deferred to Appendix B.3.

Vectorwise clipping. If we choose D = ∥ · ∥2, the SPP update applies clipping to the difference between
sampled gradient gt and previous estimate mt.

Corollary 3.1. For D = ∥ · ∥2 update (9) is given by

mt+1 = mt + clipτ,2(gt − mt), (10)

where clipτ,2(v) := τ
max{τ,∥v∥2} v.

We can rewrite update (10) as mt+1 = βtmt + (1 − βt)gt with βt := 1 − τ
max{τ,∥gt−mt∥2} . In other words,

online estimation of the geometric median (D = ∥ · ∥2) with SPP is equal to a cautious version of momentum,
as samples which are too far from mt will be down weighted. This allows the iterates to be more robust to
outliers.

Componentwise clipping. If we choose D = ∥ · ∥1, SPP performs componentwise clipping instead. Here
as well, clipping protects against large individual entries by shrinking them independently.

Corollary 3.2. For D = ∥ · ∥1 update (9) is given by

mt+1 = mt + clipτ,1(gt − mt), (11)

where clipτ,1(v) := (min{max{vi, −τ}, τ})d
i=1.

Huber function. For update (10), it is possible that mt+1 = gt, thus no momentum. To allow for a soft
transition, we can choose D to be the Huber function. For µ > 0, it is given by

Hµ : Rd → R, Hµ(z) =
{

1
2 ∥z∥2 ∥z∥ ≤ µ,

µ∥z∥ − µ2

2 else.

The Huber function operates like the squared loss for arguments with small norm, and like the ℓ2-norm for
arguments with large norms (potentially outliers).

Corollary 3.3. For D = Hµ, update (9) is given by

mt+1 = gt + βt(mt − gt) = βtmt + (1 − βt)gt, (12)
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where βt := 1 − µτ
max{∥mt−gt∥, µ(1+τ)} .

In update (12) the coefficient βt is always positive. Thus, D = Hµ is a tradeoff between momentum with
fixed coefficient (D = 1

2 ∥ · ∥2) and clipping (D = ∥ · ∥2). However, it comes at the cost of choosing/tuning an
additional hyperparameter µ. In Appendix B.4, we additionally compare the updates when using stochastic
subgradient descent instead of SPP for solving (8), showing that sign-SGD is related to ℓ1-median estimation.

4 Gradient Estimator in the Wild

Our final objective is to use robust gradient estimators within a SGD-type method. Because at each iteration
the weights wt are updated, the distribution of the gradients (denoted by G in the previous section) also
changes at each iteration of SGD. Our strategy is to interweave updates in the weights wt with SPP updates
in the gradient estimators mt. That is, we sample one stochastic gradient gt per iteration and set

mt+1 = gt + proxτD(mt − gt),
wt+1 = wt − ηtmt+1.

(13)

With the results from Sections 3.1 and 3.2, we immediately obtain the following special cases:

(i) if D = 1
2 ∥ · ∥2 :

{
mt+1 = (1 − τ

1+τ )mt + τ
1+τ gt

wt+1 = wt − ηtmt+1,

(ii) if D = ∥ · ∥p, p ∈ {1, 2} :
{

mt+1 = mt + clipp,τ (gt − mt)
wt+1 = wt − ηtmt+1.

Equation (i) is SGD with momentum where the SPP step size τ defines the momentum coefficient. On the
other hand, (ii) corresponds to clipping, and here the SPP step size determines the clipping threshold. In
other words, SGD with momentum is to online mean estimation what clipping is to online median estimation.

A slightly different approach would be to restart mt = 0 in every iteration (cold start). In this case, (i)
reduces to SGD with no momentum, while in (ii) the clipping operator is applied to gt, instead of gt − mt,
which is also a common technique in practice (Zhang et al., 2020a). We discuss this relation below in more
detail.

Connection to Error Feedback. Methods such as (13) are also used in the distributed learning setting
to improve communication and protect against corrupted nodes (Karimireddy et al., 2021). These methods
are often called Error Feedback (EF) methods (Seide et al., 2014; Richtárik et al., 2021) and generally involve
an update of the form mt+1 = mt + Ct(gt − mt) where Ct : Rd 7→ Rd is a compression operator. Projections
onto balls can be seen as a compression, since one can encode the resulting vector in fewer bits (Safaryan
et al., 2021). In particular, centered clipping by Karimireddy et al. (2021), and the Clip21 method (Khirirat
et al., 2023) are using variations of update (10) in the distributed setting, and are thus ‘secretly estimating’
the geometric median of the gradients returned across all nodes.

SGD with standard clipping. Even in the non-distributed setting, a standard technique to avoid training
instabilities is to directly clip the gradient gt (Zhang et al., 2020a). For momentum coefficient β ∈ [0, 1) and
c > 0, let

mt+1 = βmt + (1 − β) min{1, c
∥gt∥ }gt,

wt+1 = wt − ηtmt+1.
(14)

We will refer to (14) as clipped-SGD. The method has been studied extensively, often for the case β = 0, see
Zhang et al. (2020a); Gorbunov et al. (2020); Koloskova et al. (2023); Puchkin et al. (2023) and references
therein.
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As explained above, when β = 0, then (14) is the same as (10) with cold start (resetting mt = 0 in every
iteration); but this does not allow for momentum, which is usually used in practice on top of clipping.
However, we can derive clipped-SGD (14) also as online SPP for computing a specific robust mean estimator,
known as the Catoni-Giulini mean estimator (Catoni & Giulini, 2018; Lugosi & Mendelson, 2019). For this,
consider the problem

argmin
m∈Rd

Eg∼G

[
1
2 ∥m − min{1, c

∥g∥ }g∥2
]

. (15)

The solution to (15) is Eg∼G

[
min{1, c

∥g∥ }g
]
, which is exactly the Catoni-Giulini mean estimator. Now, one

step of SPP (9) applied to (15) gives (14) with β = 1
1+τ .

Outline of remaining paper. Before comparing these different online gradient estimation methods in
experiments, we will discuss convergence guarantees: ideally, we would like to analyze the online method (13).
However, when D is not strongly convex this analysis turns out to be difficult, mainly due to the fact that
the distribution of gt changes every step. Hence, the next section will analyze the online median estimator
in a simplified setting, where we have access to multiple samples each iteration, and can (approximately)
compute their sample median. We focus on settings where the noise in gt is heavy-tailed, and prove that in
such scenarios the sample median can still guarantee convergence (while the sample mean fails).

Finally, our experiments in Section 6 will show that the online versions of the sample median method (VClip
and CClip) show superior performance as well in the heavy-tailed scenario, justifying the online estimation.

5 Theory for the Sample Median Gradient Method

In this section, we showcase that SGD with an (approximate) sample median is robust to heavy-tailed noise,
whereas SGD using the sample mean can fail. Consider the following setup: at every iteration t ≥ 0, we have
access to n noisy oracle gradients

(
g

(1)
t , . . . , g

(n)
t

)
, where

g
(i)
t = ∇ℓ(wt) + ξ

(i)
t (wt) for i = 1, . . . , n.

Here {ξ
(i)
t (wt) ∈ Rd}n

i=1 is a set of i.i.d. noise vectors. Given these sampled gradients, the typical approach
of SGD would be to use their sample mean (average) gt = 1

n

∑n
i=1 g

(i)
t as update direction.

Alternatively, to improve robustness, we analyze the update

wt+1 = wt − η(mt + et), (16)

where mt = medianℓp,i∈[n](g(i)
t ), and et ∈ Rd represents a random error we may commit in computing the

sample median. We refer to method (16) as Sample Median Gradient Descent (SMGD).

Assumption 5.1. There exists σ1, σ2, δ1, δ2 ≥ 0 such that, for every w ∈ Rd, the sample median m =
medianℓp,i∈[n](g(i)) verifies

∥E [m] − ∇ℓ(w)∥2 ≤ δ2
1 + δ2∥∇ℓ(w)∥2,

E
[
∥m − E [m] ∥2] ≤ σ2

1 + σ2∥∇ℓ(w)∥2.
(17)

Assumption 5.2. There exists ε > 0 such that, for every t ≥ 0, the error in computing the sample median
has finite variance: E

[
∥et∥2 | g

(1)
t , . . . , g

(n)
t

]
≤ ε2.

