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Abstract

Deep neural networks (DNNs) are often trained on the premise that the complete training
data set is provided ahead of time. However, in real-world scenarios, data often arrive
in chunks over time. This leads to important considerations about the optimal strategy
for training DNNs, such as whether to fine-tune them with each chunk of incoming data
(warm-start) or to retrain them from scratch with the entire corpus of data whenever a new
chunk is available. While employing the latter for training can be resource-intensive, recent
work has pointed out the lack of generalization in warm-start models. Therefore, to strike
a balance between efficiency and generalization, we introduce Learn, Unlearn, and Relearn
(LURE) an online learning paradigm for DNNs. LURE interchanges between the unlearning
phase, which selectively forgets the undesirable information in the model through weight
reinitialization in a data-dependent manner, and the relearning phase, which emphasizes
learning on generalizable features. We show that our training paradigm provides consistent
performance gains across datasets in both classification and few-shot settings. We further
show that it leads to more robust and well-calibrated models.1

1 Introduction
“A little learning is a dangerous thing.” -Alexander Pope

In recent years, supervised learning has achieved human-level performance in many computer vision tasks
in which the learner is trained in an offline learning environment with a fixed set of training data. However,
DNNs deployed in the real world are expected to work in an environment where the data arrive in a sequence
of large chunks (mega-batches). Several learning paradigms have been proposed to learn from a stream of
data, including, but not limited to, continual learning (Van de Ven & Tolias, 2019; Thrun, 1995), active
online learning (Settles, 2009), and anytime learning (Grefenstette & Ramsey, 1992; Caccia et al., 2022).
Although previous efforts established a solid theoretical foundation, certain subtle issues make it inapplicable
to the practical environment.

For an online learning system, it is important that the learner produces high accuracy and generalizes well
at any point in time while using limited computational resources (Caccia et al., 2022). Recent research in
online learning, however, has shown that training from a previously trained model (warm-start rather than
fresh initialization) hinders its ability to adapt to new input (Achille et al., 2018), thus incapacitating the
generalization of DNNs (Ash & Adams, 2020; Caccia et al., 2022). These implications of warm-starting have
also been observed in online active learning (Huang, 2021; Sener & Savarese, 2017; Ash et al., 2019), where
they mitigate it by retraining from scratch after every selection. However, training DNNs from scratch every
time new data arrives is resource intensive, and the lack of generalization with warm-starting undermines the

1The official code is available at: https://github.com/NeurAI-Lab/LURE
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benefits of training with learned features (Ash & Adams, 2020). Thus, the failure of current online learning
systems to generalize across data streams without bartering previous computation presents a striking lacuna
for the large-scale deployment of machine learning systems.

Humans, on the other hand, learn in succession over their lifespan and readily generalize by applying prior
knowledge to novel situations and stimuli without the need to learn from scratch. This in the brain is
facilitated by a complex set of neurophysiological processes (Goyal & Bengio, 2020). One of such glaring
aspects of the brain that allows humans to generalize better is the inherent process of active forgetting (Hardt
et al., 2013; Davis & Zhong, 2017). It plays an active role in the regulation of the learning process to achieve
better generalizability in the real world. The growing evidence in neuroscience and cognitive psychology
(Gravitz, 2019; Izawa et al., 2019) suggests that the brain actively forgets through the selective extinction
of neurons, which shapes the learning-memory process and, therefore, prevents humans from overfitting to
experiences (Shuai et al., 2010). Thus, emulating this aspect of selective forgetting might hold the key to
improving generalization in DNNs.

Therefore, we propose a general online learning paradigm, which we refer to as Learn, Unlearn, and RElearn
(LURE), to address the problem of generalization of parameterized networks. For simplicity, we focus mainly
on an online learning scenario in which models achieve good performance at any point in time, termed Any-
time Learning (Caccia et al., 2022). We consciously simulate the process of selective forgetting (unlearning)
in the DNNs by re-randomizing a subset of weights before training on the new samples. With extensive
experiments on multiple datasets, we show that our proposed training paradigm boosts the performance and
generalization of the models to a greater extent. Compared to standard online training, LURE significantly
improves the robustness of DNNs in tackling more challenging real-world scenarios. Our main contributions
are as follows:

• "Learn, Unlearn, and Relearn" (LURE), an online training paradigm to improve the performance
and generalization of DNNs through the lens of selective forgetting.

• We demonstrate the efficacy of LURE in multiple convolutional architectures across different datasets
in online learning and a few-shot classification scenario.

• LURE exhibits robustness in solving more common challenges in real-world problems, including
learning with noisy labels, natural corruption, and adversarial attacks.

• LURE is robust to changes in hyperparameters and leads to well-calibrated models.

2 Related Work

Lifelong learning (Thrun, 1995) and anytime learning (Grefenstette & Ramsey, 1992) have gained increasing
attention from the deep learning community due to its relevance in practical settings. Recent research on
online learning, (Caccia et al., 2022; Ash & Adams, 2020), has noticed a lack of generalization in DNNs
when trained in online settings. Ash & Adams (2020) points out that if a model is finetuned from a pre-
trained model (a "warm-start"), the resulting new model performs worse than a model trained from scratch
(a "cold-start") even though the new data is sampled from the same distribution as the previously trained
data. Thus, the lack of generalization in DNN renders them inapplicable to real-world scenarios.

Recently, several weight reinitialization methods (Taha et al., 2021; Li et al., 2020; Alabdulmohsin et al.,
2021; Ash & Adams, 2020; Zhou et al., 2022) have been proposed to improve the generalization performance
of DNNs by partially or fully refining the learned solution. Zhou et al. (2022) propose a forget and relearn
hypothesis to unify disparate existing iterative algorithms under the lens of forgetting. Their approach is
based on the consideration that early layers learn generalized representation, whereas later layers memorize.
Therefore, they reinitialize and retrain the later layers of the model repeatedly, thereby erasing the infor-
mation pertaining to the memorized difficult examples. Similarly, Ash & Adams (2020) propose a method
to improve generalization by shrinking the magnitude of the weights and perturbing it by injecting small
noise. However, these weight reinitialization methods have architecture-specific assumptions independent of
the data and are handled based on the assumed properties that are inherent to the model and its learning.
These methods lack a priori knowledge of where and what features, layers, etc. should be reinitialized in
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the general case. Therefore, we propose a online training paradigm, to improve the generalization of DNNs
through the lens of active forgetting.

