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ABSTRACT

In this study, we explore the enhancement of colorectal image classification accu-
racy with the aid of a segmentation task. We introduce Mask2Tasks, a deep neural
network for joint colorectal image classification and segmentation which is trained
using a novel two-stage training approach. Numerical results have demonstrated
its effectiveness in both classification and multi-task learning scenarios.

1 INTRODUCTION

Recent advances in deep learning have proven its potential in the medical imaging domain; one
such application is the diagnosis of histopathological colorectal images. However, the accuracy and
robustness of deep learning algorithms can be severely undermined by the lack of training data.
In such data sparsity regimes, multi-task learning (MTL) emerges as a viable approach that can
improve the generalization, efficiency, and interpretability of deep learning models thanks to shared
features that can be useful for multiple related tasks (Lee & Son (2022)). On the other hand, among
the most pressing issues in multi-task learning is the conflicting gradient problem (Liu et al. (2023))
where certain tasks dominate the others in different training stages (Lee et al. (2021)) leading to
training suboptimality or even failure to converge.

In this work, we investigate the utilization of multi-task learning methods in improving the per-
formance of histopathological colorectal image classification. First, we propose a deep learning
architecture, named Mask2Tasks, along with a novel two-stage training strategy for joint colorec-
tal image classification and segmentation. Second, we prove by numerical results that our training
scheme effectively enhances the performance of the diagnosis of colorectal histopathological, as well
as consistently outperforms several popular multi-task learning methods in the considered settings.
Finally, post-hoc analyses of the training dynamics and the learned deep features reveal interesting
insights for the improved performance of the proposed method, thus suggesting its suitability for
multi-task learning in colorectal histopathological imaging.

2 METHODOLOGY

Our proposed Mask2Tasks architecture (see Figure 1) is derived from Mask2Former, a powerful
image segmentation architecture (Cheng et al. (2022)). To facilitate multi-task functionality, a clas-
sifier head comprising one global average pooling layer (GAP) and three subsequent fully connected
layers with ReLU activation functions is integrated into the original architecture. This classifier head
employs low-level features given by the encoder and is trained with a standard cross-entropy loss.

Our Mask2Tasks is trained using a novel two-stage training strategy. In the initial phase, the model
is trained for histopathological image segmentation. In the second phase, the encoder is frozen and
the classification head is fine-tuned for the classification task. By first focusing on the segmentation
task, it is expected that the encoder can learn more robust and diverse features in a faster, more
optimized manner. The inspiration for this design is discussed in the next section.

Experiments: Our method is evaluated on the EBHI-Seg dataset (Shi et al. (2023)) which com-
prises 2298 histopathology section images representing diverse tumor differentiation stages, each
accompanied by a binary segmentation mask and an associated stage label. Reported metrics in-
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clude accuracy for the classification task and the Jaccard Index for the segmentation task. Since
this is a small-sized dataset, 5-fold cross-validation is conducted for reliability. For a fair compari-
son, similar architectures have been used in all experiments. Table 1 shows the performance of our
approach in the classification task. Results for the segmentation task are provided in the Appendix.

3 RESULTS, DISCUSSION, AND CONCLUSION

Figure 1: Mask2Tasks architecture.

Model Accuracy ↑
SwinTransformer 0.874 ±0.015
Resnet50 0.895 ±0.013
EfficientNet 0.856 ±0.010
MTL (uniform weight) 0.916 ±0.012
MTL + Linear Scalarization 0.920 ±0.008
MTL + PCGrad 0.926 ±0.011
MTL + FAMO 0.140 ±0.072
Our Approach 0.936 ±0.004

Table 1: Performance comparison in the
classification task.

First, in the colorectal classification task (Table 1), it is observed that multi-task methods consistently
outperform single-task ones. To understand the underlying difference in decision-making, gradient-
based saliency maps (Simonyan et al. (2014)) (Figure 2 in the Appendix) have been used. As evident
in the saliency maps (Figure 2), compared with single-task training approaches, classifiers trained
by multi-task learning tend to rely on more tissue regions. We argue that these spatially diverse
discriminative features are attained from image segmentation. This remark aligns with the common
sense that to perform well in image segmentation, detailed visual traits of the whole image must be
effectively encoded. In contrast, overfitted classifiers tends to focus only on restricted or irrelevant
regions of the image. For instance, in Figure 2, the saliency maps sometimes largely emphasize
non-tissue, uninformative areas. More evidence can be found in Figure 4 in the Appendix.

Second, our proposed method outperforms other multi-task approaches in the classification task (Ta-
ble 1), as well as being slightly better in average gain per task (Table 5). A possible explanation is
that our proposed method handles the problem of conflicting gradients better. To understand how
conflicting gradients happen as well as their impacts, Figure 3 in the Appendix demonstrates the
learning curve of the uniformly weighted objective function where each task loss curve is presented
in its original scale. It can be seen that the joint loss tends to be dominated by the segmentation
component throughout the entire training process. Overall this matches the observation by several
other works (Lee et al. (2021), Kendall et al. (2017)) that uniformly weighted multi-task training can
lead to sub-optimal performance. Furthermore, in our case, this imbalance is hard to correct by fixed
scaling optimization methods such as Linear Scalarization, since each task has different training dy-
namics. Specifically, while the classification term converges fast, the segmentation component takes
significantly longer to settle. Hence, it is likely that when being jointly optimized, the classifica-
tion term is prone to rely on premature features in the early training stage, and barely improve after
reaching convergence. Once overfitted, this component might not be able to fully exploit more ro-
bust segmentation-guided features that are acquired later as originally intended. On the other hand,
sophisticated gradient manipulation methods such as PCGrad (Yu et al. (2020)) and FAMO (Liu
et al. (2023)) can dynamically balance the task losses; however, this might not always be guaranteed
in practical settings (Liu et al. (2023)). Thus they can only attain certain levels of mitigation rather
than a complete riddance of conflicting gradients. On the contrary, our two-stage training strategy
optimizes only one task at a time, hence cleverly circumventing the loss scale imbalance problem.