Based on these two assumptions, we establish the following complexity results for (16).
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Proposition 5.3. Let ℓ : Rd → R be L-smooth and let Assumption 5.1 hold with δ2 ≤ 1
8 . Take η ≤

1
8L(1+2σ2+2δ2) and consider wt a sequence generated by (16) where et verifies Assumption 5.2. Then, for
every T ≥ 1 it holds

min
0≤t≤T −1

E
[
∥∇ℓ(wt)∥2] = O

(
1

ηT + η + δ2
1 + ε2

)
.

Proposition 5.4. Let ℓ : Rd → R be convex and G-Lipschitz, with argmin ℓ ̸= ∅. Let Assumptions 5.1
and 5.2 hold. Without loss of generality assume that δ2 = σ2 = 0. Then, for η = 1

(δ+ε)T +
√

T
and every

T ≥ 1, the iterates wt from (16) satisfy

E [ℓ(w̄T ) − inf ℓ] = O
(

1√
T

+ δ1 + ε

)
,

where w̄T := 1
T

∑T −1
t=0 θtwt with θ = T

T +2 .

The proofs are provided in Appendix A. Let us now discuss our main Assumption 5.1. Assume for simplicity
that δ2 = σ2 = 0 (for instance if ℓ is Lipschitz), that et = 0 (the sample median is computed exactly), and
consider that g

(i)
t = ∇ℓ(wt) + ξ

(i)
t , where ξ

(i)
t is a noise term. Then, Assumption 5.1 becomes1

E
[
∥medianℓp,i∈[n](ξ(i)

t )∥2
]

≤ ν2 < +∞. (18)

In other words, we need the second moment of the sample median of ξ
(i)
t to be uniformly bounded. We want

to stress that our choice of using the median is crucial when the ξ
(i)
t come from a heavy-tailed distribution,

such as a (univariate) standard α-stable distribution, with α ∈ (1, 2). Indeed, in this case we know that the
variance of the sample median is finite for sufficiently large sample size n (see Bickel (1967, Theorem 2.2)
and Nolan (2020, Theorem 1.2))2. On the contrary, taking mt as the usual sample mean causes trouble, as
the variance of the sample mean is infinite3 everywhere. See Fig. 2 for an illustration of this phenomenon.

This simple discussion illustrates that Assumption 5.1 can be satisfied under mild conditions on the noise.
We exploit this in the next corollary, which shows that the ℓ1-sample median can even accommodate state-
dependent noise. Let us define first our model for such noise.

Assumption 5.5. For every w ∈ Rd, we have that g = ∇ℓ(w) + Σ(w)ζ, where Σ(w) ∈ Rd×d is a
matrix and ζ is a random vector whose components are drawn i.i.d. from a standard symmetric α-stable
distribution with α > 1. There exists constants c1, c2 > 0 such that

∥Σ(w)∥2
F ≤ c1 + c2∥∇ℓ(w)∥2 for all w ∈ Rd.

In the recent literature (see e.g. Zhang et al. (2020b); Puchkin et al. (2023); Sadiev et al. (2023)), a commonly
made assumption is that E [∥g − ∇ℓ(w)∥p] ≤ σ2 for some p < 2 where σ2 > 0 cannot depend on w. On
the contrary, Assumption 5.5 can accommodate much stronger noise. To illustrate this, consider d = 1 and
ℓ(w) = w2/2. Assumption 5.5 allows the noise model Σ(w)ζ with Σ(w) =

√
c1 + c2w2, which results in

strong noise, since ζ has infinite variance if α < 2, and this is amplified by Σ(w) when w is large. Such
strong noise makes vanilla SGD diverge, as we will illustrate in our experiments.

Corollary 5.6. Let n ≥ 3 be odd and p = 1. Consider the iterates from (16) with et = 0, and suppose
that g

(i)
t = ∇ℓ(wt) + Σ(wt)ζ(i)

t verifies Assumption 5.5.

1See Lemma A.2 in the appendix for a proof.
2We know more: The sample median of a parent distribution with median ξ is asymptotically normal with location ξ (Chu

& Hotelling, 1955). For Cauchy distributions (α = 1), the sample median has a finite variance for n ≥ 5 (Chu & Hotelling,
1955, Remark 1), while first and second moment of the sample mean are undefined.

3This is due to the fact that, by definition of α-stability, the sample mean of i.i.d sample follows the same α-stable distribution
(up to affine translation).
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Figure 2: First and second moment of sample median/mean for standard α-stable distribution. We approx-
imate E by running 10 000 trials. The sample median has much smaller variance (cf. (18)) compared to the
sample mean.

(i) If ℓ is smooth and η = 1/
√

T then we have that min0≤t≤T −1 E
[
∥∇ℓ(wt)∥2] = O(1/

√
T ).

(ii) If ℓ is convex and Lipschitz and η = 1/
√

T then we have that E [ℓ(w̄T ) − inf ℓ] = O(1/
√

T ), where
w̄T is defined as in Proposition 5.4.

This result illustrates how powerful the sample median can be when used in gradient-based optimization.
However, SMGD (16) has clear drawbacks: (i) it requires to draw multiple samples per iteration (multiple
calls of the oracle), and (ii) we need to compute the sample median up to some tolerance. For instance, the
geometric median can not be computed in closed form and there exists a vast body of literature on how to
approximate it (Cohen et al., 2016).

Nevertheless, our convergence guarantees for SMGD allow us to be optimistic that the strong performance
in the heavy-tailed setting will also transfer to the online drop-in replacements (of (16)), which we had
previously presented in Section 4. We investigate this in the following experiments section.

6 Experiments

We compare the iterative gradient estimation techniques for two experimental setups, namely (i) estimating
a vector/gradient from a fixed distribution, and (ii) methods of the form (13), that is, iterative gradient
estimation while simultaneously learning the weights.

We study both settings for synthetic data where we can control the level of heavy-tailedness, as well as for
language modelling tasks with transformer models. We consider the same three language modeling tasks
as studied in (Kunstner et al., 2023): an encoder-only transformer for the PTB dataset, a Transformer-XL
model for the WikiText-2 dataset, and fine-tuning a DistillBERT model for question-answering on the
SQuAD dataset. We refer to Appendix C for details.

In the following, we use VClip to refer to vectorwise clipping (10) and CClip for componentwise clipping (11).

6.1 Gradient Estimation with Fixed Weights

Synthetic data. In the first experiment, we verify the hypothesis that the choice of D matters for problem
(8); in particular, we show that estimating the median is more stable when the noise distribution is heavy-
tailed.

10
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Figure 3: τ = 0.01 Left: Final error for varying values of α (from left to right, distributions are more heavy-
tailed). Shaded area marks minimal and maximal value over the 50 independent runs. Right: Convergence
plot for all methods for 1

α ∈ [0.5, 1.5] (higher value of 1
α corresponds to heavier tails).

Setup. We consider the problem of estimating a fixed vector ĝ from the oracle g ∼ ĝ + ξ with ξ ∼ P,
under varying degree of heavy-tailedness of P. For this purpose, we choose the standard, unskewed α-stable
distribution Pα. We generate ĝ ∈ Rd with d = 10 where each component is generated i.i.d standard Gaussian.
In each iteration, a sample gt is generated as follows: each coordinate of (gt)i is (independently) sampled
from Pα with location (ĝ)i and varying values for 0 < α ≤ 2. Importantly, the median of Pα is equal to the
location (i.e. ĝ) for all values of α. Recall that for α ≤ 1 the mean of Pα is not defined, and otherwise equal
to the median.

We run the SPP method (9) for D ∈ { 1
2 ∥ · ∥2, ∥ · ∥2, ∥ · ∥1, Hµ}, with a fixed step size τ = 0.01 and track

the relative ℓ2-error ∥mt−ĝ∥2
∥ĝ∥2

. The corresponding methods are called momentum, VClip, CClip, and Huber,
where we set µ = 1.345 according to Huber (1981). For each method and distribution, we run 1000 iterations
and 50 different seeds.

Discussion. From Fig. 3 we find that as the noise becomes more heavy-tailed (as α decreases), momentum
fails to produce accurate estimates of ĝ. On the other hand, both VClip and CClip are robust to heavy
tails, as expected, as we showed that VClip and CClip are estimating the median. Notably CClip becomes
more accurate (relatively) as α decreases. The Huber function produces results very similar to VClip, but
slightly inferior.