3 Method

We propose "Learn, Unlearn, and Relearn" (LURE), a training paradigm for learning from a sequence of
data, which alternately interchanges the unlearning (selective forgetting) and relearning steps. Our proposed
online training paradigm consists of three steps: a) learn, b) unlearn, and c) relearn. Our proposed approach
is illustrated in Figure 1 and is detailed in the Appendix (Algorithm 1).

Learn. We define the Anytime Learning at Macroscale (ALMA) learning environment as envisioned in
Caccia et al. (2022) where the authors focus on real-world settings. ALMA is a new sub-paradigm of
learning from sequential data inspired by anytime learning (Grefenstette & Ramsey, 1992) and transfer
learning (Pan & Yang, 2009). Data is provided to the learner in the form of a stream SB consisting of t
consecutive batches of samples. Therefore, we also focus on the general classification problem, where data
are sampled from an underlying data distribution Dx,y with input x ∈ RD and label y ∈ {1, ..., C}.

Let Mi be a collection of N ≫ 0 in-distribution samples randomly selected from Dx,y, for i ∈ {1, ..., t}.
The stream is then defined as the ordered sequence SB = {M1, ...,Mt}. We refer to each dataset Mi as
a mega-batch, as it is composed of a large number of samples. Consider a model fθ : RD → {1, ..., C}
updates its parameters by processing a mini-batch of n≪ N examples at the time of each mega-batch Mi

in such a way as to minimize its objective function. Since the data are passed as a stream, the model does
not have access to the future mega-batches and is limited to one pass through the entire stream. However,
the model might make several passes over the current and some previous mega-batches depending on the
available computational budget. In ALMA, it is assumed that the rate at which mega-batches arrive is
slower than the training time of the model on each mega-batch, and therefore the model can iterate over
the mega-batches at its disposal based on its discretion to maximize performance, resulting in an overall
data distribution that is not i.i.d. by the end of the stream. This implies a trade-off between effectively
generalizing and learning from the current data at each mega-batch. Therefore, in such settings, we train the
randomly initialized network fθReinit

on a mega-batch Mt belonging to the data stream Dx,y for e epochs
until convergence. The loss function employed for learning is defined as follows:

LT =
t∑

i=1
E

(x,y)∼Mi

[Lce (σ (fθ (x)) , y)] , (1)

where Lce is a cross-entropy loss, t is the number of mega-batch sequences, and σ is the softmax function.

Unlearn. Motivated by the symbiotic link between generalization and active forgetting in biological neural
networks (Gravitz, 2019; Davis & Zhong, 2017), we introduce an unlearning step in which the network
selectively forgets the connections that are less relevant for the current mega-batch and retains those that
are specific for the current mega-batch. We quantify the sensitivity (importance) of each connection in the
network in a data-dependent manner to identify task-specific connections. We employ SNIP (Lee et al.,
2018), which harnesses the sensitivity of the connection by decoupling the weight from the loss function to
find relevant connections. To determine the sensitivity of the connection, we sample a small subset of data
from the current mega-batch (πi ⊂ Mi : |πi| = α × |Mi|, where α is the percentage of data to be used as
a subset). In our case, following Misra et al. (2022), we use α = 0.2, however, we can also use samples as
low as 128 (Lee et al., 2018) to estimate the connection sensitivity. We define a connection sensitivity mask
M ∈ {0, 1}|θ| that is proportional to the number of parameters (m) in the network. Then we apply a sparsity
constraint k that specifies the percentage of parameters that must be retained. We compute the connection
sensitivity as follows:

gj(θ; π) = lim
δ→0

Lce(M⊙ θ; π)− Lce ((M− δej)⊙ θ; π)
δ

∣∣∣∣
M=1

(2)
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Figure 1: Schematics of the proposed LURE framework. LURE alternates between the unlearning phase,
which selectively forgets the undesirable information in the model through weight reinitialization, and the
relearning phase, which emphasizes learning generalizable features.

where j corresponds to the parameter index and ej is the mask vector of the index j where the magnitude
of the derivatives is then used to calculate the saliency criteria (sj):

sj = |gj(θ; π)|∑m
k=1 |gk(θ; π)|

.

Following the saliency computation, the connection sensitivity mask is set to only retain the top-k task-
specific connections based on the sparsity constraint k which is given as follows:

Mj = 1 [sj − s̃κ ≥ 0] , ∀j ∈ {1 . . . m},

where s̃k is the kth largest element in the saliency vector s and 1[.] is the indicator function.

Then, based on the saliencies pertaining to the connection sensitivity, we retain the top-k important con-
nections and unlearn the parameters that are not important for the current data. Thus, we induce active
forgetting through reinitialization of the connections that are less desirable for the current mega-batch.
Finally, the network parameters pertaining to unlearned connections are reinitialized to random values:

θj
new =

{
θj if Mj = 1
θReinit Otherwise

(3)

where θ are the weight parameters for the previous mega-batch and θReinit corresponds to the random
initialized value sampled from a uniform distribution. The network with the new parameters, θnew, is then
trained on a new consecutive mega-batch.

Relearn. In this stage, the network with the new initialization (fθnew ) is updated with the new incoming
data Mi+1 (in case of no-replay), or with the joint of all the seen data Mi+1 ∪Mi (in case of full-replay)
for the e epochs, where e is kept the same for each iteration. The network is trained with the loss function
shown in Equation 1. The unlearn and relearn phases are alternately repeated after the completion of each
mega-batch training. Thus, by alternating between unlearning and relearning, we favor the preservation
of the task-specific connections that can guide the network towards those desirable traits that efficiently
improve performance and generalization.
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4 Experimental set-up

We evaluate our LURE framework on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), and Restricted Imagenet (balanced) (Ilyas et al., 2019; Tsipras et al., 2018).

Anytime learning settings. Following Caccia et al. (2022), we create the standard for ALMA evaluation
using the datasets mentioned above: (1) The training set is randomly divided into |SB | mega-batches, each
containing an equal number of training instances. For CIFAR10 and CIFAR100, we keep |SB | = 8, but for
Restricted ImageNet, we keep |SB | = 3. However, we also perform long sequence experiments on CIFAR10
with |SB | = 25, 50, 100 to analyze the effectiveness of the proposed approach. (2) We use 10% of the data
from each mega-batch as a mega-batch validation set. Following Caccia et al. (2022), we train each mega-
batches for 50 epochs. A test set is employed to evaluate the model’s performance as it observes the data.
Note that this is not used for validation purposes; it is solely used for final reporting. For implementation
details and hyperparameters, please refer to Appendix Section A.5.

