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Abstract

Generative probabilistic modeling of biological sequences has widespread
existing and potential use across biology and biomedicine, particularly given
advances in high-throughput sequencing, synthesis and editing. However,
we still lack methods with nucleotide resolution that are tractable at the
scale of whole genomes and that can achieve high predictive accuracy in
theory and practice. In this article we propose a new generative sequence
model, the Bayesian embedded autoregressive (BEAR) model, which uses a
parametric autoregressive model to specify a conjugate prior over a nonpara-
metric Bayesian Markov model. We explore, theoretically and empirically,
applications of BEAR models to a variety of statistical problems includ-
ing density estimation, robust parameter estimation, goodness-of-fit tests,
and two-sample tests. We prove rigorous asymptotic consistency results
including nonparametric posterior concentration rates. We scale inference
in BEAR models to datasets containing tens of billions of nucleotides. On
genomic, transcriptomic, and metagenomic sequence data we show that
BEAR models provide large increases in predictive performance as compared
to parametric autoregressive models, among other results. BEAR models
offer a flexible and scalable framework, with theoretical guarantees, for
building and critiquing generative models at the whole genome scale.

1 Introduction

Measuring and making DNA is central to modern biology and biomedicine. Generative
probabilistic modeling offers a framework for learning from sequencing data and forming
experimentally testable predictions of unobserved or future sequences that can be synthesized
in the laboratory [19} 131}, [63]. Existing approaches to genome modeling typically preprocess
the data to build a matrix of genetic variants such as single nucleotide polymorphisms [25] [57].
However, most modes of sequence variation are more complex. Structural variation occurs
widely within individuals (e.g. in cancer), between individuals (e.g. in domesticated plant
populations) and between species (e.g. in the human microbiome), and methods for detecting
and classifying structural variants are heuristic and designed only for predefined types
of sequence variation such as repeats [12], 44} [50] [69] [78]. Ideally, we would be able to
directly model genome sequencing data and/or assembled genome sequences. However,
building generative models that work with raw nucleotides, not matrices of alleles, raises the
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Figure 1: Overview of the BEAR model. (A) BEAR models employ a Dirichlet prior
on Markov transition probabilities that is centered at the prediction of an AR model. (B)
De Bruijn graphs showing BEAR transitions with non-zero probability under an example
data-generating distribution. As the lag L increases, the model has higher resolution.

extreme statistical challenges of having enough flexiblility to account for genomic complexity,
interpretability to reach scientific conclusions, and scalability to train on billions of nucleotides.
Given the relevance of genetic analysis to human health, models should also possess strong
theoretical guarantees.

Autoregressive (AR) models are a natural starting point for generative genome modeling,
since they (1) have been successfully applied to biological sequences, as well as many other
types of non-biological sequential data, (2) can be designed to have interpretable parameters,
and (3) can be scaled to big datasets with very long sequences [66) [73]. However, since AR
models are parametric models, they will in general suffer from misspecification; as we show
empirically in Section [6, for genomic datasets misspecification can be a serious practical
limitation not only for simple AR models but even for deep neural networks.

As an alternative strategy for building generative probabilistic models at the genome scale,
we propose in Section |Z the nonparametric “Bayesian embedded autoregressive” (BEAR)
model. BEAR models are Bayesian Markov models, with a prior on the lag and conjugate
Dirichlet priors on the transition probabilities. The hyperparameters of the Dirichlet prior
are controlled by an “embedded” AR model with parameters 6 and an overall concentration
hyperparameter h, both of which can be optimized via empirical Bayes. In Section [3 we
show that BEAR models can capture arbitrary data-generating distributions, and establish
asymptotic consistency guarantees and convergence rates for nonparametric density estima-
tion. In Section |4l we show that the optimal i provides a diagnostic for whether or not the
embedded AR model is misspecified and if so by how much, alerting the practitioner when
the parameter estimates 6 are untrustworthy. Besides estimation problems, BEAR models
can also be used to construct goodness-of-fit tests and two-sample tests, thanks to their
analytic marginal likelihoods, and we prove consistency results for these tests in Section [5.
Finally we apply BEAR models at large scale, to genomic datasets with tens of billions of
nucleotides, including whole genome, whole transcriptome, and metagenomic sequencing
data; we find that BEAR models can have greatly improved performance over AR models
(Section [5)).