Language modelling. We also run momentum, VClip and CClip in order to estimate the full gradient for
the language modeling tasks, where the weights are fixed at initialization. The setup is identical to the one
described in Kunstner et al. (2023), in particular Figure 1 therein. We present the results in Appendix C.1.

6.2 Training with Online Gradient Estimation

We now present comparisons of various (online) gradient estimators when simultaneously training the
weights, that is the distribution of gradients changes in each iteration.

Least squares with heavy-tailed noise. We consider the noise-perturbed least-squares problem
minw∈Rd

1
2 ∥w∥2 and use a gradient oracle given by g ∼ w + ξ ∈ Rd, where ξ ∼ P is the noise term.

We consider three setups:
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Figure 4: Least squares with heavy-tailed noise that is independent over components (left), state-dependent
(middle), and where components of noise are dependent (right). All methods in gray use n = 5 samples
per iteration, all others only one. Note that for (S2), the sample mean immediately diverges, and hence
does not appear in the plot. Shaded area depicts minimum and maximum value over 50 repetitions.

(S1) The d components of ξ are i.i.d. distributed according to a standard α-stable distribution with
location zero and α = 1.1. Note that Eξ∼P [ξ] = 0.

(S2) Same as (S1), but the noise is state-dependent, given by ξt = σ · ξ where σ =
√

1 + ∥wt∥2.

(S3) ξ follows an elliptically contoured α-stable distribution (Nolan, 2013) with location zero and α = 1.1.
In particular, the components of ξ are not independent.

We run seven different methods: on the one hand, the method depicted in Section 5, (16), where in each
iteration we draw n = 5 samples. We run three variations of (16), namely using the ℓ1- and ℓ2-sample
median as well as the sample mean for mt. The ℓ2-median is approximately computed using the method
proposed in Vardi & Zhang (2000).

On the other hand, we run our online median estimator methods (13), with D ∈ {∥ · ∥2, ∥ · ∥1, Hµ}, that is,
VClip, CClip, and Huber. Importantly, these methods only receive one sample per iteration, and they do
not involve any median computations (in contrast to ℓ1- and ℓ2-sample median). We also run clipped-SGD
(cf. (14)) with β = 0.9 and c = 50.4 We run all methods with a learning rate ηt = 0.01. For VClip, CClip,
and Huber we set τ = 1, and we set again µ = 1.345 for Huber. We always run 50 repetitions and report
averaged metrics.

Discussion. Fig. 4 shows that both ℓ1- and ℓ2-sample median attain the smallest objective, while the sample
mean does not converge as predicted by our theory (see discussion after Proposition 5.3). From the online
methods, CClip performs best in the scenario where the noise is componentwise independent, while VClip
and Huber are better in the other case. Overall, Huber and VClip behave again very similarly. We find that
both VClip and CClip reach much smaller loss values than clipping the stochastic gradient directly, and
thus clipping only the increment is better suited here. We also find that the ℓ1-sample median can deal with
state-dependent noise (S2) as predicted by our theory.

Language modeling. We now consider the online methods (13), that is training while simultaneously
estimating the gradient, for the three language modeling tasks. We compare SGD-M, VClip and CClip, and
clipped-SGD.5 We also add Adam as a baseline, but focus on the comparison among the SGD-type methods.

4This choice is a tradeoff between slow convergence (large c) and high instability (small c).
5We also tried Huber (with µ = 1.3) on these problems, but did not observe an advantage over VClip (plots not shown).
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Figure 5: Training loss for each method, with tuned learning rate. Shaded area depicts minimum and
maximum value over 5 seeds.
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Figure 6: Validation score (measured as perplexity, or F1 score) for each method, with tuned learning rate.
Shaded area depicts minimum and maximum value over 5 seeds.

For all methods, we tune the learning rate on a log10-scaled grid (tuned values reported in Table 1), displaying
the one that attained smallest final training loss (averaged over 5 seeds).

We choose a standard momentum/clipping parameters for all tasks (without tuning): we set β = 0.9 for
SGD-M, τ = 0.1 for V/CCLip, and β = 0.9, c = 1 for clipped-SGD.

Discussion. Fig. 5 shows that VClip improves over SGD-M for PTB and WikiText-2, and is on par for SQuAD.
CClip performs always worse, which might be due to the noise being not componentwise independent. How-
ever, VClip does not close the gap to Adam, and also performs worse than clipped-SGD for the WikiText-2
dataset.

7 Conclusion

We provide a new approach for robust gradient estimation using the stochastic proximal point method, with
a focus on (online) estimators of the median gradient. We observe that this general framework intersects
with many existing works on robust stochastic optimization, where the connection between clipping and
median estimation was not known previously.
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We provide an analysis of SGD using the median of sampled gradients (called SMGD), and show convergence
guarantees under potentially heavy-tailed and state-dependent noise. In contrast, under the same assump-
tion, SGD with the sample mean does not converge.

Finally, numerical experiments show that online versions of SMGD, even though not covered by this theory,
perform equally well on problems with heavy-tailed noise, while methods based on mean estimation fail.
However, when training transformer models on language tasks, this gap is far less pronounced; this could
indicate that the level of heavy-tailedness in these applications is moderate.
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Appendix

A Missing Proofs for Section 5

A.1 On the Assumptions on the Sample Median

We first state a simple fact about Lipschitz functions:

Lemma A.1. If Assumption 5.1 holds, and if ℓ is Lipschitz continuous, then without loss of generality we
can assume that δ2 = σ2 = 0.

Proof. If ℓ is G-Lipschitz, then for every subgradient u ∈ ∂ℓ(w) we have ∥u∥ ≤ G, so one can replace δ2
1

with δ2
1 + δ2G2 and σ2

1 with σ2
1 + σ2G2.

In the following proof of Proposition 5.3 we will need an equivalent but more compact formulation of
Assumption 5.1.

Lemma A.2. Let m be a random variable in Rd, and consider the following property:

E
[
∥m − ∇ℓ(w)∥2] ≤ ν2

1 + ν2∥∇ℓ(w)∥2. (19)

If (17) holds then (19) holds with ν2
1 = δ2

1 + σ2
1 and ν2 = δ2 + σ2. If (19) holds, then (17) holds with

δ1 = σ1 = ν1 and δ2 = σ2 = ν2.

Proof. Expanding the squares, we get

E
[
∥m − ∇ℓ(w)∥2] = E

[
∥m − E [m] ∥2]+ ∥E [m] − ∇ℓ(w)∥2,

where we used that E [⟨m − E [m] ,E [m] − ∇ℓ(w)⟩] = 0. Now, the first implication is trivial, and the second
follows from the positivity of the involved terms.

We now verify that Assumption 5.1 holds true for the ℓ1-sample median, provided that the noise on the
subgradient is linearly depending on an α-stable distribution, and that the linear coefficients grow with the
norm of the subgradient.

Lemma A.3. Let n ∈ N be odd and n ≥ 3. Suppose that the subgradient oracles g(i) = ∇ℓ(w)+Σ(w)ζ(i)

verify Assumption 5.5, for all i = 1, . . . , n and set

m = medianℓ1,i∈[n]

(
g(i)(w)

)
.

Then, Assumption 5.1 holds with δ1 = δ2 = 0, and σ2
1 = Cnc1, σ2 = Cnc2, for some constant Cn = O(1/n).

Proof. Let us denote the noise vector by ξ(i) = Σ(w)ζ(i). By the stability property of α-stable distributions
(Nolan, 2020, Proposition 1.3), we have that

ξ
(i)
k := ξ

(i)
k (w) =

d∑
j=1

[Σ(w)]kjζ
(i)
j =d ∥Σ(w)k∥αz, (20)
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where =d denotes equality in distribution, z is a standard symmetric α-stable random variable in R, and
Σ(w)k denotes the k-th row of Σ(w). Observe that from Assumption 5.5 we can write that

d∑
i=1

∥Σ(w)i∥2
α ≤ ρ2

α

d∑
i=1

∥Σ(w)i∥2
2 = ρ2

α∥Σ(w)∥2
F ≤ c′

1 + c′
2∥∇ℓ(w)∥2, for all w ∈ Rd. (21)

by setting c′
1 = ρ2

αc1 and c2 = ρ2
αc2, and where ρα > 0 is the best constant such that ∥ · ∥α ≤ ρα∥ · ∥2, which

is ρα = d
2−α
2α is for α ≤ 2, and ρα = 1 otherwise.

We start by computing the bias term that is required by Assumption 5.1.

