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ABSTRACT

We explore which pre-training dataset should be used to achieve the best transfer
learning performance. We investigate the impact of pre-training on the few-shot
and full fine-tuning performance using 7 pre-training datasets, and 9 downstream
datasets. Through extensive controlled experiments, we find that the choice of
the pre-training dataset is essential for the few-shot transfer, but its role decreases
as more data is made available for fine-tuning. Additionally, we explore the role
of data curation and examine the trade-offs between label noise and the size of
the pre-training dataset. We find that using 2000× more pre-training data from
LAION can match the performance of supervised ImageNet pre-training. 1

1 INTRODUCTION

The best-performing computer vision models are produced by the transfer learning paradigm. While
transfer learning is not new, the substantial improvement in the quality of the pre-trained mod-
els in recent years has brought transfer learning to the spotlight (e.g., CLIP (1), BASIC (2), and
Flamingo (3)). These improvements are driven by new datasets for pre-training as well as better
pre-training algorithms. This naturally leads to a question:

How do the dataset and the algorithm used for pre-training affect downstream performance?

In contrast to prior works (4; 5; 6; 7; 8; 9), our main focus is on the role of the pre-training data
distribution in downstream performance. We set up systematic experiments to explore our research
questions and contributions as follows:

Do different pre-training distributions lead to different transfer learning performances? In practice,
one has many options to download pre-training checkpoints and fine-tune the model on the target
dataset. Should we expect different pre-training datasets to perform differently in the transfer set-
ting? When controlling for the size of the pre-train model and the downstream dataset, but changing
the pre-train dataset, we observe noticeable differences in downstream accuracy in the few-shot set-
ting (only a few examples per class are available for fine-tuning). However as more samples are
available for fine-tuning, the difference in absolute accuracy when varying the pre-training dataset
largely evaporates. In the few-shot regime, we observe that certain pre-training datasets (e.g., Shut-
terstock) consistently lead to a better transfer accuracy than the other (e.g., WiT) across many down-
stream tasks. However, the ranking of the other pre-training datasets in our selection appears mixed.
Moreover, even the pre-training dataset which leads to the worst transfer accuracy (WiT) still out-
performs training from scratch (see Section 3.1, Figure 1 and Figure 6).

How much is expensive labeling worth compared to noisier but larger pre-training data? We compare
different pre-training strategies: supervised pre-training on the carefully labeled ImageNet dataset
and semi-supervised pre-training on language-image pairs from larger but noisier datasets. We find
that pre-training on a well-curated dataset leads to better transfer accuracy than pre-training on a
noisy dataset of a similar size. Our investigations also show that pre-training on a 15x-2000x larger
but noisier dataset (LAION) can close the gap for some downstream tasks (see section 3.4, sec-
tion 3.5, Figure 2 and Figure 3).

1The code is available here https://github.com/rahimentezari/
DataDistributionTransferLearning
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Figure 1: Differences between various pre-training sources diminish as more data is available
for the downstream tasks. In the few-shot setting, different pre-training datasets lead to noticeable
differences in downstream performance. However, if many samples are available for fine-tuning, the
difference in absolute accuracy between models pre-trained on different sources largely evaporates
(see Figure 6 for a detailed view).

We conduct an extensive empirical investigation in the context of transfer learning for computer
vision tasks (See section D for details on 4000 experiments). Our study covers seven pre-training
datasets including YFCC, LAION, Redcaps, Conceptual Captions-3m, Conceptual Captions-12m,
WiT, Shutterstock, and ImageNet (10; 11; 12; 13; 14; 15; 16), nine fine-tuning datasets including
CIFAR100, DTD, Caltech-101, Oxford-PETS, REAL and CLIPART from DomainNet, EuroSAT,
Cassava Leaf Disease, and Caltech Camera Traps (17; 18; 19; 20; 21; 22; 23; 24) with CLIP pre-
training (1). To evaluate downstream performance, we examine both few-shot fine-tuning and full
fine-tuning.

We review closely related works in Appendix Section A. Section 2 explains our experimental setup.
Section 3 details our observations relating to our research questions. Due to space limits, we discuss
our findings and conclude with future research directions in Appendix Section B.

2 EXPERIMENTAL SETUP

Model The main focus of this study is the CLIP model (1). This model has demonstrated unprece-
dented robustness to natural distribution shifts (25; 26), and transfers well to many downstream
tasks (1; 27). Given an image-text pair, CLIP learns a joint embedding space for both images and
their captions and tries to maximize the cosine similarity between the text and image embedding for
an image relative to the cosine similarity of unaligned pairs. We use the CLIP implementation from
the OpenCLIP GitHub repository (28).

Pre-training and Fine-tuning We mainly use ResNet-50 (29) as the image encoder unless stated
otherwise. We vary the pre-training data distribution in section 3.1, curation method in section 3.4.

For most of the experiments, we fine-tune the pre-trained model end-to-end on the target transfer
dataset unless stated otherwise. For each pre-trained model and downstream transfer dataset, we
used a large grid search over various fine-tuning hyperparameters including learning rate, batch
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Figure 2: Effect of data curation and labeling. Supervised pre-training on ImageNet leads to better
transfer accuracy than self-supervised pre-training (IN1K-Template-Captions). On a different com-
parison between ImageNet and LAION distributions, pre-training CLIP on ImageNet (with clean
template captions) outperforms LAION-1m by a large margin. See Figure 4 for other datasets.
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Figure 3: How much LAION data is worth of ImageNet pre-training? Including 15x more data
from LAION outperform ImageNet pre-training with template captions on CIFAR100. However,
DTD, REAL, and CLIPART need 2000x more data from LAION to match or outperform ImageNet
pre-training. Even including 2000x more data did not help CALTECH101 and PETS.See Figure 5
for other datasets.

size, and the number of epochs. We report the best-performing accuracy in the plots. Further
training details are in Appendix D.