Crucial to our theoretical and empirical analysis is the statistical setting: we assume that the
data X7,..., Xy consists of finite but possibly variable length strings (with small alphabets)
drawn i.i.d. from some underlying distribution p*, and study the behavior of estimators
and tests as N — oo. This setup differs from common theoretical analyses of sequence
models outside of biology, which typically consider the limit as the length of an individual
sequence goes to infinity [26]. In biology, however, we observe finite sequences recorded from
many individual species, organisms, cells, molecules, etc. and want to generalize to unseen
sequences, making N — oo the appropriate large data limit.

2 Bayesian embedded autoregressive models

We first briefly review autoregressive (AR) models as applied to sequences of discrete
characters. Let f(6) denote an autoregressive function with parameter 6 and let L denote
the lag of the autoregressive model; then the AR model generates data as

Xi| Xi—r.i—1 ~ Categorical(fx,_,._,(6)), (1)



where i indexes position in the sequence X and X;_r.;_1 consists of the previous L letters in
the sequence. Since sequence length as well as nucleotide or amino acid content is relevant
to biological applications, we use a start symbol () at the beginning and a stop symbol $ at
the end of each sequence; letters X; are sampled sequentially starting from the start symbol
and continuing until a stop symbol is drawn.

We propose the Bayesian embedded autoregressive (BEAR) model, a Bayesian Markov model
that embeds an AR model into its prior. The BEAR model takes the form,

L), vy~ Dirichlet(% f(0)) for all k, )

Xi|Xi— -1 ~ Categorical(vx, ., ,),

where 7(l) is a prior on the lag with support up to infinity, » > 0 is a concentration
hyperparameter, and k is a length L kmer. The BEAR model has three key properties
(Fig. |1)). First, the unrestricted transition parameter v and lag L allow the model to capture
exact conditional distributions of p* to arbitrarily high order: p*(X;|X;—1) at L = 1, then
p*(X;|Xi—2,Xi—1) at L = 2, etc.. This property allows the BEAR model to be used for
nonparametric density estimation (Section [3)). Second, in the limit where h — 0, the BEAR
model reduces to the embedded AR model (Eqn. . The optimal h provides a measurement
of the amount of misspecification in the AR model (Section [4). Third, the choice of the
conjugate Dirichlet prior allows the conditional marginals p((X,,))_,|L, h,6) to be computed
analytically, and (since L is one-dimensional) the total marginal likelihood p((X,)N_,|h, )
to be estimated tractably. This allows BEAR models to be used for hypothesis testing

(Section [5)).

There are a variety of ways of performing inference in BEAR models, but for most applications
we will focus on empirical Bayes methods that optimize point estimates of L, h and 6. Let
#(k,b) denote the number of times the length L kmer k is seen followed by the letter or
stop symbol b in the dataset (X,,)Y_;. Using a high-performance kmer counter optimized for
nucleotide data, KMC, we can compute the count matrix #(-,-) for all observed kmers k in
terabyte-scale datasets, even when the matrix does not fit in main memory (Section [39].
To optimize h and 6, we take advantage of the fact that the log conditional marginal likelihood
can be written as a sum over observed kmers,

o N _ oo | L2 5 f(0) T, D5 feo(0) + #(k, D))
log p((Xn)p=1|L;h,0) k;#Zk;Ol g |:Hb DL fro(6)) T(S L fuo(6) - Ak ) | (3)

This decomposition lets us construct unbiased stochastic estimates of the gradient with
respect to h and 6 by subsampling rows of the count matrix (Section . Empirical Bayes
in the BEAR model therefore costs little extra time as compared to standard stochastic
gradient-based optimization of the original AR model. Code is available at https://github)
com/debbiemarkslab/BEAR.