Baselines. We benchmark our proposed framework against (1) Baseline (BL), a warm-start model, which is
continuously trained from the checkpoint of the previously trained model in ALMA settings (without reini-
tialization) as proposed by Caccia et al. (2022). (2) Cold-start model (Random init.) is trained completely
from scratch with each advent of the incoming data. (3) RIFLE (Li et al., 2020), where the fully connected
layer is reinitialized and retrained during transfer learning. (4) Shrink and Perturb (S&P) (Ash & Adams,
2020) which is proposed for online learning, and (5) Later-Layer forgetting (LLF)(Zhou et al., 2022) which
is proposed to improve generalization in the small data regime.

Metrics. For a thorough evaluation, we use CER along with the test accuracy and the generalization gap.

• Cumulative Error Rate (CER): This can be defined as follows:

CER =
Mt∑
i=1

|Tx,y|∑
j=1

1
(
f i

θ (xj) ̸= yj

)
, (4)

where Tx,y represents the held-out test set, f i
θ is trained on Mi, y is the ground truth label. A

model must have a lower CER at each mega-batch of training with a data stream in order to be an
effective anytime learner.

• Generalization gap: We use the standard generalization gap as a measure to understand whether
the model is overfitting or underfitting at anytime learning which is given by the difference between
training and validation accuracy.

5 Results

5.1 Analysis of Short Sequence

Table 1 shows the results of the ResNet18 model training on multiple datasets with and without different
forms of reinitialization. All experiments on CIFAR10 and CIFAR100 were carried out using full replay
(SB =

⋃8
i=1Mi) for a total of 8 mega-batches with each mega-batch containing 6250 samples, while the

experiments on Restricted ImageNet are performed for |SB | = 3 mega-batches. Our observations from
Table 1 are as follows: (1) Reinitialization-based training for online learning improves test accuracy, CER,
and generalization to a greater extent consistently on the three datasets compared to warm-start (BL)
and cold-start (Random Init.) models. (2) LURE outperforms the baseline by 4.8%, 6.64% and 4.13%
on CIFAR10, CIFAR100, and Restricted ImageNet respectively, and shows the strongest performance on all
datasets compared to the other reinitialization methods. (3) Online training using LURE results in the lowest
CER and generalization gap compared to other methods, improving the model’s anytime learning capabilities.
Thus, selective forgetting undesirable information through weight reinitialization brings discernable benefits
to the model in online settings.
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Table 1: Evaluation of the model (Resnet18) trained with various reinitialization methods in ALMA settings.
CIFAR10 and CIFAR100 were trained in a sequence of |SB | = 8, while restricted ImageNet was trained with
|SB | = 3 mega-batches.

Datasets Methods Test Accuracy (↑) CER (↓) Generalization Gap (↓)

CIFAR10

BL 89.47 ±0.51 11760 8.98
Random init. 92.22 ±0.57 12323 7.56
RIFLE 90.08 ±0.37 11844 6.98
LLF 91.43 ±0.70 10103 7.22
S&P 91.76 ±0.26 10206 7.72
LURE 93.32 ±0.58 9622 6.60

CIFAR100

BL 62.96 ±0.53 39010 31.54
Random init. 64.53 ±0.51 37253 27.23
RIFLE 61.38 ±0.26 39302 27.81
LLF 67.04 ±0.68 34575 21.23
S&P 64.48 ±0.11 36303 28.58
LURE 69.60 ±0.82 33037 22.37

Restricted ImageNet

BL 81.39 ±0.48 2967 4.90
Random init. 82.87 ±0.48 2852 4.88
RIFLE 82.05 ±0.22 2722 4.63
LLF 82.10 ±0.85 2854 4.88
S&P 80.80 ±0.39 2996 5.10
LURE 85.52 ±0.22 2699 4.84

5.2 Analysis of Short Sequence with Buffered/No Replay

We investigate a real-world scenario in which access to the entire dataset used to train the model is restricted
due to data privacy or memory restrictions. Tables 2 and 3 show the results of training the ResNet18 model
on multiple datasets with buffered replay (buffer size =187) and without replay, respectively. All experiments
on CIFAR10 and CIFAR100 were carried out for a total of 8 mega-batches with each mega-batch containing
6250 samples, while the experiments on Restricted ImageNet are performed for |SB | = 3 mega-batches.
LURE with and without buffered replay consistently outperforms baselines and other methods across all
datasets. For example, LURE with buffered replay improves performance by 1.7%, 9.4%, and 2.5% over
standard training (BL) on CIFAR10, CIFAR100, and R-ImageNet, respectively. Moreover, we also observe
that the performance of the cold-start models (Random Init.) is below par in low buffer and no-reply settings
compared to full-replay setting (Table 1) as the model does not have access to past knowledge or data. In
the challenging case of no-replay settings, our proposed method has a profound impact on standard training
compared to other reinitialization methods. This demonstrates that the observed benefits of LURE are not
limited to replay-based methods alone. Thus, unlearning and relearning at each mega-batch of training help
to learn more generalizable representation in different replay scenarios.

5.3 Analysis of Moderate and Long Sequence (|SB | = 25, 50, 100)

Computational systems deployed in the real world are often exposed to longer mega-batch sequences of data
and need to be updated frequently. Therefore, it is quintessential for the online model to perform well under
longer mega-batch sequences. Table 4 shows the results of the ResNet18 model training on the CIFAR10
dataset. All experiments were carried out using full replay for a longer sequence of mega-batches 25, 50,
and 100. We observe that LURE consistently outperforms the baseline and other methods across varying
sequences of mega-batches. As the sequence of mega-batches increases, the number of samples available per
mega-batch reduces drastically. Similar to Caccia et al. (2022), we observe that regularly updating the model
on fewer samples significantly exacerbates CER, resulting in poor Anytime learning performance. Therefore,
long-sequence online learning with reinitialization, especially LURE, reduces the CER and the generalization
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Table 2: Evaluation of the model (ResNet18) trained with buffered replay (buffer size=186) in ALMA settings.
CIFAR10 and CIFAR100 were trained in a sequence of |SB | = 8 mega-batch, while restricted ImageNet was
trained for |SB | = 3.