∥E [m] − ∇ℓ(w)∥2 =∥E
[
medianℓ1,i∈[n]

(
∇ℓ(w) + ξ(i)(w)

)]
− ∇ℓ(w)∥2

=∥E
[
medianℓ1,i∈[n]

(
ξ(i)(w)

)]
∥2

where we used the fact that

medianℓ1,i∈[n]

(
∇ℓ(w) + ξ(i)(w)

)
= ∇ℓ(w) + medianℓ1,i∈[n]

(
ξ(i)(w)

)
.

On the other hand, the ℓ1-median boils down to computing component-wise medians, hence we have that

E
[
medianℓ1,i∈[n]

(
ξ(i)(w)

)]
=


E
[
mediani∈[n]

(
ξ

(i)
1

)]
...

E
[
mediani∈[n]

(
ξ

(i)
d

)]
 ,

where mediani∈[n](ξ(i)
k ) = argmin

m∈R

1
n

∑n
i=1 |m − ξ

(i)
k | is the one dimensional sample median estimator.

Now, let us compute E
[
mediani∈[n]

(
ξ

(i)
k

)]
for some k ∈ {1, . . . , d}. Denoting r = (n − 1)/2 ∈ N and by

using the probability density function of the sample median (cf. Maritz & Jarrett (1978)), we have that:

E
[
mediani∈[n]

(
ξ

(i)
k

)]
= n!

r!r!

∫
R

x (Fw,k(x)(1 − Fw,k(x)))r
pw,k(x)dx︸ ︷︷ ︸

=:A

,

where Fw,k and pw,k(x) are respectively the cumulative distribution function (cdf) and the probability density
function (pdf) of ξ

(i)
k ∼ Pα,∥Σk(w)∥α

that is a symmetric α-stable random variable with scale ∥Σk(w)∥α. As
pw,k is continuous and symmetric around zero, we have pw,k(x) = pw,k(−x) and (1 − Fw,k(x)) = Fw,k(−x)
for all x ∈ R. This gives us:

A =
∫ ∞

0
x (Fw,k(x)Fw,k(−x))r

pw,k(x)dx +
∫ 0

−∞
x (Fw,k(x)Fw,k(−x))r

pw,k(x)dx

=
∫ ∞

0
x (Fw,k(x)Fw,k(−x))r

pw,k(x)dx −
∫ ∞

0
x (Fw,k(x)Fw,k(−x))r

pw,k(x)dx

=0.

Hence, we obtain that

E
[
medianℓ1,i∈[n]

(
ξ(i)(w)

)]
= 0.

This shows that the first line of Assumption 5.1 holds with δ1 = δ2 = 0.
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We now proceed to the estimation of the variance. By using similar arguments, we have that:

E
[
∥m − E [m] ∥2] = E

[
∥medianℓ1,i∈[n]

(
ξ(i)(w)

)
∥2
]

=
d∑

k=1
E
[(

mediani∈[n]

(
ξ

(i)
k

))2
]

=
d∑

k=1

n!
r!r!E

[(
ξ

(i)
k

)2
(

Fw,k

(
ξ

(i)
k

)(
1 − Fw,k

(
ξ

(i)
k

)))r]
, (22)

where (22) follows from Maritz & Jarrett (1978, Equation 2.1). By using (20) with (21) and denoting the
cdf of the standard symmetric α-stable distribution by Fz, we further compute that:

E
[
∥m − E [m] ∥2] = n!

r!r!E
[

z2

(
Fz(z)(1 − Fz(z)

)r] d∑
k=1

∥Σk(w)∥2
α

≤ n!
r!r!E

[
z2

(
Fz(z)(1 − Fz(z)

)r] (
c′

1 + c′
2∥∇ℓ(w)∥2)

=: Cn

(
c′

1 + c′
2∥∇ℓ(w)∥2) .

This shows that the second line of Assumption 5.1 holds with σ2
1 = Cnρ2

αc1 and σ2 = Cnρ2
αc2.

Finally we observe that, again by Maritz & Jarrett (1978, Equation 2.1), Cn is the variance of the sample
median of a set of i.i.d. standard symmetric α-stable variables {z1, . . . , zn}, where zi =d z. As n → ∞, it
is well-known that the sample median is asymptotically normal with variance 1/(4nf2(0)), where f denotes
the pdf of z (see Maritz & Jarrett (1978)). Hence we conclude that Cn = O(1/n) as n → ∞. This concludes
the proof.

A.2 Rates for SMGD for Smooth Nonconvex Functions: Proof of Proposition 5.3

The following proposition is an application of biased SGD results to the SMGD algorithm with errors. It is
possible to show that Assumptions 5.1 and 5.2 both imply Assumption 9 from Demidovich et al. (2023). So
from a qualitative point of view the result below is the same that what we would obtain by using Theorem
3 from Demidovich et al. (2023). But doing so would produce a bound with worse constants, so we prefer
to provide a proof exploiting directly our assumptions.

Proposition 5.3. Let ℓ : Rd → R be L-smooth and let Assumption 5.1 hold with δ2 ≤ 1
8 . Take η ≤

1
8L(1+2σ2+2δ2) and consider wt a sequence generated by (16) where et verifies Assumption 5.2. Then, for
every T ≥ 1 it holds

min
0≤t≤T −1

E
[
∥∇ℓ(wt)∥2] = O

(
1

ηT + η + δ2
1 + ε2

)
.

Proof. In this proof we note Et for the expectation taken conditionally to the filtration generated by
w0, . . . wt. In particular, we will have from Assumption 5.2 on the errors together with the tower rule
that Et∥et∥2 = EtE

[
∥et∥2 | g

(1)
t , . . . , g

(n)
t

]
≤ ε2.

Smoothness of ℓ implies

ℓ(wt+1) − ℓ(wt) − ⟨∇ℓ(wt), wt+1 − wt⟩ ≤ L

2 ∥wt+1 − wt∥2.

If we note dt := mt + et, thus wt+1 − wt = −ηdt. This implies

ℓ(wt+1) − ℓ(wt) + η⟨∇ℓ(wt), dt⟩ ≤ Lη2

2 ∥dt∥2.
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Let us bound the two terms depending on dt. First, take expectation conditioned to Ft (which we will
denote Et) to write

Et [⟨∇ℓ(wt), dt⟩] = ⟨∇ℓ(wt),Et [dt]⟩ = 1
2∥∇ℓ(wt)∥2 + 1

2∥Et [dt] ∥2 − 1
2∥Et [dt] − ∇ℓ(wt)∥2

≥ 1
2∥∇ℓ(wt)∥2 − 1

2∥Et [dt] − ∇ℓ(wt)∥2.

Using (17) and ∥Et [et] ∥2 ≤ Et

[
∥et∥2] ≤ ε2 due to Jensen’s inequality, we can bound

∥Et [dt] − ∇ℓ(wt)∥2 ≤ 2∥Et [mt] − ∇ℓ(wt)∥2 + 2∥Et [et] ∥2 ≤ 2δ2
1 + 2δ2∥∇ℓ(wt)∥2 + 2ε2.

Second, we use Young’s inequality and our assumptions to bound ∥dt∥2:

Et

[
∥dt∥2] ≤ 2Et

[
∥et + mt − ∇ℓ(wt)∥2]+ 2∥∇ℓ(wt)∥2

≤ 4Et

[
∥et∥2]+ 4Et

[
∥mt − ∇ℓ(wt)∥2]+ 2∥∇ℓ(wt)∥2

≤ 4ε2 + 4(δ2
1 + σ2

1) + (2 + 4δ2 + 4σ2)∥∇ℓ(wt)∥2,

where in the last inequality we used that (17) implies (19) (cf. Lemma A.2). Combine all the above
inequalities to get

Et [ℓ(wt+1)] − ℓ(wt) + η
2 ∥∇ℓ(wt)∥2 − η

2 (2δ2
1 + 2δ2∥∇ℓ(wt)∥2 + ε2)

≤ Lη2

2
(
4(ε2 + δ2

1 + σ2
1) + (2 + 4δ2 + 4σ2)∥∇ℓ(wt)∥2).

Rearranging yields

Et [ℓ(wt+1)] − ℓ(wt)
≤ −η

[ 1
2 − δ2 − Lη(1 + 2σ2 + 2δ2)

]
∥∇ℓ(wt)∥2 + η(δ2

1 + ε2) + 2Lη2(ε2 + δ2
1 + σ2

1).