Toy example We next briefly illustrate the properties and advantages of the BEAR model
in simulation. We generated samples from an AR model in which fx(0) depends on k linearly
as a function of both individual positions and pairwise interactions between positions, with
the strength of the pairwise interaction weighted by a parameter 8* (Section . We first
fit (using maximum likelihood) a linear AR model that lacks pairwise terms and is thus
misspecified when * > 0. Since the AR model is misspecified, it does not asymptotically
approach the true data-generating distribution p* (Fig. EA, gray). We next computed the
posterior of a vanilla BEAR model without the embedded AR in its prior, instead using
the Jeffreys prior vy ~;;q Dirichlet(1/2,...,1/2). The vanilla BEAR model asymptotically
approaches the true data generating distribution, since it is a nonparametric model; however,
it underperforms the AR model in the low data regime (Fig. EA, black). Finally, we fit a
BEAR model with the misspecified linear AR model embedded, using our empirical Bayes
procedure. The BEAR model performs just as well as its embedded AR model in the low
data regime, just as well as the vanilla model in the high data regime, and better than both
at intermediate values (Fig. [2A, blue and yellow).

When the AR model is well-specified, the empirical Bayes estimates of the parameters 6
under the BEAR model match the maximum likelihood estimates of § under the AR model
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Figure 2: BEAR models detect and avoid misspecification without sacrificing
small dataset performance. (A) Estimated KL divergence between simulated data-
generating distribution p* and model posterior predictive distribution, as a function of
dataset size N. Five independent simulations were run; thin lines correspond to individual
simulations, thick lines to the average across simulations. (B) The h misspecification
diagnostic as a function of dataset size, for varying 5*. Dataset sizes at which A is close to
convergence for f* = 0.6 (right) and g* = 1.0 (left) are marked with vertical lines.

nearly exactly (Fig.[S7). When the AR model is misspecified, however, the BEAR model
provides a warning: the empirical Bayes estimate of h converges to a non-zero value, rather
than zero (Fig. ) This warning emerges early: h converges well before the vanilla model
starts outperforming the misspecified AR model.

Related Work The key idea behind BEAR models is to nonparametrically perturb a
parametric model [4§], following a similar strategy to the Polya tree method proposed by
Berger and Guglielmi [6]. As in Berger and Guglielmi [6], we use Dirichlet priors centered at
the parametric model’s predictions, and construct tractable goodness-of-fit tests by exploiting
Dirichlet-categorical conjugacy. BEAR models extend these ideas from one-dimensional
continuous data to finite-length sequences of discrete characters.

Markov and AR models have a long history and wide range of applications in biological
sequence analysis [21], 151], 58]. Compression methods, in particular, often rely on accurate
density estimation and use Markov or AR models to achieve it [17} [55] [56] [67]. We establish
theoretical guarantees for density estimation with fully Bayesian Markov models (Section .
AR models used for compression, like other AR models, can be embedded into BEAR models
for improved statistical performance and to measure misspecification.

BEAR models are closely linked to non-generative genome analysis methods. Assembly
algorithms and variant callers often analyze paths in the de Bruijn graph of a sequence
dataset; in the limit h — oo, samples from the posterior predictive distribution of the BEAR
model, conditional on L, correspond to paths through the L-mer de Bruijn graph of the
data [11}[33]. Comparisons between genomes and other sequences are often made on the basis
of kmer counts; our two-sample test provides a generative perspective on this idea [3 [16] [78].

BEAR models are also connected to ideas in natural language processing, where kmers
are referred to as ngrams. Under the vanilla BEAR model, the mean of the posterior
predictive distribution conditional on L corresponds to an ngram additive smoothing model [9].
Comparisons between datasets using their ngram counts are also common in model evaluation
metrics such as the BLEU score [53].

3 Density estimation

The density estimation problem is that of estimating p* given data (X,))_, drawn i.i.d.
from p*. Density estimation is particularly crucial for biological sequence analysis due to
its connections to fitness estimation [31] [65]. State-of-the-art mutation effect prediction
methods and clinical variant interpretation methods rely on density estimates of evolutionary
sequence data [20] 60]. Density estimation with generative models is particularly useful for
protein design, as samples from accurate density estimates are likely to be functional and



can be synthesized in the laboratory [63] [66]. Despite all these applications, existing density
estimation methods for biological sequences lack theoretical guarantees on their accuracy
and are often limited in their scale, being restricted to relatively short sequences [79]. Here,
we show that the posterior distribution of the BEAR model is consistent and will concentrate
on p* as N — oo, regardless of what p* actually is, so long as p* generates finite length
sequences almost surely (a.s.).