Datasets Methods Test Accuracy (↑) CER (↓) Generalization Gap (↓)

CIFAR10

BL 88.01 ±0.93 15784 13.01
Random init. 75.26 ±0.67 22276 17.79
RIFLE 85.58 ±0.55 14748 13.50
LLF 87.51 ±0.82 15045 13.22
S&P 84.62 ±0.74 15549 14.72
LURE 89.8 ±0.58 13629 11.92

CIFAR100

BL 62.68 ±0.74 39178 31.33
Random init. 58.36 ±0.42 40921 27.14
RIFLE 60.44 ±0.29 40040 28.19
LLF 67.29 ±0.58 34416 24.86
S&P 65.07 ±0.60 36040 27.79
LURE 72.04 ±0.35 33037 26.59

Restricted ImageNet

BL 75.97 ±0.55 3284 8.72
Random init. 61.47 ±0.69 4023 5.41
RIFLE 77.90 ±0.48 3324 8.42
LLF 76.40 ±0.65 3245 9.07
S&P 74.75 ±0.38 3857 8.20
LURE 78.58 ±0.49 3376 7.94

gap to a greater extent compared to standard training, thus enriching the predictive capabilities of the model
at any given time.

5.4 Analysis of Few-Shot Experiments on Restricted ImageNet

For many real-world classification problems, machine learning models deployed often need to be updated on
labeled data that are scarce and may not be initially available for training. It is possible for new sets of
labeled data to become available gradually as they are labeled. Therefore, it is important for the system
to function properly in such online few-shot settings. These experiments are performed on the Restricted
ImageNet dataset and quantitatively evaluated with the same metric described in Section 4. We use the
same hyperparameters (epochs, lr scheduler), backbone architectures (ResNet50) and optimizer as used in
the experiments in ALMA settings (see Appendix Section A.5). However, following Misra et al. (2022), we
limit the availability of samples pertaining to the classes to 270. Note that we do not use any techniques
proposed in the few-shot literature to boost performance. Table 5 shows the results of the methods in a few-
shot settings where we vary the sequence of mega-batches. We observe that reinitialization-based training
improves performance and generalization over the baseline, even in challenging few-shot classification. For
a mega-batch sequence of 70, LURE outperforms baseline, LLF, and S&P by a relative improvement of
4.11%, 2.01%, and 3.15%, respectively, while for a sequence of 30, it is on par with LLF in terms of accuracy.
In addition, LURE outperforms both the important baselines (BL and Rand. Init.) comfortably. In both
settings, LURE achieves the lowest CER and the generalization gap, demonstrating the superiority of our
proposed approach.

5.5 Analysis on Various Architectures

Here, we examine the versatility of our proposed LURE framework for multiple architectures on the CIFAR10
dataset. We consider ResNet18 (He et al., 2016), ResNet50 (He et al., 2016), wider-Resnet50-2 (Zagoruyko
& Komodakis, 2016), VGG16 (Simonyan & Zisserman, 2014). We chose these models explicitly because of
their widespread popularity in common computer vision tasks and the breadth of research done on them for
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Table 3: Evaluation of the model (ResNet18) trained without replay in ALMA settings. CIFAR10 and
CIFAR100 were trained in a sequence of |SB | = 8 mega-batch, while restricted ImageNet was trained for
|SB | = 3.

Datasets Methods Test Accuracy (↑) CER (↓) Generalization Gap (↓)

CIFAR10

BL 80.86 ±1.01 16789 16.85
Random init. 73.56 ±0.45 22731 17.17
RIFLE 86.35 ±0.14 14536 15.53
S&P 81.92 ±0.62 16133 16.36
LLF 86.11 ±0.59 15294 14.66
LURE 88.96 ±0.24 13953 12.14

CIFAR100

BL 48.79 ±0.75 44128 49.95
Random init. 35.50 ±0.66 55221 67.03
RIFLE 45.65 ±0.42 44113 51.46
LLF 50.38 ±0.54 44816 50.80
S&P 49.26 ±0.59 44581 51.45
LURE 55.37±0.63 43348 46.69

Restricted ImageNet

BL 73.36 ±0.88 3450 9.68
Random init. 60.87 ±0.61 4179 7.18
RIFLE 74.87 ±0.24 3375 8.36
LLF 76.40 ±0.65 3515 8.15
S&P 73.36 ±0.78 3464 8.13
LURE 77.97 ±0.43 3367 7.90

Table 4: Evaluation of the model (ResNet18) on CIFAR10 for longer sequences of mega-batches.
# Mega-batches Methods Test Accuracy (↑) CER (↓) Generalization Gap (↓)

25

BL 89.94 ±0.54 43029 6.80
Random init. 89.89 ±0.36 43529 4.86
RIFLE 90.35 ±0.54 41308 5.55
LLF 89.80 ±0.62 42961 6.52
S&P 88.37 ±0.26 43578 5.94
LURE 90.55 ±0.34 42790 6.79

50

BL 89.12 ±0.61 87843 6.02
Random init. 89.62 ±0.42 91040 6.02
RIFLE 89.25±0.53 91426 6.16
LLF 90.26 ±0.82 87826 5.75
S&P 88.32 ±0.35 85798 6.11
LURE 90.97 ±0.67 85487 5.18

100

BL 89.64 ±0.69 176954 6.46
Random init. 89.29 ±0.39 188978 5.61
RIFLE 89.93 ±0.27 170678 6.02
LLF 89.48 ±0.77 173505 7.21
S&P 88.01 ±0.44 182294 5.56
LURE 91.95 ±0.53 170178 5.66

different learning paradigms. Table 6 shows the performance and generalization gap of the model trained in
different architectures. The experiments are performed with full replay for |SB | = 4. The results demonstrate
that LURE significantly outperforms standard training across multiple architectures while the LLF and
S&P fail to improve. Therefore, reinitialization of the weight parameter in a data-dependent manner using
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Table 5: Few-shot experiments using ResNet50 on Restricted ImageNet.
# Mega-batches Methods Test Accuracy (↑) CER (↓) Generalization Gap (↓)