If δ2 ≤ 1
8 and using η ≤ 1

8L(1+2σ2+2δ2) , after taking full expectation, we obtain

E [ℓ(wt+1)] − E [ℓ(wt)] ≤ − η
4E
[
∥∇ℓ(wt)∥2]+ η(δ2

1 + ε2) + 2Lη2(ε2 + δ2
1 + σ2

1).

Sum over t = 0, . . . , T − 1, multiply by 4
ηT and use min

t=0,...,T −1
E
[
∥∇ℓ(wt)∥2] ≤ 1

T

∑T −1
t=0 E

[
∥∇ℓ(wt)∥2] to

finally obtain

min
t=0,...,T −1

E
[
∥∇ℓ(wt)∥2] ≤ 4(ℓ(w0) − inf ℓ)

ηT
+ 8Lη(ε2 + δ2

1 + σ2
1) + 4(δ2

1 + ε2).

A.3 Rates for Biased SGD for Convex Lipschitz Functions

In this section we prove another result about the complexity of biased SGD, that is SGD with biased estimators
of the subgradient. As far as we know, biased SGD was only studied in the case of strongly convex functions
or smooth nonconvex functions (Demidovich et al., 2023), or in the particular case of random projections.
In that regard, the next result is a new contribution to the analysis of biased SGD.

Before stating our result, we recall a few standard definitions given that we are working with a nonsmooth
convex function. Given a convex function ℓ : Rd → R, we say that u is a subgradient of ℓ at w if

(∀w′ ∈ Rd) ℓ(w′) − ℓ(w) − ⟨u, w′ − w⟩ ≥ 0.

We note ∂ℓ(w) the set of all subgradients of ℓ at w, that is called the subdifferential of ℓ at w.
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Theorem A.4. Let ℓ : Rd → R be a convex G-Lipschitz function such that argmin ℓ ̸= ∅. Let η > 0, and
note D := ∥w0 − w∗∥ for some w∗ ∈ argmin ℓ. Consider the iterates generated by a biased Stochastic
Subgradient Descent method

wt+1 = wt − ηgt,

and assume that the estimator gt has a uniformly finite bias and variance (we denote by Ft the filtration
induced by w0, . . . , wt):

∥E [gt|Ft] − ut∥ ≤ δ, E
[
∥gt − E [gt|Ft] ∥2|Ft

]
≤ σ2,

where ut is any subgradient of ℓ at wt. Then, for every T ≥ 1

E [ℓ(w̄T ) − inf ℓ] ≤ 2D2

ηT
+ η

σ2 + (δ + G)2

2 + η
δ2T

4

where w̄T is an average of the first T iterates defined by w̄T = 1∑T −1
t=0

θt

∑T −1
t=0 θtwt, θ = T

T +2 . In particular,
if we take a constant step size equal to

η = 2
√

2D√
2(σ2 + (δ + G)2)T + δ2T 2

(resp. η = 1
δT +

√
T

)

then we can guarantee that

E [ℓ(w̄T ) − inf ℓ] ≤ 2D

√
σ2 + (δ + G)2

T
+ δ2

2 (resp. 2D2 + σ2 + δ2 + G2
√

T
+ (2D2 + 1)δ ).

Proof. Let w∗ ∈ argmin ℓ and T ≥ 1 be fixed. Develop the squares and use the definition of the algorithm
to write

∥wt+1 − w∗∥2 = ∥wt − w∗∥2 + 2⟨wt+1 − wt, wt − w∗⟩ + ∥wt+1 − wt∥2

= ∥wt − w∗∥2 − 2η⟨gt, wt − w∗⟩ + η2∥gt∥2.

Let ḡt be the projection of E [gt|Ft] onto ∂ℓ(wt), the subdifferential of ℓ at wt, which is a nonempty closed
convex set. This means that from our assumption on the bias of gt we will have

∥E [gt|Ft] − ḡt∥ ≤ ∥E [gt|Ft] − ut∥ ≤ δ.

Then, after taking conditional expectation (denoted by Et [·] instead of E [·|Ft]) we can write

Et

[
∥wt+1 − w∗∥2] = ∥wt − w∗∥2 − 2η⟨Et [gt] , wt − w∗⟩ + η2Et

[
∥gt∥2]

= ∥wt − w∗∥2 − 2η⟨ḡt, wt − w∗⟩ + 2η⟨ḡt − Et [gt] , wt − w∗⟩ + η2Et

[
∥gt∥2]

≤ ∥wt − w∗∥2 − 2η(ℓ(wt) − inf ℓ) + 2η⟨ḡt − Et [gt] , wt − w∗⟩ + η2Et

[
∥gt∥2] ,

where in the last inequality we used the convexity of ℓ together with the fact that ḡt ∈ ∂ℓ(wt). The last term
can be bounded by using our assumptions on the estimator gt, and the fact that ℓ has bounded subgradients:

Et

[
∥gt∥2] = Et

[
∥gt − Et [gt] ∥2]+ ∥Et [gt] ∥2 ≤ σ2 + (∥Et [gt] − ḡt∥ + ∥ḡt∥)2 ≤ σ2 + (δ + G)2.

Injecting this in the previous inequality we obtain

Et

[
∥wt+1 − w∗∥2] ≤ ∥wt − w∗∥2 − 2η(ℓ(wt) − inf ℓ) + 2η⟨ḡt − Et [gt] , wt − w∗⟩ + η2σ2 + η2(δ + G)2.

Now we introduce a parameter ε > 0, and we use Young’s inequality together with our assumption on the
bias of gt to write

2⟨ḡt − Et [gt] , wt − w∗⟩ ≤ 1
ε

∥ḡt − Et [gt] ∥2 + ε∥wt − w∗∥2 ≤ ε−1δ2 + ε∥wt − w∗∥2.
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Inject this bound in our main inequality

Et

[
∥wt+1 − w∗∥2] ≤ (1 + ηε)∥wt − w∗∥2 − 2η(ℓ(wt) − inf ℓ) + η2σ2 + η2(δ + G)2 + ηε−1δ2,

and after reorganizing the terms, dividing by 2η and taking expectation we finally obtain

E [ℓ(wt) − inf ℓ] ≤ 1 + ηε

2η
E
[
∥wt − w∗∥2]− 1

2η
E
[
∥wt+1 − w∗∥2]+ η

σ2 + (δ + G)2

2 + ε−1 δ2

2 .

We are now ready to use a weighted telescopic sum argument. First, define θ := 1
1+ηε and ρt := θt. Second,

multiply our inequality by ρt+1 and then sum for t = 0, . . . , T −1. Observe that the term (1+ηε)ρt+1 is equal
to ρt due to our definition, which means that we have a telescoping sum where the terms ρt

2ηE
[
∥wt − w∗∥2]

will cancel each other. Third, divide by
∑T −1

t=0 ρt+1 so to obtain

1∑T −1
t=0 ρt+1

T −1∑
t=0

ρt+1E [ℓ(wt) − inf ℓ] ≤ ρ0

2η
∑T −1

t=0 ρt+1
E
[
∥w0 − w∗∥2]+ η

σ2 + (δ + G)2

2 + ε−1 δ2

2 .

Now define w̄T := 1∑T −1
t=0

ρt+1

∑T −1
t=0 ρt+1wt = 1∑T −1

t=0
θt

∑T −1
t=0 θtwt, and use Jensen’s inequality to get

E [ℓ(w̄T ) − inf ℓ] ≤ ∥w0 − w∗∥2

2η
∑T −1

t=0 ρt+1
+ η

σ2 + (δ + G)2

2 + ε−1 δ2

2 .

We will now simplify this upper bound, so we can later make an appropriate choice of η leading to the desired
complexity bound. We will now focus on the geometric sum appearing in the denominator, and lower bound
it. Start by using the definition of ρt to write

η

T −1∑
t=0

ρt+1 = ηθ

T −1∑
t=0

θt = η
θ

1 − θ
(1 − θT ).

On the one hand, we see that from the definition of θ we have

η
θ

1 − θ
= η

1 + ηε

1
1 − 1

1+ηε

= η

ηε
= ε−1.