Datasets Our large-scale experiments yield more than 4000 trained networks. Our pre-training
datasets cosists of million-size image and language pairs from multiple recent multi-modal datasets
including YFCC, LAION, RedCaps, Shutterstock, Conceptual Captions, WiT (10; 11; 12; 13; 14;
15) For downstream tasks, we use nine different datasets CIFAR100, DTD, Caltech-101, Oxford-
PETS, REAL, and CLIPART from DomainNet, EuroSAT, Cassava Leaf Disease, and Caltech Cam-
era Traps (17; 18; 19; 20; 21; 22; 23; 24). See Appendix section I for details on pre-training and
downstream datasets.

3 EXPERIMENTS AND RESULTS

3.1 WHAT IS THE IMPACT OF DIFFERENT PRE-TRAINING DATA SOURCES ON TRANSFER
LEARNING?

Do we expect different distributions to perform differently in the transfer setting? Figure 1 aggre-
gates transfer performance from different pre-training datasets across all downstream datasets. To
get each point, we (1) pre-train CLIP models using a set of seven large sources, (2) fine-tune each
pre-trained model on all downstream datasets across different shots (a sweep over multiple hyperpa-
rameters, see Appendix D), and (3) for each downstream dataset, calculate the difference between
the best and worst fine-tune performance among used pre-training sources, normalized by the max-
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imum fine-tune performance. Figure 1 aggregates over all downstream datasets for each number of
shots, highlighting as an example different pre-training models fine-tuned using 20 samples/class
on all downstream datasets. We observe that changing the pre-training dataset leads to noticeable
differences in the downstream performance in a few-shot setting. However, as more images are
available for fine-tuning, the difference in absolute accuracy between different pre-training models
is largely diminished. Figure 6 in Appendix shows this diminishing effect in detail for different
downstream datasets. The full fine-tuned models have very similar downstream performances de-
spite different pre-training datasets (see the top-right point of CIFAR100 and REAL in Figure 6, and
also the top-right point for CameraTraps, Cassava Leaf, and EuroSAT in Figure 6). However, this
is not true for DTD, CALTECH101, PETS, and CLIPART, where they have far fewer images per
class for fine-tuning on the full dataset. Appendix F extends our results to Vision Transformers (30)
instead of ResNet-50.

3.2 WHICH DATA DISTRIBUTION IS BETTER FOR TRANSFER LEARNING?

The results presented in Figure 6 demonstrate that pre-training on the Shutterstock and LAION
datasets results in superior transfer performance across a range of downstream tasks. A closer look
shows the superior performance of Redcaps for PETS. We investigate this further and inspect many
pets by looking at random samples from Redcaps at Figure 10. We also look into the most common
words in the captions of these pre-training datasets, summarized in Table 3. We observe that ”cats”
and ”dogs” are among the most common words in the Redcaps dataset. Table 3 also shows that
”background”, ”design”, ”pattern”, and ”texture” are among the most common words in the captions
of Shutterstock, supporting a high correlation to DTD (Describable Textures Dataset). WiT yields
the worst performance in most cases because both captions and images (Figure 14) are related to
topics about people and geography that are far from the studied downstream tasks.

3.3 HOW MUCH PRE-TRAINING CONTRIBUTES TO DOWNSTREAM PERFORMANCE AS
OPPOSED TO TRAINING FROM SCRATCH?

While transfer learning from a large pre-training dataset outperforms training from scratch for all
downstream tasks, the magnitude of the improvement varies for different datasets in Figure 6. We
observe a large improvement for PETS, CALTECH-101, and CLIPART. PETS for example has a
small number of samples per class for training (30), which makes it hard to train from scratch. It is
also scraped from the web (Google search (19)), similar to our web-scraped pre-training sources. We
also hypothesize that a pre-training shows the best improvement when increases both diversity(how
hard pre-train data is to fit) and affinity(how pre-training shifts the decision boundary of the scratch
model) (31), meaning it should be semantically close to the classes of target task while enriching the
distribution over the samples.

3.4 DO WELL-CURATED PRE-TRAINING DATASETS LEAD TO BETTER TRANSFER?

There has been a significant effort to create computer vision datasets with high-quality labels. On
the other hand, many recent datasets are large but noisy. In this section, we are going to investigate:
How much is laborious ImageNet labeling worth?

To answer this question, we first start by pre-training ResNet-50 on Large Scale Visual Recognition
Challenge (ILSVRC) 2012 (32), known as ImageNet-1K, using supervised cross-entropy loss and
fine-tune on our downstream datasets in Figure 2. To investigate the role of supervision, we then
discard ImageNet labels and use CLIP to pre-train on ImageNet. Because the ImageNet dataset has
no captions, we include original Flickr captions, which reduces the size of the image and captions to
0.5M samples (Appendix E describes the required steps to create ImageNet-Flickr). Figure 2 shows
that supervised pre-training on ImageNet outperforms CLIP pre-training on ImageNet with Flickr
captions by a large margin in all downstream tasks.

However, such a gap could be attributed to two differences between mentioned pre-trainings: (1)
supervised vs. contrastive image-language loss, and (2) the size of training samples for supervised-
ImageNet (1.2m) is two times larger than CLIP with ImageNet-Flickr captions (0.5m). To remove
the second effect we then use all the images from ImageNet, paired with templated clean captions,
e.g., “a photo of a class name”. This allows us to have a fair comparison between supervised
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and CLIP pre-training on ImageNet, given the same size. Figure 2 shows that pre-training with
clean captions improves the performance of CLIP pre-training by a large margin and outperforms
supervised pre-training on CIFAR100. However, supervised pre-training on ImageNet still performs
best for the rest of the other datasets.