We first study the expressiveness of BEAR models. Let My be the set of Markov models
Py with transition probabilities v and lag L that generate finite length strings a.s.. Note
that My C My C .... Define the union M = U7 ;M. We can compare M to the set of
distributions over finite strings .S, of which p* is a member. In Section [D] we prove that,
Summary of Propositions Not all possible distributions over S are in M. However,
M is dense on the space of probability distributions over S with the total variation metric.
The implication of this result is that although BEAR models cannot exactly match arbitrary
data-generating distributions, they can approximate p* arbitrarily well as L increases. This
makes asymptotic consistency possible.

We now show that the posterior of the BEAR will in fact asymptotically concentrate on the
true p*, i.e. it is consistent. For tractability, we assume in this section that the prior is fixed
(we do not use empirical Bayes). The result relies on the tools for understanding convergence
rates of posteriors developed in Ghosal et al. [23]. The most important assumption is that
p* is subexponential, meaning that for some ¢ > 0, E,- exp(t|X]|) < oo where |X]| is the
sequence length. Let TI(-|(X,,)Y_,) denote the posterior over sequence distributions. Let
B(p*, ) denote a ball of radius § centered at p*, using the Hellinger distance.

Summary of Theorem Given M > 0 large enough and € € (0,1) small enough, we
have TI(B(p*, MN~29)|(X,,)N_,) = 1 in probability.

A proof is in Section [Hand simulations in Section [[.2l This result states that the posterior
distribution of the model converges to a delta function at the true distribution p* regardless
of what p* is. It also provides a rate of convergence: in a parametric model, the uncertainty
would shrink as N _%, but here the rate is slower, IV _%5, a price paid for the nonparametric
model’s expressivity [23], [29] 35]. The proof includes a variety of new theoretical constructions
and algorithms that are used to approximate subexponential sequence distributions.

4 Robust parameter estimation

To derive a biological understanding of mutational processes, evolutionary history, functional
constraints, etc. from sequence data, researchers must estimate model parameters (not
just density). However, parameter estimates cannot in general be trusted when models
are misspecified [34]. To reach robust scientific conclusions, therefore, parameter estimates
should ideally come with a warning about whether or not the model is misspecified and
some measurement of the degree of misspecification. Here, we study in BEAR models the
asymptotic behavior of empirical Bayes estimates of the AR parameter 0, as well as the
hyperparameter h, showing that h diagnoses misspecification in the embedded AR model.

Our analysis builds off the study of empirical Bayes consistency in Petrone et al. [54], which
showed that empirical Bayes will, in general, maximize the prior probability of the true
data-generating parameter value. Extending this theory to BEAR models is nontrivial, since
in BEAR models the standard Laplace approximation to the marginal likelihood can fail.
For theoretical tractability, as in many analyses of similar models, we fix L at some arbitrary
and large value [30]. Define p*(%) = argmin,, o, KL(p*||p,) as the closest model in My, to

p*, and define v* such that p,. = p*(&) (note p* ) = p*as L — o0). We say that the AR
model is misspecified “at resolution L” if f cannot approximate p*(E) | ie. if there does not
exist some sequence of parameter values 6 such that Pran) — p*(L) as N — co; otherwise,
the AR model is well-specified at resolution L. Now we can study empirical Bayes estimates
of h and 6, denoted hx and 6.