30

BL 45.82 ±0.55 73514 47.93
Random init. 45.79 ±0.57 73497 45.77
RIFLE 44.58 ±0.46 74071 46.30
LLF 47.60 ±0.61 72868 43.50
S&P 45.92 ±0.38 72954 45.61
LURE 46.97 ±0.79 71542 42.56

70

BL 53.43 ±0.49 156332 41.17
Random init. 54.20 ±0.69 150473 38.17
RIFLE 53.25 ±0.52 153716 36.31
LLF 54.53 ±0.68 149493 32.57
S&P 53.90 ±0.24 150332 40.87
LURE 55.65 ±0.52 148478 28.35

Table 6: Evaluation of methods using different architectures on CIFAR10 dataset (|SB | = 4).
Architechture Methods Test Accuracy (↑) CER (↓) Generalization Gap (↓)

ResNet18

BL 89.31 ±0.61 5657 7.90
Random init. 92.78 ±0.31 5459 7.56
RIFLE 92.11 ±0.38 5378 7.77
LLF 91.80 ±0.43 5466 7.68
S&P 90.50 ±0.51 5667 7.80
LURE 93.73 ±0.35 4409 7.48

ResNet50

BL 89.53 ±0.58 6854 7.83
Random init. 91.87 ±0.66 7539 6.78
RIFLE 90.51 ±0.35 6740 6.95
LLF 89.49 ±0.45 6782 6.78
S&P 89.15 ±0.61 6940 6.98
LURE 92.75 ±0.73 6682 6.62

Wide-ResNet50-2

BL 90.10 ±0.69 5978 6.84
Random init. 92.23 ±0.27 6615 6.73
RIFLE 89.98 ±0.42 5953 6.02
LLF 89.72 ±0.36 6000 5.70
S&P 89.38 ±0.61 6292 5.96
LURE 93.78 ±0.54 5557 5.81

VGG16-BN

BL 89.32 ±0.74 5650 9.62
Random init. 91.7 ±0.33 5913 7.22
RIFLE 88.25 ±0.38 6083 6.89
LLF 87.85 ±0.58 6124 6.17
S&P 88.25 ±0.86 5720 8.11
LURE 92.67 ±0.47 4439 8.55

connection sensitivity by LURE is more effective to improve generalization in different architectures than
reinitialization based on assumed model properties and learning (as done by LLF and S&P).
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Figure 2: Robustness to natural corruptions on CIFAR10-C (Hendrycks & Dietterich, 2019). LURE is more
robust against the majority of corruptions compared to other reinitialization methods.

6 Robustness Analyses

6.1 Robustness to Natural Corruptions

In practice, DNNs are often deployed in real-world scenarios where they are exposed to constantly changing
environments, often influenced by changes in lighting and weather. Therefore, the robustness of DNNs
to data distributions that are subject to natural corruption is pertinent. Here, we evaluate the benefit of
LURE on robustness to common corruption using CIFAR10-C (Hendrycks & Dietterich, 2019). Models are
trained on clean images and tested on CIFAR10-C. Following Hendrycks & Dietterich (2019), we use the
mean Corruption Accuracy (mCA) to measure performance under natural corruption. Figure 2 shows the
accuracy of the models on 19 different corruptions averaged on five severity levels. Compared to baseline
(68%), Random initialization (69.3%), RIFLE (64.7%), LLF (72%), and S&P (71%), LURE (74%) delivers a
higher mCA in all types of corruption. Evidently, unlearning and relearning at each mega-batch of training
bring discernible benefits in terms of robustness to natural corruptions.

6.2 Robustness to Adversarial Attacks

DNNs have been shown to be vulnerable to adversarial attacks in which imperceptible perturbations are
added to inputs during inference. The adversarial images are designed to fool the network to make false
predictions (Szegedy et al., 2013). We perform a PGD-10 attack (Madry et al., 2017) on models trained on
the CIFAR10 dataset with varying attack strengths. As observed in Figure 3(Left), LURE exhibits greater
resistance to these attacks of varying strengths. Thus, compared to standard training, training a model in
the LURE framework facilitates online learners to learn high-level abstractions that are not sensitive to small
perturbations in the data.

6.3 Robustness to Noisy Labels

The success of supervised learning often depends on the availability of large amounts of high-quality anno-
tations. However, the availability of high-quality annotated datasets can be extremely expensive and time
consuming to collect. Therefore, it is paramount to have robust training on noisy labels, as studies have
shown that DNNs can easily memorize samples and are susceptible to noisy labels (Arpit et al., 2017). we
train ResNet18 on sequential CIFAR10 with noisy labels for a mega-batch sequence of |SB | = 4 and evaluate
the performance on a clean test set. We corrupt every ground truth label with a specified probability (noise
rate) by randomly sampling from a uniform distribution over a large number of classes. Figure 3(Right)
presents the test accuracy of the reinitialization methods under different percentages of noisy labels. The
results show that the reinitialization-based training paradigm is robust to the presence of noisy labels during
training compared to the warm-started baseline. Furthermore, LURE consistently outperforms the LLF, RI-
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Figure 3: (Left) Robustness to adversarial attacks; (right) Robustness to training under noisy labels. In
both robustness analyses, LURE shows a significant performance improvement compared to the baselines
considered.
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Figure 4: Layer-wise percentage overlap of the retained parameters in consecutive mega-batches in the full-
replay scenario. The results for the no-replay and buffered replay scenarios are provided in Figures 9(a,b),
respectively.

FLE, and S&P baseline comfortably across different noisy label rates. Thus, reinitializing based on selective
forgetting helps to learn a generic representation that is less sensitive to noise in the dataset.

6.4 Robustness of Connection Selection across Training Steps

The proposed LURE framework is based on the selection of connections (that is, SNIP (Lee et al., 2018)) to
selectively forget the parameters that have the least impact on performance at each mega-batch of training.
Therefore, it is important to evaluate the consistency of the connection selection across the sequence of mega-
batches. We conduct this analysis on the short sequence Anytime learning scenario (full replay, ((|SB | = 2))
on CIFAR10 with ResNet18. We globally retain 80% and reinitialize (unlearn) 20% of the parameters
iteratively at the end of each mega-batch of training.