3.5 HOW MUCH LAION DATA IS THE IMAGENET PRE-TRAINING WORTH?

Figure 2 compares the ImageNet distribution with LAION. Pre-training CLIP on the ImageNet dis-
tribution (with template captions) outperforms LAION-1m by a large margin. Findings from Fig-
ure 1 with the same pre-training loss are now extended to different losses in Figure 2, i.e., the gap be-
tween the supervised ImageNet (with template captions) pre-training and the contrastive LAION-1m
pre-training shrinks as more data for the downstream task are available. Interestingly, pre-training
CLIP on LAION-1m is only as good as ImageNet with Flickr captions with half of the data. We also
scale LAION pre-training size in Figure 3 to see if LAION can outperform ImageNet pre-training
and downstream performance. Figure 3 shows that including 15× more data from LAION outper-
forms ImageNet pre-training with template captions only on CIFAR100. However, DTD, REAL,
and CLIPART need 2000× more data from LAION to match or outperform ImageNet pre-training.
Even including 2000× more data did not help CALTECH101. ImageNet pre-training also outper-
forms LAION-2B on PETS by a large margin. This is probably because PETS and ImageNet both
share many samples of pets like dog breeds.

REFERENCES

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language super-
vision,” in International Conference on Machine Learning, pp. 8748–8763, PMLR, 2021.

[2] H. Pham, Z. Dai, G. Ghiasi, H. Liu, A. W. Yu, M.-T. Luong, M. Tan, and Q. V. Le, “Combined
scaling for zero-shot transfer learning,” arXiv preprint arXiv:2111.10050, 2021.

[3] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Mil-
lican, M. Reynolds, et al., “Flamingo: a visual language model for few-shot learning,” arXiv
preprint arXiv:2204.14198, 2022.

[4] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models transfer better?,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–2671,
2019.

[5] S. Abnar, M. Dehghani, B. Neyshabur, and H. Sedghi, “Exploring the limits of large scale
pre-training,” arXiv preprint arXiv:2110.02095, 2021.

[6] K. You, Y. Liu, J. Wang, and M. Long, “Logme: Practical assessment of pre-trained models
for transfer learning,” in International Conference on Machine Learning, pp. 12133–12143,
PMLR, 2021.

[7] C. Nguyen, T. Hassner, M. Seeger, and C. Archambeau, “Leep: A new measure to evaluate
transferability of learned representations,” in International Conference on Machine Learning,
pp. 7294–7305, PMLR, 2020.

[8] A. Deshpande, A. Achille, A. Ravichandran, H. Li, L. Zancato, C. Fowlkes, R. Bhotika,
S. Soatto, and P. Perona, “A linearized framework and a new benchmark for model selection
for fine-tuning,” arXiv preprint arXiv:2102.00084, 2021.

[9] D. Bolya, R. Mittapalli, and J. Hoffman, “Scalable diverse model selection for accessible trans-
fer learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 19301–19312,
2021.

[10] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J.
Li, “Yfcc100m: The new data in multimedia research,” Communications of the ACM, vol. 59,
no. 2, pp. 64–73, 2016.

5



Published as a conference paper at ICLR 2023

[11] C. Schuhmann, R. Vencu, R. Beaumont, R. Kaczmarczyk, C. Mullis, A. Katta, T. Coombes,
J. Jitsev, and A. Komatsuzaki, “Laion-400m: Open dataset of clip-filtered 400 million image-
text pairs,” arXiv preprint arXiv:2111.02114, 2021.

[12] K. Desai, G. Kaul, Z. Aysola, and J. Johnson, “Redcaps: Web-curated image-text data created
by the people, for the people,” arXiv preprint arXiv:2111.11431, 2021.

[13] P. Sharma, N. Ding, S. Goodman, and R. Soricut, “Conceptual captions: A cleaned, hyper-
nymed, image alt-text dataset for automatic image captioning,” in Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2556–2565, 2018.

[14] S. Changpinyo, P. Sharma, N. Ding, and R. Soricut, “Conceptual 12m: Pushing web-
scale image-text pre-training to recognize long-tail visual concepts,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568, 2021.

[15] K. Srinivasan, K. Raman, J. Chen, M. Bendersky, and M. Najork, “Wit: Wikipedia-based
image text dataset for multimodal multilingual machine learning,” in Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 2443–2449, 2021.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierar-
chical image database,” in 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255, Ieee, 2009.

[17] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-100 and cifar-10 (canadian institute for advanced
research),” 2009. MIT License.

[18] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the
wild,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3606–3613, 2014.

[19] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories,” in 2004 confer-
ence on computer vision and pattern recognition workshop, pp. 178–178, IEEE, 2004.

[20] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats and dogs,” in 2012 IEEE
conference on computer vision and pattern recognition, pp. 3498–3505, IEEE, 2012.

[21] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment matching for multi-
source domain adaptation,” in Proceedings of the IEEE/CVF international conference on com-
puter vision, pp. 1406–1415, 2019.

[22] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 2019.

[23] “Makerere University AI Lab. Cassava leaf disease classification, 2021.” https://www.
kaggle.com/competitions/cassava-leaf-disease-classification/
overview. Accessed: 2022-10-20.

[24] S. Beery, G. Van Horn, and P. Perona, “Recognition in terra incognita,” in Proceedings of the
European conference on computer vision (ECCV), pp. 456–473, 2018.

[25] R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt, “Measuring robustness to
natural distribution shifts in image classification,” Advances in Neural Information Processing
Systems, vol. 33, pp. 18583–18599, 2020.

[26] J. P. Miller, R. Taori, A. Raghunathan, S. Sagawa, P. W. Koh, V. Shankar, P. Liang,
Y. Carmon, and L. Schmidt, “Accuracy on the line: on the strong correlation between out-
of-distribution and in-distribution generalization,” in International Conference on Machine
Learning, pp. 7721–7735, PMLR, 2021.