Summary of Propositions Let (hn)¥—y and (On8)FF—, be sequences maximizing
the BEAR marginal likelihood p((X,,)2_|L, h,0) for each N. If the model is well-specified at
resolution L, then hx NY/*=¢ — 0 for every e > 0 and Dfon) — p*(E) in distribution, with
both sequences converging in probability. On the other hand, if the model is misspecified at



resolution L, then hy is eventually bounded below by some positive (non-zero) number a.s..
Proofs are in Section [F]and simulations in Section [[.Il The implication of this result is that
when the AR model is well-specified, hy converges to zero (at a rate that is a power of the
dataset size) and 0 converges to the parameter value 6* at which the AR model matches
the data (Corollary . On the other hand, when the AR model is misspecified, hy does
not converge to zero; heuristically, we find instead that hy is approximately proportional to
a divergence between p*(*) and the AR model,

hvoe S0 [ RUAONIE) Flos(Y) ST fualon) | (4)

keaccr (p*) bgsuppy, (p*) |k

where accr, (p*) = {k | p*(#k > 0) > 0} is the set of kmers with non-zero probability and
suppy, (p*)|x = {b | p*(#(k,b) > 0) > 0} is the set of transitions from k with non-zero
probability. In summary: when fitting a BEAR model by empirical Bayes, you get, along
with a parameter estimate 6y, a value hy which tells you the amount (from zero to infinity)
of misspecification in the AR model. If hy is close to zero, you can trust the estimate 6.

5 Hypothesis testing

Goodness-of-fit test A major outstanding challenge in biological sequence analysis is
to build models based on natural sequence data that are accurate enough to generate
novel functional sequences [45]. A crucial component of the problem is model evaluation:
while relative model performance may be compared on the basis of likelihood, absolute
performance — whether or not the model in fact provides an accurate description of the
data — is usually addressed solely on the basis of limited numbers of summary statistics,
such as average amino acid hydrophobicity or sequence length [63 [66]. Given a dataset
(X,)N_, ~ p* iid., a goodness-of-fit test asks whether or not the data distribution p*
matches a model distribution p. It takes into account all possible distributions p* including
those that differ from p in a manner that cannot be captured by finitely many summary
statistics. We propose a goodness-of-fit test that compares the null hypothesis Hy : p* = p
to the alternative H; : p* # p using the Bayes factor BF = p((X,,)Y_;|h,0)/p(X1.,.), where
p((X)N_1h,0) =3, p((Xn)N_1|L, h,0)m(L) is the marginal likelihood under the BEAR
model. Note that practically, the sum over L is straightforward to approximate by truncation,
and that the test can be computed in time linear in the amount of data.

We now prove the consistency of the test. As in comparable theoretical analyses of tests
based on Polya trees, for theoretical tractability we truncate the prior, setting 7(L) = 0 for
L larger than some arbitrary L but 7(L) > 0 for L < L [30]. We treat 6 and h > 0 as fixed.
Summary of Proposition If p is at least as close to p* as p*'P) is, as measured by
KL(p*||-), then BF — 0 in probability as N — co. On the other hand, if p*(*) is closer than
P, then BF — oo in probability. A proof is in Section and simulations in Section [L.3

An important practical limitation on nonparametric hypothesis testing is low power:
since so many alternative distributions must be considered, the null hypothesis can
rarely be rejected. However, Proposition @ holds for the Bayes factor BF(L,h,0) =
p((X)N_4|L, h,0)/5((X,,))_;) with any choice of L, h > 0, and . Thus in practice to
increase power we can maximize the value of BF(L, h, ) as a function of L, h, and/or 6 (note
that this approach is heuristic, since we have not proven the consistency of the maximized
Bayes factor). Berger and Guglielmi [6] provide extensive methodological guidance on using
analogous tests constructed with Polya trees. Based on their recommendations, we suggest
first choosing 6 such that pyg) is as close as possible to p, then plotting the Bayes factor as
a function of h and/or L to identify the maximum value and confirm that any conclusion is
robust to changes in h and/or L.

Another challenge in nonparametric hypothesis testing is that it can be difficult to understand
how exactly a test reached its conclusion. To identify which sequences provided the most
evidence for or against the null hypothesis, we suggest examining the BEAR Bayes factor
for each individual sequence conditional on the rest of the dataset, in analogy to the witness
function used in kernel-based tests [43 [70].