To study the consistency of the retained connections, we save the connection sensitivity mask (M) containing
ones and zeros for the parameters retained and to be reinitialized, respectively. Visualizing the connection
sensitivity mask can be challenging, as the parameter count in each layer of the backbone is overwhelming.
Therefore, we calculate the percentage of overlap of retained parameters between the connection sensitivity
mask generated at the end of consecutive mega batch training as a metric to analyze the connection con-
sistency. Figure 4 shows the layer-wise percentage overlap of the retained parameters across consecutive
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mega-batches. The overlap percentage of retained connections is quite high in the earlier layers across all
mega-batches, while it decreases in the later layers (layer 4 in ResNet) as it learns class-specific information
pertaining to the new (unseen) samples. Although the overlap percentage is lower in the later layers, our
method selectively unlearns few parameters in the earlier layers as well depending on the incoming data.
This flexible nature of our method for unlearning and regulating connections in both the latter and early
layers facilitates improved generalization in Anytime setting. This result is consistent not only in the full
replay, but also in buffered and no-replay scenarios of anytime learning. The results for the no-replay and
buffered replay scenarios are provided in Figures 9(a,b), respectively.

6.5 Sensitivity to Hyperparameters
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Figure 5: Sensitivity to hyperparameters. LURE
is more robust to the changes in weight decay and
learning rate to standard online training.

Machine learning systems are often deployed in the
real world, where explicitly running a hyperparameter
search for each update can be computationally exhaus-
tive. Therefore, similar to Zaidi et al. (2022), we explore
the sensitivity of our method to the choice of weight de-
cay and learning rate. Figure 5 shows the test accuracy
achieved by changing the learning rate and the weight
decay values intended for CIFAR-10 training in ALMA
scenarios for the mega-batch sequence of |SB | = 4. Com-
pared to baseline training without reinitialization, LURE
is less sensitive to the choice of hyperparameters. A de-
tailed comparison with other methods is provided in Ap-
pendix, Figure 8. For example, the performance of normal
training decreases to 75% with a learning rate of 0.005 and
a weight decay of 0.001, while the performance of LURE
remains above 94% throughout. Therefore, LURE can
improve generalization in regimes where it is infeasible to perform exhaustive hyperparameter tuning.

We underline that LURE’s effectiveness exceeds that of other reinitialization techniques and that it should
be viewed as a general-purpose online training paradigm, as it is more resilient to typical problems found in
real-world datasets than the conventional online training method. Extensive experiments on the model char-
acteristic analyses, such as model calibration and convergence to flatter minima, are provided in Appendix
Sections A.3 and A.4, respectively. Furthermore, we analyze the robustness of connection selection during
training steps and also across experiments trained with different learning rates. Finally, we have added a
discussion section comparing LURE with other baselines and the benefits it brings in practical settings where
the training budget is limited.

7 Conclusion and Future work

We introduce Learn, Unlearn, and RElearn (LURE), an online training paradigm to improve DNN perfor-
mance and generalization through the lens of selective forgetting. LURE alternates between the unlearning
phase, which selectively forgets undesirable information in the model, and the relearning phase, which em-
phasizes learning generalizable features. Empirical results show that the proposed framework improves per-
formance and generalization across a wide range of architectures and datasets, both online and in challenging
few-shot classification. Our framework is robust to learning with noisy labels and adversarial attacks and
increases generalization in many real-world scenarios. One advantage of our work is that we have observed
distinct empirical tendencies when re-initialization succeeds. In future work, it would be interesting to study
the dynamics of reinitialization in other lifelong learning scenarios, such as continual learning, where domain
shifts and catastrophic forgetting are more common. Furthermore, studying activation-based connection
selection may help us selectively identify and retain the most important weights in online learning settings.
Further research in these areas may provide a more in-depth theoretical explanation for why reinitialization
succeeds or fails.
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A Appendix

A.1 Broader Impact and Societal Relevance

We believe that our findings can potentially be harnessed to enhance the test accuracy and robustness of
any machine learning system deployed in the real world where the aspect of generalization is crucial, as
they are continuously trained on sequential data. For example, consider a large-scale social media website in
which users continually upload images and content. To recommend material, filter out inappropriate media,
and choose adverts, the organization requires up-to-date prediction models. Every day, millions of fresh
data points may arrive, which must be quickly integrated into operational ML pipelines. In this scenario,
it is logical to envision having a single model that is regularly updated with the most recent data. Every
day, additional training on the model with the updated and larger dataset might be undertaken. In these
scenarios, the proposed framework (LURE) can improve the generalization and performance of the model to
a greater extent as opposed to new training from the parameters of yesterday’s model without reinitialization.

Furthermore, in applications such as autonomous driving and industrial robotics, where the deployed model
needs to be frequently updated in order to stay in sync with the surroundings. Using LURE as a training
paradigm to update the model can boost performance and generalization in a computationally efficient way,
as it provides a better initialization for continuous training compared to warm-starting or updating the
model from scratch.

In addition to the above scenarios, our proposed framework can be conceivably harnessed in applications
of deep active learning where the goal is to find the most informative data to label with an oracle and
incorporate into the training set. However, current active learning frameworks retrain models from scratch
after each querying step, which is computationally expensive and partially responsible for deleterious envi-
ronmental ramifications. The LURE framework allows models to be efficiently updated without sacrificing
generalization and performance, thus having a positive impact on society.

A.2 Ablation studies

To examine the influence of the individual components of our LURE network in ALMA settings, we perform
the following ablation study.

Effect of Ratio of Reinitialized Parameters. Table 7 shows the effect of varying the number of initialized
parameters on the performance and generalization of the model in CIFAR10. We train the model in ALMA
settings using the LURE framework by varying different percentages of reinitialized parameters (5%, 10%,
20%, 30%, and 40%). Experiments were carried out using full-replay with ResNet18 for |SB | = 8. The
results show that the unlearning of a 5% percentage of parameters has no impact on performance, while
the unlearning of more than 30% has less impact on test accuracy. We find that reinitialization 20% of the
parameters results in the best performance.

Table 7: Evaluation varying the percentage of reinitialized parameters during training on CIFAR10 dataset
using ResNet18.