6

https://www.kaggle.com/competitions/cassava-leaf-disease-classification/overview
https://www.kaggle.com/competitions/cassava-leaf-disease-classification/overview
https://www.kaggle.com/competitions/cassava-leaf-disease-classification/overview


Published as a conference paper at ICLR 2023

[27] M. Wortsman, G. Ilharco, J. W. Kim, M. Li, S. Kornblith, R. Roelofs, R. Gontijo-Lopes, H. Ha-
jishirzi, A. Farhadi, H. Namkoong, and L. Schmidt, “Robust fine-tuning of zero-shot models,”
arXiv preprint arXiv:2109.01903, 2021. https://arxiv.org/abs/2109.01903.

[28] G. Ilharco, M. Wortsman, R. Wightman, C. Gordon, N. Carlini, R. Taori, A. Dave, V. Shankar,
H. Namkoong, J. Miller, H. Hajishirzi, A. Farhadi, and L. Schmidt, “Openclip,” July 2021. If
you use this software, please cite it as below.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth
16x16 words: Transformers for image recognition at scale,” in International Conference on
Learning Representations, 2021.

[31] R. Gontijo-Lopes, S. Smullin, E. D. Cubuk, and E. Dyer, “Tradeoffs in data augmentation: An
empirical study,” in International Conference on Learning Representations, 2020.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” Inter-
national journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[33] D. Kim, K. Wang, S. Sclaroff, and K. Saenko, “A broad study of pre-training for domain
generalization and adaptation,” arXiv preprint arXiv:2203.11819, 2022.

[34] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of data
in deep learning era,” in Proceedings of the IEEE international conference on computer vision,
pp. 843–852, 2017.

[35] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.

[36] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv
preprint arXiv:1608.03983, 2016.

[37] N. Mu, A. Kirillov, D. Wagner, and S. Xie, “Slip: Self-supervision meets language-image
pre-training,” arXiv preprint arXiv:2112.12750, 2021.

[38] A. Fang, G. Ilharco, M. Wortsman, Y. Wan, V. Shankar, A. Dave, and L. Schmidt, “Data
determines distributional robustness in contrastive language image pre-training (clip),” arXiv
preprint arXiv:2205.01397, 2022.

[39] A. Kumar, A. Raghunathan, R. Jones, T. Ma, and P. Liang, “Fine-tuning can distort pretrained
features and underperform out-of-distribution,” arXiv preprint arXiv:2202.10054, 2022.

[40] B. Neyshabur, H. Sedghi, and C. Zhang, “What is being transferred in transfer learning?,”
Advances in neural information processing systems, vol. 33, pp. 512–523, 2020.

[41] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding transfer learn-
ing for medical imaging,” Advances in neural information processing systems, vol. 32, 2019.

[42] L. Ericsson, H. Gouk, and T. M. Hospedales, “How well do self-supervised models transfer?,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5414–5423, 2021.

[43] A. Islam, C.-F. R. Chen, R. Panda, L. Karlinsky, R. Radke, and R. Feris, “A broad study on
the transferability of visual representations with contrastive learning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 8845–8855, 2021.

[44] P. Goyal, M. Caron, B. Lefaudeux, M. Xu, P. Wang, V. Pai, M. Singh, V. Liptchinsky, I. Misra,
A. Joulin, et al., “Self-supervised pretraining of visual features in the wild,” arXiv preprint
arXiv:2103.01988, 2021.

7

https://arxiv.org/abs/2109.01903


Published as a conference paper at ICLR 2023

[45] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig,
“Scaling up visual and vision-language representation learning with noisy text supervision,” in
International Conference on Machine Learning, pp. 4904–4916, PMLR, 2021.

[46] X. Zhai, X. Wang, B. Mustafa, A. Steiner, D. Keysers, A. Kolesnikov, and L. Beyer, “Lit: Zero-
shot transfer with locked-image text tuning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 18123–18133, 2022.

[47] T. Nguyen, G. Ilharco, M. Wortsman, S. Oh, and L. Schmidt, “Quality not quantity: On the
interaction between dataset design and robustness of clip,” arXiv preprint arXiv:2208.05516,
2022.

[48] S. Santurkar, Y. Dubois, R. Taori, P. Liang, and T. Hashimoto, “Is a caption worth a thousand
images? a controlled study for representation learning,” arXiv preprint arXiv:2207.07635,
2022.

[49] “Common crawl.” https://commoncrawl.org/. Accessed: 2022-09-20.

8

https://commoncrawl.org/


Published as a conference paper at ICLR 2023

APPENDIX

A RELATED WORK

This work is inspired by and closely related to (author?) (33) and (author?) (5). (author?) (33)
conducted an in-depth study of the effect of the network architecture, pre-training dataset, supervised
vs self-supervised learning objectives, and different domain transfer methods on the transferability of
representations to new domains. They found that the transferability of the pre-trained representations
depends on factors such as the target benchmark, adaptation method, and network depth. However,
they do not study few-shot transfer (where we see the most impact of the pre-training distribution).
They also did not provide a set of controlled experiments for some of the studied impacting factors
because they are limited to available pre-trained models. For example, when comparing the role of
data distribution (their Figure 2, ImageNet-22K vs. JFT-300m), they change the dataset size and
also architecture, and the reader is left wondering if JFT has a better distribution for transfer or if
the observed effects come from more data or a better architecture?

(author?) (5) also explored how different upstream training settings affect transfer accuracy for
two upstream datasets and more than 20 downstream tasks. They showed that as the upstream
accuracy increases, the transfer learning performance on downstream datasets saturates. However,
the authors study only upstream models that are pre-trained with a supervised loss function on
ImageNet-21K (16) or JFT-300M (34) (different size and distributions). In this work, we extend
these results to more pre-training datasets and methods, with a special focus on data distribution
and curation. (author?) (5) also lacks controlled comparison between different distributions in the
pre-training datasets e.g., they compare JFT and ImageNet with very different sample sizes. We
consider full fine-tuning in addition to few-shot transfer. Moreover, (6; 7; 8) develop metrics for
predicting the transferability of a model. Their main focus is to develop a measure to predict the
full fine-tune accuracy without actually fine-tuning on the downstream task. While we also cover
full fine-tune accuracy, our main research question lies in studying the extent to which pre-training
data affect transfer accuracy. Looking at few-shot and full-shot also gives us the ability to study
the effect of transfer learning as more target data become available. Moreover, predictability of
the transfer performance is mostly limited to supervised ImageNet-1K pretraining, while we scale
both pre-training distributions, size, and pre-training loss functions. Transferability line of research
also mainly focuses on Internet-crawled datasets, while we extended our results to domain-specific
datasets (Camera Traps, Cassava Leaf Diseases, and EuroSAT), Section H extends related works.