Table 1: Heldout perplexity. Whole genome sequencing data: YSD1: A Salmonella phage.
A. th.: Arabidopsis thaliana, a plant (datasets represent different individuals). Single cell
RNA sequencing data: PBMC: peripheral blood mononuclear cells, taken from a healthy
donor. HL: Hodgkin’s lymphoma tumor cells. GBM: glioblastoma tumor cells. Metagenomic
sequencing data: HC: non-CD and non-UC controls. CD: Crohn’s disease. UC: ulcerative
colitis. Full assembled genomes: Bact.: Bacteria. Models Van.: Vanilla (Jeffreys prior). Lin.:
Linear. CNN: convolutional neural network. Ref.: reference genome/transcriptome model.

Dataset AR Lin. AR CNN AR Ref. BEAR Van. BEAR Lin. BEAR CNN BEAR Ref.

YSD1 3.953 3.873 1.266 1.165 1.144 1.144 1.145
A.th. 1 3.956 3.947 2.686 1.567 1.432 1.432 1.411
A. th. 2 3.953 3.949 1.982 1.650 1.463 1.462 1.441
A. th. 3 3.998 3.952 2.340 1.834 1.728 1.727 1.733
PBMC  3.991 3.974 2.097 1.402 1.372 1.372 1.374
HL 3.939 3.930 2.141 1.409 1.378 1.378 1.379
GBM 4.137 4.137 2.366 1.442 1.406 1.406 1.406
HC 3.966 3.946 - 1.652 1.465 1.464 -
CD 3.992 3.985 - 1.760 1.524 1.524 -
ucC 3.989 3.986 - 1.644 1.481 1.481 -
Bact. 3.831 3.794 - 3.774 3.774 3.774 -

Two-sample test A two-sample test asks whether or not two datasets (X,,)N_, and (XN,
are drawn from the same distribution. Efforts to compare different sequence datasets are
widespread in biology: for instance, researchers often wish to determine whether two
microbiome samples, taken under different conditions or at different timepoints, are the
same up to sampling noise [44]. Two-sample tests can also be used to evaluate generative
sequence models that lack tractable likelihoods (for which the goodness-of-fit test proposed
above does not apply) such as energy-based models or implicit models like GANs and
biophysical simulators [27, 42} [49]. Assume (X,)N_; ~ p; and (X/)N, ~ py i.id.. Our
BEAR test compares the null hypothesis Hg : p1 = p2 to the alternative H; : p; # p2 using
the Bayes factor BF = p((X,)N_, [h, 0)p((X4) b, 6)/p((Xa)_y, (XY b, 6). As in the
goodness-of-fit case, the test can be computed approximately in time linear in the amount of
data, and the same advice on increasing power and identifying important sequences holds
here too.

We next prove consistency, again truncating the prior at L and fixing h and 6.
Summary of Proposition If p§L) = ng), then BF — 0 as N — oo in probability.

Otherwise, if pgi) #* pgi), then BF — oo in probability. A proof is in Section and
simulations in Section [3.

6 Results

Predicting sequences We sought to evaluate BEAR models as compared to AR models
on the task of predicting real nucleotide (nt) sequences. We considered eleven datasets of
four different types: whole genome sequencing read data, single cell RNA sequencing read
data (including from patient tumors), metagenomic sequencing read data (including from
patient fecal samples) and full bacterial genomes from across the tree of life (Section .
Datasets ranged in total size from ~ 107 — 10'° nt and in individual sequence length from
~ 10?2 — 10° nt (Table . 25% of data was randomly held out for testing, in the form of
entire sequences (reads, genomes, etc., see Table ; our goal was to evaluate BEAR models
as density estimators, so we did not use masking (a common holdout strategy in natural
language processing). We considered a linear AR model and a deep convolutional neural
network (CNN) AR model with > 10x more parameters, both of which are common models
used across a range of applications; we also designed a biologically-structured AR model
which makes predictions based on a reference genome and a Jukes-Cantor mutation model



(Section [56, [67]. We then embedded each AR model to create a corresponding BEAR
model. The BEAR models improve over the AR models in nucleotide prediction according
to both perplexity (Table|l)) and accuracy ﬁ)le in all datasets, even when the model
lag L is held fixed for comparison (Section |L.3)