In conclusion, one would argue that the two-stage training is prone to training suboptimality. While
this might happen in certain cases, we have proven that the proposed training regime is useful for
this particular problem of colorectal histopathological imaging, and recommend it as an efficient and
simple multi-task learning option for the joint colorectal classification-segmentation tasks.
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A APPENDIX

A.1 EXPERIMENT SETUP

All experiments in this study are conducted using the EBHI-Seg dataset Shi et al. (2023). Specifi-
cally, we excluded 2 images from the dataset with missing masks and partitioned the entire dataset
into 5 mutually exclusive folds. For all experiments, we assessed them utilizing 5-fold cross-
validation, with reported metrics representing mean performance across 5 folds.

The Mask2Former architecture is adopted from HuggingFace (Hug). Based on this architecture, we
developed our multi-task architecture named Mask2Tasks. This architecture is utilized in both the
uniformly weighted multi-task learning approach and our approach. We trained all models using
the same set of hyperparameters, with each model undergoing 100 epochs. With our approach, the
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Table 4: Performance of our approach compared with MTL on segmentation task
(Jaccard’s Index - higher is better).

Image Classes
Polyp Normal Adeno Serrated Low grade High grade

Mask2Tasks 0.933 ±0.006 0.926 ±0.007 0.830 ±0.051 0.931 ±0.028 0.912 ±0.006 0.846 ±0.047
Unet 0.308 0.263 0.808 0.886 0.849 0.816
SegNet 0.886 0.684 0.646 0.832 0.864 0.812
MedT 0.643 0.562 0.595 0.509 0.808 0.707

training process includes 2 stages: The first stage involves 40 epochs, followed by the second stage
lasting 60 epochs. Specific hyperparameter details are provided in Table 2. For reproducibility, the
download link to the training code is publicly available in the supplementary material file.

A.2 ADDITIONAL RESULTS

Table 3 details the performance comparison between our proposed approach and the single-stage
multi-task learning with uniform weighting. A notable observation is that our approach demon-
strated identical performance to the MTL method on the segmentation task. This observation hinted
that, given our approach that involves segmentation training in only 40 epochs, it exhibits a faster
convergence rate compared to the vanilla MTL method.

Additionally, we presented in Table 4 a performance evaluation of Mask2Tasks against other seg-
mentation networks on six classes of images from the original paper Shi et al. (2023). It can be seen
that our approach surpasses these baseline approaches by a substantial margin.

Table 2: Hyperparameters utilized for
training

Hyperparameter Value
Total training epochs 100

Learning rate 0.0001
Batch size 8
Optimizer ADAM

Table 3: Performance of our approach
compared with MTL on segmentation task

Method Jaccard Index ↑
Our Approach 0.880 ±0.008

MTL (uniform weight) 0.884 ±0.004
MTL + Linear Scalarization 0.883 ±0.005

MTL + PCGrad 0.887 ±0.006
MTL + FAMO 0.003 ±0.001

Table 5: Comparison of single-stage multi-
task learning approaches and our method
based on the average per-task performance
gain over single-task learning.

Method △ m% ↑
MTL (uniform weight) 2.630
MTL + Linear Scalarization 2.802
MTL + PCGrad 3.372
MTL + FAMO -91.820
Our Approach 3.547

Table 6: Comparison of the impact of vary-
ing numbers of training epochs in stage 1 of
our method on both segmentation and classi-
fication performance.

Number of epoch IoU Accuracy
40 (Current Method) 0.883 0.936
50 0.889 0.931
60 0.890 0.931

Figure 2 illustrates the qualitative results, specifically the saliency maps, generated by our method
and other approaches using a sample from the EBHI-Seg dataset. Additionally, Figure 3 presents
the training curves. Table 5 compares our method and other approaches in MTL. Similar to (Liu
et al. (2023)), we utilize the average per-task performance gain of the multi-task learning model
over the single-task learning model: △m% = 1

K

∑K
k=1 (Mm,k −Mb,k) /Mb,k, with Mb,k, Mm,k,

and K respectively being the performance metric of the single task learner b, the multi-task learner
m in the k-th task and the total number of task, as the primary metric for MTL performance. Figure
4 displays additional qualitative saliency maps as well as predictions generated by our approach, a
conventional classifier, the uniform weight multi-task model, and other MTL approaches on a few
sample images.
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Table 6 illustrates a comparison of varying numbers of training epochs in the first stage of our
method on performance of both tasks. After reviewing the table, we decided to select the number
of epoch to be 40, considering that increasing this number did not significantly improve accuracy
or segmentation performance. In addition, choosing a lower number also saves computational re-
sources.

Figure 2: Sample input (left), saliency
map produced by a SwinTransformer clas-
sifier with wrong prediction, single-stage
uniformly-weighted multi-task learning, the
single-stage MTL with Linear Scalarization
method, the single-stage MTL with PCGrad
method, and our approach with correct pre-
dictions. Focused regions are highlighted in
yellow.

Figure 3: Learning curves of the single-stage
uniformly-weighted objective and its compo-
nents.

Figure 4: Qualitative results on several samples from the EBHI-Seg dataset. From left to right: Input images
(with labels), saliency maps (and predictions) produced by a SwinTransformer classifier, the single-stage
uniform weight MTL method, the single-stage MTL with Linear Scalarization method, the single-stage MTL
with PCGrad method, our approach and a single task CNN. Focused regions are highlighted in yellow.
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