B DISCUSSION, LIMITATIONS, AND FUTURE WORK

Discussion As better pre-trained models become available, and more workloads shift from training
from scratch to fine-tuning, understanding the transfer learning paradigm becomes increasingly im-
portant. Presumably, in the future, a sea of pre-trained models will be available for download from
the Internet. Therefore, researchers and practitioners will be faced with the question of where to
begin. It will be important to make this choice well, but also to understand to what extent this choice
matters. Overall we have observed that different pre-training distributions and methods can lead
to differences in downstream transfer accuracy. However, these differences are the largest in the
few-shot transfer regime. If many images are used for fine-tuning these differences are mostly di-
minished. Moreover, while different pre-training decisions lead to similar accuracy in the high-shot
regime, they still outperform training from scratch in the setting we consider.

Limitations and Future work There are a number of limitations in our study. For one, we con-
sider only end-to-end fine-tuning, because this method produces the highest accuracy. However, if
compute is limited, one may choose to instead use linear probing or other lightweight fine-tuning
methods. So far this is not addressed in our study. Another limitation is that we did not do an ex-
haustive hyperparameter sweep for pre-training. While fine-tuning is cheaper and we are therefore
able to do a grid search, for pre-training we are mostly limited to using existing checkpoints. While
we think that this reflects a realistic setting, in the future we wish to also better understand the role
of hyperparameters.

In addition to the mentioned limitations, future works might include extending experiments to in-
clude different samples of ImageNet. One example may include subsets of ImageNet-21K (2.7m in
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Figure 4: Effect of data curation and labeling. Supervised pre-training on ImageNet leads to better
transfer accuracy than self-supervised pre-training (IN1K-Template-Captions). On a different com-
parison between ImageNet and LAION distributions, pre-training CLIP on ImageNet (with clean
template captions) outperforms LAION-1m by a large margin.

Figure 6 and 15m in Figure 3) and respective comparison to Shutterstock and LAION distributions.
Given our observation of the role of data curation, we also hope that our findings stimulate further
direction toward creative methods for dataset curation.
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Figure 5: How much LAION data is worth of ImageNet pre-training? Including 15x more data
from LAION outperform ImageNet pre-training with template captions on CIFAR100. However,
DTD, REAL, and CLIPART need 2000x more data from LAION to match or outperform ImageNet
pre-training. Even including 2000x more data did not help CALTECH101 and PETS.
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Figure 6: Effect of the pre-training data distribution. While Figure 1 shows the aggregated results
all downstream datasets, here we include the performance for each pair of (pretraining, downstream)
datasets in detail. In the low-shot setting, different pre-training datasets lead to noticeable differences
in downstream performance. If many samples are available for fine-tuning, the difference in absolute
accuracy between models pre-trained on different sources largely evaporates.
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C EFFECT OF THE PRE-TRAINING DATA DISTRIBUTION

Figure 6 shows a detailed for aggregated results shown in Figure 1. In the low-shot setting, different
pre-training datasets lead to noticeable differences in downstream performance. If many samples are
available for fine-tuning, the difference in absolute accuracy between models pre-trained on different
sources largely evaporates.

Figure 6 compares different data sources for pre-training. While Shutterstock shows superior perfor-
mance on the first six datasets (except for PETS), the best pre-training distribution changes between
Camera Traps, Cassava Leaf, and EuroSAT. Changing the pre-training dataset leads to noticeable
differences in the downstream low-shot performance of nine datasets.

D TRAINING DETAILS

D.1 CLIP TRAINING

Our CLIP models are trained from scratch on each of the pre-training datasets unless otherwise
mentioned and follow the training code from the OpenCLIP GitHub repository(28). CLIP models
are trained using AdamW optimizer (35) with default PyTorch parameters β1 = 0.9, β2 = 0.999,
ϵ = 10−8, batch size 1024, and weight decay of 0.1. For learning rate, we start with a learning rate
of 10−3 and apply a cosine-annealing learning rate schedule (36) with 5,000 steps warm-up. We use
the same data augmentations as in(1).

D.2 SIMCLR TRAINING

Our SimCLR implementation closely follows the training code from the SLIP(37). SimCLR models
are also trained for 16 epochs from scratch using AdamW optimizer (35) with β1 = 0.9, β2 = 0.98,
ϵ = 10−8, batch size 1024, and weight decay of 0.1. we start with a learning rate of 10−3 and apply
a cosine-annealing learning rate schedule (36) with 2 epochs of warm-up. The hidden dimension
of SimCLR MLP projection head is set to 4,094 and the output embedding dimension of MLP
projection head is set to 256.