In 10 out of 11 datasets, BEAR models increase nucleotide prediction accuracy from near
chance values of 30 — 35% (in the case of the linear and CNN models) to 78 — 95%, bringing
genome-scale models into the realm of potential practical use (Table . The training
time for BEAR models is essentially identical to that of AR models, aside from the time
required to build the transition count matrix, which need only be done once before training
all models (Fig. . Remarkably, the optimal lag L chosen by empirical Bayes is often
quite short, less than 20 nt (Table . The improvements offered by BEAR models that use
an embedded AR model over the vanilla BEAR model are modest for datasets of this size;
however, sequencing experiments are often designed to collect enough data for downstream
analyses. We found in an example that, if sequencing coverage was 3x instead of 100x,
the improvement in prediction accuracy would have been greater than 10 percentage points
instead of 0.1 (Section [L.4} Fig. [S14).

Measuring misspecification When conventional Typle 2: Diagnostic h. Abbrevia-
deep neural network methods fail to provide strong tions as in Table[Jl

predictive performance, popular wisdom often ascribes Dataset Lin. CNN Ref
the failure to too much model flexibility or not enough ; i
training data, especially in scientific applications. Ex- YSD1 5.528 5.461 4.183

amining the h misspecification diagnostic in the BEAR A. th. 1 2.765 2.756 2.990
models described above, we see that this is not the case A. th. 2 2.643 2.633 2.326
here (Table[2)). The large values of h suggest that where A. th. 3 3.969 3.964 1.598
the CNN fails it is not because of too much flexibility PBMC 4.167 4.145 3.762

but rather too little: the mpdgl is pot ﬂex@ble enough to HL 4.050 4.038 3.581
encompass the true data distribution, so it suffers from GBM  4.172 4.154 3.238
misspecification. Meanwhile, the reference-based model

has only two learned parameters, but is less misspecified HC  4.668 4.651 -
than the CNN in all but one dataset. This too runs CD 3.096 3.094 -
counter to popular wisdom in machine learning, which uc 3.843 3.835 -
often assumes that when principled, low-flexibility sci- Bact. 0.010 0.003 -

entific models outperform deep neural networks it is
thanks to their low variance in the small data regime.

Generating samples BEAR models are generative and can be used to sample new sequences.
We sampled extrapolations from the end of a read sequence recorded in a plant (A. thaliana)
whole genome sequencing experiment, and compared to an alternative non-probabilistic
extrapolation method that is widely used in biology, local assembly (Fig. ; Section . In
this example the assembly algorithm SPAdes returns four possible assemblies, a relatively
large number compared to other reads in the dataset (Fig.[BA stars) [5]. Samples from
the BEAR model include these four possibilities, but also many more, some with higher
probability. The distribution over possible nucleotide choices under the BEAR model is much
wider than the number of assemblies would suggest: it has a perplexity of 1.4 per position
(on average across samples) at the beginning of the extrapolation, and a perplexity of 2.7 at
50 nucleotides (Fig. ) These observations suggest that SPAdes, which does not provide a
measurement of uncertainty, may not be capturing the full range of possible sequences.

Visualizing data Methods for learning local representations or features of biological se-
quences can be powerful tools for visualization and semisupervised learning [7]. One approach
to extracting such representations is to learn a generative model ¢(X,..., X4+1) of kmers,
for instance using a variational autoencoder. While such models are not autoregressive, the
small size of the DNA alphabet makes it tractable to estimate the conditional ¢(Xr4+1]|X1.1)
by Bayes’ rule, and this conditional can then be embedded into a BEAR model. We applied
this strategy to probabilistic PCA. We visualized in low dimensions the inferred latent
representation for a model trained on a single cell RNA sequencing dataset (HL), and were
able to assign annotations to clusters, including those containing unmapped reads (Fig. [3CD;
Section . The BEAR model however raises the warning that the model is misspecified
(h = 4.836), suggesting there may be richer latent structure yet to discover.
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Figure 3: Generation, visualization and testing. (A) Sample extrapolations, colored to
denote distinct paths through the L-mer de Bruijn graph. (B) Distribution of the perplexity
of the next Markov transition under the BEAR model, for each position of the sampled
extrapolations, with the per position average shown in black (Section. (C) Log probability
of each read in the HL dataset under the BEAR model and a model built from the reference
transcriptome. Reads are colored by whether or not they map to the reference. (D) Latent
representations of the reads highlighted in C, visualized using tSNE, with clusters annotated
as likely coming from mitochondria, the sequencing adapter, or transcripts of the gene JUND
(Section [N). (E) Goodness-of-fit test Bayes factor as a function of hyperparameter h. (F)
Two-sample test Bayes factor as a function of lag L. Black line compares simulated data
to simulated data; dashed lines compare subsampled real data to subsampled real data;
solid lines compare real data to simulated data. (G) Log probability of each read under the
real data BEAR model minus the log probability under the simulated data BEAR model