On the other hand, we can guarantee that (1 − θT ) ≥ 1/2 provided that ε = 2
ηT . To see this, first observe

that (1 − θT ) ≥ 1/2 is equivalent to T ≥ ln(2)
ln(θ−1) . Since we impose that ηε = 2

T then necessarily θ = T
T +2

which means that θ−1 = 1 + 2
T . So what we need to verify is T ≥ ln(2)

ln(1+ 2
T ) . Now, observe that ln(2) ≤ 1.

Moreover, it is an exercise (see Lemma A.5 which is deferred to the end of this proof) to verify that for all
x ≥ 0, 1

ln(x+1) ≤ 1
2 + 1

x . So for our condition to hold it is enough to ask that T ≥ 1
2 + T

2 , which is equivalent
to T ≥ 1, which is true.

Combining all those bounds together with our new definition for ε, we now have

E [ℓ(w̄T ) − inf ℓ] ≤ 2∥w0 − w∗∥2

ηT
+ η

σ2 + (δ + G)2

2 + ηδ2T

4 .

To simplify the last stage of our analysis, let us note a = 2∥w0 − w∗∥2, b = σ2+(δ+G)2

2 and c = δ2

4 , so that
our bound writes as

E [ℓ(w̄T ) − inf ℓ] ≤ a

ηT
+ ηb + cηT. (23)

Minimizing the right-hand side with respect to η is equivalent to solve a
ηT = ηb + cηT , where

a

ηT
= ηb + cηT ⇔ η2 = a

T (b + cT ) ⇔ η =
√

a

bT + cT 2 ⇔ η = 2

√
2∥w0 − w∗∥2

2(σ2 + (δ + G)2)T + δ2T 2
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With such choice of stepsize, our bound becomes

E [ℓ(w̄T ) − inf ℓ] ≤ 2a

ηT
= 2a

T

√
bT + cT 2

a
= 2

√
a

√
b

T
+ c = 2∥w0 − w∗∥

√
σ2 + (δ + G)2

T
+ δ2

2

and this gives us our first bound. For the second bound, let us take simply η = 1
δT +

√
T

and inject it into
(23) to obtain

E [ℓ(w̄T ) − inf ℓ] ≤ aδT + a
√

T

T
+ b

δT +
√

T
+ cT

δT +
√

T

≤ aδ + a√
T

+ b√
T

+ c

δ
= a + b√

T
+ aδ + c

δ

≤ 2D2 + σ2 + δ2 + G2
√

T
+ (2D2 + 1)δ,

where in the last inequality we simplified some numerical constants.

Lemma A.5. For every x ≥ 0, 1
ln(1+x) ≤ 1

2 + 1
x .

Proof. This inequality is equivalent to ln(1+x) ≥ 2x
x+2 , or again (x+2) ln(1+x) ≥ 2x. Define ϕ : (−1, +∞) →

R as ϕ(x) = (x + 2) ln(1 + x) and compute its derivatives:

ϕ′(x) = ln(1 + x) + 1 + 1
1 + x

and ϕ′′(x) = x

(1 + x)2 .

We see that ϕ′′(x) ≥ 0 for all x ≥ 0, so ϕ is convex on [0, +∞). So we can use the tangent inequality:

ϕ(x) ≥ ϕ(0) + ϕ′(0)(x − 0) = 0 + 2x = 2x. (24)

Therefore ϕ(x) ≥ 2x for all x ≥ 0, which is what we wanted to prove.

A.4 Rates for SMGD for Convex Lipschitz Functions: Proof of Proposition 5.4
Proposition 5.4. Let ℓ : Rd → R be convex and G-Lipschitz, with argmin ℓ ̸= ∅. Let Assumptions 5.1
and 5.2 hold. Without loss of generality assume that δ2 = σ2 = 0. Then, for η = 1

(δ+ε)T +
√

T
and every

T ≥ 1, the iterates wt from (16) satisfy

E [ℓ(w̄T ) − inf ℓ] = O
(

1√
T

+ δ1 + ε

)
,

where w̄T := 1
T

∑T −1
t=0 θtwt with θ = T

T +2 .

Proof. In this proof, we note Ft the filtration generated by w0, . . . , wt, and we will note Et to refer to the
expectation conditioned on Ft.

We want to apply Theorem A.4. Let us denote gt = mt + et, so that the iterates of SMGD verify wt+1 =
wt −ηgt. We are now going to show that gt has uniformly bounded bias and variance. For this we will make
use of Assumptions 5.1 and 5.2. Remember that we assumed δ2 = σ2 = 0 without loss of generality (we can
do this according to Lemma A.1), so we note δ and σ instead of δ1 and σ1. Also, Assumption 5.2 on the
errors together with the tower rule imply that Et

[
∥et∥2] = Et

[
E
[
∥et∥2 | g

(1)
t , . . . , g

(n)
t

]]
≤ ε2. Regarding

the bias, we can write

∥Et [gt − ∇ℓ(wt)] ∥ ≤ ∥Et [mt − ∇ℓ(wt)] ∥ + ∥Et [et] ∥ ≤ δ + ε,
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where in the last inequality we used Jensen’s inequality to write ∥Et [et] ∥ ≤
√
Et [∥et∥2]. As for the variance,

we write

Et

[
∥gt − Etgt∥2] ≤ 2Et

[
∥mt − Et [mt] ∥2]+ 2Et

[
∥et − Et [et] ∥2] ≤ 2σ2 + 8Et

[
∥et∥2] ≤ 2σ2 + 8ε2.

Using Theorem A.4, we obtain

E [ℓ(w̄T ) − inf ℓ] ≤ 2∥w0 − w∗∥2

ηT
+ η

2σ2 + 8ε2 + (δ + ε + G)2

2 + η(δ + ε)2T

4 .

Setting the step size η = 1
(δ+ε)T +

√
T

, we conclude that

E [ℓ(w̄T ) − inf ℓ] ≤ 2D2 + 2σ2 + 8ε2 + (δ + ε)2 + G2
√

T
+ (2D2 + 1)(δ + ε).

A.5 Rates for SMGD with Stable Noise: Proof of Corollary 5.6
Corollary 5.6. Let n ≥ 3 be odd and p = 1. Consider the iterates from (16) with et = 0, and suppose
that g

(i)
t = ∇ℓ(wt) + Σ(wt)ζ(i)

t verifies Assumption 5.5.

(i) If ℓ is smooth and η = 1/
√

T then we have that min0≤t≤T −1 E
[
∥∇ℓ(wt)∥2] = O(1/

√
T ).

(ii) If ℓ is convex and Lipschitz and η = 1/
√

T then we have that E [ℓ(w̄T ) − inf ℓ] = O(1/
√

T ), where
w̄T is defined as in Proposition 5.4.

Proof. First of all, remember that the ℓ1-median can be computed exactly, by computing component-wise a
one-dimensional median. This allows us to have ε = 0 in Assumption 5.2.

Proof of part (i). The result is a direct consequence of Lemma A.3 and Proposition 5.3.

Proof of part (ii). The result is a direct consequence of Lemma A.3 and Proposition 5.4.

This completes the proof.

B Approximate Computation of Gradient Estimators

B.1 Gradient Estimation Problem: General Considerations

Given a function D : Rd → R we consider the problem (5), which writes as

argmin
m∈Rd

E [D(m − z)] .

In what follows, we will mostly consider functions D satisfying the following assumption.

Assumption B.1. The function D : Rd → R is convex, argmin
z

D(z) = {0} and problem (5) admits a
solution.

Note that assuming D to be convex and finite implies that it is continuous, therefore measurable, which
means that E [D(m − z)] is well defined. The assumption that argmin

z
D(z) = {0} guarantees that in the

trivial case when the distribution is a Dirac δm0 , then the solution to (5) is exactly m0. The assumption
that a solution to (5) exists is easily verified in practice, under the assumption that D is coercive:
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Lemma B.2. Let D : Rd → R be convex. Assume that E [D(z − E [z])] < +∞. If D is coercive, i.e.
lim

∥m∥→∞
D(m) = +∞, then (5) admits a solution.

Proof. Let ϕ(m) := E [D(m − z)]. Since we assume that ϕ(E [z]) = E [D(z − E [z])] < +∞ then ϕ is proper.
Since D is convex then ϕ is convex, as an expectation of convex functions. Moreover D is convex and finite,
which means that D is continuous on Rd, see e.g. Corollary 8.39 in Bauschke & Combettes (2017). Therefore
ϕ is an expectation of lower semicontinuous functions, which implies that ϕ is lower semicontinuous.