D.3 FINETUNING DETAILS

Each pretrained model is finetuned on the specific downstream task for 128 epochs while the
learning rate is mostly from 0.0001, 0.0003, 0.001, 0.003 as starting and applying a cosine-
annealing learning rate schedule (36) with 500 steps warm-up and batch size of 128. For each
fine-tuning, we choose the best-performing result on the test set among the performed grid search.
We use the implementation from the WiSE-FT GitHub repository for fine-tuning, where we have
only one model and α = 1 (27). For a list of all 4000 experiments, including their hy-
perparameters and performance see https://github.com/AnonymousMLSubmission/
DataDistributionTransfer/blob/main/Hyperparameters_results.csv

E EFFECT OF DATA CURATION: IMAGENET CAPTIONING

We compare CLIP models pre-trained on LAION with CLIP models pre-trained on the following
two versions of the curated ImageNet dataset:

• IN1K-Flickr-Captions: This is a subset of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 training set, paired with the original image title, description, and
tags from Flickr. Therefore, we can use it for CLIP pre-training. To construct this dataset,
(author?) (38) start from 14,197,122 image URLs in the ImageNet fall 2011 release, and
filter to only include images from Flickr. Next, they restrict the images to the 1,000 classes
included in the 2012 ImageNet competition, run the image deduplication routine, and re-
move text containing profanity. As a result, the dataset of 463,622 images is left along with
the newly obtained corresponding text data.
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Figure 7: Effect of pre-training data distribution: a better view. We change the presentation
of Figure 6 for a better view of exact performance numbers on different data distributions and
datasets.

• IN1K-Template-Captions: This dataset includes all data in the ImageNet dataset, paired
with templated captions, e.g., “a photo of a classname”. This allows us to use CLIP pre-
training but on clean images and text. In terms of ImageNet accuracy, this training scheme
is very similar to standard supervised training. However, this is now a controlled experi-
ment as we are always using CLIP pre-training.

F OTHER ARCHITECTURES

In order to see the effect of architecture on the observed trends, we extend the results to the effect
of pre-training distribution in Figure 6 to include Vison Transformers. To do so, we used ViT-
B/32 released checkpoints trained on LAION-400m and OpenAI-400m, . Figure 8 shows the effect
of data distribution on finetune transfer to CIFAR100, DTD, and CALTECH101 when using ViT
instead of ResNet-50. While similar to Figure 6 the difference between the fine-tune performance
is minimal, we observe that both models perform also very similarly in the few-shot setting. We
hypothesize that this observation could be attributed to the similarity between LAION and OpenAI
distributions rather than employing a transformer instead of ResNet-50. A controlled study may
include to replicate Figure 6 but with ViT, and we leave that for future work.

G EFFECT OF PRE-TRAINING DATA DISTRIBUTION: SIMCLR INSTEAD OF
CLIP

In contrast to previous experiments with CLIP where we fine-tuned end-to-end from the zero-shot
pre-trained model, in SimCLR finetuning we fine-tune using LP-FT (39) because we are no longer
able to start with a zero-shot pre-trained model. When we compare to CLIP, we fine-tune both
models with LP-FT to facilitate a fair comparison. LP-FT is the following two-step procedure: for
each number of shots k we first freeze the encoder and train a classification head from random
initialization using k examples per-class from the downstream task. In the second step, we initialize
the classification head with this linear probe (LP) then unfreeze all weights and finetune (FT) the
whole model.
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Figure 8: Effect of the pre-training data distribution: ViT instead of ResNet-50 While similar
to Figure 6 the difference between the fine-tune performance is minimal, we observe that both mod-
els perform also very similarly in the few-shot setting. We hypothesize that this observation could be
attributed to the similarity between LAION and OpenAI distributions rather than employing trans-
former instead of ResNet-50.

H EXTENDED RELATED WORKS

Transfer learning is widely used in deep learning research and practice and has become a corner-
stone in both computer vision and natural language processing. Through the years, there have been
many questions on why transfer helps and how to choose a good pre-trained model to transfer from.
(author?) (40) separated the effect of feature reuse from that of learning low-level pre-training data
statistics. (author?) (41) investigate the similarity of the pre-training and downstream datasets by
looking into medical datasets and found that transfer learning from ImageNet pre-trained models
shows little benefit in performance. (author?) (42) studied the downstream performance of self-
supervised models and found that the best self-supervised models of that time could outperform
supervised pre-training as an upstream source of knowledge transfer and that the performance of
self-supervised models on ImageNet is indicative of downstream performance on natural image
classification tasks. Similarly, (author?) (43) found that contrastively trained models consistently
outperform standard cross-entropy models in transfer learning. (author?) (44) showed that self-
supervised models outperform supervised models on ImageNet, even when trained on random and
uncurated images from the web. Moreover, they showed that these models are also good at few shot
learning by achieving 77.9 % top-1 accuracy using only 10 % on ImageNet.

Building on contrastive techniques, (author?) (1) introduced CLIP which learns a joint embedding
space for both images and their descriptive captions, making it possible to effectively leverage a
large-scale dataset from the Internet. Flamingo (3), a visual language model, is another success-
ful example in the line of multimodal models and enables visual question answering and image
captioning. CLIP and similar models like ALIGN (45), BASIC (2), and LiT (46) demonstrated
unprecedented robustness to challenging data distribution shifts. This accomplishment raised ques-
tions on the probable sources of such robustness—whether this robustness is caused by language
supervision, the pre-training data distribution, size, or contrastive loss functions.

(author?) (38) investigated this question and found that the diverse training distribution is the main
cause of the robustness properties of CLIP. (author?) (47) explored the role of the pre-training
dataset for CLIP with a testbed of six pre-training sources, finding that no single pre-training dataset
consistently performs best. In recent work, (author?) (48) carefully investigated the effect of lan-
guage supervision in CLIP-like models, finding it an important factor if the pre-training dataset is
large and the captions are descriptive enough. Unlike their work, we consider end-to-end fine-tuning
which result in higher accuracy.
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I DATASETS

I.1 DOWNSTREAM TASKS

We have used 9 different downstream datasets. tab:downstreamdatasets describes the first six
datasets in Figure 6. While these six datasets are internet-crawled datasets and are more common in
transfer learning in computer vision benchmarks, we include three new downstream datasets that are
domain-specific, i.e., the dataset is created after a specific challenge is defined in a specific domain.