Reinitialized Params (%) Test Accuracy (↑) CER (↓) Generalization Gap (↓)

LURE

5 89.84 11955 6.83
10 91.81 11571 7.22
20 94.32 9622 6.60
30 90.73 11806 7.91
40 90.79 11559 6.57

Effect of Importance Estimation Method. We investigate the effect of various methods of importance
estimation on our proposed training paradigm. For this, we consider Fisher Importance (FIM), weight
magnitude, random, and SNIP. Table 8 demonstrates the performance and generalization of the model trained
with the LURE framework with different selections to estimate important parameters on CIFAR10 using
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Table 8: Evaluation with different importance estimation on CIFAR10 dataset.
Importance criteria Test Accuracy (↑) CER (↓) Generalization Gap (↓)

LURE

BL 89.31 5657 7.90
FIM 92.73 4346 8.39
Weight Magnitude 92.18 4547 8.53
SNIP 93.73 4409 7.48

Table 9: Evaluation with varying the quantity of data for importance estimation on CIFAR10 dataset.
# samples Test Accuracy (↑)

LURE 0.2 |M| 93.73
128 93.62

ResNet18 for |SB | = 4. Unlearning and relearning with SNIP, Fisher information, and weight magnitude
results in better performance compared to baseline. This shows that our training paradigm is not only limited
to SNIP, but any importance estimation criterion can be used to identify the dataset-specific connections.

Varying the quantity of data used for Importance estimation In our experiments, we randomly
sampled 20% of the data from each mega-batch and used it to estimate the importance of the parameters
before selective forgetting. Here, we analyze the impact of the number of data used to determine the
important estimation on the final performance. Similar to Lee et al. (2018), we used as few as 128 samples
to estimate the important parameters using SNIP. Table 9 shows that LURE is not sensitive to the variation
in the input data used to estimate the importance as the final performance remains unchanged.
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Figure 6: Confidence estimates and the corresponding Expected Calibration Error (ECE) of the CIFAR-10
ALMA trained models. Lower ECE is better. Our method is well calibrated, with confidence estimates
closer to perfect calibration compared to BL, LLF, and S&P.

A.3 Model Calibration

DNNs are often deployed in safety-critical applications, where it is essential to have a model that has a
sufficient sense of uncertainty about its predictions. Therefore, we evaluate the calibration of models trained
with different reinitialization methods in ALMA settings. The common metric for identifying miscalibration
in classification is the Expected Calibration Error (ECE) (Naeini et al., 2015). The ECE measures the
discrepancy between absolute accuracy and average confidence as a weighted average. The lower the ECE,
the better calibrated the model is. Figure 6 shows the ECE values along with a reliability diagram on
CIFAR10 using the calibration library by Kuppers et al. (2020). The result shows that BL, LLF, and S&P

16



Published in Transactions on Machine Learning Research (01/2023)

are highly miscalibrated and far more overconfident than the proposed LURE framework. Thus, in addition
to improving performance and generalization, online learning using selective forgetting can effectively improve
calibration, thus improving reliability in contexts where safety is of absolute importance.

A.4 Convergence to Flatter Minima
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Figure 7: Robustness of the model perturbed by vary-
ing degrees of Gaussian noise. Our method is consider-
ably robust to Gaussian perturbations, as the decline
in performance is gradual, suggesting convergence to
flatter minima.

DNNs that converge to flatter minima in a loss land-
scape have greater adaptability to new tasks with-
out straying too far from the optimal parameters for
previous tasks. Furthermore, solutions that reside
in flatter minima are more robust because the pre-
dictions do not change significantly with minor per-
turbations. We apply independent Gaussian noise
to all parameters of the CIFAR-10 trained model,
as described in (Alabdulmohsin et al., 2021). Fig-
ure 7 shows that the solution reached by LURE,
LLF, and S&P is more robust to model perturbation
than standard training. Our method is significantly
less sensitive to perturbations than the other meth-
ods, and the performance gradually decreases. More
specifically, for every amount of noise introduced
into the model parameters θ, the change in LURE
training accuracy is smaller than in standard train-
ing, implying that the solution provided by LURE
appears to reside in flatter local minima. We ar-
gue that training the model by alternating between
learning and unlearning stages leads to a larger val-
ley, which could better explain our model’s ability to consolidate generalizable features.

A.5 Implementation Details

Datasets. We empirically evaluate our proposed framework on three different data sets: (a) CIFAR-10
(Krizhevsky et al., 2009) (b) CIFAR-100 (Krizhevsky et al., 2009) and (c) Restricted Imagenet (balanced)
(Ilyas et al., 2019; Tsipras et al., 2018). CIFAR10 and CIFAR100 consist of 50,000 training images and 10,000
test images, each of size 32×32, divided into 10 and 100 classes, respectively. Restricted ImageNet (balanced)
is a subset of the original ImageNet data set (Russakovsky et al., 2015) consisting of 89517 training images
and 3450 test images, each of 224 × 224 size divided into 14 classes consisting of five subclasses each. For
ease of computation, we resize the images to 32× 32 for our experimental settings.
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Figure 8: The sensitivity of different reinitialization methods to hyperparameters. The initialization-based
training paradigm is more robust against the change in weight decay and the learning rate compared to
standard online training.
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Algorithm 1 Training LURE in ALMA settings
input: Data stream SB = {M1, ...,Mt}, Model f i=0

θ , replay, Sparsity α
1: i← 1
2: while i ≤ |SB | do
3: if replay then
4: Mi ←

⋃t
i=1Mi

5: else
6: Mi ←Mi

7: f i
θ ← f i−1

θ .train(Mi) ▷ Training or learning step
8: πi ← 0.2Mi

9: M ← Importance Estimation(f i
θ, πi, α)

10: Retain the task specific weights based on M
11: Randomly reinitialize the task irrelevant parameters in f i

θ ▷ Selective forgetting
12: Model with this new initialization for next Mi+1 training