(Section [O).

Testing hypotheses The question of when and how microbiomes change is widespread,
but has in the past relied on summary statistics of sequencing datasets [44]. Schreiber et al.
[64] studied changes in patient urine microbiomes before and after kidney transplant, and
performed both unbiased metagenomic sequencing and diagnostic quantitative polymerase
chain reaction (qPCR) for a specific virus associated with complications (JC polyomavirus).
They found evidence of donor-to-recipient viral transmission in 5 cases out of 14. We applied
the BEAR two-sample test to patients’ metagenomic sequencing data before and after
transplantation, using the vanilla Jeffreys prior and integrating over lags, in order to detect
changes; the test rejects the null hypothesis in all 5 cases where there was transmission, and
accepts the null hypothesis in all but one of the remaining 9 cases (Table Section .
These results show, in a small example, that the two-sample test has sufficient power to
detect microbiome changes in real data, and can be consistent with more specific tests.

We next applied BEAR hypothesis tests to evaluate generative models. We evaluated the
reference-based AR model described above using the BEAR goodness-of-fit test. The test
identifies considerable evidence (log Bayes factor > 108) for misspecification in each A.
thaliana whole genome sequencing dataset, and this conclusion is robust to a wide range of h
values (Fig. BE; Section [0.2). Next, we evaluated a detailed simulation model (ART) that is
intended to generate likely reads of a given reference genome [32]. The model lacks tractable
likelihoods, so we use the BEAR two-sample test. When integrating over all lags, the test
accepts the null hypothesis, suggesting that the simulation model is accurate; if we examine
the test results for individual lags L to increase power, however, we can see some evidence of
differences (Fig. [3F; Section [0.2). Note that as L increases, there is a tradeoff: tests with
larger lag can detect more subtle differences between the two distributions, but have less
statistical power since they must consider a larger set of possible distributions. Thus the



Bayes factor first increases and then decreases with lag, reaching a peak at intermediate
values where there is the most evidence of difference. To understand in detail the source
of the detected differences between the data and the simulation model, we examined the
conditional Bayes factor for individual reads, discovering clusters of reads that are poorly
explained by the simulation model (Fig. ) One group mapped to chloroplasts, an organelle
with its own genome that is variable in copy number; reads mapping to centromeres, an area
of the plant genome for which the reference genome is considered unreliable, were also poorly
explained by the simulation model. In one dataset we found a cluster of outliers that did not
map to A. thaliana at all, and instead mapped to a common soil bacteria, Bacillus cereus,
presumably a contaminant in the experiment (Fig. EG, left). These results illustrate how
BEAR hypothesis tests can be used not only for testing but also for detailed model criticism.

7 Discussion

In this article we proposed the nonparametric BEAR model, studied its theoretical properties,
and developed algorithms and implementations for terabyte-scale inference. BEAR models
substantially outperform standard AR models on a variety of datasets, and come with
extensive theoretical guarantees, including for density estimation, misspecification detection,
and hypothesis testing. BEAR models are closely connected to non-probabilistic genome
analysis methods, such as de Bruijn graph assembly, but provide an alternative that is
uncertainty-aware. Note, however, that BEAR models do not explicitly account for paired-
end read information, or other sources of long-distance information; this is an important
area for future work. While there has been little previous empirical or theoretical work
in the machine learning literature on generative models of full genomic, transcriptomic or
metagenomic sequences, we hope BEAR models provide a useful starting point.
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