• EuroSAT (22): The task is to classify land use and land cover based on Sentinel-2 satellite
images. The dataset covers 13 spectral bands and consists of 10 classes within a total of
27,019 labeled and geo-referenced images. we create an 80%-20% random class-balanced
split with the provided dataset.

• Cassava Leaf Disease Classification (23): The dataset contains 21,397 images from the
Kaggle competition, to give farmers access to methods for diagnosing plant diseases. The
images are labeled as healthy or as one of four different diseases. we split the dataset with
80%-20% random class-balanced ratio for train and test, respectively.

• Caltech Camera Traps-20 (24): CCT-20 contains 57,864 images in 15 classes, taken from
camera traps deployed to monitor animal populations. Classes are either single species
e.g., ”Coyote”) or groups of species, e.g., ”Bird”). CCT-20 is a subset of the iWildCam
Challenge 2018, whose yearly editions have been hosted on Kaggle. Here we study the
subset of CCT-20 that come from the same locations 2, including 14,071 and 16,395 images
for train and test respectively.

Table 1: Details on the downstream datasets used in the experiments.

width=1

Downstream Task Description

CIFAR100 The task consists in classifying natural images (100 classes, with 500 training
images each). Some examples include apples, bottles, dinosaurs, and bicycles.
The image size is 32x32.

DTD The task consists in classifying images of textural patterns (47 classes, with
120 training images each). Some of the textures are banded, bubbly, meshed,
lined, or porous. The image size ranges between 300x300 and 640x640 pixels.

CALTECH-101 The task consists in classifying images of objects (9144 images in 101 classes
plus a background clutter class), including animals, airplanes, chairs, or scis-
sors. The image size varies, but it typically ranges from 200-300 pixels per
edge.

PETS The task consists in classifying images of cat and dog breeds (7000 images in
37 classes). Images dimensions are typically 200 pixels or larger

REAL The task is a subset of larger DomainNet from six distinct domains, including
photos (real), painting, clipart, quickdraw, infograph, and sketch. Total size of
172,000

CLIPART The task is a subset of larger DomainNet from six distinct domains, including
photos (real), painting, clipart, quickdraw, infograph, and sketch. Total size of
172,000

I.2 PRE-TRAINING DATASETS

Our study covers 7 pre-training datasets as follow:

• YFCC: Our experiments mostly include YFCC-2.7M, a random subset of YFCC-15M. The
15M subset of the YFCC-100M dataset (10) was filtered to only include images with En-
glish titles or descriptions. The dataset contains 14,829,396 images with natural language
captions associated with each image. The images and captions are collected from Flickr.

2“Cis” in the main dataset refers to images from locations seen during training, and “trans” refers to new
locations not seen during training
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• LAION (11): The images and corresponding alt-texts come from web pages collected by
Common Crawl (49) between 2014 and 2021. We randomly select a subset of 2.7M and
15M samples for our experiments.

• Redcaps (12): Redcaps contains 11,882,403 examples from 350 manually curated subreddit
collected between 2008 and 2020. The subreddits are selected to contain a large number of
image posts that are mostly photographs and not images of people.

• Shutterstock: 11,800,000 images and captions from the Shutterstock website.
• Conceptual Captions-3m (13): The raw descriptions in Conceptual Captions are harvested

from the alt-text HTML attribute associated with web images. This dataset contains
2,799,553 samples, denoted as CC 2.7m in the plots.

• Conceptual Captions-12m (14): A dataset with 12 million image-text pairs. It is larger
than CC 2.7m and covers a much more diverse set of visual concepts. We randomly select
2.7M samples from this dataset, denoted as CC 12 2.7m.

• WIT (15): Image-text pairs come from Wikipedia pages. We use reference description as
the source of text data and obtain 5,038,295 examples in total after filtering to include only
the English language.

tab:pretraindatasets shows their main source and total size. We also show some examples of image-
caption pairs randomly selected from Shutterstock in Figure 9, Redcaps in Figure 10, YFCC-15m
in Figure 11, LAION-15m in Figure 12, Conceptual Captions in Figure 13, and WIT in Figure 14.
tab:top20wordsalsoshowsthemostcommonwordsincaptionsofthesepre− trainingdatasets.

Looking at Redcaps samples in Figure 10 and also the top 20 captions shows many samples of
animals. This is showing why Redcaps perform better on PETS. Samples from WIT in Figure 14
and also its top 20 words mostly featuring geographical locations, which is rare in our downstream
task, hence performing worst compared to other pre-training distributions. Shutterstock top 20 words
also include words like ”pattern”, ”texture”, ”and design” which are close to DTD classes, hence
showing superior performance in this downstream task.

Table 2: Details on pre-training datasets

Dataset Source Total size

YFCC Flickr 14,826,000
LAION Common Crawl 15,504,742
CC-12M Unspecified web pages 9,594,338
RedCaps Reddit 11,882,403

WIT Wikipedia 5,038,295
ShutterStock ShutterStock 11,800,000

IN1K-Captions ImageNet 463,622

Table 3: Most common words in captions of pre-training distributions

width=1

Pre-training dataset Top 20 words in 1M sample of captions

Shutterstock background, vector, illustration, design, icon, pattern, texture, style, woman,
concept, hand, color, flower, view, template, line, business, logo, card, symbol

Redcaps day, today, year, time, cat, plant, friend, anyone, picture, baby, guy, week, dog,
home, morning, night, month, way, boy, work

YFCC-15m photo, day, park, street, city, picture, view, time, world, year, house, state,
center, part, garden, shot, image, building, road, museum

LAION-15m photo, stock, image, black, woman, design, set, vector, white, print, home,
men, blue, dress, art, card, sale, gold, bag, cover

CC-12m illustration, stock, art, design, photo, image, background, room, vector, house,
home, woman, wedding, style, photography, royalty, car, fashion, girl, world

CC-3m background, actor, artist, player, illustration, view, woman, man, football,
team, tree, premiere, city, vector, day, girl, beach, game, hand, people

WIT view, church, station, map, house, building, hall, museum, city, location, street,
park, river, state, john, county, town, center, bridge, world
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Figure 9: Random training samples from Shutterstock
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country backroad. - long path, catskills
park ny

my handsome new neighbour

dressing up for the family photo shot from our airbnb porch view on oia on
santorini in greece

completed a small remodel of the half bath.
first timer. such a pretty girl

Figure 10: Random training samples from Redcaps
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Juniper Berries Eastern red cedar
(Juniperus virginiana) laden with berries
at the High Line

Rendlesham Forest Suffolk Spider

Energy Saving 20W CFL bulb equivalent to
100W incandescent bulb. It's like magic.