Since D is coercive, convex and continuous, we know that there exists a ∈ (0, +∞) and b ∈ R (see Proposition
14.16 in Bauschke & Combettes (2017)) such that D(·) ≥ a∥ · ∥ + b. Therefore

ϕ(m) = E [D(m − z)] ≥ aE [∥m − z∥] + b

≥ a∥m − E [z] ∥ − aE [∥z − E [z] ∥] + b

≥ a∥m − E [z] ∥ − aE [D(z − E [z])] −→
∥m∥→∞

+∞,

where in the inequalities we used the fact that ∥ · ∥ is 1-Lipschitz, and that aE [∥z − E [z] ∥] ≤
aE [D(z − E [z])] − b < +∞. So ϕ is coercive on top of being proper convex and lower semicontinuous.
We can then conclude that ϕ has a minimizer, with for instance Proposition 11.15 from Bauschke & Com-
bettes (2017).

B.2 Approximations Based on the Stochastic Proximal Point: General D

Given a proper, closed convex function ϕ : Rd → R ∪ {+∞} and τ > 0, we recall the definition of the
proximal operator

proxτϕ(m0) = argmin
m∈Rd

ϕ(m) + 1
2τ

∥m − m0∥2.

Applying the SPP algorithm to (8) gives the following iterationsSample gt i.i.d. from G
mt+1 = argmin

m∈Rd

D(m − gt) + 1
2τ ∥m − mt∥2. (25)

As we see next, those iterations can be reformulated to simply involve the proximal operator of D:

Proposition B.3. Let D verify Assumption B.1. The SPP update (25) for solving (9) can be equivalently
written as

mt+1 = gt + proxτD(mt − gt) (26)
= prox

τD∗( mt−·
τ )(gt), (27)

where D∗(m) := supy

(
⟨y, m⟩ − D(y)

)
is the Fenchel conjugate of D, and gt is sampled i.i.d. from G at

each iteration.

Proof. Here we make use of proximal calculus rules, which can found in most textbooks on convex analysis, for
example Chapter 6 in Beck (2017). Starting from (25), and applying the variable transformation y = ȳ +gt,
we have

mt+1 = argmin
y∈Rd

D(y − gt) + 1
2τ ∥y − mt∥2

= gt + argmin
ȳ∈Rd

D(ȳ) + 1
2τ ∥ȳ − (mt − gt)∥2

= gt + proxτD(mt − gt).
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This proves (26). As for (27), we combine (τD)∗ = τD∗(·/τ) (Beck, 2017, Thm. 4.14) and the Moreau
decomposition theorem (Beck, 2017, Thm. 6.44), to obtain

proxτD(m) = m − proxτD∗( ·
τ )(m).

Plugging into (26) we have

mt+1 = gt + proxτD(mt − gt)
= gt + mt − gt − proxτD∗( ·

τ )(mt − gt)
= mt − proxτD∗( ·

τ )(mt − gt) (28)

Finally, using that for any function f it holds argmin
y

f(y) = m + argmin
ȳ

f(ȳ + m) in (28) gives

mt+1 = mt −
(

mt + proxτD∗( ·+mt
τ )(−gt)

)
= −proxτD∗( ·+mt

τ )(−gt)

= prox
τD∗( mt·−

τ )(gt)

where in the final equality we used that if f(x) = g(−x) we have that

proxg(m) = −proxf (−m).

B.3 Approximations Based on the Stochastic Proximal Point: Particular Cases of D

We first characterize the SPP update (9) for when D is the ℓp-norm, and show it simply require to project
the sampled gradient onto a certain ball of radius τ centered at mt.

Proposition B.4. Let D = ∥ · ∥p be the ℓp-norm for p ∈ [1, ∞]. Let q ∈ [1, ∞] such that 1
p + 1

q = 1, and
let Bq(m, τ) := {y : ∥m − y∥q ≤ τ} . The SPP update (9) is given by

mt+1 = mt + ProjBq(0,τ)
(
gt − mt

)
(29)

= ProjBq(mt,τ)
(
gt

)
. (30)

Proof. The proximal operator of the ℓp-norm is given by

proxτ∥·∥p
(m) = m − τProjBq(0)(m/τ),

see Example 6.47 in Beck (2017). Using this in (26) gives

mt+1 = gt + proxτ∥·∥p
(mt − gt)

= mt − τProjBq(0,1)
(mt − gt

τ

)
= mt + τProjBq(0,1)

(gt − mt

τ

)
= mt + ProjBq(0,τ)

(
gt − mt

)
= mt +

(
ProjBq(mt,τ)

(
gt

)
− mt

)
= ProjBq(mt,τ)

(
gt

)
where the third equality we used that

ProjBq(0,1)(m) = −ProjBq(0,1)(−m),

29



Under review as submission to TMLR

Figure 7: One SPP update (30) for D = ∥·∥1 (blue) or D = ∥·∥2 (green) amounts to project onto a ball of the
dual norm, centered at the current iterate mt and of radius τ > 0. The thick lines represent the projections
of gt for all possible values of τ .

followed by
ProjBq(m/τ,1)(y/τ) = 1

τ
ProjBq(m,τ)(y)

in the fourth equality and
ProjBq(0,τ)(y) = ProjBq(m,τ)(y − m) − m

in the fifth equality.

Using Proposition B.4 we can now develop closed form updates of the SPP method for when D is the ℓ1- or
the ℓ2-norm, with both methods being related to clipping.

Corollary 3.2. For D = ∥ · ∥1 update (9) is given by

mt+1 = mt + clipτ,1(gt − mt), (11)

where clipτ,1(v) := (min{max{vi, −τ}, τ})d
i=1.

Proof. Follows from (29) and that

min{max{v, −τ}, τ} = ProjB∞(0,τ)
(
v
)
.

Corollary 3.1. For D = ∥ · ∥2 update (9) is given by

mt+1 = mt + clipτ,2(gt − mt), (10)

where clipτ,2(v) := τ
max{τ,∥v∥2} v.

Proof. Follows from (29), by using that

ProjB2(0,τ)
(
v
)

= τ v

max{τ, ∥v∥2}
.

We end this section with the closed form updates of the SPP method for when D is the Huber function.

Corollary 3.3. For D = Hµ, update (9) is given by

mt+1 = gt + βt(mt − gt) = βtmt + (1 − βt)gt, (12)
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where βt := 1 − µτ
max{∥mt−gt∥, µ(1+τ)} .

Proof. Follows from (9) and the fact that the proximal operator of the Huber function is given by
proxτHµ

(z) =
(
1 − µτ

max{∥z∥,µ(1+τ)}
)
z. For a proof, see Beck (2017, Example 6.66), and note that here

we have the additional factor µ in the definition of Hµ.

B.4 Approximations Based on Subgradient Updates

Instead of SPP, we could solve (8) by iteratively taking steps of stochastic subgradient descent. If D is
convex, then in each iteration we sample a gradient gt, and update our current estimate mt by

mt+1 = mt − τut, ut ∈ ∂D(mt − gt). (31)

Here, τ > 0 is the learning rate, and ut is a subgradient (of the convex subdifferential). Since D could be a
non-differentiable function such as the ℓ2- or ℓ1-norm, we use subgradients instead of gradients.

Squared ℓ2-norm. As a first simple example of (31), let D = 1
2 ∥ · ∥2

2. In this case (31) becomes

mt+1 = mt − τ(mt − gt) = (1 − τ)mt + τgt. (32)

This is again (heavy-ball) momentum (cf. SGD-M), now with coefficient β = 1 − τ . Note that in contrast
to SPP, the coefficient β could be negative, and is only in [0, 1) (as typically is the case for momentum) if
τ ∈ [0, 1].

ℓ1-norm. If we choose D = ∥ · ∥1, update (31) gives

mt+1 = mt + τ sgn(gt − mt),

where the sgn-operator can take any value in [−1, 1] for coordinates i ∈ [d] such that (gt − mt)i = 0. This
recovers a version of sign-SGD (Riedmiller & Braun, 1993; Bernstein et al., 2018), where the sign-operation
is applied to the increment mt − gt. For example, if we reset mt = 0 in every iteration, we obtain exactly
sign-SGD.

ℓ2-norm. If we choose D = ∥ · ∥2, and if gt ̸= mt, update (31) gives

mt+1 = mt − τ
mt − gt

∥mt − gt∥
=
(
1 − τ

∥mt − gt∥
)
mt + τ

∥mt − gt∥
gt.