Implementation Details. The efficacy of our framework is demonstrated in ALMA settings (Caccia et al.,
2022). ResNet18 (He et al., 2016) is used as the backbone for most of the experiments on CIFAR10 and
CIFAR100, while ResNet50 (He et al., 2016) is used for restricted ImageNet experiments. We initialize the
networks randomly and use stochastic gradient descent (SGD) with momentum 0.9 and weight decay 1e-4
to optimize it. We follow the same procedure as that followed by Caccia et al. (2022); Misra et al. (2022).
Networks are trained iteratively for t mega-batches with a batch size b = 64 for 50 epochs per mega-batch of
training without early stopping. A step learning rate scheduler with an initial learning rate of 0.1 decayed at
steps 20 and 40 is employed during the mega-batch training of our method. The standard data augmentation
technique, that is, flipping and random cropping, is used. All training settings (lr, b, e) are kept constant
throughout the mega-batch training. We randomly divide the data set into mega-batches with an equal
number of samples in each mega-batch. For each mega-batch Mt, we divide it into a train set with 90%
of the samples and a validation set with the remaining 10% samples. We then randomly sampled 20% of
the training data from each mega-batch to build the set π used to identify task-specific parameters through
SNIP after each mega-batch of training. We use the default parameters for the SNIP algorithm specified
above. Finally, we maintain a separate held-out test set, which is used to evaluate the model’s performance
after training on each mega-batch. Unless specified, we keep the number of mega-batches to 8 for all the
experiments. For training S&P, a shrink coefficient of 0.4 and a noise of 0.001 are applied for the weights of
the entire network before training on the new mega-batch of data. Similarly, for LLF, we reinitialize blocks
3 and 4 of ResNet (He et al., 2016) before the start of each mega-batch of training whereas for RIFLE we
only reinitialize the last fully connected classification layer. For few-shot experiments, we do not consider
existing techniques proposed in the few-shot literature. We limit the number of samples from each class
to 270, which are sampled randomly in a class-balanced way. Finally, we use the same hyperparameters to
perform experiments with different datasets and architectures.

A.6 Robustness of connection selection to change in learning rate.

Reiterating from Section 6.5 where our LURE framework is less sensitive to the choice of hyperparameters
such as learning rate and weight decay. Here, we explore the sensitivity of connection selection to the choice
of hyperparameters. Similar to the experiments in Section 6.4, we calculate the layer-wise percentage overlap
of retained parameters across different training setups at the end of mega batch training. We compute the
overlap between models trained with different learning rates. We keep the seed and other hyperparameters
consistent across the experiments. The results in Figure 10 demonstrate that the selection of connections is
more robust to the model trained at different learning rates. While most of the connections retained in the
early layers remain consistent across training setups, the later layers (layer 4) showed less overlap for the
model trained with different learning rates. Nevertheless, our connection selection is robust to the choice of
learning rate.
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(a) Buffered replay scenario
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Figure 9: Layer-wise percentage overlap of the retained parameters across consecutive mega-batches. The
percentage of connections overlapped between consecutive mega-batches remains consistent in the early and
mid layers (block-1, 2, and 3) whereas it changes in the latter layers as the model is trained on the new
incoming data.

A.7 Evaluating the redundancy of parameters removed during the unlearning phase.

Since our proposed method selectively forgets connections during training, we evaluate the redundancy
of the unlearned connection in the model in terms of performance and robustness. To analyze this, we
measure the performance and robustness of dense and sparse models before and after selective forgetting.
For this, we measure the performance of the ResNet18 model trained on CIFAR10 with |SB | = 8 after the
first mega-batch training. The performance is evaluated with the clean test dataset, while generalization is
evaluated with the test images subjected to 15 types of natural corruptions. Table 10 shows that the drop
in test accuracy between the dense model and the sparse model (containing 20% fewer parameters than
the dense model) is just 0.31% which is insignificant. The relative drop in test and robust accuracy with
respect to train accuracy is less with the sparse model when compared to the dense model. In addition, in
robustness and generalization analysis, the sparse model either outperforms or achieves the same accuracy
when compared to the dense model. This shows that the connections that are constantly reinitialized during
training contain trivial information that is redundant in fact and adds insignificant value to model training
in terms of generalization and performance. Thus, we empirically show that selective forgetting is crucial for
retaining previous information while freeing the model’s capacity to learn incoming data, thereby improving
generalization in anytime learning.
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Figure 10: Layer-wise overlap percentage of the retained parameters across training runs with different
learning rates.

Table 10: Evaluating the redundancy of the parameters removed during the unlearning phase. The relative
improvement between the train accuracy and test/robust accuracy is shown in brackets.

# Parameters Train Accuracy (↑) Test Accuracy (↑) Robust Accuracy (↑)
Full model 11173962 75.54 71.78 (0.95%) 55.80 (0.74%)
Sparse model 8939169 74.04 71.47 (0.96%) 56.20 (0.76%)

A.8 Comparison of LURE with warm-start and cold-start training.

Figure 11 shows a comparison between ResNet18 trained using warm-start, random initialization, and LURE
on CIFAR-10 for a mega-batch size of ((|SB | = 2). For the first 50 epochs, the models are trained with
50% of data. Then, it is trained on 100% of data for another 50 epochs. Random Init. (cold-start) are
models trained on 100% of the data from scratch. The dotted black line at 50 epochs represents the end of
the first mega-batch training. The region between the two dotted lines shows the computationally resource
intensive nature of the cold-start training to obtain optimal performance compared to warm-start and LURE.
In practical settings where the training budget is limited, it is natural to maintain a single model that is
updated with the latest data at regular intervals. Training a model from scratch at the onset of new data
is resource-intensive and drains the training budget. Also, in a data privacy or memory-limited scenario
where it is difficult to store the previously trained data, it is less intuitive and seems wasteful to sacrifice
all previous computations (past knowledge acquired) for much-needed generalization. While the warm-
start training damages generalization, our proposed method (LURE) brings discernible benefits in practical
online settings: (1) LURE achieves faster convergence when compared to the cold-start (Random. Init.)
model in settings where anytime performance is required, thus saving computational resources. (2) Improves
generalization and robustness in anytime settings compared to warm-start (BL) and cold-start (Random.
Init.) models. (3) LURE can also improve generalization in no-replay and buffered-replay scenarios. LURE
with selective forgetting balances the trade-off between a lack of generalization in warm-start models and
the enormous computational expense of retraining models from scratch through reinitialization.
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Figure 11: A comparison between ResNet models trained using warm start, random initialization, and LURE
on CIFAR-10 ((|SB | = 2). For the first 50 epochs, the models are trained with 50% of data. Then, it is
trained on 100% of the data for another 50 epochs. Random Init. (cold-start) are models trained on 100%
of the data from the start. The dotted black line at 50 epochs represents the end of the first mega-batch
of training. The region between two dotted lines shows the computationally resource intensive nature of
the cold-start training to convergence compared to warm-start and LURE. LURE mitigates the trade-off
between warm-start and cold-start training in Anytime learning settings.
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