PISM's analysts On 5 October 2012, in the
presence of PISM Council members and
Directors, the PISM staff inaugurated the
autumn season at Warecka Street. Our gu...

Parque Mayer (Lisboa/ Portugal)  Obrigado
por todas as visitas, comentários e dicas
;-) Thanks for all your visits, comments
and advice ;-)

Roof Repairs Roof Repairs, Lester Public
LIbrary, Two Rivers, Wisconsin -
www.greatlakesroofing.net/

Alaska Trip-Glacier Bay, Sitka 1976 Glacier
Bay 062  My blog here Musings from the
Silent Generation  Glenn

Nash, North Dakota Nash, North Dakota. From
everydot.com/.

Point Mugu State Park On the way to Santa
Barbara

Outdoor practice Heikki Karinen teaches how
to do makeshift bandages

dancing monk note  the audience
expressions!

Boats in Porvoo Plus more of those cute red
storage houses.

Lowland Paca This Lowland Paca, Cuniculus
paca, was photographed in Panama, as part
of a research project utilizing motion-
activated camera-traps.  You are invite...

Cuff Point The old haunt, from the corner
of Hackney Road

QLD Police Traffic Branch Commodore SS with
customer!

CHELSEA FOOTBALL CLUB Chelsea Magazine -
Issue 63,  November 2009

Figure 11: Random training samples from YFCC
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Busy Slaying Vampires Mens T-Shirt Webcam site Stripchat

Yellow sandals for women pointy and low
heeled Beatnik Françoise Mustard

OOZOO TIMEPIECES bordeaux croco leather
strap

3 Bedrooms Terraced House for sale in
Eastbourne Road, Walton, Liverpool,
Merseyside, L9

Paris Marriott Rive Gauche Hotel &
Conference Center photo 27

Minimum Wage Barbie Diamond Art Deco 18 Karat White Gold Dangle
Drop Earrings

Video editing with laptop. Professional
editor adding special effects or color
grading footage for commercial film or
movie.

I'm a Rugby Referee - Men's Premium Hoodie

Marika Airbrush Yoga Leggings Julianne Hough: 'Footloose' Premiere with
Kenny Wormald!

Collins, Jackie Lovers and Gamblers All you need is Oils SVG

Girls Dora the Explorer Costume -
HalloweenCostumes4U.com - Kids Costumes SCDMS SHIP TO SHORE COVERAGE

Figure 12: Random training samples from LAION
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<PERSON> `` The wolf and the lamb shall
feed together, and the lion shall eat straw
like the bullock: and dust shall be the
serpent's meat. They shall not hurt no...

Islamic vector geometric ornaments based on
traditional arabic art. Oriental seamless
pattern. Muslim mosaic. Turkish, Arabian
tile on a white background. Mosque ...

Biker girl in a leather jacket on a black
and red color motorcycle

Light Touch Wall digital marketing
activation at the Canberra Centre.

Today's wedding dress inspiration brings us
fabulous bridal gowns from creative
designer <PERSON>. The Divine Affection
lastest bridal collection of <PERSON>
wedd...

Illustration of hand holding the id card.
Vector illustration flat design.

Easy Cabbage Rolls that are <PERSON>,
<PERSON> and have no rice! <PERSON> budget
friendly comfort food recipe adapted from
my Russian grandmother!

<PERSON>: U. <PERSON> in United States
Army. First <PERSON> appointed to that
position. First, &, so far, only <PERSON>
to serve on Joint Chiefs of Staff. Black
H...

Wedding rings on a bouquet of roses stock
photos

<PERSON> tattoo, the American number 23
from Akron, United States

All Balls Swinging Arm Bearing Kit for
Yamaha XT225 | XT250 Serow 1993 to 2007

Search the hidden word, the simple
educational kid game. stock illustration

Different types of photo frames with
circles and squares on the wall -
background template stock illustration

The Russian army entering Prussia, 1914 :
News Photo

The art of good drinking

Modern Bathroom Makeovers 20 Design Ideas
For a Small Bathroom Remodel. Modern
Bathroom Designs On A Budget Minimalist
Small Bathrooms, Modern Small Bathrooms,
Mo...

Figure 13: Random training samples from Conceptual Captions
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Japanese chamber pot from the Edo period Ratel

15th race in 1982 Dedication plaque at Oregon Dunes Overlook,
Oregon Dunes National Recreation Area

Robinson in March 2018 85-15 Wareham Place, Donald Trump's
childhood home

Hugo van der Goes, Saint Luke Drawing the
Virgin, c. 1470 80. National Museum of
Ancient Art, Lisbon

Museum of Arts & Design at 2 Columbus
Circle, nearly completed in July 2008.  A
piece by David Dunlap's in the NY Times
reveals that the appearance of the letter
...

Paul McAuley at Worldcon 2005 in Glasgow
Maui Veterans Highway shown just above
Kealia Pond National Wildlife Refuge as it
enters Kihei

Construction of restrooms and locker rooms
with east side stands and pavilion McLaren 600LT

Buzz Aldrin received praise for his
performance. James Barber House

A Fiat G.91PAN, in service in the Frecce
Tricolori from 1963 to 1982 Alexa Stirling, c. 1919

Figure 14: Random training samples from WIT
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