Otherwise, if gt = mt, we can choose any ut with ∥ut∥ ≤ 1 and set mt+1 = mt − τut; in particular we can
set mt+1 = mt.

B.5 Rates for SPP

Now that we have presented how to compute the iterates (9) in practice, let us state its convergence properties.
Since all these methods are instantiates of the SPP method, we can use standard results such as Davis &
Drusvyatskiy (2019, Thm. 4.4).

Proposition B.5. Let D be a norm, let ϕ(m) := Eg∼G [D(m − g)], and let m∗ ∈ argmin
m∈Rd

ϕ(m). If mt is

generated by (9) then for m̄T = 1
T

∑T
t=1 mt we have

E [ϕ(m̄T ) − ϕ(m∗)] = O

(
∥m0 − m∗∥2

τT
+ τ

)
.
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Proof. Since we assume that D is a norm over Rd then it convex and continuous. Moreover, since all norms
are equivalent in Rd, we have that D(w) ≤ C∥w∥2 for some constant G > 0. Thus D is a G-Lipschitz
function. If now we write ϕg := D(· − g), it is clear that it is convex and Lipschitz. Therefore, ϕ = Eg [ϕg]
is itself a convex G-Lipschitz function. The claim now follows from Davis & Drusvyatskiy (2019, Theorem
4.4).

Here is a corollary stating rates on the expected distance between the approximate sample median and the
true sample median, when using the ℓ1-norm:

Corollary B.6. In the context of Proposition B.5, assume that D = ∥ · ∥1 and that G is a sum of Dirac
measures 1

n

∑n
i=1 δg(i) . Then we have further

E [∥m̄T − m∗∥] = O

(
∥m0 − m∗∥2

τT
+ τ

)
.

Proof. In this proof, we use the notation (xj)j=1,...,d to specify the indivdual components of a vector x ∈ Rd.
For x ∈ Rd, we define the sign operator as follows: let sgn(x) = (sgn(xj))j=1,...,d, where xj is the j-th
coordinate of x ∈ Rd, and where we define for a scalar t ∈ R the set-valued operator sgn(t) = {+1} if t > 0,
sgn(t) = {−1} if t < 0, and sgn(t) = [−1, 1] if t = 0. Further, given a set A ⊂ Rd we define ∥A∥− := inf

a∈A
∥a∥.

To obtain the desired bound, and given that we already have the conclusion of Proposition B.5, it is enough
for us to show that there exists µ > 0 such that

(∀m ∈ Rd) µ dist(m, argmin ϕ) ≤ ϕ(m) − inf ϕ.

It is a standard result from variational analysis that this property6 is true if and only if the following
inequality is satisfied (see Theorem 5.1 in Cornejo et al. (1997) or Proposition 3.1 in Lemaire (1998))

(∀m ∈ dom ∂ϕ) ∥∂ϕ(m)∥− ≥ µ.

Our goal now is to prove the above inequality, from which the conclusion will follow. Let us consider
m /∈ argmin ϕ, and use standard calculus to write

∂ϕ(m) = 1
n

n∑
i=1

sgn(m − gi) = 1
n

n∑
i=1

(
sgn(mj − (gi)j)

)
j=1,...,d

= 1
n

( n∑
i=1

sgn(mj − (gi)j)
)

j=1,...,d
.

Our goal is to show that ∥∂ϕ(m)∥− ≥ 1
n , which is equivalent to show that ∥

∑n
i=1 sgn(m − gi)∥− ≥ 1.

Because m /∈ argmin ϕ, we know that 0 /∈ ∂ϕ(m) so there must exist a coordinate j such that the j-th
coordinate of ∂ϕ(m) does not contain zero, in other words such that 0 /∈

∑n
i=1 sgn(mj − (gi)j). Using the

fact that ∥ · ∥2 ≥ ∥ · ∥∞, we can therefore lower bound ∥
∑n

i=1 sgn(m − gi)∥− ≥ |
∑n

i=1 sgn(mj − (gi)j)|−.
Let us denote si := sgn(mj − (gi)j), so that we want to prove that |

∑n
i=1 si|− ≥ 1. Let us now consider a

few cases.

• If si = {+1} or {−1} for every i, then
∑n

i=1 si is a singleton. Furthermore it is a sum of relative
numbers, so

∑n
i=1 si ∈ Z. But we also know that 0 /∈

∑n
i=1 si, so we conclude that

∑n
i=1 si ∈ Z∗,

and so that |
∑n

i=1 si|− ≥ 1.

• If si = [−1, +1] for every i, then we immediately see that 0 ∈
∑n

i=1 si which is a contradiction.

• Otherwise, the si are combinations of singletons and intervals. Let us note I = {i : si = [−1, +1]}
and I ′ = {i : si = {±1}}, which are not empty by assumption. Let us also note k ≥ 1 the cardinality

6It is sometimes referred to as (weak) sharp minima (Ferris, 1991; Burke & Ferris, 1993), (superlinear)(linear) conditioning
(Lemaire, 1992; Cornejo et al., 1997; Lemaire, 1998), or error bound (Lewis & Pang, 1998).
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of I, so that
∑

i∈I si = [−k, +k]. We also introduce s :=
∑

i∈I′ si ∈ Z. Now we can write

|
n∑

i=1
si|− = inf

t∈
∑n

i=1
si

|t| = inf
t∈[−k,+k]

|t + s| = d(s; [−k, +k]),

where the latter is the distance from the number s to the interval [−k, +k]. Now remember that
0 /∈

∑n
i=1 si, so this distance cannot be zero, which means that |s| > k. Moreover both s and k are

rational numbers, so this distance must be greater or equal to 1. This concludes the proof.

C Supplementary Information on Experiments

This section provides additional information for the experimental setup.

For the language modeling experiments, all details are identical to Kunstner et al. (2023), Section A.1. They
also provide implementations for all tasks at https://github.com/fKunstner/noise-sgd-adam-sign,
which we use. For the training runs for language modeling, we use batch size 256 for PTB, 320 for WikiText-2,
and 32 for SQuAD.

C.1 Additional Plots

Here, we show the results for estimating the full gradient of a transformer architecture, with weights fixed
at initialization. Fig. 8 shows the results for PTB where we tried three different batch sizes {64, 256, 1024}.
Fig. 9 shows the results for WikiText-2.

We remark that in this experiment only, we have used the first order approximation of (7), namely mt+1 =
(1 − τ) mt + τgt. That is, we replace τ

1+τ with its first-order Taylor approximation around zero, which is
equal to τ . As the value of τ is small, this has negligible impact on the result: for example, if τ = 0.01, then

τ
1+τ ≈ 0.0099.

Discussion. From Fig. 8, we observe two phenomena: in the long run, momentum attains the lowest error
for estimating the full batch gradient. However, the initial decrease of the error is much faster for CClip,
followed by VClip. This is important when using these estimates within a training setup such as (13), where
we only do one iteration of gradient estimation, followed by an update of the weight (and hence a change in
the full-batch gradient). Secondly, we observe that the difference in convergence speeds is most pronounced
when the batch size increases. Hence, being robust to outliers seems not to be solvable only by increasing
the batch size and thus decreasing the noise of the mini-batch gradient. In fact, the contrary seems to be
the case. This is similar to the observations made in Kunstner et al. (2023).

C.2 Learning Rate Values for Transformer Training

Here, we report for each of the language modelling tasks, the learning rate value that is displayed in Fig. 5.
For each method, we tuned the learning rate over a set of values 10 j

2 for a suitable interval of integer numbers
j ∈ Z.
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Figure 8: Encoder transformer on PTB dataset, with weights fixed at initialization. We use momentum,
clipτ,1 and clipτ,2 to estimate the full-batch gradient.
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Figure 9: Encoder transformer on Wikitext-2 dataset, with weights fixed at initialization. We use momen-
tum, clipτ,1 and clipτ,2 to estimate the full-batch gradient.

Table 1: Tuned learning rate values used for each method. All methods use constant learning rates. For
SGD-M, tuning information is also reported in Section C.1 in (Kunstner et al., 2023)).

Name SGD-M clipped-SGD VClip CClip Adam

PTB 1.0 3.16 3.16 0.316 0.001
WikiText-2 0.316 3.16 1.0 0.316 0.001

SQuAD 0.316 1.0 0.316 0.1 0.000316
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